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The way a problem is represented strongly affects our 
ability to understand and solve it. Visual representations 
are especially important because the human visual system 
is such a powerful way of processing information. 
However few existing systems try to take advantage of 
these insights. In pursuit of the long-range goal of con­
structing a software oscilloscope that makes the invisible 
visible, we have constructed system components which 
automatically generate graphical representations of com­
plex structures, illustrate the control flow of complex 
programs, and support visualization techniques in object­
oriented environments. Our tools are used in a variety of 
contexts: in programming environments, as components in 
intelligent support systems, and in human-computer inter­
action in general. Visual representation alone, however, is 
not enough; the designer of visualization tools must take 
into account the semantics of graphical symbols and the 
user's need to limit visualization to the relevant facts and 
relations. 

1. Introduction 
The way a problem is represented strongly affects whether 
we can understand and solve it. Simon [Simon 81] argues 
that solving a problem simply means representing it so as to 
make the solution transparent. He argues that this is espe­
cially true for mathematics; mathematical derivations can 
be viewed as changes in representation, making evident 
what was previously true but obscure. 

Believing that the limits of our thoughts are all too often 
identical with the limits of our capacity to imagine and 
visualize, we have developed over the last several years a 
rich variety of visualization tools to make using computers 
a more rewarding and less error-prone experience. Our 
goal is to build software components that take advantage of 
the power of the human visual system to provide insight 
and understanding, instead of relying only on verification 
methods. Being especially interested in ill-structured 
problems, we have found (like all other researchers inves­
tigating design problems empirically) that the recommen­
dation "think more clearly" is not good enough; over­
whelming evidence shows that there is an urgent need for 
better tools because humans have a bounded rationality. 
Verification systems [Millo, Lipton, Perlis 79] that end up 
with the result "correct" or "incorrect" contribute little to 
our understanding of a problem. Moreover, verification 
procedures rely on an exact specification of a problem, 
whereas the crucial activity in solving ill-structured 
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problems is to come up with this specification in the first 
place. In the following sections, we will present first steps 
towards a software oscilloscope that helps users understand 
the behavior of complex artifacts. The components of this 
software oscilloscope all exploit the powerful human visual 
system. 

With workstations and bitmap displays becoming widely 
available, many people now recognize the importance and 
power of visualization tools. The growing number of 
publications reflects the increasing interest in visualization 
and visual programming (e.g., [Smith 77; Gould, Finzer 84; 
Brown 88; Reiser et al. 88; Ambras, O'Day 88; Ingalls et 
al.88]). A good survey is contained in [Computer 85]. 

One of the most important applications of visualization 
tools is software design, because the gradual shift from 
designing software from scratch to creating software 
through redesign and reuse [Fischer 87a] requires the 
programmer ftrst to understand the software in its existing 
form. 

2. Insight and Understanding versus 
Verification 

Figure 2-1 summarizes two different views of the crucial 
issues in computer science [Newell, Simon 76; Fischer, 
Boecker 83]. 

View 1 View 2 

C?mpu~er a formal, math- an experimental 
science IS: ematical dis- discipline 

cipline 

Main tools for formal specifica- rapid prototyp-
the development tion techniques ing, experi,mental 
or systems are: programmmg 

~asic challenge think: more devel~tter 
IS: clearly tools ause 

humans have a 
bounded 
rationality) 

Pr~amming do not write design is an error 
met odology: programs which correcting 

cannot be process 
verified before 
they are written 

Figure 2-1: Two Opposing Views of the 
Crucial Issues in Computer Science 



Obviously. the appropriate view depends on the application 
area. For all the areas in which we have been interested 
(e.g., artifIcial intelligence, cognitive science, human­
computer communication, use of computers for learning 
and instruction), the second view is most adequate, and it is 
this perspective that has governed our construction of the 
tools described in Section 3. 

