
Human~Computer Interaction ~ INTERACT '87
H.-J. Bullinger and B. Shackel (Editors)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1987

965

Volunteering Information -- Enhancing the
Communication Capabilities of Knowledge-Based Systems

Gerhard Fischer and Curt Stevens

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Campus Box 430

Boulder, CO 80309

Abstract

Cooperative problem solving systems support the solution of tasks which cannot be solved by the human
or the computer alone. These systems need to be knowledge-based and require flexible communication
paradigms allowing natural communication with both experts and novice users of the system. Natural
communication (quite dtfferent from natural language) has to support mixed-initiative dialogues where
information can be volunteered by the system and the user.

In this paper, we present prototypical systems which assist users in rebooting a computer. REBOOTER is a
rule-based system which guides the user with a strongly system-directed dialogue through this task. The
use of this system has shown that the communication paradigm was too narrow to make it a worthwhile
toor (especially for the expert user). The SYSTEMS ASSISTANT tries to overcome the noted shortcomings by
allowing the users to interact with the system in a mixed-initiative dialogue, to volunteer information and to
deviate from the system generated discourse structure.

1. Introduction
Our goal is to establish, both by theoretical work and by build­
ing prototypical systems, the scientific foundations for the con­
struction of intelligent systems which serve as amplifiers of
human capabilities and skills. A prerequisite for intelligent sys­
tems is that we understand the information processing pos­
sibilities and limitations of the human and the computer. Our
systems should not only be significant as technical achieve­
ments in computer science, but also because they are based
upon principled analyses of how one can best help people to
cope with complex information systems.

Knowledge-Based Systems (KBS) and Human-Computer Com­
munication (HCC) are two crucial research areas for these
goals. We are especially interested in understanding the pos­
sibilities of pursuing these two research areas together. The
rationale for this approach is that on the one hand effective
human-(X)mputer communication is more than creating attrac­
tive displays on a CRT screen: it requires providing the com­
puter with a considerable body of knowledge about the world,
about users and about communication processes [Fischer 83).
On the other hand the use of knowledge-based systems will be
severely limited if we are unable to eliminate the
communication bottleneck.

After characterizing general communication paradigms, this
paper examines one aspect of this approach, the design of
knowledge-based systems and their communication
capabilities to allow the volunteering of information by the user
of the system. Being able to volunteer information, users of a
knowledge-based system are no longer at the mercy of an un­
seen reasoning component that dictates the order in which in­
formation is absorbed by the system. When combined with a
data driven rule base, users are offered an opportunity to
actively use a system and direct it according to their goals.

2. Communication Paradigms in Knowledge-
Based Systems

The use of knowledge-based systems will be severely limited if
we are unable to eliminate the communication bottleneck. The
main reason that knowledge-based systems have not moved
beyond the research state has primarily been their limited com­
munication capabilities (an example being the MYCIN system
[Buchanan, Shortliffe 84]). The analysis of the DIPMETER sys­

tem [Smith 84) has revealed that the user interface portion is
the largest part (42 percent) of a knowledge-based system.

In this section, a framework for different communication
capabilities is illustrated by defining "natural communication"
and "mixed-initiative dialogues", characterizing different sys­
tem architectures depending on the distribution of the
speaker/listener role and discussing architectures, require­
ments and examples for systems which allow the system
and/or the user to volunteer advice.

Natural Communication. Natural Communication is more
than the ability to communicate in natural language. It is the
ability to engage in a dialogue and when humans (e.g., a
novice and an expert) communicate much more goes on than
just the request for factual information. Novices may not be
able to articulate their questions without the help of the expert,
the advice given by the expert may not be understood and/or
the advisee may request an explanation of it; each communica­
tion partner may hypothesize that the other partner misun­
derstood himlher or they may provide information which they
were not explicitly asked for.

Natural Communication needs the right kind of user interface to
support it, but it cannot be restricted to just the user interface.
The underlying knowledge base must contain the needed
knowledge and it must be structured in the right way.

