
~univerSity of Colorado at Boulder

Centerfor lifeLong Learning and Design (DD)

Department of Computer Science

Beat 717 Engineering Center
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-1592, FAX: (303) 492-2844

The Role. of Visual Representations in
Understanding Software

Heinz-Dieter Boeker
Institut fur Informatik
Universitat Stuttgart
Stuttgart, Germany

Gerhard Fischer and Helga Nieper-Lemke
University of Colorado

Department of Computer Science
Campus 430

Boulder, CO 80309-0430 USA

"Artificial Intelligence and Software Engineering", D,Partridge (Ed.)
Ablex Publishing Co" pp. 273-290.

1

The Role of Visual Representations in Understanding Software

Abstract

Heinz-Dieter BOcker
Institut fUr Infonnatik
Universitat Stuttgart

Herdweg 51
7000 Stuttgart 1

FRO

The way a problem is represented strongly affects our
ability to understand and solve it. Visual representations
are especially important because the human visual system
is such a powerful way of processing information.
However few existing systems try to take advantage of
these insights. In pursuit of the long-range goal of con­
structing a software oscilloscope that makes the invisible
visible, we have constructed system components which
automatically generate graphical representations of com­
plex structures, illustrate the control flow of complex
programs, and support visualization techniques in object­
oriented environments. Our tools are used in a variety of
contexts: in programming environments, as components in
intelligent support systems, and in human-computer inter­
action in general. Visual representation alone, however, is
not enough; the designer of visualization tools must take
into account the semantics of graphical symbols and the
user's need to limit visualization to the relevant facts and
relations.

1. Introduction
The way a problem is represented strongly affects whether
we can understand and solve it. Simon [Simon 81] argues
that solving a problem simply means representing it so as to
make the solution transparent. He argues that this is espe­
cially true for mathematics; mathematical derivations can
be viewed as changes in representation, making evident
what was previously true but obscure.

Believing that the limits of our thoughts are all too often
identical with the limits of our capacity to imagine and
visualize, we have developed over the last several years a
rich variety of visualization tools to make using computers
a more rewarding and less error-prone experience. Our
goal is to build software components that take advantage of
the power of the human visual system to provide insight
and understanding, instead of relying only on verification
methods. Being especially interested in ill-structured
problems, we have found (like all other researchers inves­
tigating design problems empirically) that the recommen­
dation "think more clearly" is not good enough; over­
whelming evidence shows that there is an urgent need for
better tools because humans have a bounded rationality.
Verification systems [Millo, Lipton, Perlis 79] that end up
with the result "correct" or "incorrect" contribute little to
our understanding of a problem. Moreover, verification
procedures rely on an exact specification of a problem,
whereas the crucial activity in solving ill-structured

Gerhard Fischer and Helga Nieper-Lemke
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, CO 80309-0430
USA

problems is to come up with this specification in the first
place. In the following sections, we will present first steps
towards a software oscilloscope that helps users understand
the behavior of complex artifacts. The components of this
software oscilloscope all exploit the powerful human visual
system.

With workstations and bitmap displays becoming widely
available, many people now recognize the importance and
power of visualization tools. The growing number of
publications reflects the increasing interest in visualization
and visual programming (e.g., [Smith 77; Gould, Finzer 84;
Brown 88; Reiser et al. 88; Ambras, O'Day 88; Ingalls et
al.88]). A good survey is contained in [Computer 85].

One of the most important applications of visualization
tools is software design, because the gradual shift from
designing software from scratch to creating software
through redesign and reuse [Fischer 87a] requires the
programmer ftrst to understand the software in its existing
form.

2. Insight and Understanding versus
Verification

Figure 2-1 summarizes two different views of the crucial
issues in computer science [Newell, Simon 76; Fischer,
Boecker 83].

View 1 View 2

C?mpu~er a formal, math- an experimental
science IS: ematical dis- discipline

cipline

Main tools for formal specifica- rapid prototyp-
the development tion techniques ing, experi,mental
or systems are: programmmg

~asic challenge think: more devel~tter
IS: clearly tools ause

humans have a
bounded
rationality)

Pr~amming do not write design is an error
met odology: programs which correcting

cannot be process
verified before
they are written

Figure 2-1: Two Opposing Views of the
Crucial Issues in Computer Science

Obviously. the appropriate view depends on the application
area. For all the areas in which we have been interested
(e.g., artifIcial intelligence, cognitive science, human­
computer communication, use of computers for learning
and instruction), the second view is most adequate, and it is
this perspective that has governed our construction of the
tools described in Section 3.