Rather simple experiments may be used to demonstrate the 
importance of graphical representations in problem solving: 

• The Rope around the Earth (see [Fischer 79]): A rope 
is tied around the earth at the equator (assuming that the 
surface of the earth is smooth). If we extend this rope by 
one yard and form a concentric circle around the earth, 
will the difference between the earth and the rope be big 
enough that a mouse can get through? Almost 
everybody's intuitive answer to this problem is "no." 
Simple mathematics easily proves that the resulting dif­
ference is independent of the size of the surrounded 0b­
ject and defInitely big enough so that a mouse can get 
through. This proof verifies the result, but it provides no 
insight and understanding. How do we make people 
believe the proof, i.e., understand the solution? One pos­
sibility is to ask them to consider the following problem: 
A rope is lying on the ground between Boulder and Den­
ver (or any other two cities that are close to each other). 
Can we lift it up by ten inches without increasing the 
length of the rope? This thought experiment indicates 
the relationship between radius and curvature. 

• Number Scrabble and Tic-Tac-Toe (see [Simon 81], 
page 151, for details) are two isomorphic versions of the 
same game. Yet subjects perform much better at Tic­
Tac-Toe than at Number Scrabble. It is possible that 
Tic-Tac-Toe is easier to play because it is more visually 
oriented. 

• The Design of a Roulette Table: Teaching high school 
students problem solving with LOGo, we asked them to 
simulate a roulette table with slots 0 to 18. Given was a 
random number generator that returned a number be­
tween 0 and 9. Most students felt quite happy with the 
solution "sum of random and random." Not until they 
plotted the results in a graph did they discover that their 
roulette table did not give a uniform distribution. The 
visual representation of the results did not show to them 
how to produce a fair roulette table, but it did uncover 
the incorrect solution in an obvious way. 

Our experiments with these and similar problems suggest 
that the right kind of representation can provide insight and 
understanding into a problem. One of the advantages of 
visual representations over their formal, propositional 
counterparts is that visual representations facilitate direct 
observation of important properties, which is usually 
cheaper (in terms of the computations involved) than 
deduction. 
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3. Visualization Tools 
Myers proposes that visualization-oriented programming 
tools may be classifIed into two main categories: "program 
visualization" and "visual programming" [Myers 86]. In 
our opinion, the distinction between these two types of sys­
tem is much less clear cut than Myers suggests. The sys­
tems described in the following sections are all in-between 
cases. For instance, KAFsrLE is a program visualization 
tool as well as a visual programming tool because it allows 
the user to edit the structures displayed (see Section 3.1). 
The distinction becomes totally blurred for object-oriented 
systems in whicb the graphical objects of the visualization 
have direct counterparts within the programming formalism 
(see Section 3.3). 

3.1 Visualization of Data Structures: KAESTLE 
The most important data structure of LIsP is the list. 
KAEslLE [Boecker, Nieper 85] automatically generates 
graphical representations of list structures and allows the 
user to edit them directly with a pointing device (Figure 
3-1). 

KAESlLE helps the LISP beginner to understand certain 
aspects of the programming language that are difficult to 
explain otherwise (e.g., the difference between copying and 
destructive functions; Figure 3-2). More experienced LISP 
programmers use it heavily to display and explore data 
structures that are diffIcult to represent symbolically, 
namely circular and reentrant structures (see 
ltae.tle-window-l in Figure 3-1). KAESTLE, as part of a 
programming environment, can be used to design, debug, 
document, and understand LISP programs or data structures. 

Planning tbe Spatial Layout of List Structures. To 
generate a graphical representation of a list structure, it is 
necessary to fmd a position on the screen for each element 
belonging to the structure (for more details see [Boecker, 
Nieper 85]). A fully automated layout planning algorithm 
faces the following problems: 

• List structures may be complex networks. A very good 
but time-consuming planning algorithm is not helpful in 
an interactive system. 

• Often, there is not enough space to display the entire 
structure. How can it be decided which parts of the 
structure to omit? 

• The semantics of the list structure (i.e., its logical 
structure) should be taken into account. 