966 G. Fischer and C Stevens

Despite the fact that communication capabilities such as
mixed-initiative dialogues [Carbonell1970a) have been found to
be crucial for intelligent systems, the progress to achieve them
has been rather modest. Limited natural language interfaces
have often overshadowed the real shortcomings. The MYCIN

system and the REBOOTER (see section 3) serve as good ex­
amples: they are based on the consultation model. From an
engineering point of view, this model has the advantage of be­
ing clear and simple: the program controls the dialog.;e (much
as a human consultant does) by asking for specific items of
data about the problem at hand. The disadvantages are that it
preventc: the user from volunteering relevant data and it sets up
the p:ngram as an "expert", leaving the user in the undesirable
position of asking a machine br help.

The Speaker versus the LIstener Role. Based on the
asymmetry between human and computer, the design of the
communication between humans and computers is a problem
not only of simulating human-to-human communication but of
engineering alternatives in the domain of interaction-related
properties [Bolt 84). Natural language should not be used for
every applicati0n; in many cases it is not the preferred mode of
communication [Bates. Bobrow 84).

Communication can be described in terms of the speaker and
the listener roles. The speaker presents information (e.g., in the
form of a question or as a request for action) which the listener
tries to understand. It is often difficult to determine which role
suits which agent best. We have argued that the listener role is
always the more difficult one [Fischer 86). because the list~ner
has to understand the problem based on the speaker's descrip­
tion.

Natural language interfaces are deSirable, because the human
is the speaker and can talk in her/his terms about a problem.
Unfortunately this kind of natural language interface does 'lOt
exist. The user is either forced to answer questions in simple
terms or to learn to adapt to the limited natural language under­
standing capabilities of the system. In form-based systems, the
system has the role of the speaker and it shows its understand­
ing of the world to the user. Our work has been primarily
guided by the belief that the use. is more intelligent and can be
directed into a particular context; this is why most of our inter­
faces are form-based.

Computer Systems volunteering advice. Humans often
learn by receiving answers to questions which they have never
posed. For example, if they see a sign that says "Snow Tires
Or Chains Required Beyond This Point", they have leamed
many things. They know that there is probably snow ahead on
the road and that they can buy snow tires to 'jliminate the need
for chains. This information is volunteered -- there is no need to
ask for it.

To ask a question, one must know how to ask it, and one can­
not ask questions about knowledge whose existence is un­
known. We have developed programs (e.g., the active help
system ACTIVIST [Fischer, Lemke, Schwab 85) and the
LISP-CRITIC [Fischer 87]), which volunteer information and sup­
port the acquisition of information by chance. ACTIVIST looks a
user (working with an editor) "over the shoulder", infers from
user actions the plan which the user wants to achieve and
compares it with its own plan. Information about the conjec­
tured knowledge is stored in the model of the user. A separate
tutoring module decides when to offer help and advice. The
LlSP·CRITIC enhances incremental learning of LISP and supports

learning strategies such as learning on demand. It has
knowledge about how to improve LISP programs locally, follow­
ing a style as defined by its rules. The advice given is based on
the hypothesized knowledge of the user contained in the
system's model of the user. Additional tools are available to
explain and illustrate the advice.

A number of things have been learned constructing these sys·
tems. Volunteered advice is most welcome if it is directly
relevant to the problem or the task the user is working on. The
major problem in systems of this kind is not to make them
speak up but to keep them quiet most of the time. To achieve
this requires elaborate knowledge structures (e.g., models of
the users and tutorial strategies). In addition, users must have
the control to ignore the volunteered information (they may al­
ready know it or they may regard it as not relevant) or tum the
systems off altogether.

Constructing systems which volunteer information creates a
number of interesting and challenging problems. For the rest of
this paper we are concerned with the opposite enhancement to
communication: allowing the user to volunteer information.

Users volunteering advice. One of the major stumbling
blocks in the successful use of knowledge-based systems is
the general feeling of apathy with which many of these systems
are met by the users. Much of the refusal to utilize systems
such as MYCIN and REBOOTER stems from the fact that users,
who often think of themselves as experts, feel that the system
is telling them what to do. The system asks a question which
the user answers. The system then decides, by some hidden
mechanism, if it needs more information or is going to give the
user advice. At no time are the users afforded the opportunity
to make their observations known to the computer. They are
simply allowed to answer the questions put to them -- a role
which most humans do not experience as very satisfying. An
expert who is knowledgeable about a domain wants to take an
active role in the process of deciding what actions should be
taken. While cooperative advice or criticism from a computer is
welcome (e.g., like in the systems described above), the typical
knowledge-based system that forces a particular format of dis­
cussion upon the user is not.