Rather simple experiments may be used to demonstrate the
importance of graphical representations in problem solving:

• The Rope around the Earth (see [Fischer 79]): A rope
is tied around the earth at the equator (assuming that the
surface of the earth is smooth). If we extend this rope by
one yard and form a concentric circle around the earth,
will the difference between the earth and the rope be big
enough that a mouse can get through? Almost
everybody's intuitive answer to this problem is "no."
Simple mathematics easily proves that the resulting dif­
ference is independent of the size of the surrounded 0b­
ject and defInitely big enough so that a mouse can get
through. This proof verifies the result, but it provides no
insight and understanding. How do we make people
believe the proof, i.e., understand the solution? One pos­
sibility is to ask them to consider the following problem:
A rope is lying on the ground between Boulder and Den­
ver (or any other two cities that are close to each other).
Can we lift it up by ten inches without increasing the
length of the rope? This thought experiment indicates
the relationship between radius and curvature.

• Number Scrabble and Tic-Tac-Toe (see [Simon 81],
page 151, for details) are two isomorphic versions of the
same game. Yet subjects perform much better at Tic­
Tac-Toe than at Number Scrabble. It is possible that
Tic-Tac-Toe is easier to play because it is more visually
oriented.

• The Design of a Roulette Table: Teaching high school
students problem solving with LOGo, we asked them to
simulate a roulette table with slots 0 to 18. Given was a
random number generator that returned a number be­
tween 0 and 9. Most students felt quite happy with the
solution "sum of random and random." Not until they
plotted the results in a graph did they discover that their
roulette table did not give a uniform distribution. The
visual representation of the results did not show to them
how to produce a fair roulette table, but it did uncover
the incorrect solution in an obvious way.

Our experiments with these and similar problems suggest
that the right kind of representation can provide insight and
understanding into a problem. One of the advantages of
visual representations over their formal, propositional
counterparts is that visual representations facilitate direct
observation of important properties, which is usually
cheaper (in terms of the computations involved) than
deduction.

2

3. Visualization Tools
Myers proposes that visualization-oriented programming
tools may be classifIed into two main categories: "program
visualization" and "visual programming" [Myers 86]. In
our opinion, the distinction between these two types of sys­
tem is much less clear cut than Myers suggests. The sys­
tems described in the following sections are all in-between
cases. For instance, KAFsrLE is a program visualization
tool as well as a visual programming tool because it allows
the user to edit the structures displayed (see Section 3.1).
The distinction becomes totally blurred for object-oriented
systems in whicb the graphical objects of the visualization
have direct counterparts within the programming formalism
(see Section 3.3).

3.1 Visualization of Data Structures: KAESTLE
The most important data structure of LIsP is the list.
KAEslLE [Boecker, Nieper 85] automatically generates
graphical representations of list structures and allows the
user to edit them directly with a pointing device (Figure
3-1).

KAESlLE helps the LISP beginner to understand certain
aspects of the programming language that are difficult to
explain otherwise (e.g., the difference between copying and
destructive functions; Figure 3-2). More experienced LISP
programmers use it heavily to display and explore data
structures that are diffIcult to represent symbolically,
namely circular and reentrant structures (see
ltae.tle-window-l in Figure 3-1). KAESTLE, as part of a
programming environment, can be used to design, debug,
document, and understand LISP programs or data structures.

Planning tbe Spatial Layout of List Structures. To
generate a graphical representation of a list structure, it is
necessary to fmd a position on the screen for each element
belonging to the structure (for more details see [Boecker,
Nieper 85]). A fully automated layout planning algorithm
faces the following problems:

• List structures may be complex networks. A very good
but time-consuming planning algorithm is not helpful in
an interactive system.

• Often, there is not enough space to display the entire
structure. How can it be decided which parts of the
structure to omit?

• The semantics of the list structure (i.e., its logical
structure) should be taken into account.

Therefore our basic approach is to build cooperative sys­
tems [Fischer 88] for the human and the computer. In
KAEslLE, the computer uses a simple planning algorithm:
It doesn't pay attention to arrows crossing boxes or other
arrows, and the display is truncated at the right and lower
border of the display area. After this "fIrst draft" of the
graphical representation is generated by the computer, users
can move or delete parts of the display, or display ad­
ditional substructures, until they arrive at a "nice" output
that shows the parts of the structure they want to see.

3

Figure 3-1: KAEsTLE, a Graphical Editor for List Structures

1: list!
«one 1) (two 2»
~: I isU
«thre. 3) «(our 4»
~I (Ippand IIst1 I ist2)
«onl 1> (two 2) (thre. 3) (four 4»
~I (nconc list! I isU)
«on8 1) (two 2) (thre. 3) «(our 4»
51

Figure 3-2: The Difference Between append and neone

This figure illustrates the effects of the copying function append
and the destructive function ncone. The nonnaI textual represen­
tation displayed in the top level window reveals no difference
between the results of these two functions.

Functionality of' the System. KAEsTLE provides the fol­
lowing operations, among others:

• Generating a graphical representation: displaying mul­
tiple independent structures at any desired position.

• Changing the graphical representation: displaying sub­
structures that are truncated in the current display, delet­
ing substructures from the display, moving substructures
on the screen.

