
Supporting Reuse by Delivering Task-Relevant and
Personalized Information

Yunwen Ye1,2

1SRA Key Technology Laboratory, Inc.
3-12 Yotsuya, Shinjuku, Tokyo 160-004, Japan

+1-303-492-8136

yunwen@cs.colorado.edu

Gerhard Fischer2

2Department of Computer Science
University of Colorado

Boulder, CO80303-0430, USA
+1-303-492-1592

gerhard@cs.colorado.edu

ABSTRACT
Technical, cognitive, and social factors inhibit the widespread
success of systematic software reuse. Our research is primarily
concerned with the cognitive and social challenges faced by
software developers: how to motivate them to reuse and how to
reduce the difficulty of locating components from a large reuse
repository. Our research has explored a new interaction style
between software developers and reuse repository systems
enabled by information delivery mechanisms. Instead of passively
waiting for software developers to explore the reuse repository
with explicit queries, information delivery autonomously locates
and presents components by using the developers’ partially
written programs as implicit queries.

We have designed, implemented, and evaluated a system called
CodeBroker, which illustrates different techniques to address the
essential challenges in information delivery: to make the delivered
information relevant to the task-at-hand and personalized to the
background knowledge of an individual developer. Empirical
evaluations of CodeBroker show that information delivery is
effective in promoting reuse.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – reusable
libraries, reuse models. D.2.2 [Software Engineering]: Design
Tools and Techniques – computer-aided software engineering,
software libraries, user interfaces. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – interaction styles, user-
centered design. I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence: intelligent agents.

General Terms
Design, Human Factors.

Keywords
Software reuse, information delivery, software agents, discourse
models, user models, high-functionality applications

1. INTRODUCTION
Although it is widely believed that software reuse improves both
the quality and productivity of software development [2],
systematic reuse has not yet met its expected success. Instituting a
reuse program involves two essential issues:

• Creating and maintaining a reuse repository, which requires
managerial commitments and substantial initial investments,
both financially and intellectually;

• Enabling software developers to build new software systems
with components from the reuse repository.

The above two issues are in a deadlock: because if software
developers are unable to reuse, the investments on reuse cannot be
justified; and conversely, because if companies are unwilling to
invest on reuse, software developers have little to reuse. One
approach to break this deadlock is to focus on the creation of a
good reuse repository first and then to institute a reuse program
top-down by enforcing reuse through education and other
organizational changes [7]. A second approach is to foster a reuse
culture bottom-up by encouraging software developers to reuse
components from a repository that may not be of high quality in
its initial state, but can be evolved through the participation and
contribution of software developers [19]. Such an approach
requires reuse-conducive development environments [45] that can
reduce the challenges faced by developers who reuse software
components and contribute to reuse repositories.

Creating reuse-conducive development environments poses not
only technical challenges, such as effective tools to help software
developers locate and understand components, but also cognitive
and social challenges, such as what motivates software developers
to initiate the reuse process and contribute to the reuse repository,
and what the difficulties are in such activities [33].

Our research is primarily concerned with the cognitive and social
challenges of reuse [8, 46]. Software developers are unable to, or
unwilling, to reuse if they do not know the existence of reusable
components or do not know how to locate, understand, and use
them.

Many reuse research efforts [27, 29, 32] have tried to design
various mechanisms and tools to assist software developers in
locating and understanding components. Browsing and searching



are the principal mechanisms used to locate components. In both
mechanisms, software developers must initiate and operate the
locating process; therefore, the success of reuse is greatly affected
by how well they know about the reuse repository [4]. Browsing
and searching are of little use for less experienced software
developers because they do not even anticipate the existence of
components or do not know how to use the reuse repository
properly. Large reuse repositories that contain many components
are essential for the widespread success of systematic reuse. As
reuse repositories grow larger, it becomes increasingly difficult
for software developers to know or anticipate the existence of
components. We propose here a new mechanism for locating
components: information delivery that autonomously locates and
presents software developers with task-relevant and personalized
components. We have designed and implemented a system called
CodeBroker, which illustrates different techniques to make the
delivered components relevant to the task-at-hand and
personalized to the background knowledge of an individual
developer. Empirical evaluations of CodeBroker show that
information delivery is effective in promoting reuse.

2. OUR CONCEPTUAL FRAMEWORK
Reuse repository systems are a subset of high-functionality
applications (HFAs) [9] that contain a large amount of
information for computer users to access and use. The common
problem faced by all HFAs is how to help users (or software
developers in the case of reuse repository systems) locate, learn,
and apply the task-relevant information that can help them
accomplish their current task (Figure 1).

Our empirical studies [9] have shown that users typically have
different levels of knowledge about HFAs. In Figure 1, the
rectangle L4 represents the actual information space, and the ovals
(L1, L2, and L3) represent a particular user’s different levels of
knowledge of the information space. L1 represents the elements
that are well known and can be easily used by users, even without
consulting help and documentation systems. L2 contains the
elements that users know vaguely. L3 contains elements that users
anticipate to exist in the HFA. A portion of L3 lies outside the
actual information space, so it contains the elements that the user
believes exist but actually do not. The existence of many elements

that fall in the area (L4 – L3) is not even anticipated by the user.
Browsing and searching mechanisms that require users to initiate
the information locating process cannot help users obtain
information in (L4 – L3) because users cannot ask for help if they
are not even aware of the existence of available information.

We have long been concerned with designing both useful and
usable HFAs in different application domains, and our research
efforts enable us to examine the reuse problem from a
multidimensional perspective. In this section, we discuss lessons
we have learned from our research on information retrieval,
human-computer interaction, and knowledge-based systems that
have helped us create a conceptual framework for the software
reuse problem.

2.1 Cognitive Issues in Reuse
The implication of Figure 1 for reuse is as follows. Because
software developers know the components in L1 very well, they
can reuse those components easily, not only in the phase of
implementing software systems, but also in the phases of
requirement analysis and system design because they can map
concepts in problem domains directly into reusable components
that have higher abstraction levels [20, 22]. Such a reuse approach
is often referred to as “opportunistic reuse” [38] because its
success relies solely on how much software developers know
about components.