The GUS ("Genial Understanding System") system [Bobrow et
at 77]attempted to model a natural dialogue and it could cope
with volunteered information. This was achieved by selecting a
narrow domain (assisting the user in planning a trip) which con­
strained the range of expectations that GUS needed to have
about the user's plans. The system was driven by a number of
frames which characterized the domain and the dialogue itse~.

Our contribution to increase the naturalness of communication
and to eliminate some of the inflexibility is the introduction of
mechanisms which allow the user to volunteer information to
the system. We will first describe REBOOTER, an conventional
knowledge-based system which we have built, used and
evaluated. The shortcomings of REBOOTER led to the develop­
ment of the SYSTEMS ASSISTANT, which is an illustration that en­
hanced communication capabilities are of crucial importance
for knowledge-based systems.

Volunteering information 967

3. REBOOTER: a Knowledge-Based System to
Reboot Computers

PrOblem Description. RE8CX>TER is a knowledge-based sys­
tem which allows users to reboot a PYRAMID 90X computer after
~ has crashed. It has a set of predetermined tasks which drive
~ to ask for certain pertinent information. If the user goal is to
reboot the machine, RE8CX>TER first tries to get the machine
running. When a certain state has been reached, the system
will instantiate the task to boot the machine into single-user
mode, and finally into multi-user mode. This process consists
of five major tasks which are the in~ial status check (is the
power on and can you log in), error recording, booting, file-

• system checking, and bringing the machine into multi-user
mode. Examples of these tasks are in Figure 3-1 and a sample
session with RE8CX>TER is described in Figure 3-2.

• Status Query Task: This task starts the
RE8CX>TER by asking about the power and login
status of the machine.

• ReseaCboards Task: This task may be in~iated
when there has been a problem rebooting the
machine, the machine is up and a network
problem has been found, or the REBOOTER
suspects that a problem may be caused by a
board being misaligned on the bus. Making sure
the boards in the machine are seated properly of­
ten solves these problems.

• Dlagnose_noboot Task: There are indications
that there is an error in the booting process and
further steps will be necessary to bring the
machine back up (it is inside the Diagnose_Noboot
task where the most sophisticated rules reside).

Figure 3-1: Task Examples

The initial status, error recording, file-system checking, and
multi-user tasks are rule sets that ask basic questions (e.g., are
there any error messages on the console) or require simple
actions (e.g., please record any error messages in the log
book). Inside the booting task are a number of sub-tasks. This
is where the interesting rules reside and the data-driven
paradigm is put to the test. It is inside this task where diagnosis
of failed reboot attempts is carried out. The rules here help
users determine what causes this failure. While automatic
rebooting options are available, they are not able to deal w~h
problems like hardware failures and serious file system errors.
In these cases the machine will fail its attempts at reboot or will
simply tell the operator that file system checking must be done
manually. Unfortunately, experience shows that these con­
ditions occur more often than we would like. Rebooting a com­
puter, especially if the person is not totally familiar with ~, is a
non-trivial problem. This is demonstrated by the fact that 2 to 6
months of on the job training are done by our novice systems
administrators before they are confident enough to reboot
machines on their own. A computer is a complex and expen­
sive piece of equipment which requires a lot of intu~ive

knowledge to deal w~h on an administrative basis. The reboot­
ing process ranges from the trivial pressing of a couple of keys
on the console to the complicated task of diagnosing hardware
failures. RE8CX>TER, designed specifically to help with this
process, can significantly reduce the complexity of this task. At
the same time, it allows users to slowly incorporate this intuitive
knowledge into their own knowledge structures by making them

familiar with the types of actions necessary to perform this task.

Through our experience in rebooting computers, RE8CX>TER'S

contribution to the work of a novice systems employee is ob­
vious. Novices simply do not know how to ac(;Omplish this
task. They need to communicate w~h an expert to achieve their
goal. Similarly, while experts can usually deal with rebooting
problems, they often seek advice from other experts to confirm
or enhance their understanding of those problems. Just as
another pair of eyes can often uncover hidden bugs in a
program, communication during the diagnosis of a reboot can
often yield more useful plans of action. RE8CX>TER helps fill this
role.