• Changing the underlying list structure: inserting atoms or
pointers in the graphical representation immediately
changes the underlying list structure.

• Undo and redo mechanisms.

Dynamic Aspects: What Happens to tbe Structures?
KAESlLE is used not only to display and edit static struc­
tures but also to monitor running programs. The standard
LIsp trace package can be used for this purpose by updating
the graphical representation whenever an "interesting"
function is entered or left The trace facility can also be
used to generate a sequence of snapshots of a data structure
while the program is running (see Figure 3-3, which il­
lustrates a recursive, destructive algorithm that reverses a
list).

(~ ~-nrever.e
(lambda (1)

(cond «dtpr (cdr 1»
(prog1 (my-nrever.e (cdr 1»

(xplacd (cdr 1) 1)
(xplacd 1 ni.l.»)

(t 1»»

Figure 3-3: A Sequence of Snapshots of a Data Structure

A Case Study: Self-Organizing Linear Lists. The fol­
lowing case study shows how KAFSTI..E is used to debug a
LIsp function. KAEsn.E allows tinkering with data struc­
tmes and supports primitive fonns of "programming by
example." Users may test algorithms on specific examples
and have KAESTI..E keep a record of what happens to the
data structures. Visualization tools like this reduce the con­
ceptual distance between the symbols and primitives of a
LIsp function and the manipulated data structure. They
turn a cons-cell into an object that can be easily manipu­
lated.

The LIsp function to be debugged in our example reor­
ganizes a linear list by pulling an element to the front of the
list whenever the element is accessed, in order to speed up
later operations. The list is implemented as an association
list in LIsp. Figure 3-4 shows how the .eU-org-a •• q
access function should reorganize the association list
a-liK.

1: a-list

«I'rancois . Paris) (Maggie . London)
(SAtlmut . Bonn) (Ronald . Washington»

2: (_If-org-a •• q' Helmut a-li.t)

(HelDa1t . Bonn)

3: a-li.t

«SAtlmut . Bonn) (l'ranooi. Pari.)
(lI&99ie . London) (Ronald Washington»

Figure 3-4: Self-Organizing Linear Lists

In implementing the algorithm to reorganize this list, one of
the authors of this paper had defined a buggy
self-org-a •• q access function that for some unknown
reason chopped off the last element of the list; Figure 3-5
shows what happened.

..

1: a-li.t

«rrancoi •. Pari.) (Maggie . London)
(SAtlmut . Bonn) (Ronald . Wa.hington»

2: (•• If-org-a •• q 'Helmut a-li.t)

(s.lDa1t . Bonn)

3: a-li.t

«SAtlmut . Bonn) (Francois . Paris)
(lI&99ie . London»

Figure 3-5: A Buggy Implementation

The question was: What happened to the last element?
Without visualization tools, it would have been necessary
to undertake the tedious and error-prone task of debugging
that function by essentially running a simulation of it,
drawing cons-cells with pencil and paper and making heavy
use of an eraser to redirect pointers. With the help of
KAFSTI..E, the bug was easily discovered. Figure 3-6 shows
what happened internally: The cdr of the last cell was er­
roneously made to point to itself. With this clue, the code
was easy to fix. No other tool of the LIsp programming
environment would have made diagnosis this simple.

Figure 3-6: How (Ronald . Waahi.ngton)
Was Isolated

3.2 Visualization of Control Structures: FOOSCAPE
A program composed of a large set of usually rather simple
functions may be appropriately described as a network of
functions that mutually call each other. FOOSCAPE displays
functions as eUipses that are connected by arrows (cf.
Figure 3-7). The tool is meant primarily to give the user a
first, rough overview of some piece of software. It is espe­
cially useful for languages that do not allow lexical nesting
of function definitions.

The planning of the layout (placement of the ellipses and
arrows) is done automatically (see [Boecker, Nieper 85] for
more details). However, because the solution sometimes is
not "beautiful," FOOSCAPE allows the user to modify the

layout interactively by moving the ellipses around or by
altering the set of functions included in the display. The
tool's interaction style is similar to that of KAESTLE.

Traditional techniques for monitoring the dynamic behavior
of programs (e.g., breakpoints, dumps) suffer from the fact
that they capture just one state of the data and too often
generate huge amounts of data. FOOSCAPE tries to avoid
these disadvantages and to preserve the dynamics of the
processes being monitored. Being able to see a program
run gives one a grasp of detail that is hard to obtain in any
other way.

FOOScAPE not only displays the static calling structure of a
program; it can also be readily used to display the
program's dynamic behavior. The basic mechanism for
accomplishing this is provided by the standard LISP trace
package. Figure 3-7 shows a snapshot of an animated
FOOSCAPE. A function name is highlighted, that is, flips
from white to black, whenever the function is active.

