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Integrated, domain-oriented, knowledge-based design environments are examples of 
cooperative problem-solving systems relying on shared knowledge. Research goals pur­
sued in the context of design environments are to support human problem-domain com­
munication, to make information relevant to the task at hand, and to tailor information to 
a specific user or class of users. 

The shared knowledge between a user and a system will not be static, but it will increase 
and change over time. There are two major ways that this can be achieved: by making sys­
tems adaptable (e.g., by supporting end-user modifiability), and adaptive (e.g., systems act 
differently based on a model of a specific task situation or a specific user). 

We have developed prototypes of design environments that (1) demonstrate the need for 
shared knowledge, (2) support the incremental growth of shared knowledge, and (3) use 
the shared knowledge to make the interaction more user-specific and more task-oriented. 
Adaptable and adaptive mechanisms are used to achieve these goals. 
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1 COOPERATIVE PROBLEM-SOLVING SYSTEMS 

Cooperative problem-solving systems [Stefik 86, Hill 89, Fischer 90] are knowledge­
based environments supporting users in a symbiotic relationship to generate a product of 
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their common effort. Knowledge-based systems can be designed to interact with their· 
users in a cooperative fashion using several different interaction paradigms: doing, decid­
ing, advising, tutoring, and critiquing. The main emphasis of our work has been to augment 
and empower human designers with domain-oriented design environments [Fischer 92] "i 

containing an embedded critiquing component [Fischer 91a]. 

Models [Norman 82] are of greater importance in cooperative problem-solving systems 
than in autonomous systems because the problem-solving activity and knowledge is shared 
by the cooperating agents. Two models are of special interest for shared knowledge sys­
tems [Fischer 91 a]: 

Ml : the users' models (the models that users have of systems and tasks), and 

M2 : the systems' models (the models that systems have of users and tasks). 

Cooperative problem-solving systems are designed systems. Comprehending designed 
systems requires an understanding of the goals, functions, and adaptive capabilities for 
which they can be used. The models associated with these systems are part of the design 
(i.e., they have to be designed too), and they can and should provide important require­
ments for the design. 

High-Functionality Systems. Cooperative problem-solving systems require high-func­
tionality systems for their realization, creating the following dilemma: on the one hand, 
these are systems where good models are most urgently needed; but on the other hand, it 
is unclear how these systems can be designed so users will be able to build models for 
them. Models for high-functionality computer systems cannot be deduced merely from 
experience because there are too many experiences to go through [Norman 86]. Learning 
complex systems is an incremental, indefinite process requiring an understanding of how 
users increase their know ledge and understanding of them in naturalistic settings over long 
periods of time. 

High-functionality systems confront users with too much information. The challenge is to 
make the information relevant to the task at hand - i.e., delivering the right knowledge, in 
the context of a problem or a task, at the right moment for a human professional to consider 
[Fischer et al. 93]. Making information relevant to the task at hand poses many challenges 
for the design of interactive computer systems and it sets computer systems truly apart 
from other technologies (e.g., an example discussed in [Norman 93] is the printed version 
of the Official Airline Guide compared to (1) the electronic access to it allowing the display 
of results in a variety of ways, and (2) FlightFax providing schedule and fare information 
customized to a person's itinerary and delivering it with fax machines). 

To develop better design requirements for high-functionality systems, usage patterns of 
them (as shown in Figure 1) provide important insights [Draper 84, Fischer 91 a]. This 
qualitative analysis of users' knowledge about complex systems reveals two interesting 
findings: 
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Figure 1: Levels of System Usage 

In this figure the rectangle represents information embcx.tied in a 
system (the system image) and ovals represent user knowledge 
about the system's information space. 

D J : The subset of concepts stored in the system's information 
repository that users know well and can use easily without the 
need for reference material. 

Di The subset of concepts that users know vaguely and use 
occasionally. Users do not have complete understanding of the 
concepts, often requiring them to look the information up in 
manuals, etc. 

D3: The set of concepts that the user believes exist in the system. 
Note that some of the concepts lie outside of the actual informa­
tion space. 