The Knowledge Base. The knowledge base of the RE8CX>TER,

which excludes the user interlace, consists of a set of OPS5
production rules [Brownston et al. 85). The inference
mechanism used is forward chaining which leads the structure
of the rules to be in a task based, data-driven paradigm. The
rules themselves decide when it is appropriate to switch from
one task to another. Tasks are instantiated based on what the
previous tasks were able to find out or accomplish. The
program has two main modules, domain knowledge and ex­
planation. Each module consists of several tasks, some of
which are listed in Figure 3-1 for the domain module. Tasks
conSist of se·"eral rules related through the domain knowledge
they analyze, and they comprise a question and answer ses­
sion that guide both the user and REBOOTER through the
problem space. A limited explanation module performs a post­
analysis on the working memory elements left by the session
and outputs its results, in the form of canned text, to a file
which the user can then consult.

Communication Capabilities of REBOOTER. RE8CX>TER'S user
interface is a text based dialogue session that runs on tradi­
tional CRT terminals. RE8CX>TER presents a series of questions
that lead the user through the five major tasks necessary to
reboot the computer. As the dialogue seSSion progresses,
REBOOTER'S knowledge base evolves through states which fire
the necessary tasks in each of these five categories. A typical
session with RE8CX>TER that represents a trouble-free reboot is
reproduced below (see Figure 3-2).

This represents a system w~h traditional communication
capabil~ies. Users are only allowed to answer questions that
are put to them by RE8CX>TER. The system-driven dialogue
session keeps the user in a passive role with respect to deci­
sion making in the reboot process. A graphical description of
this type of communication is in Figure 3-3.

Shortcomings of REBOOTER. RE8CX>TER was put into use by
the systems staff for a short period of time during which
shortcomings in its design became apparent. Observations
and discussions with users of the system yielded interesting
results While novice users are quite comfortable with the
system-driven dialogue paradigm, expert users are quite ir­
ritated by it. In fact, expert users refused to use the system
after their first or second experience with it. Discussions with
the various users clearly indicated that experts do not want to
be forced into a particular format of discussion with a system,
while novices gain confidence in their actions through this very
same mechanism.

Similar reactions were observed when the MYCIN [Buchanan,
Shortliffe 84) program was introduced into the medical es­
tablishment. When experts in a field use a knowledge-based

968 G. Fischer and C. Stevens

INITIAL QUERY: Is the machine's power turned on?
«yes/no» yes
Can you log on to the machine that is down
across the network? «yes/no» no
Can you log on to the machine that is down at
the console? «yes/no» no

ERROR RECORDING: Record any error messages that
appear on the console. Go to the E_Frame by
pressing HOME then E. Are there any flashing
error codes? «yes/no» no

BOOnNG: Go to the System Configuration Frame
(Frame 1) by pressing HOME then 1. Press b
then z to boot the machine and start the CPU.
Do the two windows at the bottom right corner
of the console report that the machine is
BOOTED? «yes/no» yes
that the CPU is RUNNING? «yes/no» yes

SINGLE USER MODE: •..•.•

SET THE DATE••

FILE SYSTEM CHECK:

MULTI USER MODE: To go into multi user mode press
AD (control_D)

Execution halted by rule: multi_user_mode.
Would you like an explanation of tt>e session?
«yes/no» yes

IF YOU GENERATED AN EXPLANATION IT WILL BE
FOUND IN:
/staff/system/stevens/rebooter/RULETRACE
THANKS FOR USING REBOOTER. MAIL ANY COMMENTS
TO CURT.

Figure 3-2: A Partial Session with REBOOTER

Figure 3·3: Control Flow in a System-Driven Dialogue

system they need to feel that they have an active role in the
process of deciding what actions should be taken. In
REBOOTER, the dialogue is completely system-driven. Users are
delegated the tasks of answering questions and pushing but­
tons. MYCIN has the very same problem. Users are put in a
passive role throughout their interaction with the system.

In the real world there are many instances of systems which, if
implemented, must exhibit the property that users can im- •
mediately focus the attentiOn of the system. For example, take
a system that serves as an auto-pilot for an aircraft. If pilots
observe something that involves an implied time constraint,
they must have the ability to communicate this intonnation to •
the system. Without this flexibility the system can never be
used.