To achieve systematic reuse, software developers must be able to
reuse not only the components they know, but also the
components they do not yet know. To do so, they have to
incorporate a reuse process into their current development
process. A reuse process consists of three steps: locating the
components reusable in the task-at-hand, comprehending the
functionality and usage of the components, and modifying the
components if there is not any component that completely fits the
task [11].

Systematic reuse fails in the first place if software developers do
not make an attempt to locate components. Such a phenomenon of
“no attempt to reuse” [15] is often regarded as an attitude
problem, and is commonly labeled as the “Not-Invented-Here”
syndrome. Many empirical studies [14, 20, 25] have shown,
however, that software developers would put a lot of effort into

Figure 1: Different levels of knowledge about a high-functionality application (HFA)
The challenge in HFAs is how to differentiate task-relevant and personalized information from irrelevant information.
The cloud represents the information needed for the inferred task-at-hand (with fuzzy boundaries because the system
may have only a rudimentary understanding of it). The black dots are not relevant for the task-at-hand and should
therefore not be delivered. The white dots inside the cloud should not be delivered because they are already known by
a specific user (inferred from the user model, as discussed in Section 3.3).



locating and reusing components if they knew of the components
that can be reused. In other words, software developers are often
very determined to reuse components in L2.

Reuse often fails not because software developers are unwilling to
reuse, but because they are unable to do so due to the lack of
appropriate knowledge about the operation of a reuse repository
and its components. Much of the “Not-Invented-Here”
phenomenon is caused by the cognitive difficulties that are
inherent in the reuse process [8, 46]. Software developers

• may not have sufficient knowledge about the reuse repository
and cannot even anticipate the existence of those components
in the area (L4 – L3) that can be reused in their current task;

• may perceive that reuse costs more than developing from
scratch;

• may not be able to use the repository system by formulating a
proper query or browsing through the repository to locate
components in L3; and

• may not be able to understand the found components.

2.2 Information Retrieval and Reuse
Most research on information retrieval is focused on designing an
effective indexing and retrieval algorithm that achieves high recall
and precision after users have formulated and submitted queries
[37]. Various schemas of indexing and retrieving software
components have been proposed in previous reuse research [16].
Although such schemas are very important, it is equally, if not
more, important to investigate what motivates users to formulate
queries as well as what kind of knowledge is needed for users to
formulate queries.

Conceptual Gap between Situation Model and System Model.
The needs for components are derived from development
activities and are conceptualized in a situation model, which is the
mental model software developers have of their development task
[21]. To locate components from a reuse repository, developers
have to convert the situation model into the “actual” system
model, which includes the ways of describing and structuring
components in the repository. For example, a software developer
may want to draw a circle, but she must know that the method is
called drawOval in the Java class library to search it; or she must
know that this method is in the java.awt package and in the
Graphics class if she prefers browsing. This conceptual gap
between situation and system models is a significant cognitive
barrier to locating components [11].

Information Delivery. Information delivery (“push”
technologies) is a complementary approach to information access
(“pull” technologies), such as browsing and searching. Unlike
information access, which requires users to initiate the
information locating process, information delivery infers the
needs for information by monitoring the low-level activities of
users, and autonomously locates and delivers information based
on the inferred needs [31]. Information delivery is needed to take
advantage of the large number of potentially useful components
contained in (L4 – L3) (see Figure 1). The big challenge in
making information delivery systems useful is to exploit the
working context and the distinct information needs of each user to
present only those components that are related to the task-at-hand
and are not yet known to the individual user [13], rather than
bombarding users with decontextualized and irrelevant
information. An example of a decontextualized information

delivery system that almost all users choose not to use is
Microsoft Office’s Tip of the Day [9].

Retrieval-by-Reformulation. Because of the aforementioned
conceptual gap and the unfamiliarity with the information space
of HFAs, many users are unable to create a well-defined query on
their first attempt to locate relevant information. Retrieval-by-
reformulation [44] is the process that allows users to
incrementally improve their query after they have familiarized
themselves with the information space by evaluating previous
retrieval results. Retrieval-by-reformulation is especially
important in information delivery systems that infer information
needs. Combining information delivery and retrieval-by-
reformulation makes the information location process a
collaborative one in which computers and users complement each
other’s strengths.

2.3 Human-Computer Interaction and Reuse
A fundamental objective of human-computer interaction in an
information-rich world is to provide computer users with
experiences that fit their specific background knowledge and
tasks. The challenge in implementing reuse repository systems is
not only to make components available to software developers,
but to locate the “right” component (task-relevant) at the “right”
time (when it is needed) to the “right” software developer
(personalized).

Multiple Communication Channels. Traditionally, information
needs are communicated to systems through a narrow explicit
communication channel established by users when they start
browsing or searching. Because software developers work with
computers, reuse repository systems can explore the power of
implicit communication channels [9] that can be established when
reuse repository systems are integrated with development
environments [12]. Such an integration makes the workspace of
software developers accessible to reuse repository systems that
can infer the needs for software components from partially written
programs. Based on the inferred needs, reuse repository systems
can deliver task-relevant components without explicit queries
from users.

Personalized Information Needs. Because different software
developers have differing knowledge about the reuse repository,
reuse repository systems should not return the same set of
components to all software developers. To personalize the located
components to the specific background of each software
developer requires user models [9] to represent the existing
knowledge that software developers have of the reuse repository.
User models can be adaptive and adaptable. User models are
adaptive if the system implicitly creates and updates them by
observing the interactions between the system and users; and they
are adaptable if users explicitly update them by adding or
removing information.

2.4 Knowledge-Based Systems and Reuse
The influence of knowledge-based systems on reuse is twofold.
First, reuse repository systems are software developers’ assistants
that supplement their insufficient knowledge about components.
Second, knowledge-based approaches can be used to infer the
needs for components from low-level user activities through the
implicit communication channel.