D4: The full set of concepts stored in the information repository 
of the system. 

The users' model of the system contains concepts that do not belong to the 
system (the part of D3 that is not part of D4)' 

There are system parts of which users are unaware (the part of D4 that is not 

part of D3)' 
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The former issue requires facilities assisting users in incrementally bringing their M1-type 
models closer in accordance with the actual system. To address the latter issue, intelligent 
support systems are needed that rely on M2-type models pointing out to users existing 
functionality that may be useful for their tasks. 
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Ml! The Users' Models of Systems. A user's model of a complex system is a cognitive 
construct that describes a user's understanding of a particular content domain in the world. 

These models are formed by experience, self-exploration, training, instruction, observa­
tion, and accidental encounters. In systems that operate at the "human-computer commu­

nication" level, the model will be centered around the properties of a computer system. An 
advantage of this type of model (representing a general computational environment) is that 

it is uniform across domains. In systems that operate at the "human problem-domain com­
munication" level (giving users the feeling that they interact with concepts and represen­

tations drawn from the problem rather than from the computer domain [Fischer & Lemke 
88]), users are able to form models using concepts much more closely related to an appli­
cation domain. 

M2! The Systems' Models of Users and Tasks. There are a number of efforts to incorpo­
rate models of users into knowledge-based systems [Rich 83, Clancey 86, Kass & Finin 
87, Fain-Lehman & Carbonell 89, Chin 89, Kobsa & Wahlster 89]. In our own research, 
we have investigated systems' models of users in connection with active help systems [Fis­

cher et al. 85] and critics [Fischer 87, Fischer et al. 91a]. Mrtype models for critic systems 
pose specific demands. Unlike tutorial systems, which can track a user's expertise over a 
path of instruction, computer-based critics must work with users having a variety of back­
ground experiences. To operate effectively, critics should have a model of the task space 
in which the users operate. Having an adequate model, systems would allow for the (1) 
customization of explanations [Moore 89, Fischer et al. 90] so they cover exactly what 

users need to know; (2) provision of differential descriptions of new concepts in relation­
ship to known concepts; (3) presentation of information through user-specific filters focus­
ing on the parts that seem to be most relevant for a user [Fischer & Nakakoji 91]; and (4) 
they would keep active systems quiet most of the time [Fischer et al. 85]. 

Critics as Embedded System Components in Cooperative Problem-Solving Systems. 
Critiquing systems were first developed as stand-alone systems [Fischer 87]. Our current 

prototypes demonstrate that they are more powerful as embedded systems: critiquing is 

used as an interaction technique within integrated, domain-oriented design environments 

[Fischer et al. 91a, Fischer et al. 93]. The target audience for such systems is knowledge 

workers in application domains. Most domains have grown so complex that no single per­

son can be considered an expert familiar with all aspects of the domain [Draper 84]. Sup­

port tools must include explanations of domain-specific knowledge and how this 
knowledge can assist users by critiquing their work. Experimental use of these prototypes 

demonstrated that in order for these systems to be truly cooperative, they must be tailored 
to the specific tasks and knowledge backgrounds of individual users. 

As cooperative problem-solving systems move away from fine-grained analysis of simple 
interactions with a computer toward a focus on skilled users of high functionality systems, 
an essential characteristic of these systems will be their ability to adapt to their users. Sys­
tems' models of users in support of cooperative problem solving need to be dynamic, per-
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sistent, and domain-oriented. Achieving these goals requires co-adaptive systems 
[Mackay 92] that transcend system architectures based on a static user and static software 
environment. 

The Desirability of Malleable Systems. Malleable systems are desirable for the follow­
ing reasons: (1) to support mutual intelligibility (reciprocal recognizability of our actions, 
enabled by common conventions for the expression of intent, and shared knowledge about 
typical situations), (2) to support communicative economy (if the premises or rationale of 
an action can be assumed to be shared, they can be left unspoken), and (3) to achieve that 
tools and artifacts become ready-to-hand and invisible allowing users to communicate 
more directly with the task. 