Therefore our basic approach is to build cooperative sys­
tems [Fischer 88] for the human and the computer. In 
KAEslLE, the computer uses a simple planning algorithm: 
It doesn't pay attention to arrows crossing boxes or other 
arrows, and the display is truncated at the right and lower 
border of the display area. After this "fIrst draft" of the 
graphical representation is generated by the computer, users 
can move or delete parts of the display, or display ad­
ditional substructures, until they arrive at a "nice" output 
that shows the parts of the structure they want to see. 
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Figure 3-1: KAEsTLE, a Graphical Editor for List Structures 

1: list! 
«one 1) (two 2» 
~: I isU 
«thre. 3) «(our 4» 
~I (Ippand IIst1 I ist2) 
«onl 1> (two 2) (thre. 3) (four 4» 
~I (nconc list! I isU) 
«on8 1) (two 2) (thre. 3) «(our 4» 
51 

Figure 3-2: The Difference Between append and neone 

This figure illustrates the effects of the copying function append 
and the destructive function ncone. The nonnaI textual represen­
tation displayed in the top level window reveals no difference 
between the results of these two functions. 

Functionality of' the System. KAEsTLE provides the fol­
lowing operations, among others: 

• Generating a graphical representation: displaying mul­
tiple independent structures at any desired position. 

• Changing the graphical representation: displaying sub­
structures that are truncated in the current display, delet­
ing substructures from the display, moving substructures 
on the screen. 

• Changing the underlying list structure: inserting atoms or 
pointers in the graphical representation immediately 
changes the underlying list structure. 

• Undo and redo mechanisms. 

Dynamic Aspects: What Happens to tbe Structures? 
KAESlLE is used not only to display and edit static struc­
tures but also to monitor running programs. The standard 
LIsp trace package can be used for this purpose by updating 
the graphical representation whenever an "interesting" 
function is entered or left The trace facility can also be 
used to generate a sequence of snapshots of a data structure 
while the program is running (see Figure 3-3, which il­
lustrates a recursive, destructive algorithm that reverses a 
list). 
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Figure 3-3: A Sequence of Snapshots of a Data Structure 

A Case Study: Self-Organizing Linear Lists. The fol­
lowing case study shows how KAFSTI..E is used to debug a 
LIsp function. KAEsn.E allows tinkering with data struc­
tmes and supports primitive fonns of "programming by 
example." Users may test algorithms on specific examples 
and have KAESTI..E keep a record of what happens to the 
data structures. Visualization tools like this reduce the con­
ceptual distance between the symbols and primitives of a 
LIsp function and the manipulated data structure. They 
turn a cons-cell into an object that can be easily manipu­
lated. 

The LIsp function to be debugged in our example reor­
ganizes a linear list by pulling an element to the front of the 
list whenever the element is accessed, in order to speed up 
later operations. The list is implemented as an association 
list in LIsp. Figure 3-4 shows how the .eU-org-a •• q 
access function should reorganize the association list 
a-liK. 

1: a-list 

«I'rancois . Paris) (Maggie . London) 
(SAtlmut . Bonn) (Ronald . Washington» 

2: (_If-org-a •• q' Helmut a-li.t) 

(HelDa1t . Bonn) 

3: a-li.t 

«SAtlmut . Bonn) (l'ranooi. Pari.) 
(lI&99ie . London) (Ronald Washington» 

Figure 3-4: Self-Organizing Linear Lists 

In implementing the algorithm to reorganize this list, one of 
the authors of this paper had defined a buggy 
self-org-a •• q access function that for some unknown 
reason chopped off the last element of the list; Figure 3-5 
shows what happened. 

.. 

