
The Software Technology of the 21st Century:
From Software Reuse to Collaborative Software Design

Gerhard Fischer
University of Colorado, Center for LifeLong Learning and Design (L3D)

Department of Computer Science, Campus Box 430
Boulder, CO 80309-0430 - USA

gerhard@cs.colorado.edu

ABSTRACT
Complex (software) design problems require more
knowledge than any single person or any single group
possesses because the knowledge relevant to a problem is
distributed among many different stakeholders. Software
reuse exploits a collaboration process in which designers
working on new problems can take advantage of the work
of designers who have encountered similar problems in
the past. Not only technical problems but also cognitive
and social factors inhibit the widespread success of
systematic software reuse. An important paradigm shift is
to reconceptualize reuse as a collaborative process, in
which software designers should not only take advantage
of existing reuse repositories, but, through their own
work, modify components and evolve reuse repositories.
We discuss conceptual frameworks, practices, and
systems that support software design as a collaborative
knowledge construction process.
KEYWORDS
software development, reuse repositories, system
evolution, reuse, collaborative software construction,
open source, communities of practice, communities of
interest, human aspects of computer applications
SOFTWARE REUSE: PROMISES AND CHALLENGES
The basic premise of software reuse is support for design
methodologies for which the main activity is not the
building of new systems from scratch, but the integration,
modification, and explanation of existing ones [Winograd,
1996]. Software reuse is a promising design methodology
because complex systems develop faster if they can be
built on stable subsystems [Simon, 1996] and because
reuse supports evolution [Dawkins, 1987]. Various types
of software artifacts, such as design knowledge,
application domain knowledge, software architectures,
design patterns, and components, can be reused. However,
merely providing a reuse repository is not enough.
Reuse is not only a technical problem, it is also a
cognitive and social problem [Fischer, 1987]. Designers
must locate reusable software artifacts relevant to their
tasks and understand them. In addition, new social
practices and tools are needed to encourage and support
designers to contribute to the reuse repository.

Table 1 contrasts some of the past and present concerns of
creating complex software systems that software
technologies of the future must address.

Table 1: Past and Present Concerns for Software
Technologies

dimension past present

limiting
resource

information human attention

models for
collaboration

access informed
participation

design tools focus: “downstream
activities” — robust
implementations of
given specifications

focus: “upstream
activities” — co-
evolution between
problem framing and
problem solving

design products finished systems evolution

support for
collaboration

file transfer world-wide web
(WWW)

model for
creation

individual creativity social creativity

documents formal and informal
objects of specific
communities of
practices

boundary objects:
supporting
collaboration
between different
communities

focus of
software reuse

technical issues cognitive, social
issues

intellectual
property

closed, company-
owned

models for sharing
(e.g., open source)

THE LOCATION, COMPREHENSION, AND
MODIFICATION CYCLE
The use of reusable objects suffers from the problem of
information overload. Developers do not know what
reusable artifacts exist; how to access them; how to
understand them; and/or how to combine, adapt, and
modify them to meet current needs. These challenges
exist in each phase of the location-comprehension-
modification cycle [Fischer et al., 1991] depicted in
Figure 1. Designers first have to locate potentially useful

pieces of information (either through access mechanisms
or delivery mechanisms), comprehend the retrieved
information, and modify it according to their current
needs. We have developed three systems to support the
location-comprehension-modification cycle: Codefinder,
Explainer, and Modifier.
Location. Codefinder [Henninger, 1993] supports the
process of retrieving software objects when information
needs are ill-defined and users are not familiar with the
vocabulary [Furnas et al., 1987] of the repository through
an innovative integration of retrieval by reformulation,
and spreading activation.
Comprehension. Explainer [Redmiles, 1992] supports
programmers’ use of examples as a powerful aid to
problem solving. Examples not only provide objects to be
reused but also present a context in which users can
explore issues related to the task-at-hand.