2 INTEGRATED, DOMAIN-ORIENTED, KNOWLEDGE-BASED DESIGN 
ENVIRONMENTS 

Based on a number of design efforts in specific domains (e.g., kitchen design [Fischer et 
al. 89], user interface design [Lemke & Fischer 90], and computer network design [Fischer 
et al. 92]), we have developed a general architecture for integrated, domain-oriented, 
knowledge-based design environments (see Figure 2). 

Our architecture currently consists of five components and three integrating mechanisms. 
The five components are: 

A construction kit [Fischer & Lemke 88] is the principal medium for model­
ing a design. It provides a palette of domain concepts and supports construc­
tion using direct manipulation and electronic fonns. 

An argumentative hypertext system [Fischer et al. 91 b] contains generic 
issues, answers, and arguments about the design domain. Users can armotate 
and add argumentation as it emerges during the design process. 

A catalog [Fischer et al. 92] is a collection of prestored designs illustrating 
the space of possible designs in the domain, and supporting reuse and case­
based reasoning [Riesbeck & Schank 89]. By serving as a group memory, cat­
alogs support long-tenn indirect communication among groups of designers. 
Group memories contain a collection of shared infomlation repositories 
[Resnick 91] containing a cumulative record of rationale, solution compo­
nents, infonnation about prior projects, and other infonnation resources for 

collaboration. There are two crucial issues concerning such a memory: (1) 

how infonnation gets into the memory and how it accumulates, and (2) how 

information in the memory is made available to the individual designer. 

A specification component [Fischer & Nakakoji 91] allows designers to 

describe characteristics of the design they have in mind. The specifications 
are expected to be modified and augmented during the design process, rather 
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Figure 2: A Multifaceted Architecture 

The components of the multifaceted architecture. The links 
between the components are crucial for exploiting the synergy of 
the integration. 

than to be fully articulated at the beginning. They are used to retrieve design 
objects from the catalog and to filter information in the hypertext. 

A simulation component allows designers to carry out "what-if' games - that 

is, to simulate various usage scenarios involving the artifact being designed. 

At each stage during the design process, the partially completed design embedded in the 
design environment serves as a stimulus suggesting to users what they should attend to 
next. To explOit the full power of the multifaceted architecture, the individual components 
need to be integrated. Currently the architecture supports the following linking mecha­

nisms (see Figure 2): 

CONSTRUCTION ANALYZER Users need support for construction, argu­
mentation, and perception of breakdowns. Breakdowns are identified by the 
CONSTRUCTION ANALYZER operating as a critiquing system [Fischer et 
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al. 9lb]. The firing of a critic signals a breakdown and provides entry into the 
argumentative hypermedia system at which the corresponding argumentation 
is located. Accessing useful knowledge has as a prerequisite that the demand 
be noticed by the user, requiring that the situation talks back [Schoen 83]. For 
users who do not have extensive experience in the domain, the situation is 
often mute unless the environment has a component that speaks up and points 
out issues that the designer may otherwise not have considered. Critics can 
fulfill this role. Critics point out suboptimal aspects of the artifact and know 
the places where the corresponding issues are discussed in the argumentation 
component [Fischer et al. 9lb]. 

ARGUMENTATION ILLUSTRATOR. The explanation given in the form of 
argumentation is often highly abstract and conceptual. Concrete design exam­
ples matching the explanation help users to understand the concept. The 
ARGUMENTATION ILLUSTRATOR helps users to ooderstand information 
given in the argumentative hypertext by finding a catalog example that illus­
trates the concept. 

CATALOGEXPLORER. CATALOGEXPLORER helps users search the cat­
alog space according to the task at hand [Fischer & Nakakoji 91]. It retrieves 
design examples similar to the current construction and specification. The cat­
alog and the CATALOGEXPLO~ are used to explore the roles of exam­
ples. 