1: a-li.t 

«rrancoi •. Pari.) (Maggie . London) 
(SAtlmut . Bonn) (Ronald . Wa.hington» 

2: ( •• If-org-a •• q 'Helmut a-li.t) 

(s.lDa1t . Bonn) 

3: a-li.t 

«SAtlmut . Bonn) (Francois . Paris) 
(lI&99ie . London» 

Figure 3-5: A Buggy Implementation 

The question was: What happened to the last element? 
Without visualization tools, it would have been necessary 
to undertake the tedious and error-prone task of debugging 
that function by essentially running a simulation of it, 
drawing cons-cells with pencil and paper and making heavy 
use of an eraser to redirect pointers. With the help of 
KAFSTI..E, the bug was easily discovered. Figure 3-6 shows 
what happened internally: The cdr of the last cell was er­
roneously made to point to itself. With this clue, the code 
was easy to fix. No other tool of the LIsp programming 
environment would have made diagnosis this simple. 

Figure 3-6: How (Ronald . Waahi.ngton) 
Was Isolated 

3.2 Visualization of Control Structures: FOOSCAPE 
A program composed of a large set of usually rather simple 
functions may be appropriately described as a network of 
functions that mutually call each other. FOOSCAPE displays 
functions as eUipses that are connected by arrows (cf. 
Figure 3-7). The tool is meant primarily to give the user a 
first, rough overview of some piece of software. It is espe­
cially useful for languages that do not allow lexical nesting 
of function definitions. 

The planning of the layout (placement of the ellipses and 
arrows) is done automatically (see [Boecker, Nieper 85] for 
more details). However, because the solution sometimes is 
not "beautiful," FOOSCAPE allows the user to modify the 



layout interactively by moving the ellipses around or by 
altering the set of functions included in the display. The 
tool's interaction style is similar to that of KAESTLE. 

Traditional techniques for monitoring the dynamic behavior 
of programs (e.g., breakpoints, dumps) suffer from the fact 
that they capture just one state of the data and too often 
generate huge amounts of data. FOOSCAPE tries to avoid 
these disadvantages and to preserve the dynamics of the 
processes being monitored. Being able to see a program 
run gives one a grasp of detail that is hard to obtain in any 
other way. 

FOOScAPE not only displays the static calling structure of a 
program; it can also be readily used to display the 
program's dynamic behavior. The basic mechanism for 
accomplishing this is provided by the standard LISP trace 
package. Figure 3-7 shows a snapshot of an animated 
FOOSCAPE. A function name is highlighted, that is, flips 
from white to black, whenever the function is active. 

Figure 3-7: An Animated FOOSCAPE 

The impression given by a "running" FOOSCAPE bears 
some resemblance to the control panels of (outdated) com­
puter systems: You can tell from the pattern of lights what 
the system is doing. We also added sound to the 
F<x>SCAPE tool: Each of the functions is assigned two 
specific tones that are played when a function is entered 
and left, respectively. Initial experience with this ex­
perimental version seems to confirm that the human audio 
system is even more capable of monitoring sequences over 
time than the human visual system: As long as the program 
plays this Bach style music everything is ok. 

The usefulness of the tool depends on its appropriate use: 
The programmer has to exercise care in selecting the func­
tions to be included in the FOOSCAPE. If the granularity is 
too fine (the functions included are too primitive) only a 
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flickering screen will be seen, whereas if the granularity is 
too coarse hardly any dynamic behavior will be observed. 
In order to control the granularity, the user can temporarily 
exclude certain functions from being traced (see the func­
tions shaded with a gray raster-pattern in Figure 3-7). 

3.3 Visualization In Object-Orlented Fonnallsms 
Object-oriented programming formalisms are well suited to 
visual representation. The objects of an object-oriented 
language like SMAllTALK may naturally be mapped into 
graphical objects to be displayed on the screen. If the user 
can directly manipulate these graphical objects with the 
help of a pointing and dragging device like a mouse, the 
distinction between "visual programming" and "program 
visualization" quickly fades away. 