Figure 3-7: An Animated FOOSCAPE

The impression given by a "running" FOOSCAPE bears
some resemblance to the control panels of (outdated) com­
puter systems: You can tell from the pattern of lights what
the system is doing. We also added sound to the
F<x>SCAPE tool: Each of the functions is assigned two
specific tones that are played when a function is entered
and left, respectively. Initial experience with this ex­
perimental version seems to confirm that the human audio
system is even more capable of monitoring sequences over
time than the human visual system: As long as the program
plays this Bach style music everything is ok.

The usefulness of the tool depends on its appropriate use:
The programmer has to exercise care in selecting the func­
tions to be included in the FOOSCAPE. If the granularity is
too fine (the functions included are too primitive) only a

5

flickering screen will be seen, whereas if the granularity is
too coarse hardly any dynamic behavior will be observed.
In order to control the granularity, the user can temporarily
exclude certain functions from being traced (see the func­
tions shaded with a gray raster-pattern in Figure 3-7).

3.3 Visualization In Object-Orlented Fonnallsms
Object-oriented programming formalisms are well suited to
visual representation. The objects of an object-oriented
language like SMAllTALK may naturally be mapped into
graphical objects to be displayed on the screen. If the user
can directly manipulate these graphical objects with the
help of a pointing and dragging device like a mouse, the
distinction between "visual programming" and "program
visualization" quickly fades away.

3.3.1 Zoo, a Knowledge Acquisition Tool
ZOO [Rickert 87J provides the user with a graphical inter­
face for objects of the OBJT ALK programming language
[Rathke, Lemk.e 85]. It allows knowledge engineers to

inspect object-oriented knowledge bases and to modify and
augment a knowledge base by directly manipulating screen
objects. The graphic representation provides two kinds of
graphic primitives: icons and labeled arrows (Figure 3-8).
Icons are used to represent objects; the graphic symbol
visualizes the class membership of the object Knowledge
can be modeled as a network of icons as nodes and labeled
arrows as links. The user creates classes and instances by
copying and modifying the icons of existing classes and
instances. They may then be linked together with other
objects to add knowledge to the knowledge base under con­
struction. Deleting objects from the knowledge base is
done in similar ways.

Figure 3-8: The KnoWledge Editor ZOO

This figure displays the knowledge that computers and CPUs are
both products. products are produced by companies. and com­
panies produce products (the inverse relationship, which is
generated automatically).

h .ClCWY

») owner ») 0 -) 1I1g'
«(ow".,. «(Mr. Mone~

«(.,""",y •• «(Mr. MoneyaU.r
») " ») 0.". -) tWo Mon.IfI"
«(" .. _ «('Oe MoMy ItM"

«(bon «('o.""e _ya
») ... pIOy_ , ») Mr. MoMjIM"- -)

6

.~~
») --)1._-' »)

Mr. MoMya .. u.- II,... b.'_

Figure 3-9: TRACK, a Trace Construction Kit

3,3.2 TRACK, a Trace Construction Kit
TRACK [Herczeg 89J extends the basic idea underlying
FooScAPE into the domain of object-oriented program­
ming. It is implemented in SMAllTALK [Goldberg, Robson
83] and fuUy integrated into the SMAll TALK programming
environment.

TRACK is used to trace messages sent between the objects
of a SMALLTALK program. The users frrst place icons
representing objects on the screen. They may then select
" hurdles" from a menu and place them between the ob­
jects. The type of hurdle and its position detennine the
messages to be traced and the objects involved in the trace
(Figure 3-9). The user may specify constraints in tenns of
the message's pattern, the sender, the receiver, the class of
the method that handles a message, etc. Different hurdle
icons represent the different types of traces (e.g., round
icons represent more general ones, icons resembling square
brackets represent more specific ones). Big circles,
squares, and octagons may be used to surround specific
objects with "walls" and thus specify object-specific
traces. Also, breakpoints may be specified together with
the hurdles. In the simplest case, all messages traveling
between two specific objects in either direction would be
traced. The flow of the message from one object to another
is indicated by small circles traveling in real time between
objects (in Figure 3-9, a message is just crossing the hurdle
set up between "Mr. Moneymaker" and the "BigFun"
company). More detailed information about the messages
sent may be viewed in text windows connected to the
hurdles.

Traces may be set up for classes (left pane in Figure 3-9) or
individual instances (right pane in Figure 3-9). The speed
of the tracing is adjustable; programs may also be run in
stepping mode. The lower part of a TRACK window
dynamically displays all messages monitored by the
hurdles and walls that are currently set up.

3.4 Visualization of Directed Graphs: TRISTAN
Unlike the systems described above, which are specific to
one application (e.g., to display and edit LISP data
structures), TRISTAN is a generic tool for the display of
directed graphs [Nieper-Lemk:e 88].