Knowledge Augmentation. Cognitive theory has revealed that a



cognitive activity is primarily determined by its surrounding
environment, which includes information present in both the
workspace and the memory of human beings. Subsequent
problem-solving actions are chosen by incorporating new
information from the developer’s memory triggered by cues
present in the workspace [39]. That explains why software
developers with differing knowledge often choose very different
approaches to develop the same task [42]. For the same task, a
software developer who recalls a certain component that can be
reused in the task may take a bottom-up approach to design the
program that is centered on the component, whereas another
developer who does not know or recall that component may take a
top-down approach to decompose the task further [38].

Information delivery can make unknown components reused in a
way similar to known components. Because timely delivered
components based on the cues in the workspace become a part of
the immediately accessible information in the workspace, they can
be regarded as the results of recall automated by computers, and
motivate software developers to take a design approach that favors
reuse. With the information delivery mechanism, all components
in the reuse repository, whether they are known or not, may
possibly actively contribute to the software development process.

Finding Task-Relevant Components with Similarity Analysis.
The two basic approaches to infer the high-level goals of users
from their low-level activities and then find task-relevant
information to help them accomplish the task are: plan recognition
and similarity analysis. Due to the difficulty of recognizing plans
from an unfinished program, we use the similarity analysis
approach. The logic assumption of similarity analysis is: “If the
current working situation, defined by the self-revealing
information in the workspace, is similar enough to a previous
situation in which information X was used, then it is highly
possible that information X is also needed in the current
situation.”

Software developers often use meaningful comments and
identifier names to communicate the concept or the functional

purpose of programs [1, 29, 40]; doc comments of Java are
specifically introduced for that purpose. Other self-revealing
information includes the signatures of modules that define the
types of input and output data [47]. Therefore, the relevance of a
component to the task-at-hand can be determined by the
conceptual similarity between the comments and identifiers in the
program being developed and the textual documents of
components in the repository, and the signature compatibility
between the signatures of programs under development and those
of components.

Latent Semantic Analysis (LSA). LSA [24] is a free-text
indexing and retrieval technique that takes semantics into
consideration. It can be used to determine the conceptual
similarity between the task-at-hand and components in the
repository. From a large volume of training documents in a
specific domain, LSA first creates a domain-specific semantic
space of words to capture the overall pattern of their associative
relationship. Text documents and queries are represented as
vectors in the semantic space, based on the words contained; and
the similarity between a query and a document is determined by
the distance of their respective vectors. The semantic space
created by LSA is similar to the knowledge net that a human
acquires about words through reading [21], and therefore has the
potential to reduce the conceptual gap between situation model
and system model in locating components.

3. DELIVERING TASK-RELEVANT AND
PERSONALIZED COMPONENTS
Based on our conceptual framework, we have designed,
implemented, and evaluated a system called CodeBroker that
delivers task-relevant and personalized components. It supports
Java developers in reusing components without leaving their
development environment, Emacs, which is augmented with the
RCI-display (Reusable Component Information display, the lower
buffer in Figure 2), where task-relevant and personalized
components are autonomously shown.

Figure 2: An example of the use of CodeBroker
This screen image shows what a developer using CodeBroker sees. The developer wants to write a method that creates a
random number between two integers, and describes the task in the doc comment and signature before the cursor, based on
which several components are delivered in the RCI-display (the lower buffer). The first of these delivered components,
getInt, is a perfect match and can be reused immediately.



3.1 Overview of the CodeBroker System
CodeBroker (Figure 3) consists of an interface agent and a back-
end search engine. Running continuously as a background process
in Emacs, the interface agent infers and extracts reuse queries by
monitoring development activities. Queries are passed to the
search engine, which retrieves matching components. Retrieved
components are delivered by the interface agent in the RCI-
display, after it has removed the components that are contained in
discourse models and user models. Discourse models, created by
software developers during previous interactions with the system,
include components that these developers have indicated are of no
interest in the current development session. User models, created
and updated by both the system and software developers, contain
components known to individual software developers.

The component repository contains indexes created by
CodeBroker from the standard Java documentation that Javadoc
generates from Java source programs, and links to the Java
documentation system.

CodeBroker delivers components whenever a doc comment or a
signature definition is entered. For example, in Figures 2 and 3,
the developer who wants to create a random number between two
integers writes a doc comment. As soon as the rightmost ‘/’
(signaling the end of a doc comment) is entered, the contents of
the doc comment are extracted as a query, and components from
the repository that match it are shown immediately in the RCI-
display. Because there are many random number generators that
operate on different data types, the software developer may want
to find the one that takes integers as input. The developer can

continue programming by defining the signature of the method.
As soon as the signature definition is finished (the left bracket ‘{‘
before the cursor), CodeBroker extracts the signature, which is
then combined with the preceding doc comment as a query to
retrieve matching components. The first component in the RCI-
display in Figure 2 does exactly what the developer wants and can
be reused immediately.

CodeBroker presents information with three different layers of
abstraction. The first layer is the RCI-display in which 20 (the
number can be customized) components are shown according to
their task relevance, and each component is accompanied by its
rank of relevance, relevance value, name, and synopsis. To reduce
the intrusiveness [12], users are not required to interact with the
system if they are not interested in the delivered components. If
they are interested in certain components in the RCI-display, they
can trigger the presentation of the second layer of information
with mouse movements. When the mouse cursor is moved over
the component name, the signature of the component is shown in
the mini-buffer (the last line of Emacs in Figure 2); and when the
mouse cursor is over the synopsis, words contributing to the
relevance between the component and the task-at-hand are shown
in the mini-buffer to reveal why this component is retrieved and to
help software developers refine their queries if necessary. The
third layer of information, which is the most complete description
of a component, is shown in an external HTML browser. A left-
click on the component name brings up the full Javadoc
documentation for the component (Figure 3).

If the software developer feels too many irrelevant components
are delivered in the RCI-display, activating the Skip

Figure 3: The system architecture of CodeBroker
Components that match the queries, which are extracted from doc comments and signatures, are delivered after being
filtered with discourse models and user models. Discourse models (see Section 3.2.3) remove irrelevant components
(black dots), and user models (see Section 3.3) remove known components (unshaded dots). Discourse models and
user models can both be updated by users through the Skip Components Menu. User models are also
automatically updated when the system detects the reuse of a component in the workspace. Users who want to know
more about a component can go to the Java documentation by clicking on the delivered component.