3.3.1 Zoo, a Knowledge Acquisition Tool 
ZOO [Rickert 87J provides the user with a graphical inter­
face for objects of the OBJT ALK programming language 
[Rathke, Lemk.e 85]. It allows knowledge engineers to 

inspect object-oriented knowledge bases and to modify and 
augment a knowledge base by directly manipulating screen 
objects. The graphic representation provides two kinds of 
graphic primitives: icons and labeled arrows (Figure 3-8). 
Icons are used to represent objects; the graphic symbol 
visualizes the class membership of the object Knowledge 
can be modeled as a network of icons as nodes and labeled 
arrows as links. The user creates classes and instances by 
copying and modifying the icons of existing classes and 
instances. They may then be linked together with other 
objects to add knowledge to the knowledge base under con­
struction. Deleting objects from the knowledge base is 
done in similar ways. 

Figure 3-8: The KnoWledge Editor ZOO 

This figure displays the knowledge that computers and CPUs are 
both products. products are produced by companies. and com­
panies produce products (the inverse relationship, which is 
generated automatically). 
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Figure 3-9: TRACK, a Trace Construction Kit 

3,3.2 TRACK, a Trace Construction Kit 
TRACK [Herczeg 89J extends the basic idea underlying 
FooScAPE into the domain of object-oriented program­
ming. It is implemented in SMAllTALK [Goldberg, Robson 
83] and fuUy integrated into the SMAll TALK programming 
environment. 

TRACK is used to trace messages sent between the objects 
of a SMALLTALK program. The users frrst place icons 
representing objects on the screen. They may then select 
" hurdles" from a menu and place them between the ob­
jects. The type of hurdle and its position detennine the 
messages to be traced and the objects involved in the trace 
(Figure 3-9). The user may specify constraints in tenns of 
the message's pattern, the sender, the receiver, the class of 
the method that handles a message, etc. Different hurdle 
icons represent the different types of traces (e.g., round 
icons represent more general ones, icons resembling square 
brackets represent more specific ones). Big circles, 
squares, and octagons may be used to surround specific 
objects with "walls" and thus specify object-specific 
traces. Also, breakpoints may be specified together with 
the hurdles. In the simplest case, all messages traveling 
between two specific objects in either direction would be 
traced. The flow of the message from one object to another 
is indicated by small circles traveling in real time between 
objects (in Figure 3-9, a message is just crossing the hurdle 
set up between "Mr. Moneymaker" and the "BigFun" 
company). More detailed information about the messages 
sent may be viewed in text windows connected to the 
hurdles. 

Traces may be set up for classes (left pane in Figure 3-9) or 
individual instances (right pane in Figure 3-9). The speed 
of the tracing is adjustable; programs may also be run in 
stepping mode. The lower part of a TRACK window 
dynamically displays all messages monitored by the 
hurdles and walls that are currently set up. 

3.4 Visualization of Directed Graphs: TRISTAN 
Unlike the systems described above, which are specific to 
one application (e.g., to display and edit LISP data 
structures), TRISTAN is a generic tool for the display of 
directed graphs [Nieper-Lemk:e 88]. 

TRISTAN, together with domain-specific knowledge (e.g., 
how to compute the parents and children of a node, what it 
means to insert or remove a link, or how a node is called in 
the application), makes a domain-specific graph editor. An 
application programmer who wants to implement a new 
TRISTAN application uses TRIKrr, a form-oriented design 
environment [Fischer, Lemke 88a; Fischer, Lemke 88b]. 
With the help of TRIKrr, the application programmer sets 
and adjusts the parameters of TRIsrAN and thus specifies 
the interface between TRISTAN and the application. 

TRISTAN has been used for several applications, including 
inheritance hierarchies of object-oriented formalisms 
(Figure 3-10), file hierarchies, the newsgroup hierarchy of 
the USENET news system, rules of a rule base, and state 
graphs. 



1 _~ COI1PUTABLE-CHILDREH-NODEJ-- 1 

~COI1PUTABLE-PAREHTS-NODE)---. 

OperatIon on IJMlJI IAHIT->'IW;NI!:i-NUUt", 
Bury this flavor 
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Figure 3-10: TRIsTAN: Display of an 
Inheritance Hierarchy 

This figure shows part of the inheritance hierarchy of flavors that 
are used to implement TRISTAN itself. The little numbers indicate 
how many children (or parents) a node has that are currently 
invisible. Also shown is the context-sensitive menu that appears 
on a flavor node. 