TRISTAN, together with domain-specific knowledge (e.g.,
how to compute the parents and children of a node, what it
means to insert or remove a link, or how a node is called in
the application), makes a domain-specific graph editor. An
application programmer who wants to implement a new
TRISTAN application uses TRIKrr, a form-oriented design
environment [Fischer, Lemke 88a; Fischer, Lemke 88b].
With the help of TRIKrr, the application programmer sets
and adjusts the parameters of TRIsrAN and thus specifies
the interface between TRISTAN and the application.

TRISTAN has been used for several applications, including
inheritance hierarchies of object-oriented formalisms
(Figure 3-10), file hierarchies, the newsgroup hierarchy of
the USENET news system, rules of a rule base, and state
graphs.

1 _~ COI1PUTABLE-CHILDREH-NODEJ-- 1

~COI1PUTABLE-PAREHTS-NODE)---.

OperatIon on IJMlJI IAHIT->'IW;NI!:i-NUUt",
Bury this flavor
Display all children of this flavor
Display some children of this flavor .•.
Display the subhierarchy of this flavor
Move this flavor

Figure 3-10: TRIsTAN: Display of an
Inheritance Hierarchy

This figure shows part of the inheritance hierarchy of flavors that
are used to implement TRISTAN itself. The little numbers indicate
how many children (or parents) a node has that are currently
invisible. Also shown is the context-sensitive menu that appears
on a flavor node.

Functionality of TRISf AN. The following operations are
available in 'TRIsTAN:

• displaying an arbitrary subset of nodes and the cor­
responding links (e.g., single nodes, all children of a
node, a subhierarchy of a node);

• changing the graphical representation (e.g., displaying
additional nodes or making currently displayed nodes in­
visible, moving oodes, replanning the layout of
subhierarchies);

• changing the underlying structure (e.g., creating or delet­
ing nodes or links);

• highlighting of nodes; 1

• defming mouse actions, which get activated when a node
is selected with the mouse (e.g., to display a node in
more detail).

4. Visualization and Beyond

4.1 Usage of Visualization Tools
The visualization tools described in this paper have been
used regularly by a large group of researchers and students.
This use has triggered new ideas for creating additional
tools of the same kind and applying them as building
blocks in larger applications. For widespread use, it is
critically important that these tools be tightly integrated and
easily accessible within the general programming environ­
ment Nothing is a better indication of the usefulness of a
tool than that people start using it without being forced to
(e.g., on the job) or asked to (e.g., in a psychological
experiment). KAESlLE has been used within the
LIsp-CRmc [Fischer 87b], a tutorial system that criticizes
the users' programs and offers immediate explanation and
justiftcation for the criticisms, using actual data taken from
the current work context

lThis operation could be used to implement tbe animation feature of
FooScAPH in a system that uses TRISTAN to display tbe calling hierarchy of
a program.

7

Our visualization tools may be used to complement other
tools, like video disks, in a natural way. The main advan­
tage of our tools is that they free the designer of the ex­
planation facilities from foreseeing all conceivable future
situations. Explanations can be generated on the fly and do
not have to be precompiled and stored for later use. In­
tegrating these tools with models of the user [Fischer,
Lemke, Schwab 85] allows advice and information to be
given only when they are relevant for the actual situation.

4.2 Lessons Learned
One of the most striking lessons that we have learned in
implementing the various kinds of visualization tools re­
lates to the automatic planning of graph layouts. Branden­
burg [Brandenburg 89] has shown for several aesthetics
parameters (like area covered, width of graph. number of
crossings) that the production of nice drawings of graphs
and even trees becomes computationally intractable; in
general. they are NP-complete. By loosening the require­
ments on niceness and by taking into account application­
related dependencies of graphs one can usually fmd al­
gorithms that produce some solution within an acceptable
time. But even harder problems arise because people do
not easily agree on what the properties of a nice layout
would be. The semantics of the structures to be displayed
sometimes require alternative representations that cannot be
deduced from the syntax of the structures. For instance, the
spatial layout of a list structure that is understood by the
user as an implementation of a higher-level data structure
(e.g., a torus's surface topology) has to reflect the seman­
tics of this higher-level structure. To produce high-quality
visualizations, therefore, human and computer must share
an understanding of domain-oriented concepts [Fischer,
Lemke 88b].

One question still to be answered is whether these ideas and
methods will scale up to "real" problems involving
hundreds or thousands instead of the tens of objects used in
our examples (e.g., representing cons-cells or LISP
functions). What additional techniques will we have to
invent to cope with these large spaces?

4.3 Human Problem-Domain Communication
Our experience has shown that successful visualizations do
not guarantee a successful use of the computer. Most exist­
ing visualization tools are purely graphic and lack semantic
qualities (e.g., a note in a music editor is a mere bitmap).
Oearly, visualization-based systems can be greatly im­
proved if they are augmented by deep representations of the
knowledge underlying the relevant problem domain. Sys­
tems that combine knowledge representation and visualiza­
tion techniques can achieve much better communication
between humans and computers.