3 WHY DESIGN ENVIRONMENTS NEED TO BE ADAPTIVE 
AND ADAPTABLE 
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Adaptive systems change themselves based on the user's behavior [Fischer et a1. 85]. An 
adaptive system must contain models of the domain, of the task, and/or of the users to 
adapt appropriately. Adaptive systems have among their goals (1) to filter information in 
a user- and task-specific way (so the "knowledge in the head" of a specific user is comple­
mented naturally by the "knowledge in the world" offered by the system [Norman 93]), 
and (2) to present to users information of which they are not aware of (represented by the 
part ofD4 that is not part ofD3 in Figure 1) thereby supporting learning on demand. Adapt­
able systems are systems that can be modified by users in non-obvious ways (e.g., beyond 
the choosing of certain parameter settings [Henderson & Kyng 91]). The goals of adapt­
able systems include (1) making the system fit new requirements by adding or changing 
knowledge structures, and (2) evolving seeds by creating ftmctional enhancements [Fis­
cher et al. 92]. 

Adaptable systems allow users to modify the systems while working with them (examples 
for adaptable systems are Microsoft Word, EMACS [Stallman 81], NoteCards [Trigg et al. 
87], BUTIDNS [MacLean et al. 90], and OBJECT-LENS [Lai & Malone 88]). Adaptable 
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systems allow users to change the domain model (i.e., D4 in Figure 1). A specific approach 
making systems adaptable is supporting end-user modifiability [Fischer & Girgensohn 90, 

Girgensohn 92]. 

A Comparison Between Adaptive and Adaptable Systems. Adaptable and adaptive sys­
tems can and should be used complementarily. Figure 3 gives a high-level comparison 
between adaptive and adaptable systems. 

Definition 

Knowledge 

Strengths 

Weaknesses 

Mechanisms 
Required 

Application 
Domains 

Adaptive 

• dynamic adaptation by the system 
itself to current task and 
current user 

• contained in the system 
• projected in different ways 

• little (or no) effort by the user 
• no special knowledge of the user is 

required 

• user has difficulty developing a 
coherent model of the system 

• loss of control 
• few (if any) success models exist 

(except humans) 

• models of users, tasks, and dialogs 
• knowledge base of goals and plans 
• powerful matching capabilities 
• incremental update of models 

• active help systems 
• critiquing systems 
• differential descriptions 
• user interface customization 

Adaptable 

• user changes (with substantial 
system support) the functionality 
of the system 

• knowledge is extended 

• user is in control 
• system knowledge will fit better 
• success models exist 

• systems become incompatible 
• user must do substantial work 
• complexity is increased (users need 

to learn and know to interact with 
the adaptation component) 

• layered architecture 
• human problem-domain 

communication 
• "back-talk" from the system 
• design rationale 

• end-user modifiability 
tailorability 

• information filtering 
• design in use 

Figure 3: A Comparison Between Adaptive and Adaptable Systems 

Why Design Environments Need to Be Adaptive. Design environments are high-func­

tionality systems. The need for adaptive mechanisms is illustrated by the following exam­
ple: the critiquing component of our systems encodes generic design knowledge about 

domains (e.g., such as "the stove should be in front of a window" or "the work-triangle 
should be less than 23 feet" in the kitchen design domain [Fischer et al. 89]). Without a 
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specification component, the system will be stuck with generic advice, and it will be unable 

to respond to user-specific situations, such as "a person in the household is only 5 feet tall" 

or "the family has a large number of small children"). If the system has this knowledge, 

critic messages and example selections can be made adaptive to the specific design situa­

tion. To support this adaptivity, we have developed a specification component [Fischer & 

Nakakoji 91] allowing users to describe the unique features of their design situation to the 

system. Specification components are explicit knowledge acquisition components in sup­

port of making systems more responsive to the task at hand (see Figure 4). 

Specification sheet. 