Functionality of TRISf AN. The following operations are 
available in 'TRIsTAN: 

• displaying an arbitrary subset of nodes and the cor­
responding links (e.g., single nodes, all children of a 
node, a subhierarchy of a node); 

• changing the graphical representation (e.g., displaying 
additional nodes or making currently displayed nodes in­
visible, moving oodes, replanning the layout of 
subhierarchies); 

• changing the underlying structure (e.g., creating or delet­
ing nodes or links); 

• highlighting of nodes; 1 

• defming mouse actions, which get activated when a node 
is selected with the mouse (e.g., to display a node in 
more detail). 

4. Visualization and Beyond 

4.1 Usage of Visualization Tools 
The visualization tools described in this paper have been 
used regularly by a large group of researchers and students. 
This use has triggered new ideas for creating additional 
tools of the same kind and applying them as building 
blocks in larger applications. For widespread use, it is 
critically important that these tools be tightly integrated and 
easily accessible within the general programming environ­
ment Nothing is a better indication of the usefulness of a 
tool than that people start using it without being forced to 
(e.g., on the job) or asked to (e.g., in a psychological 
experiment). KAESlLE has been used within the 
LIsp-CRmc [Fischer 87b], a tutorial system that criticizes 
the users' programs and offers immediate explanation and 
justiftcation for the criticisms, using actual data taken from 
the current work context 

lThis operation could be used to implement tbe animation feature of 
FooScAPH in a system that uses TRISTAN to display tbe calling hierarchy of 
a program. 
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Our visualization tools may be used to complement other 
tools, like video disks, in a natural way. The main advan­
tage of our tools is that they free the designer of the ex­
planation facilities from foreseeing all conceivable future 
situations. Explanations can be generated on the fly and do 
not have to be precompiled and stored for later use. In­
tegrating these tools with models of the user [Fischer, 
Lemke, Schwab 85] allows advice and information to be 
given only when they are relevant for the actual situation. 

4.2 Lessons Learned 
One of the most striking lessons that we have learned in 
implementing the various kinds of visualization tools re­
lates to the automatic planning of graph layouts. Branden­
burg [Brandenburg 89] has shown for several aesthetics 
parameters (like area covered, width of graph. number of 
crossings) that the production of nice drawings of graphs 
and even trees becomes computationally intractable; in 
general. they are NP-complete. By loosening the require­
ments on niceness and by taking into account application­
related dependencies of graphs one can usually fmd al­
gorithms that produce some solution within an acceptable 
time. But even harder problems arise because people do 
not easily agree on what the properties of a nice layout 
would be. The semantics of the structures to be displayed 
sometimes require alternative representations that cannot be 
deduced from the syntax of the structures. For instance, the 
spatial layout of a list structure that is understood by the 
user as an implementation of a higher-level data structure 
(e.g., a torus's surface topology) has to reflect the seman­
tics of this higher-level structure. To produce high-quality 
visualizations, therefore, human and computer must share 
an understanding of domain-oriented concepts [Fischer, 
Lemke 88b]. 

One question still to be answered is whether these ideas and 
methods will scale up to "real" problems involving 
hundreds or thousands instead of the tens of objects used in 
our examples (e.g., representing cons-cells or LISP 
functions). What additional techniques will we have to 
invent to cope with these large spaces? 

4.3 Human Problem-Domain Communication 
Our experience has shown that successful visualizations do 
not guarantee a successful use of the computer. Most exist­
ing visualization tools are purely graphic and lack semantic 
qualities (e.g., a note in a music editor is a mere bitmap). 
Oearly, visualization-based systems can be greatly im­
proved if they are augmented by deep representations of the 
knowledge underlying the relevant problem domain. Sys­
tems that combine knowledge representation and visualiza­
tion techniques can achieve much better communication 
between humans and computers. 