Most computer users (e.g., office workers, physicists,
musicians, user interface designers, kitchen designers) are
experts in some specific problem domain. They are not
interested in learning the "languages of the computer;"
they simply want to use the computer to solve problems
and accomplish tasks. To shape the computer into a truly
usable and useful medium, we have to make it invisible and
let users work directly on their problems and their tasks.

8

Framer Version 21.0
".'e'le Wo<k "' •• 41-

,.1';

i'ft'• , ... I

D
E · I ~.'t-, ~, .""'. ,,:,"~y ... ~~,,.

1I1~_."· ' r··_·· .. I
E',tiI " '''' , .. - I

Add To C log P i .. l!ucL
, v , , ... I

EdiL OpIJ_ Prcv CDel. ~.Ll~n~
G ,..~ CDeI. in ZI'ACS Previ.w r-t< U,ejIC

CaI-. I9Jl .- 0 IiuHut l,.",o.,_,.,.~. MIt YCtJH;

- t,ll IAdd. IhleD.' 01 UlIo'KW' patI •• 01 ,.1 lb. lal.'KUOIl ",oct. 1(1 mOll.o-ollly. c-
.. 0 111« UUo pili. to lb. I(Ip ot lb. r.&III .. _ mu ., rorlj

c:.I ,0000y .. ·,
,Remo .. Ibe .mpty .~ M_~n lb. p.a la III. ha:", • • (a- -ACII1iI

:'0:::0 .. ,E."pl.{n ~lo nrLE-Rr- rOP
Thl. to 1(1 ... forco eonalll.nqo, By conY.nllon, UU. 1' art .1 Ib _ P of •
1"0, -rr""' 11b., ,patIola, tho ... Il .. wldtll of th o prol' -t'am , ,

OUUlv "PO' IO"'I-no. I. lb. I.n cora",.
0 ,.,.. • • POL t'CDII5

' A com", d 4eftJO.lll, ",.to It d41naeci.
· ala,l. key 6Ccoloral.On 1.11<1 \)'pIa, filII cOlllJllud Dim .. CD to. lal."".JII.s.
• ala,l. tt.y ab ... I. Uoa. u. ' .lIIbl.cI.

u ·Th •• I oy or to p,o,~a",-r .. ", , I. Dol C1I" nUy '.-ned 10 Dother
1"-..... 1)'110 ...

• Tb". I • • meDII bu.

" - , ,~--,~, ,~,~,-=-=-=-=-, ,~,,,",,,,"""-~,~- ••• ~.
,',' .-, t ... "l.ll11 liuhl l l lll-,-d-TO(' ; I-I ou •• ,-'·1 flt"T '" J:,t (•• t.,uq. JH~ tl vt\) 11111·,"-101'; f 1'J" .. -R. 'tuntl,
I" •.•. ,. tl,.·, ,,1.JUIlII 'ud I" t·· SltI't. ('.Jllt,ul, ft.,.t . I-~hir, ... '. ~UPt'f

Figure 4-1: FRAMER, a Design Environment for Window-Based Interfaces

We must "teach" the computer the languages of experts by
endowing it with the abstractions of different application
domains. This reduces the transfonnation distance between
the domain expert's description of the task and its represen­
tation as a computer program.

Human problem-domain communication [Fischer, Lemke
88b] provides a new level of quality in human-computer
communication, because the important abstract operations
and objects of a given application area are built directly
into the computing environment The user can thus operate
with personally meaningful abstrnctions. In most cases we
do not want to eliminate the semantics of a problem domain
by reducing the information to fonnulas in flfSt-oroer logic
or to general graphs. We have built a series of systems
[Boecker, Mahling 88; Boecker, Herczeg, Herczeg 89; Fis-

cher, Lemke 88b; Fischer, Morch 88; Fischer, McCan,
Morch 89] that demonstrate this basic idea. The idea of
"visual programming" has to be reformulated under the
human problem-domain communication paradigm. Visual
programming in this sense will be less purely a matter of
manipulating icons or symbols and can be more ap­
propriately understood within the broader context of
domain-dependent design activities.

FRAMER, an Example ror Human Problem-Domain
Communication. FRAMER is a design environment for
constructing window-based user interfaces (Figure 4-1).
Design environments reduce the amount of lrnowledge
designers have to acquire before they can do useful work.
FRAMER pennits users to design their own user interfaces
without writing code and thus supports human problem­
domain communication. It offers the user a palette of
domain-oriented building blocks that can be directly
manipulated to create a new design. The visual interaction
style is specifically appropriate for a problem domain in
which visual objects are designed from visual parts.