4. The SYSTEM'S ASSISTANT: Incorporating
Information Volunteering

Our solution to this problem of inflexibility in the communication
paradigm is the introduction of a mechanism through which the
user can volunteer information to the system. By volunteering
information we mean that the user can make statements about
the domain which are out of context with respect to the current
conversation between user and system. Information volunteer­
ing allows users to be in the speaker role and focus the atten·
tion of the system on the information which they feel is
relevant. The user is no longer just answering questions, but
taking an active role in deciding what the knowledge-based
system is reasoning about. The system now plays the role of
assisting users as opposed to directing users and therefore this
new version of our knowledge-based system is called the
SYSTEMS ASSISTANT (the term SYSTEMS ASSISTANT is derived
from the name of the group which maintains the computers in
the Computer Science department. The group is called the
Systems Group, hence the name SYSTEMS ASSISTANT) Infor­
mation volunteering is probably best explained by way of an
example:

When a user first starts up a session with the
SYSTEMS ASSISTANT the system will always begin by
asking some basic information about the PYRAMID in
question. This information must be known to the
SYSTEMS ASSISTANT for it to do any diagnosis or offer
any assistance. Beyond that point, however, the ac­
tions which the SYSTEMS ASSISTANT will take are
mostly dependent upon the data which the user sup­
plies in response to its inquiries. The SYSTEMS

ASSISTANT asks a question after which the user
responds with some new data. After reviewing the
modified state of the data at hand the SYSTEMS

ASSISTANT proceeds to suggest some course of ac­
tion which is then carried out by the user. This loop
(see Figure 3-3) continues until the SYSTEMS

ASSISTANT has successfully helped the user reboot
the computer. However, an experienced systems ad­
ministrator will be able to notice pertinent information
long before the SYSTEMS ASSISTANT asks about it. For
instance, these types of users might quickly notice
that the ethernet board is sticking an inch further out
than the rest of the boards in the machine. They
would certainly come to the conclusion that this might
have something to do with the machine's problem,
and therefore want to focus the attention of the
SYSTEMS ASSISTANT on that fact. This type of infor·
mation is considered out of context since the

Volunteering information 969

SYSTEMS ASSISTANT is aSking questions like IS THE
MACHINE'S POWER TURNED ON, or DOES THE CONSOLE
SA Y THA T THE CPU IS RUNNING. If users know some­
thing about the system, then they should be able to
present that information to the SYSTEMS ASSISTANT as
soon as it becomes apparent.

The SYSTEMS ASSISTANT requires an extended model of inter­
action (see Figure 4-1), incorporates a new interface (see
Figure 4-2), and requires a major restructuring of the
knowledge base used in REBOOTER.

The system's knowledge is explicitly represented in a world
model with which the user interacts in a direct manipulation
style [Hutchins, Hollan, Norman 86]. The different hardware
components of the PYRAMID are represented in graphical form
(see Figure 4-2).

Figure 4-1: Control Flow in a Mixed-Initiative Dialogue

Users can either ask for general information about each of
these components or volunteer information about them. If users
are confused about what an icon represents they can ask the
system about that icon by clicking the mouse on it. At that
point the system presents the user with a text based explana­
tion about the component in question. It also explains some of
the most common indications that this component is damaged
and common methods of determining the functional state of it.
These possibilities give the user a window into the "mind" of
the SYSTEMS ASSISTANT and provide a well defined and com­
mon basis for communication between the user and the sys­
tem. To volunteer information (and change the context in
which the icons are understood), the users click with the mouse
on the volunteer information icon. At this point a click on any of
the machine component icons yields a menu of possible facts
about that particular component. Since we are asking the user
to volunteer information that is best described by natural lan­
guage, but are not able to allow the actual use of natural lan-

IREBOOT MACH I NEI
DIAGNOSE BOARD
SINGLE-USER MODE

TEXT OUTPUT

MACHINE CONFIGURATION

POUER-DOUN MACHINE
SHUTDOUN MACHINE
EtlD SESSIotl

VOLUNTEER INFORMATION
AVAILABLE ACTlOtlS

Figure 4-2: Initial State Of The SYSTEMS ASSISTANT

machine name: TUT

type: Pyramid BOX

disks: Fuji Eagle 4100

owner: Coaputer Sc i ence

condition: UNKIIOUN

MACHINE STATUS

970 G. Fischer and C. Stevens

guage, we present the user with a menu of text based choices.
This menu defines for the user the possible space of infor­
mation which can be understood by the rule base of the
SYSTEMS ASSISTANT. Figure 4-3 is a typical example of what one
of these menus looks like. On the left side are the common
problems aSSOciated with this particular piece of hardware. On
the right side are the choices which indicate that one of the
problem areas has already been checked, and at the bottom is
a choice indicating an unfounded suspicion that something has
gone wrong with that piece of hardware. In this manner the
user is afforded the opportunity to volunteer out of context in­
formation.