Inferred
queries

Comment: Create a random number
between two limits

Signature: int <- int x int

D
isco

u
rse

m
o

d
el

U
ser

m
o

d
el

left-click

right-click

user updating

system updating

L3L2L1

L4: Component
Repository



Components Menu associated with each component will filter
them out (Figure 3). Filtering can be applied at three levels of
granularity: (1) filtering out the component itself by choosing the
first item in the menu, (2) filtering out all components from its
class by choosing the second item, or (3) filtering out all
components from its package by choosing the third item. Three
commands exist for each chosen item. The first command, This
Buffer Only, removes the chosen item from the RCI-display
buffer; the second command, This Session Only, not only
removes the chosen item from the buffer, but also adds it to the
discourse model (see Section 3.2.3); and the third command, All
Sessions, both removes the chosen item from the buffer and
adds it to the user model (see Section 3.3).

3.2 Delivering Task-Relevant Components
CodeBroker explores multiple communication channels to deliver
task-relevant components. Through the implicit communication
channel established by its interface agent, it autonomously
extracts reuse queries from partially written programs. It uses the
discourse models created by software developers through an
explicit communication channel to capture the larger context of
the development task.

3.2.1 Extracting Queries Autonomously
Reuse queries are extracted from doc comments and signatures. A
software program has three aspects: concept, code, and constraint.
The concept of a program is its functional purpose; the code is the
embodiment of the concept; and the constraint is the environment
in which it runs. This characterization is similar to the 3C model
of Tracz [41], who uses concept, content, and context to describe
a component. Important concepts of a program are often
contained in its informal information structure. Informal
information includes structural indentation, comments, and
identifier names [40], which are important beacons to
understanding programs [1, 28, 29]. One important constraint of a
program is its type compatibility, which is manifested in its
signature. For a reusable component to be easily integrated, its
signature should be compatible with the environment into which it
is going to be incorporated.

Based on the assumption of similarity analysis, a component is
highly likely to be reused if it shows either conceptual similarity,
or constraint compatibility, or both, to the task-at-hand. The
conceptual similarity that exists between the textual document of a
component and the doc comment extracted from Emacs is
determined by LSA. The constraint compatibility, or signature
compatibility, that exists between the signature of a component
and the extracted signature, is determined by the process of
signature matching [46].

3.2.2 Supporting Retrieval-by-Reformulation
Doc comments and signatures may not describe the task-at-hand
completely and precisely. Furthermore, current information
retrieval algorithms, including LSA, are unable to retrieve all of
the task-relevant information and the task-relevant information
only [37]. CodeBroker unavoidably delivers some irrelevant
components and misses some relevant components. The retrieval-
by-reformulation interface (Figure 4) in CodeBroker enables
software developers to incrementally reformulate reuse queries
after they have studied the delivered components, until they locate
what they want.

Figure 4: The retrieval-by-reformulation interface

The retrieval-by-reformulation interface represents an explicit
communication channel that must be activated by users, and
through which they can refine queries and also limit the range of
retrieval. Most reuse repositories are organized hierarchically. For
example, components in Java are placed in different packages and
classes according to their application domains. Most development
tasks involve only a part of the repository, and software
developers are not interested in components from irrelevant
packages and classes. Through the retrieval-by-reformulation
interface, they can exclude components from certain packages and
classes by adding their names to the Filtered Components
field, or limit the search to packages and classes of interest by
adding their names to the Interested Components field
(Figure 4).

Although the interface can also be used as the traditional search
interface, software developers who do not know the structure of
the repository well enough may not be able to specify the
interested or uninterested parts at their first searching attempt. The
delivered components can familiarize them with the repository
and enable them over time to formulate reuse queries that are
closer to the system model.

3.2.3 Creating Discourse Models
Doc comments and signatures describe the immediate
programming task, namely, the module that the software
developer is going to develop. A module is only a part of the
whole development task, and the functionality of the module is
deeply connected with other modules that have been developed so
far. Therefore, software developers’ interactions with the system
in the development of previous modules provide a discourse to
interpret the current development activity and to limit the
applicability of information in the current situation. This is similar
to the conversation structure in natural language, in which a new
utterance is interpreted by the listener in light of the
conversational discourse defined by previous interactions.

The interaction history between a software developer and
CodeBroker in a development session is captured in a discourse
model, which is used as a filter to improve the task-relevance of
delivered components. A development session is defined by the
software developer who starts and ends the session by activating
and deactivating the CodeBroker system, respectively.

Each development session starts with an empty discourse model
that is incrementally updated by the software developer as he
interacts with the system. Discourse models in CodeBroker
contain components that do not interest software developers in the
current development session, because it is often much easier for
users to identify misfits than fits. Figure 5 shows an example of a
discourse model extracted from one of our experiments, in which



the subject was asked to create a program that simulates the
process of dealing cards randomly. CodeBroker responded to his
initial doc comments with some components from the package
java.util.zip and the class java.awt.CardLayout because
their documents contained some words that also appeared in the
doc comments. The subject knew he did not need any components
from the package and the class for his task, so he right-clicked on
the components to launch the Skip Components Menu (Figure
3) to add the package and the class to the discourse model. For the
remaining interactions with the system in the same development
session, all components from the package and the class were not
delivered to the subject.

Figure 5: An example discourse model

Both a discourse model and the Filtered Components field in
the retrieval-by-reformulation interface (Figure 4) are used to
remove irrelevant components specified by software developers.
However, the former is used not only in the current delivery but
also in all following deliveries in the same development session,
whereas the latter is only used for the current delivery. Such a
design is meant to give software developers different levels of
control of the scope of component location according to their
needs.

3.3 Delivering Personalized Components
Delivering a component that is well known to a software
developer is not desirable. Because each software developer has
different knowledge about the reuse repository, the system needs
to personalize its delivery to each developer’s unique needs.

Figure 6: An example user model
A user model is a Lisp list with the following format:
(package
(class
(method use-time use-time use-time …)))

where the use-time field indicates when the developer
reused the component. No use-time field means the
component was added by the user. An empty class field
or method field means the whole package or class is
known to the developer.