In addition to serving as an application-oriented construc­
tion kit, FRAMER has a small rule base incorporating design
knowledge about relevant aspects of window-based user
interfaces. The Praia. command tells a user what is good
about a design, whereas the Suggest ImprovQIIIQ1lta
command criticizes it. The bplain option gives the user
a rationale for the suggested improvement The Catalog
contains a number of prototypical designs that can be
praised, critiqued, or brought into the work area to be
modified and used as a starting point for redesign. Such
prototypical solutions that can be changed and refined
through redesign are an important source of possibilities for
designers. Mter having created an interesting design, users
can add it to the Cataloq.

5. Conclusions
The commercial success of systems taking advantage of
rather simple visualization techniques (e.g., spreadsheet
programs) indicates that visually based software has great
potential for making computer systems attractive to people
who have previously been alienated and scared by their
fonnal nature and their nontransparency. Our experience
with the visualization tools descn"bed above has shown that
they can make computers understandable and transparent
for all kinds of users.

Many interesting problems remain to be solved in this area.
Not the least of these problems is to build visualization
tools for a large variety of applications and eventually
come up with a toolkit so that they can be easily con­
structed. In many situations, however, it is not good
enough to make the invisible visible [Boecker, Nieper 85].
What is required is techniques that help the user make the
relevant facts and relations visible. e.g., intelligent sum­
marizers and filtering techniques.

The paradigm of human problem-domain communication
allows us to focus on the semantics of graphical symbols
and the design aspects of the problem-solving activities
carried out with them. Graphical objects have to be more
than nice pictures on the screen. They need to be reactive
and responsive and have to be backed up by extensive
knowledge representation mechanisms that turn them into
virtual world objects. Visualization is often a necessary,
but not a sufficient condition for understanding.

Acknowledgments
The authors would like to thank their colleagues J Urgen
Herczeg, who developed TRACK, Andreas Lemke, who
developed FRAMER, and Wolf-Fritz Riekert, who developed
ZOO. Nancy Mann helped us edit the paper. The research
was partially supported by the Deutsche Forschungs­
gemeinschaft (DFG), by the Bundesministerium fUr
Forschung und Technologie (BMFT), and by grant No.
IRI -87227CJl. from the National Science Foundation, grant
No. MDA903-86-COI43 from the Army Research Institute,
and grant No. 0487.12.0389B from US WEST Advanced
Technologies.

References
[Ambras, O'Day 88]

J. Ambras, V. O'Day, MicroScope: A Knowledge­
Based Programming Environment, IEEE Software,
May 1988, pp. 50-58.

[Boecker, Herczeg. Herczeg 89]
H.-D. Boecker, J. Herczeg, M. Herczeg, ELAB -- An
Electronics Laboratory, Proceedings of the Fourth Con­
ference on Artificial Intelligeoce and Education
(Amsterdam), May 1989.

[Boecker, Mahling 88]
H.-D. Boecker, A. Mahling. What's in a Note?,
Proceedings of the International Computer Music Con­
ference '88, GIMIK, Cologne, FRG. 1988. pp. 166-174.

9

[Boecker, Nieper 85]
H.-D. Boecker, H. Nieper, Making the Invisible Visible:
Toolsfor Exploratory Programming, Proceedings of
the FtrSt Pan Pacific Computer Conference, Australian
Computer Society, Melbourne, Australia, September
1985, pp. 563-579.

[Brandenburg 89]
F J. Brandenburg, Nice Drawings of Graphs are Com­
putationally Hard, in P. Gorny, MJ. Tauber (eds.),
Visualization in Human-Computer Interaction,
Springer-Verlag, Berlin - Heidelberg - New York, Lec­
ture Notes in Computer Science 1989.

[Brown 88]
M.H. Brown, Perspectives on Algorithm Animation,
Human Factors in Computing Systems, CHI'88 Con­
ference Proceedings (Washington, D.C.), ACM, New
York, May 1988, pp. 33-38.

[Computer 85]
Computer, Special Issue on Visual Programming, Vol.
18, No.8, IEEE Computer Society, August 1985.

[Fischer 79]
G. Fischer, Multiple Representations, MMK-Memo, In­
stitut fuer Informatik, Universitaet Stuttgart, 1979.

[Fischer 87a]
G. Fischer, Cognitive View of Reuse and Redesign,
IEEE Software, Special Issue on Reusability, Vol. 4.
No.4, July 1987, pp. 60-72.

[Fischer 87b]
G. Fischer, A Critic for liSP, Proceedings of the 10th
International Joint Conference on Artificial Intelligence
(Milan, Italy), J. McDermott (ed.), Morgan Kaufmann
Publishers, Los Altos, CA, August 1987, pp. 177-184.

[Fischer 88]
G. Fischer, Cooperative Problem Solving Systems,
Proceedings of the 1st Simposium Internacional de In­
teligeocia Artificial (Monterrey, Mexico), October
1988, pp. 127-132.