Location

Modification Comprehension

explanation

reformulation

extraction

review / explanation

reformulation

Figure 1: The Location-Comprehension-Modification
Cycle

Modification. Modifier [Girgensohn, 1992] supports
designers, specifically end-users and local developers
(some end-users who have learned enough about a
systems to make some modifications) [Nardi, 1993], in
adapting reusable artifacts to their needs. Modification is
necessary because different designers pursue different
tasks, have different preferences, and have evolving needs
or requirements due to changes in the world.
CREATING SHARED UNDERSTANDING BETWEEN
DIFFERENT DESIGN COMMUNITIES
System development is difficult because it requires
creating a shared understanding among different design
communities. Over the years, we have developed a
number of conceptual frameworks to facilitate the
creation of shared understanding among different design
communities.
Supporting Human Problem-Domain Communication
with Domain-Oriented Systems. Domain-oriented
systems avoid the pitfall of excess generality. Instead of
serving all needs obscurely and insufficiently with
general-purpose programming languages, domain-
oriented systems serve a few needs well. The semantics of
computing environments need to be better tuned to
specific domains matching the mental models of the users.

Human-computer communication needs to be advanced to
human-problem domain communication, where the
computer becomes "invisible" and users have the feeling
of direct interaction with a problem domain.
Situation and System Models. When software designers
approach a problem, they often begin at a high level of
abstraction, and conceptualize the design in terms of the
application problem to be solved [Curtis et al., 1988].
This initial conceptualization must then be translated into
terms and abstractions that the computer can understand.
The gap between the application level and system level in
conventional software engineering environments is large.
The underlying problem can be characterized as a
mismatch between the system model provided by the
computing environment and the situation model of the
user [Kintsch, 1998].
Putting Owners of Problems in Charge. Problems that
can be clearly defined can be delegated. If a complete
problem description could exist apart from its solution,
then it would be possible to "delegate" that problem
description to an intermediary. Compared to problem
owners, however, intermediaries are severely limited
when acting on an ill-defined problem. A key attribute of
a problem is that the owner has the authority to change its
description. The difficulty with delegating ill-defined
problems is that the owner of the problem interacts only
indirectly with the emergent solution and thus is not able
to foresee implications that certain specifications and
assumptions may have on the final solution.
SUPPORTING SOFTWARE SYSTEMS AS LIVING
ENTITIES: THE SEEDING, EVOLUTIONARY GROWTH,
RESEEDING PROCESS MODEL
We live in a world characterized by evolution. Biology
tells us that complex, natural systems are not created all at
once but must instead evolve over time. We are becoming
increasingly aware that evolutionary processes are
ubiquitous and critical for technological innovations as
well. This is particularly true for complex software
systems because these systems do not necessarily exist in
a technological context alone but instead are embedded
within dynamic human organizations. For many
problems, software design is best understood as an
evolutionary process in which system requirements and
functionality are determined through an iterative process
of collaboration among multiple stakeholders, rather than
being completely specified before system development
occurs [Curtis et al., 1988]. Our research focuses on the
following claims about software systems embedded
within dynamic human organizations: (1) they must
evolve because they cannot be completely designed prior
to use, (2) they must evolve to some extent at the hands of
the users, and (3) they must be designed for evolution.
The Seeding, Evolutionary Growth, Reseeding (SER)
model [Fischer et al., 2001] is a process model that
describes the evolution of complex systems, including the
development of operating systems, design environments,

reuse repositories, and open source development efforts
[Raymond & Young, 2001].
Seeding. In the seeding phase, system developers and
users work together to develop an initial seed. As the
name suggests, the seed is considered as a starting point
for ongoing growth. System developers are necessary in
the seeding phase because the product is a complex
software system. Participation of users is also necessary
because they have the knowledge necessary to decide
what content should be included in the seed, and how the
content will need to evolve over time. Although the SER
model acknowledges that the initial seed cannot be
complete, the seeding process still requires a substantial
up-front investment.
Evolutionary Growth. During this phase, the
information repository plays two simultaneous roles: (1)
through dissemination, it informs work; and (2) through
integration, it accumulates the products of work. An
essential aspect of this phase is that the user community is
responsible for making changes to the seed. Making
contributions of domain knowledge should be a part of
everyone’s job. But formalization of information and
modification of system functionality may require
significant programming knowledge, and therefore will be
the responsibility of local developers [Nardi, 1993] who
are technically inclined and motivated to do this work.
During the evolutionary growth phase, the software
designers are not present. Therefore, it is necessary to
allow some new design knowledge to be added by the
users, thus requiring computational mechanisms that
support end-user modifiability [Girgensohn, 1992] and
end-user programming [Repenning et al., 1998].
Reseeding. From the perspective of software systems,
evolutionary growth increases the chaos of the original
system that makes further growth impossible. Reseeding
is a process to reduce such chaos. Reseeding is a complex
process by which users, together with system developers,
must take a stake in the current system, synthesize the
current state of the system, and reconceptualize the
system. The result of the reseeding process is a new
system that can serve as the basis for future evolution.
The cycle of evolution and reseeding continues as long as
people actively use the system to solve problems.
EXAMPLES OF SYSTEMS
Over the last decade, our conceptual frameworks co-
evolved with system building efforts to make reuse more
successful and move it from a one-way street of
knowledge transfer to a collaborative knowledge
construction process. Table 2 gives an overview;
Codefinder, Explainer, and Modifier were briefly
discussed previously, and three other system building
efforts are described in this section.