She of f_l1y? &11.11 l1edi Uf'I Large Do-riot-Car. 
Do both husband end wife work? Either loUa Do-riot-Care 
Who doe. the cooking? Hu.band Ilffe Senior Houoe-l1aid Do-Not-Ca,.e 
Cook's approMi~te height? -5' 5"-5"'· 5'6"-6' 6'- Do-riot-Care 
Ri9ht Handed or left handed? Rieht left Do-Net-Care 
Ho.. ..any _al. .,.. generan y prepared a day? 1 2 3 Kor. Do-riot-Ca,. 
She of Mala? 8 18 l1ediu .. SPlan D.-Not-Care 
Do kids help cook or bake? Often Softeti_s Never Do-Hot-Care 
Do you usually use a dishYasher? Yes 110 Do-Not-Care 
Is safety i .. portant to you? Yes No Do-Net-Care 
Are you interested in an .fficient kitchen? Yes No 

DON Abort 

(a): Specification Sheet 

ixe 0 afti Y • 
Do both huabMId and wife work? Both 
~o do .. the cooking? Iur. 
Cook'. appro><i_te height? 5'-5'6' 
Right Handed or left handed? Left 
Ho .. ...ny .... 1 .... ., 9I!ner.lly prepared a day? 2 
Do you usually use a dishwasher? rio 
Is safety inportant to you? Yes 
Ar., you intere.ted in an efficient kitchen? Yes 

t 

(b): Weighting Sheet for the Specification 

Do-Not-Care 

Figure 4: Specification Component of a Design Environment for 

(a): The Specify command in CATALOGEXPLORER provides 
a specification sheet in the form of a questionnaire. 

(b): After specification, users weigh the importance of each 
specified item. 

Why Design Environments Need to Be Adaptable. Design environments must be adapt­

able because (1) human knowledge is tacit [polanyi 66] (i.e., humans know more than they 

can say), and (2) the domain that the environments model changes over time. 
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End-user modifiable systems support their users in modifying systems according to their . 
own needs. End-user modifiability allows users to tailor a system to pursue additional 

tasks, to have different preferences, and to adapt the system to changing needs over time 
in the real world. The intended users of end-user modifiable systems are knowledgeable in . 
the application domain but unable or unwilling to modify a system on the programming 
language level. 

Malleable Systems: Integrating Adaptive and Adaptable Components. Our design 
environments integrate adaptive and adaptable components in a variety of ways. The con­
struction situation and the specification component are sources of information for adaptive 
features (e.g., influencing the set of active critics, and making information in the catalog 
and in the argumentation component relevant to the task at hand). Figure 5 illustrates that 

system architectures integrating adaptive and adaptable components are based on shared 
decision making requiring shared knowledge. 

System Decides 

Shared 
Decision 
Making 

User Decides 

Figure 5: Integrating Adaptable and Adaptive Components 

There is a broad spectrum of shared decision making between 
purely adaptive and purely adaptable systems in which users and 
system components contribute to the modification of a system. 

The integration can be illustrated by showing how a standard critiquing system can be 
extended to a conditional one. A critiquing system that criticizes all designs based on the 
same standards is based on standard critics [Fischer et al. 93]. Design domains often have 
a basic set of rules that all artifacts in that domain should follow (e.g., in kitchen design 
[Fischer et al. 89J there are building codes, safety regulations, and functional principles; 
and in computer network design [Fischer et aI. 92] there are standards established by com­
mittees). Standards that apply to all designs in a domain are important for designers to 
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understand and follow. Novices especially need to be reminded when their design violates 
the design standards, but even for experts this type of support is necessary in situations 

where there is too much detail for one person to process. 

Although standard critics are good at enforcing a set of rules that may be applied to all 

designs for a domain, they do not fully support design processes. Design theorists [Schoen 

83, Rittel 84] tell us that each design project should be seen as unique. It is the responsi­
bility of the designer to understand the unique characteristics of the design situation and to 
formulate a solution that address the unique characteristics. 

Obeying general rules and design standards is necessary but not sufficient for good design. 
Design environments must support the designer in seeing the situation at hand as unique. 
Domain standards can help constrain designs, but at the same time standards alone do not 
determine a design solution. For interesting design domains, generic design rules play only 
a part in the final product of design. Conditional critics allow a design environment to eval­

uate design situations in accordance with partial specifications [Fischer et al. 93]. The par­
tial specification represents a set of goals articulated by the user. Each specification item 

corresponds to a set of critics, which detect design situations relevant to that specification 
item. The set of specification items chosen by the designer determines which critics are 
active. Only active critics participate in the evaluation of design situations. 