CodeBroker uses user models (Figure 6) to represent software
developers’ knowledge about the reuse repository. User models
contain both well-known (L1 in Figure 1) and vaguely known
(L2) components. Only well-known components are removed
from deliveries because, although software developers can retrieve
L2 components by themselves, automatic delivery can save the
locating time.

The contents of user models are collaboratively maintained by the
system and users. CodeBroker creates the initial user model by

analyzing the Java programs the software developer has created so
far. Software developers can explicitly adapt their user models.
When a known component is delivered and they do not want the
same component to be delivered again, they can use the Skip
Components Menu (Figure 3) to add the component, its class, or
its package to user models. Such user-added components do not
have a use-time field in user models, and they belong to L1 in
Figure 1.

CodeBroker implicitly updates user models when it observes that
software developers invoke a method component during their
programming (Figure 3). It uses heuristic rules to determine when
a method component is invoked. A method invocation in Java is
followed by a left parenthesis. Whenever a left parenthesis is
entered in the editor, after CodeBroker has excluded the non-
method invocation cases, such as the Java for statement, it scans
back to extract the name of the method. Because a method name
may not be unique in Java, CodeBroker needs to determine its
class and package to add it to the user model. If the method is an
instance method, CodeBroker determines its class by looking up
the declaration of the variable that precedes the method. If the
method is a class method and its class is not included in the
method invocation statement, CodeBroker looks up all imported
classes of the program to find the class that has the method. If the
class is not unique in the repository, CodeBroker picks the
package that is imported in the beginning of the program with the
Java import statement. Only method components are implicitly
added to user models in CodeBroker because the software
developer may not know the entire class even if a method of the
class is reused. The components added to user models by the
system have a use time, which is the time the component is
detected to be invoked in the editor. Components that have more
than three use times (the number is customizable) are considered
as well known, namely, included in L1 (Figure 1), and
components that have fewer than four use times are considered as
vaguely known (L2).

4. EVALUATION
To understand how information delivery can support component
reuse, we have conducted empirical evaluations of CodeBroker
with software developers.

The reuse repository used in evaluation experiments included 673
classes and 7,338 methods from the Java 1.1.8 core library and
JGL 1.3 library (created by Objectspace, Inc.). The semantic space
created by LSA was trained with documents from four sources:
Linux on-line manuals, programming textbooks, the Java
language specification and virtual machine specification, and Java
class libraries. In total, there were 78,475 documents and 10,988
different terms.

4.1 Recall and Precision
Information retrieval systems are conventionally evaluated by
recall and precision [37]. Recall is the proportion of relevant
material actually retrieved in answers to a search query; and
precision is the proportion of retrieved material that is actually
relevant. Figure 7 shows the recall-precision curve for the results
of executing 19 queries in CodeBroker. A half of the queries were
created by us, and the other half were collected from empirical
experiments and frequently asked questions in Java-related
newsgroups. The data shown in Figure 7 is lower than those
reported in the evaluations of other reuse repository systems [16].



However, retrieval systems can be compared only when all the
queries and the criteria for relevance are the same. Our criteria for
relevance were very strict because we considered as relevant only
those components that could actually be reused in implementing
the tasks described by the queries.

Figure 7: The recall-precision curve

4.2 The Structure of the Experiments
Five subjects who had extensive software development experience
voluntarily participated in the evaluation experiments. Their
expertise in Java varied from medium to expert. Our experiments
adopted both the multi-project variation approach, in which one
subject conducted two or three different projects, and the
replicated project approach, in which one project is conducted by
two or more subjects [3].

Twelve experiments were conducted. In each experiment, the
subject was asked to implement a predetermined small task. Each
task could be implemented with different combinations of
components from the repository. The following is a sample task:

Traditionally, Chinese write numbers with a comma
inserted at each fourth number from the right. For
example, 1,000,000 is written as 100,0000. Implement a
program that transforms the Chinese writing format
(100,0000) to the Western format (1,000,000).

Before the experiment, CodeBroker first created initial user
models for the subjects by analyzing the Java programs they had
developed recently. Subjects were instructed to follow their
normal practice during the experiments. They were encouraged to
take advantage of the components delivered by CodeBroker, but
they were not forced to do so. They could also use their normal
ways of locating components with books or the Java
documentation system. Subjects were asked to describe their
implementation plans for the given task before they started
programming. We asked them to think aloud during the
experiments and videotaped all experiments. Analyses were based
on automatically logged data, transcribed videotapes, and post-
experiment interviews in which we asked questions regarding
their experience with CodeBroker.

4.3 Findings of Experiments
Table 1 shows the overall results of the experiments. Subjects
reused delivered components during 10 of the 12 experiments.
The 12 programs created by the subjects used 57 distinct
components, 20 of which were delivered by CodeBroker.

Reusing Unanticipated Components. Of the 20 reused
components that were delivered, the subjects did not anticipate the
existence of 9 (see 5th column in Table 1). In other words, those 9
components could not have been reused without the support of
CodeBroker, and the subjects would have created their own
solutions instead. As two subjects commented in the interviews:

“I would have never looked up the roll function by
myself; I would have done a lot of stuff by hand. Just
because it showed up in the list, I saw the Calendar
provided the roll feature that allowed me to do the task.”

“I did not know the isDigit thing. I would have wasted
time to design that thing.”

Reducing Locating Time. Although the subjects anticipated the
existence of the other 11 components (see 6th and 7th columns in
Table 1), they had known neither the names nor the functionality,
and had never reused them before. They might have reused the 11
components if they could manage to locate them by themselves. In
interviews, subjects acknowledged that CodeBroker made locating
them much easier and faster.

“I did not have to start browsing and go through the
packages, and I did not have to go through the index of
methods. I could just go to the short list [RCI-display], find
it and click it.”

“The key benefit of this [CodeBroker] is that it gives you
methods for every class, not like this one [the Java
documentation system] that you have to first find which
class it is in and then go to the class. Although it has index
of methods, it is hard to find here [the Java documentation
system].”