The interface, however, is not the most crucial modification that
is necessary. To bring information volunteering to fruition it is
not sufficient to change the external appearance of the system
on the screen. This new mechanism requires the restructuring
of the knowledge base to accommodate the incoming out of
context information. In RE BOOTE R , an analysis of the structure
of tasks was carried out to determine which task should in turn
instantiate successive tasks. The original design was far too
rigid for the information volunteering mechanism. What is
needed is a more general methodology for determining the cur­
rent task selection. This problem is being solved by removing
the task selection criterion from the tasks themselves and
creating an autonomous collection of rules whose only function
is to recognize situations in which particular tasks should be
instantiated. To operate in this mode the system needs more
information about the machine components and its own rule
groups than before to allow the SYSTEMS ASSISTANT to resolve
conflicts when more than one task is sirnuHaneously instan­
tiated due to some volunteered information. This extra

BOARD MISSING

BAD HARDWARE ADDRESS

BAD SOFTWARE ADDRESS

knowledge allows the SYSTEMS ASSISTANT to be much more
powerful in its ability to handle the inevitable context switches
that occur due to the incoming out of context information.

In addition, a mechanism is needed through which the system
can determine what information is implicit in the volunteered
information. For instance, this instantiation of tasks might be
altered if users volunteer information that implies they have al­
ready tried to reboot the machine. A related problem is the
decision of whether to ask a previously posed question again.
The volunteered information might have implied an answer to
this earlier question and the rule base has to be general
enough to handle these cases.

5. Experiences and Future Research
The shortcomings of the REBOOTER clearly indicated that
knowledge-based systems will not be accepted if their com­
munication capabilities are too limited. The design and the im­
plementation of the SYSTEMS ASSISTANT provided another piece
of evidence (along the findings of the DIPMETER system [Smith
84)) that designing the knowledge base and the inference en­
gine of a knowledige-based system may be a much easier task
than providing these systems with the right kind of communica­
tion capabilities. Making a system able to accept volunteered
information is not just a matter of redesigning the interface to
that system but requires that the knowledige base be expanded
and reorganized.

The SYSTEMS ASSISTANT seems to provide the right kind of mix­
ture between highly structured dialogues (which are useful for
the novice) and the possibility to volunteer information to get to
the point quickly, which is a necessary requirement to make a

BOARD RESEATED

HARDWARE ADDRESS OK

SOFTWARE ADDRESS OK

UNKNOWN PROBLEM SUSPECTED

Ple6~e an~uer yes or no __
You pre:5:5ed the YES button

VOLUNTEER IHFORMRfION

(<'In you 109 on to the "'.!IC~lne th~t i~ dOlufj IK(O:S~ the netuor-k?

Ple6'!1e an:! .. er yes or {lO~_

Y~lJ p,.es'!Ied tt",e vrs button

elln you 109 on to the M.3chi ne thl!!t i:5 dOl..<n at the con5C 1 e?

Ple ~e ~n':\\.Jer ye:5 or 110 __

y~u cl id<ed on the VOLUNTEER
iou el1cked en the VOLuNfEER

icon
iLO;;

TEXl OUTPUT

VOLUNTEER INFORMATION

(r.ach 1 n2 nafl1e: TU T

t,po Pyramid BOX

COIPuter Science

condit,"n, REBOOTING

Figure 4·3: Volunteering Information About The Ethernet Controller

Volunteering information 971

system acceptable to the expert.

Many more features should (and will be) added to the SYSTEMS

ASSISTANT. Having a sensory system (which signals the state
of the broken machine) connected to the SYSTEMS ASSISTANT

would allow it to monitor the actions taken by the user. Users
should also be able to query the system on how or why it does
anything. If the system says that the ethemet board needs to
be reseated on the bus, users might want to know how to do

• this, or why the system feels that this is necessary (the second
question requires more elaborate explanation capabilities than
most system currently have).