[Fischer, Boecker 83]
G. Fischer, H.-D. Boecker, The Nature of Design
Processes and how Computer Systems can Support
them, Integrated Interactive Computing Systems,
Proceedings of the European Conference on Integrated
Interactive Computer Systems (ECICS 82), P. Degano,
E. Sandewall (eds.), North-Holland, 1983, pp. 73-88.

[Fischer, Lemke 88a]
G. Fischer, A.C. Lemke, Constrained Design
Processes: Steps Towards Convivial Computing, in
R. Guindon (ed.), Cognitive Science and its Application
for Human-Computer Interaction, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1988, pp. I-58, Ch. 1.

[Fischer, Lemke 88b]
G. Fischer, A.C. Lemke, Construction Kits and Design
Environments: Steps Toward Human Problem-Domain
Communication, Human-Computer Interaction, Vol. 3,
No.3, 1988, pp. 179-222.

[Fischer, Lemke. Schwab 85]
G. Fischer, A.C. Lemke, T. Schwab, KMwledge-Based
Help Systems, Human Factors in Computing Systems,
CHI'85 Conference Proceedings (San Francisco, CA),
ACM, New York. April 1985, pp. 161-167.

[Fischer, McCall, Morch 89]
G. Fischer, R. McCall, A. Morch, Design Environments
for Constructive and Argumentative Design, Human
Factors in Computing Systems. Cm'89 Conference
Proceedings (Austin, TX), ACM, New York, April
1989.

[Fischer, Morch 88]
G. Fischer. A. Morch, CRACK: A Critiquing Approach
to Cooperative Kitchen Design, Proceedings of the In­
ternational Conference on Intelligent Tutoring Systems
(Montreal, Canada), ACM. New York, June 1988, pp.
176-185.

[Goldberg. Robson 83]
A. Goldberg, D. Robson, SmaJltalk-80, The Language
and its Implementation, Addison-Wesley Publishing
Company. Reading, MA, 1983.

[Gould, Finzer 84J
L. Gould, W. Finzer, Programming by Rehearsal,
Technical Report SCL-84-1, Xerox Palo Alto Research
Center, May 1984.

[Herczeg 89]
J. Herczeg, TRACK -- Em Werkzeug zur RealisierWlg
eines graphisch visuellen Traces fuer Smal/talk-80,
Diplomarbeit, Institut fuer Informatik, Universitaet
Stuttgart, 1989.

[Ingalls et al. 88]
D.H.H. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph,
K. Doyle, Fabrik: A Visual Programming Environment,
OOPSLA'88 Conference Proceedings, Special Issue of
ACM SIGPLAN Notices. Vol. 23, No. II, November
1988.

[Millo. Lipton, Perlis 79]
RA. De Millo, RJ. Lipton. A.J. Pertis, Social
Processes and Proofs of Theorems and Programs,
Communications of the ACM, Vol. 22, No.5, May
1979, pp. 271-280.

[Myers 86]
B.A. Myers, Visual Programming, Programming try
Example, and Program Visualization: A TaxoMmy,
Human Factors in Computing Systems, CHI'86 Con­
ference Proceedings (Boston, MA), ACM, New York,
April 1986, pp. 59-66.

[Newell, Simon 76J
A. Newell. H.A. Simon, Computer Science as an Em­
pirical Inquiry: Symbols and Search. Communications
of the ACM, Vol. 19,No. 3,1976, pp.I13-136.

10

[Nieper-Lemke 88]
H. Nieper-Lemke, TRISTAN, ein generischer Editor
fuer gerichtete Graphen, in R. Gunzenhaeuser, H.-D.
Boecker (eds.), Prototypen benutzergerechter
Computersysteme, Walter de Gruyter, Berlin - New
York, 1988, pp. 243-257, Ch. XIV.

[Rathke. Lemke 85]
C. Rathke, A.C. Lemke. ObJTalk Primer, Technical
Report CU-CS-290-85, Department of Computer
Science, University of Colorado, Boulder, CO,
February 1985.

[Reiser et al. 88J
BJ. Reiser, P. Friedmann, J. Gevins, D.Y. Kimberg,
M. Ranney, A. Romero, A Graphical Programming
Language Interface for an Intelligent Lisp Tutor,
Human Factors in Computing Systems. CHI'88 Con­
ference Proceedings (Washington, DC), ACM, New
York, May 1988, pp. 3944.

[Riekert 87]
W.-F. Riekert, The ZOO Metasystem: A Direct­
Manipulation Interface to Object-Oriented Knowledge
Bases. ECOOP'87, European Conference on Object­
Oriented Programming (paris, France), Sprioger­
Verlag, Berlin - Heidelberg - New York, June 1987, pp.
132-139.

[Simon 81]
H.A. Simon, The Sciences of the Artificial, The MIT
Press, Cambridge, MA, 1981.

[Smith 77]
D.C. Smith, Pygmalion, A Computer Program to Model
and Stimulate Creative Thought, Birkhaeuser Verlag,
Basel,1977.