The partial specification is a resource for both the system and the designer (and is thereby 
an important part of the shared knowledge): (1) it allows the system to generate design­
specific (rather than domain-specific) critiquing, and (2) it allows the designer to under­

stand the design in terms of its unique characteristics rather than its common ones. 

Conditional critics can detect design situations where one specification item conflicts with 
another, creating trade-off situations. To resolve a trade-off between conflicting goals, the 

designer must decide which goal (articulated as one specification item) is more important. 

To support this type of reasoning, specification items can be weighted. Being able to 
quickly manipulate the specification allows the designer to investigate the implications of 

different priority schemes. Support for understanding trade-offs is vital for complex prob­

lems where goals and priorities carmot be known a priori. 

Machine learning can be seen as another approach for integrating adaptive and adaptable 
systems. It can be defined operationally to mean the ability to perform new tasks that could 
not be performed before or perfonn old tasks better as a result of changes produced by the 
learning process [Carbonell 89]. Machine learning can be integrated into end-user modifi­
able systems. If users want to introduce new concepts to the system, they could show the 

system examples and counterexamples for this concept, and the system would learn these 
concepts by example (see Figure 6). 

Other Possibilities for Integrating Adaptable and Adaptive Systems. Modification 

critics [Girgensohn 92] are adaptive system components that critique the adaptations of 

users. Adaptive components can be used to "suggest" to users how to adapt systems [Fi-
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D D 
Positive Example Negative Example 

Figure 6: Learning a Rule with Examples 

Our design environment for kitchen floorplans supports the cre­
ation of positive and negative examples, which can be used to 
integrate new knowledge into the system. 

scher et al. 91a, Thomas & Krogsreter 93, Oppermann 92]. Adaptable systems could ben­

efit from adaptive explanation components. It would also be beneficial if the interface for 

adaptations were adaptive to some extent so that it would be easier for users with different 

skills to do adaptations. In adaptive systems, it would be helpful if the users could adapt 

the parameters for the adaptation of the system, e.g., when to use which stereotype. 

Other Efforts Integrating Adaptable and Adaptive Systems. In Vision [Kass & Stadnyk 

92] combines adaptable and adaptive mechanisms to address the information overload 

problem as it occurs in organizations (e.g., "who do I tell" and "who do I ask" type ques­

tions). InVision relies on explicitly represented models of the knowledge and information 

needs of members of the organization. It supports simultaneously the "computer as tool" 

paradigm (users explicitly build models using a specification by reformulation approach) 

and "computer as agent" paradigm (the system infers users' information needs based on 

observations of their interactions with data base systems) and it supports conflict resolu­

tion techniques for resolving contradicting information. 

INFO SCOPE [Fischer & Stevens 91, Stevens 93] allows users to evolve the predefined 

system structure (for reading Usenet News) to suit their own semantic interpretations. 

Users can define virtual newsgroups. To do so, they can exploit information provided by 

agents who observe their behavior over periods of time and accumulate it in an Mz-type 

model. INFOSCOPE illustrates how adaptive components can be used to drive the adap­

tation of a system. 
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FLEXCEL [Thomas & Krogsreter 93] is a research effort to add flexibility to a commer­
cially available software systems (EXCEL). An empirical investigation of FLEXCEL 

[Oppermarm 92] has shown that adaptive and adaptable systems are not alternatives, but 
are most promising when both features are hnked to cooperate. Adding adaptable compo­
nents to EXCEL demonstrated that such components (1) do not come for free (neither for 
designers nor for the users), (2) require users to shift from their tasks to a meta-task, and 
(3) will not be successful without extensive support mechanisms. The adaptive component 
of FLEXCEL assists users in the adaptation process by (1) preparing them to adapt the sys­
tem, (2) presenting clues when to turn from the domain task to the meta-task of adaptation, 
and (3) achieving a balance between massive interruption and merely mute potential. 

4 SHARED KNOWLEDGE SYSTEMS 

Wittgenstein: "If a hon could speak would we understand her?" 