Snowball Effects of Deliveries. The last column in Table 1 shows
the number of components that were not delivered but were
triggered to be reused by deliveries. In some cases, when the
subjects wanted to reuse a delivered component that requires
other supplementary components, they had to find those
components through browsing. Subjects had not known those
triggered components before, and it was the deliveries that
motivated software developers to reuse them.

Knowledge Augmentation. Information delivery not only
encourages software developers to reuse components but also

Table 1: Overall Results of Experiments

Breakdown of reused
components from
deliveries

S
ub

je
ct

E
xp

er
im

en
tn

o.

T
ot

al
no

.o
f

di
st

in
ct

co
m

po
ne

nt
s

re
us

ed

N
o.

of
di

st
in

ct
co

m
po

ne
nt

s
re

us
ed

fr
om

de
li

ve
ri

es

U
na

nt
ic

ip
at

ed
(L

4-
L

3)

A
nt

ic
ip

at
ed

bu
tu

nk
no

w
n

(L
3)

V
ag

ue
ly

kn
ow

n
(L

2)

N
o.

of
re

us
ed

co
m

po
ne

nt
s

tr
ig

ge
re

d
by

de
li

ve
ri

es

1 10 4 2 2 0 0
S1

2 3 1 1 0 0 1
3 7 1 1 0 0 0
4 4 1 1 0 0 0S2
5 5 3 0 2 1 1
6 5 2 1 1 0 1
7 4 3 1 2 0 1S3
8 3 0 0 0 0 0
9 4 3 0 3 0 0

S4
10 3 1 1 0 0 2
11 4 1 1 0 0 2

S5
12 5 0 0 0 0 0

Sum 57 20 9 10 1 8

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Recall(%)

P
re

ci
si

o
n

(%
)



augments their abilities in constructing implementations centered
on the delivered components that they have not known before.
This observation was best illustrated with the different approaches
taken by subjects S2, S3, and S5 when they implemented the
sample task described in Section 4.2.

In describing his implementation plan, S3 anticipated that some
methods from the java.text.NumberFormat class might help
him read numbers in Chinese format and write it out in Western
format, although he did not know exactly what those methods
were nor what their functionality was. As a result, he successfully
constructed his program concisely using methods that were
located by CodeBroker after he had limited the search to the
java.text package with the retrieval-by-reformulation interface
(Figure 4). Subject S5, who did not even know the existence of
the java.text package, described as his implementation plan
that he was going “to parse the number, take out the commas and
insert the commas”. As S5 started programming, he noticed a
delivered component from the java.text.NumberFormat class,
changed his original plan, and came up with a program similar to
that of S3. Subject S2, who did not know the
java.text.NumberFormat class either, described a plan like
S5’s original one. Because no component from the
java.text.NumberFormat class was delivered based on his
comments, he stuck to his original plan and constructed a different
program.

In the experiments, we observed several other occasions similar to
the above example in which delivered components stimulated
subjects to change their original plans to a new implementation
approach that reused the delivered components.

Roles of Discourse Models. Discourse models improved the task-
relevance of delivered components when they were created. In
five experiments, subjects created discourse models, which
removed about 10% of retrieved components from the deliveries.
All of the removed components were irrelevant to the task-at-
hand.

Roles of User Models. The experiments, however, did not yield
strong and conclusive data regarding the roles of user models.
Only 2% of the retrieved components were filtered by user
models. That might be due to two reasons: (1) initial user models
were not complete because subjects did not give us all the Java
programs written by them; or (2) to observe the effectiveness of
delivering unknown components, subjects were assigned the tasks
that involved the part of the repository they did not know very
well, and, consequently, most delivered components were
unknown. Nevertheless, user models helped and are needed to
reduce the number of irrelevant components to be delivered
because a careful examination of components removed by user
models showed they could not be reused in the tasks.

Table 2: Subjective ratings on the usefulness of CodeBroker

Subject S1 S2 S3 S4 S5

Rating 7 4 8.5 7 8

Summary. Overall, the experiments have shown that information
delivery can promote reuse by supporting the reuse of
unanticipated components, reducing the cost of locating
components, and augmenting software developers’ capability in
constructing new programs with components. Most subjects
appreciated the support provided by CodeBroker and gave high

ratings in terms of its usefulness, as shown in Table 2, on a scale
from 1 (totally useless) to 10 (extremely useful).

5. DISCUSSIONS AND FUTURE WORK
The success of an information delivery system hinges on how
many cues it can obtain from users’ working environments to
infer their needs for new information and retrieve that information
[31]. Currently, the performance of CodeBroker is affected by the
quality of doc comments and documents of components. Although
LSA can reduce the conceptual gap between situation model and
system model with fine-tuned domain-specific semantic spaces,
the results are still far from satisfying, as we can see from the
recall-precision curve (Figure 7). We are investigating more
sophisticated mechanisms to retrieve and deliver components
based on other cues in software development environments. For
example, a software developer may write a program based on a
known design pattern or framework [17], which places extra
constraints on the type of components that can be reused. Such
constraints can be utilized to improve the task-relevance of
delivered components.

Reuse takes place in different phases of software development.
The granularity of reusable components varies in different phases,
but in all phases, software developers must be able to locate the
needed components. CodeBroker is a “proof-of-concept” system
that investigates the effectiveness of component delivery at
implementation level. This is important because this enhances the
productivity of programmers. The opportunity of reuse depends
on what software developers know of the repository when they are
designing or implementing software. Delivering task-relevant and
personalized reuse information can increase the reuse opportunity
limited by the knowledge of software developers. The underlying
design principles of CodeBroker can be extended to other phases
of software development, and similar support can be provided.
Software development is a knowledge intensive activity, and
reusable components are only a portion of the knowledge needed.
The information delivery mechanism is applicable not only to
software components but also to other types of software
development knowledge and other phases of the software
engineering process.

We should be careful in extrapolating our findings from the
experiments with CodeBroker, in which the repository consisted
of components that were of very high quality, carefully
documented, and highly trusted by software developers. Subjects
were very motivated to learn how to reuse those relevant
components delivered by the system. We need to do more
experiments to investigate whether the same conclusion holds
with repositories that come from a less respected source. To
answer this question, we need to investigate the social aspects of
software reuse, such as what makes software developers trust a
component and how to involve them in the evolution of the reuse
repository to complement, or even replace, a dedicated team of
component developers [10, 33].