Most computer users (e.g., office workers, physicists, 
musicians, user interface designers, kitchen designers) are 
experts in some specific problem domain. They are not 
interested in learning the "languages of the computer;" 
they simply want to use the computer to solve problems 
and accomplish tasks. To shape the computer into a truly 
usable and useful medium, we have to make it invisible and 
let users work directly on their problems and their tasks. 
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Figure 4-1: FRAMER, a Design Environment for Window-Based Interfaces 

We must "teach" the computer the languages of experts by 
endowing it with the abstractions of different application 
domains. This reduces the transfonnation distance between 
the domain expert's description of the task and its represen­
tation as a computer program. 

Human problem-domain communication [Fischer, Lemke 
88b] provides a new level of quality in human-computer 
communication, because the important abstract operations 
and objects of a given application area are built directly 
into the computing environment The user can thus operate 
with personally meaningful abstrnctions. In most cases we 
do not want to eliminate the semantics of a problem domain 
by reducing the information to fonnulas in flfSt-oroer logic 
or to general graphs. We have built a series of systems 
[Boecker, Mahling 88; Boecker, Herczeg, Herczeg 89; Fis-

cher, Lemke 88b; Fischer, Morch 88; Fischer, McCan, 
Morch 89] that demonstrate this basic idea. The idea of 
"visual programming" has to be reformulated under the 
human problem-domain communication paradigm. Visual 
programming in this sense will be less purely a matter of 
manipulating icons or symbols and can be more ap­
propriately understood within the broader context of 
domain-dependent design activities. 

FRAMER, an Example ror Human Problem-Domain 
Communication. FRAMER is a design environment for 
constructing window-based user interfaces (Figure 4-1). 
Design environments reduce the amount of lrnowledge 
designers have to acquire before they can do useful work. 
FRAMER pennits users to design their own user interfaces 
without writing code and thus supports human problem­
domain communication. It offers the user a palette of 
domain-oriented building blocks that can be directly 
manipulated to create a new design. The visual interaction 
style is specifically appropriate for a problem domain in 
which visual objects are designed from visual parts. 

In addition to serving as an application-oriented construc­
tion kit, FRAMER has a small rule base incorporating design 
knowledge about relevant aspects of window-based user 
interfaces. The Praia. command tells a user what is good 
about a design, whereas the Suggest ImprovQIIIQ1lta 
command criticizes it. The bplain option gives the user 
a rationale for the suggested improvement The Catalog 
contains a number of prototypical designs that can be 
praised, critiqued, or brought into the work area to be 
modified and used as a starting point for redesign. Such 
prototypical solutions that can be changed and refined 
through redesign are an important source of possibilities for 
designers. Mter having created an interesting design, users 
can add it to the Cataloq. 



5. Conclusions 
The commercial success of systems taking advantage of 
rather simple visualization techniques (e.g., spreadsheet 
programs) indicates that visually based software has great 
potential for making computer systems attractive to people 
who have previously been alienated and scared by their 
fonnal nature and their nontransparency. Our experience 
with the visualization tools descn"bed above has shown that 
they can make computers understandable and transparent 
for all kinds of users. 

Many interesting problems remain to be solved in this area. 
Not the least of these problems is to build visualization 
tools for a large variety of applications and eventually 
come up with a toolkit so that they can be easily con­
structed. In many situations, however, it is not good 
enough to make the invisible visible [Boecker, Nieper 85]. 
What is required is techniques that help the user make the 
relevant facts and relations visible. e.g., intelligent sum­
marizers and filtering techniques. 

The paradigm of human problem-domain communication 
allows us to focus on the semantics of graphical symbols 
and the design aspects of the problem-solving activities 
carried out with them. Graphical objects have to be more 
than nice pictures on the screen. They need to be reactive 
and responsive and have to be backed up by extensive 
knowledge representation mechanisms that turn them into 
virtual world objects. Visualization is often a necessary, 
but not a sufficient condition for understanding. 
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