Figure 7 illustrates communication breakdowns caused by a lack of shared understanding. 
The visitor carmot build up a coherent model. More of the information provided should 

Figure 7: Lack of Shared Understanding 

Drawing by Stevenson; © 1976 The New Yorker Magazine 
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have been put into the world (e.g., by drawing a map, thereby grounding the mutual under­
standing with a shared artifact). The structural model provided by the policeman is too 
detailed; it may be possible to avoid this by tailoring the explanations more to the goals 
and objectives of the visitor. The policeman could have reduced the complexity of his -

description using layers of abstractions or by providing minimalist explanations [Black et 
al. 87, Fischer et al. 90]. The policeman (by seeing the visitor the first time) is unable to 

model the background knowledge of the visitor, indicating that shared understanding is not 

a one-shot affair but a cooperative problem-solving effort [Moore 89, Fischer 90, Fischer 

& Reeves 92] requiring follow-up questions and detail-on-demand. 

Adaptive and adaptable systems are desirable for the following reasons: (l) to support 

mutual intelligibility and reciprocal recognizability of our actions, enabled by common 
conventions for the expression of intent, and shared knowledge about typical situations, 
and (2) to support communicative economy (if the premise or rationale of an action can be 
assumed to be shared, it can be left unspoken). Design environments can be interpreted as 
shared knowledge systems [Resnick 91] at several levels: 

The domain-orientation of the design environments supports human problem­
domain communication [Fischer & Lemke 88] by eliminating the need for 
users to deal with low-level computer-specific programming concepts, 
thereby allowing users to communicate directly with the problem domain 
rather than with the computer. 

The construction and the specification component allows users to articulate 

their specific problem-solving situation. 

Other system components (critics, catalog, argumentation, and simulation) 

illustrate the system's knowledge to users in the context of their task at hand. 

Adaptive and Adaptable Components in the Context of Design Environments. Oppo­
nents of adaptive components based on M2-type models [Dumais 90, Hollan 90] have 
argued that there is little evidence from real systems that such models can be successfully 
constructed or exploited to enhance cooperative problem-solving activities. This criticism 

is justified by the lack of assessment studies analyzing the strength and weaknesses of sys­

tems' models of users as well as the absence of a true success story of such a system 

beyond research environments. These opponents are more in favor of adaptable systems 

and support mechanisms to enhance M1-type models. This view is based on the belief that 

(1) users know more about their interests, goals, and state of knowledge than what can be 

communicated, defined, abstracted, and exploited by most modeling mechanisms; and (2) 

knowledge is tacit, requiring the back-talk of the situation to trigger additional knowledge. 

Design environments provide unique opportunities to enhance and integrate adaptive and 
adaptable components by exploiting shared knowledge structures: 

their domain orientation [Fischer 92] establishes a restricted set of objectives 
and goals, which users pursue in using them, 
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the systems are used repeatedly over long periods of time by domain workers 
(making techniques such as "Edit Wear and Read Wear" [Hill et aL 92] an 
important information source to drive modifications), 

the design artifact is present in the design situation [Reeves & Shipman 92] 
(indicating some of the goals of users), and 

the specification component allows users to articulate the specifics of a design 
situation [Fischer & Nakakoji 91]. 
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The shared knowledge is used (1) to make information more relevant to the task at hand 
(e.g., by prioritizing information structures in the palette, catalog, and argumentation), (2) 
to help users to create better artifacts, and (3) to support learning on demand [Fischer 91b). 

5 CONCLUSIONS 

Interaction between people and computers requires essentially the same interpretive work 

that characterizes interaction between people, but with fundamentally different resources 
available to the participants [Suchman 87]. People make use of linguistic, nonverbal, and 
inferential resources in finding the intelligibility of actions and events, which are in most 
cases not available and not understandable by computers. Cooperative problem-solving 
systems need to take this asymmetry seriously and find alternative ways to enhance effec­
tive problem-solving activities rather than just relying on the simulation of human com­
munication. Design environments offer interesting possibilities for integrating adaptive 
and adaptable components to increase the shared knowledge between users and computers. 
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