6. RELATED WORK
Most of the previous research on reuse repositories has focused on
the indexing and retrieval mechanisms. Different mechanisms,
such as free-text retrieval [27], multi-facets classification [32],
semantic networks [5], spreading activation [19], behavior
sampling [18], signature matching [47], and specification
matching [30], have been proposed. CodeBroker combines both



free-text retrieval based on LSA and signature matching in its
retrieval mechanism.

Parts of CodeBroker are similar to the systems that use identifier
names, comments, or both to cluster components that have similar
functionality. Such clusters can help software developers choose
reusable components [29] or comprehend existing software
systems [1, 28].

The cliché-based programming environment KBEmacs [35] is
also implemented as an extension to Emacs. It has a knowledge
base of clichés that programmers can reuse. KBEmacs helps
programmers who already knew the cliché because programmers
have to refer to it by name, whereas CodeBroker tries to give
programmers access to unknown components.

Wren [23] is a component-based development environment that
supports software developers in locating, evaluating, and
incorporating components from several component distribution
sites. It also stresses the importance of making use of self-
revealing information contained in components. However, no
automated location support is provided in Wren.

Reuse repository systems that support information delivery are
autonomous interface agents [26] that proactively retrieve and
deliver information by predicting the information needs of users.
Remembrance Agent [34] continually presents, from the user’s
personal archive, a list of documents that are relevant to the
current document being written. Letizia [26] assists users in
browsing the WWW by suggesting and displaying relevant web
pages based on user interests. By observing the programmer’s
Java programming, Expert Finder [43] can refer the programmer
to expert helpers who have displayed significant experience in the
area in which the programmer is troubled.

Information delivery has been explored in several other research
prototypes of software development environments. Drummond et.
al [6] add to browsing systems an agent that infers the search goal
of software developers by observing their browsing actions and
delivers components that closely match the inferred goal. The
Argo design environment [36] is equipped with computer critics
[12] that deliver general software design knowledge for software
developers to reflect upon their current design.

7. CONCLUSIONS
Locating components from a large reuse repository is the first step
to the success of software reuse. Information delivery holds the
potential of (1) making unanticipated components easily
accessible to software developers, (2) reducing the overall cost of
software reuse, and (3) motivating software developers to take a
design approach that favors reuse by augmenting their knowledge
of components. The challenge in implementing information
delivery is to capture from the workspace as much information as
possible to locate task-relevant and personalized information. In
our research, we have tried to address the challenge by exploring
doc comments and signatures of the programs on which software
developers are working, discourse models that describe partially
the overall goal of the development task, and user models that
represent the background knowledge of developers. We have
demonstrated the feasibility of this approach with an implemented
system. The empirical evaluations of the system have shown its
success in promoting software reuse in controlled experiments.
We are currently conducting more experiments in natural settings

to further our understanding of the benefits and problems
associated with our approach.

The unique contribution of our research is that it explores a new
style of human-computer collaboration in software reuse,
transcending the traditional interface of reuse repository systems
that rely on the explicit communication channel established by
software developers when they initiate the reuse process. The
information delivery mechanism is not meant to replace the
existing browsing and searching methods, but to complement
them; and it has proven useful for cases in which software
developers do not anticipate the existence of components or do
not know how to access them with browsing and searching.

8. ACKNOWLEDGMENTS
The authors thank the members of the Center for LifeLong
Learning & Design at the University of Colorado, who have made
major contributions to the conceptual frameworks described in
this paper. The research was supported by (1) the National
Science Foundation, Grant REC-0106976; (2) SRA Key
Technology Laboratory, Inc., Tokyo, Japan; and (3) the Coleman
Family Foundation, San Jose, CA.

9. REFERENCES
[1] Anquetil, N., and Lethbridge, T. Extracting Concepts from

File Names: A New File Clustering Criterion, in Proceedings
of 20th ICSE (Kyoto, Japan, 1998), 84-93.

[2] Basili, V., Briand, L., and Melo, W. How Reuse Influences
Productivity in Object-Oriented Systems. Commun. ACM,
1996. 39(10): 104-116.

[3] Basili, V.R., Selby, R.W., and Hutchen, D.H.
Experimentation in Software Engineering. IEEE Trans. on
Software Engineering, 1986. SE-12(7): 733-743.

[4] Creech, M.L., Freeze, D.F., and Griss, M.L. Using Hypertext
in Selecting Reusable Software Components, in Proceedings
of Hypertext'91 (San Antonio, TX, 1991), 25-38.

[5] Devanbu, P., et al. LaSSIE: A Knowledge-Based Software
Information System. Commun. ACM, 1991. 34(5): 34-49.

[6] Drummond, C., Ionescu, D., and Holte, R. A Learning Agent
that Assists the Browsing of Software Libraries. IEEE Trans.
on Software Engineering, 2000. 26(12): 1179-1196.

[7] Fafchamps, D. Organizational Factors and Reuse. IEEE
Software, 1994. 11(5): 31-41.

[8] Fischer, G. Cognitive View of Reuse and Redesign. IEEE
Software, 1987. 4(4): 60-72.

[9] Fischer, G. User Modeling in Human-Computer Interaction.
User Modeling and User-Adapted Interaction, 2001.
11(1&2): 65-86.

[10] Fischer, G., et al. Seeding, Evolutionary Growth and
Reseeding: The Incremental Development of Collaborative
Design Environments, in Coordination Theory and
Collaboration Technology, Olson, G., Malone, T., and
Smith, J. (eds.), Lawrence Erlbaum, Mahwah, NJ, 2001, 447-
472.

[11] Fischer, G., Henninger, S., and Redmiles, D. Cognitive Tools
for Locating and Comprehending Software Objects for
Reuse, in Proceedings of 13th ICSE (Austin, TX, 1991),
318-328.



[12] Fischer, G., et al. Embedding Critics in Design
Environments. The Knowledge Engineering Review Journal,
1993. 8(4): 285-307.