An extension in another dimension, which is closely related to
our work supporting human problem domain communication
[FischerLemke1987a), is to allow users of the system to create

their own machine configurations with the assistance of con­
struction and design kits.

If users are not willing to use the systems we design, a major
component of the employed theory and methodology must be
missing. In many cases this resistance will be based on the
limited communication capabilities. Natural communication is a
crucial aspect to increase the usefulness and usability of com­
puters. Information volunteering is an important part of it which
should be explored in other task domains. Knowledge-based
systems of all types can benefit from allowing the user to have
more control.

Acknowledgements

The authors would like to thank William Pachoud who par­
ticipated in the development of the REBOOTER and the SYSTEMS

ASSISTANT and the systems staff of the Computer Science
department who used the REBOOTER and showed us its

shortcomings.

This research was supported by: grant No. DCR-8420944 from
the National Science Foundation, grant No. MDA903-86-C0143
from the Army Research Institute and a grant from
Microelectronics and Computer Technology Corporation
(MCC), Austin.

References

[Bates, Bobrow 84)
M. Bates, R.J. Bobrow, Natural Language Interfaces:
What's Here, What's Coming, and Who Needs It, in
W. Reitman (ed.), Artificial Intelligence Applications for
Busmess, Ablex Publishing Corporation, NorwOOd, NJ,
1984, pp. 179-194, ch. 10.

[Bobrow et al. 771
D.G. Bobrow, R.M. Kaplan, M. Kay, D.A. Norman,
H. Thompson, T. Winograd, GUS, A Frame-Driven
Dialog System, Artificial Intelligence, No.8, 1977, pp.
155-173.

[Bolt 84) R.A. Bolt, The Human Interface, lifetime Learning
Publications, Belmont, CA, 1984.

[Brownston et al. 85)
L. Brownston, R. Farrell, E. Kant, N. Martin
Programming Expert Systems in OPS5: An Intoduc­
fion to Rule-Based Programming, Addison-Wesley
Publishing Company, Reading, MA, 1985.

[Buchanan, Shortliffe 84J
B.G. Buchanan, E.H. Shortlilte, Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley
Publishing Company, Reading, MA, 1984.

[Carbonell 70)
J.G. Carbonell, AI in CAl: An Artificial-Intelligence Ap­
proach to Computer-Assisted Instruction, IEEE Trans­
actions on Man-Machine Systems, Vol. MMS-11, No.
4, December 1970.

[Fischer 83)
G. Fischer, Symbiotic, Knowledge-Based Computer
Support Systems, Automatica, Vol. 19, No.6, Novem­
ber 1983, pp. 627-637.

[Fischer 86)
G. Fischer, Cognitive Science: Information Processing
in Humans and Computers, in H. Winter (ed.), Artificial
Intelligence and Man-Machine Systems, Spnnger­
Verlag, Berlin - Heidelberg - New York, 1986, pp.
84-112.

[Fischer 87]
G. Fischer, A Critic for LISP, Proceedings of the 10th
International Joint Conference on Artificial Intelligence
(Milan). 1987.

[Fischer, Lemke 87]
G. Fischer, A.C. Lemke, Constrained DeSign
Processes: Steps Towards Convivial Computing, in
R. Guindon (ed.), Cognitive Science and its Applica­
tion for Human-Computer Interaction, Lawrence
Erlbaum ASSOCiates, Hillsdale, NJ, 1987.

[Fischer, Lemke, Schwab 85)
G. Fischer, A.C. Lemke, T. Schwab,
Knowledge-Based Help Systems, Human Factors in
Computing Systems, CHf'85 Conference Proceedings
(San Francisco, CAl, ACM, New York, April 1985, pp.
161-167.

[Hutchins, Hollan, Norman 861
E.L. Hutchins, J.D. Hollan, D.A. Norman, Direct
Manipulation Interfaces, in D.A. Norman, SW. Draper
(eds.), User Centered System Design, New Perspec­
tives on Human-Computer Interaction, Lawrence
Erlbaum ASSOCiates, Hillsdale, NJ, 1986, pp. 87-124,
ch.5.

[Smith 841
Ii.G. Smith, On the Development of Commercial Ex­
pert Systems, AI Magazine, Vol. 5, No.3, Fall 1984,
pp.61-73.