[13] Fischer, G., and Ye, Y. Personalizing Delivered Information
in a Software Reuse Environment, in Proceedings of 8th
International Conference on User Modeling (Sonthofen,
Germany, 2001), 178-187.

[14] Frakes, W.B., and Fox, C.J. Sixteen Questions about
Software Reuse. Commun. ACM, 1995. 38(6): 75-87.

[15] Frakes, W.B., and Fox, C.J. Quality Improvement Using a
Software Reuse Failure Modes Model. IEEE Trans. on
Software Engineering, 1996. 22(4): 274-279.

[16] Frakes, W.B., and Pole, T.P. An Empirical Study of
Representation Methods for Reusable Software Components.
IEEE Trans. on Software Engineering, 1994. 20(8): 617-630.

[17] Gamma, E., et al. Design Patterns--Elements of Reusable
Object-Oriented Systems. Addison-Wesley, Reading, MA,
1994.

[18] Hall, R.J. Generalized Behavior-Based Retrieval, in
Proceedings of 15th ICSE (Baltimore, MD, 1993), 371-380.

[19] Henninger, S. An Evolutionary Approach to Constructing
Effective Software Reuse Repositories. ACM Trans. on
Software Engineering and Methodology, 1997. 6(2): 111-
140.

[20] Isoda, S. Experiences of a Software Reuse Project. Journal of
Systems and Software, 1995. 30: 171-186.

[21] Kintsch, W. Comprehension: A Paradigm for Cognition.
Cambridge University Press, Cambridge, UK, 1998.

[22] Krueger, C.W. Software Reuse. ACM Computing Surveys,
1992. 24(2): 131-183.

[23] Lüer, C., and Rosenblum, D.S. Wren--An Environment for
Component-Based Development, in Proceedings of the Joint
ESEC-8 and FSE-9 (Vienna, Austria, 2001), 207-217.

[24] Landauer, T.K., and Dumais, S.T. A Solution to Plato's
Problem: The Latent Semantic Analysis Theory of
Acquisition, Induction and Representation of Knowledge.
Psychological Review, 1997. 104(2): 211-240.

[25] Lange, B.M., and Moher, T.G. Some Strategies of Reuse in
an Object-oriented Programming Environment, in
Proceedings of Human Factors in Computing Systems
(Austin, TX, 1989), 69-73.

[26] Lieberman, H. Autonomous Interface Agents, in Proceedings
of Human Factors in Computing Systems (Altanta, GA,
1997), 67-74.

[27] Maarek, Y.S., Berry, D.M., and Kaiser, G.E. An Information
Retrieval Approach for Automatically Constructing Software
Libraries. IEEE Trans. on Software Engineering, 1991.
17(8): 800-813.

[28] Maletic, J.I., and Marcus, A. Supporting Program
Comprehension Using Semantic and Structural Information,
in Proceedings of 23rd ICSE (Toronto, Canada, 2001), 103-
112.

[29] Michail, A., and Notkin, D. Assessing Software Libraries by
Browsing Similar Classes, Functions and Relationships, in
Proceedings of 21st ICSE (Los Angeles, CA, 1999), 463-
472.

[30] Mili, A., Mili, R., and Mittermeir, R. Storing and Retrieving
Software Components: A Refinement-Based System. IEEE
Trans. on Software Engineering, 1997. 23(7): 445-460.

[31] Nardi, B.A., Miller, J.R., and Wright, D.J. Collaborative,
Programmable Intelligent Agents. Commun. ACM, 1998.
41(3): 96-104.

[32] Prieto-Diaz, R. Implementing Faceted Classification for
Software Reuse. Commun. ACM, 1991. 34(5): 88-97.

[33] Raymond, E.S., and Young, B. The Cathedral and the
Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O'Reilly, Sebastopol, CA, 2001.

[34] Rhodes, B.J., and Maes, P. Just-in-time Information
Retrieval Agents. IBM Systems Journal, 2000. 39: 685-704.

[35] Rich, C.H., and Waters, R.C. The Programmer's Apprentice.
Addison-Wesley, Reading, MA, 1990.

[36] Robbins, J.E., and Redmiles, D.F. Software Architecture
Critics in the Argo Design Environment. Knowledge-Based
Systems, 1998. 11: 47-60.

[37] Salton, G., and McGill, M.J. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[38] Sen, A. The Role of Opportunism in the Software Design
Reuse Process. IEEE Trans. on Software Engineering, 1997.
23(7): 418-436.

[39] Simon, H.A. The Sciences of the Artificial, Third edition.
The MIT Press, Cambridge, MA, 1996.

[40] Soloway, E., and Ehrlich, K. Empirical Studies of
Programming Knowledge. IEEE Trans. on Software
Engineering, 1984. SE-10(5): 595-609.

[41] Tracz, W. The 3 Cons of Software Reuse, in Proceedings of
3rd Annual Workshop on Institutionalizing Software Reuse
(Syracuse, NY, 1990).

[42] Visser, W. More or Less Following a Plan during Design:
Opportunistic Deviations in Specification. International
Journal of Man-Machine Studies, 1990. 33(3): 247-278.

[43] Vivacqua, A. Agents for Expertise Location, in Proceedings
of 1999 AAAI Spring Symposium on Intelligent Agents in
Cyberspace (Stanford, CA, 1999), 9-13.

[44] Williams, M. What Makes RABBIT Run? International
Journal of Man-Machine Studies, 1984. 21: 333-352.

[45] Ye, Y. Supporting Component-Based Software Development
with Active Component Repository Systems, Ph.D.
Dissertation, Department of Computer Science, University of
Colorado, Boulder, CO, 2001

[46] Ye, Y., Fischer, G., and Reeves, B. Integrating Active
Information Delivery and Reuse Repository Systems, in
Proceedings of FSE-8 (San Diego, CA, 2000), 60-68.

[47] Zaremski, A.M., and Wing, J.M. Signature Matching: A Tool
for Using Software Libraries. ACM Trans. on Software
Engineering and Methodology, 1995. 4(2): 146-170.