Domain-Oriented Design Environments
Domain-oriented design environments (DODEs) [Fischer,
1994] reduces the large conceptual distance between
problem-domain semantics and software artifacts. The
integration among different components of DODEs
supports the co-evolution of specification and
construction while allowing designers to access relevant
knowledge at each stage within the software development
process. DODEs have been used for the design of such
software artifacts as user interfaces, voice dialog systems
and Cobol programs, and have served equally well for the
conceptual design of such material artifacts as kitchens,
lunar habitats, and computer networks. The fundamental
assumption behind our research is that DODEs will
become as valuable and as ubiquitous in the future as
compilers have been in the past.
An important aspect of DODEs is making information
relevant to the task-at-hand. The scarce resource in our
information-rich society is attention. To address the
problem of information overload, environments must
focus on providing workers with the information they
need, and at a time when they need it. The standard
approach for knowledge dissemination is to support
access with either search or browsing. Although such
approaches are necessary to locate information, they are
not sufficient for the following reasons: (1) users may not
be able to articulate their information needs in a way that
the access mechanisms require; (2) users may not be
motivated to search for information if they are not aware
of the existence of information relevant to their needs; and
(3) users may not be aware of a need for information in
the first place.
Figure 2 shows the KID (Knowing-in-Design) [Nakakoji,
1993] system, a DODE for the domain of kitchen design.
KID increases the chance that designers will encounter
useful design knowledge as they design. Design

Table 2: Overview of Conceptual Frameworks and
Systems

Fundamental
Challenge

Conceptual
Frameworks

Systems

Complex systems;
high-functionality
applications

Software Reuse Codefinder,
Explainer,
Modifier

Problem-specific
interaction

Human-Problem
Domain Interaction;
Domain-Oriented
Design
Environments

KID
(Knowing-in-
Design)

Organization of large
bodies of knowledge;
information overload

Personalized
Information
Delivery

CodeBroker

Collaboration Social Creativity Envisionment
and Discovery
Collaboratory

knowledge stored in KID is integrated, so different types
of design knowledge are linked together. Critics in KID
[Fischer et al., 1998] check the compliance of the current
construction to the current specification supporting
designers in the co-evolution of a partial specification
(problem) and a partial construction (solution).
The CodeBroker System
The long-term goal of software reuse is thwarted by an
inherent design conflict: to be useful, a reuse system must
provide many building blocks (thereby facing all design
challenges associated with high-functionality applications
[Fischer, 2001b]), but when many building blocks are
available, finding and choosing an appropriate one (one
relevant to the task-at-hand) becomes a difficult problem.
CodeBroker [Ye, 2001] (see Figure 3) is a system that
supports software reuse by delivering components
relevant to the task-at-hand. The task-at-hand is inferred
from a partially written program by exploiting
information contained in comments and signatures. It
identifies the most promising components in the
repository and delivers them to the designer. To avoid
confronting designers with too much information that they
may already know or in which they have indicated no
interest, user and discourse models are employed to make
the information not only relevant to the task-at-hand, but
personalized to the goals and background knowledge of
specific designers.

The Envisionment and Discovery Collaboratory
The Envisionment and Discovery Collaboratory (EDC)
[Arias et al., 2000] supports social creativity by
empowering stakeholders to act as designers, allowing
them to create shared understanding, to contextualize
information to the task-at-hand, and to create boundary
objects (objects that are understood by designers coming
from different communities of practice) [Fischer, 2001a]
in collaborative design activities. The EDC framework is
applicable to different domains. Figure 4 shows part of
the current prototype of the EDC (which explored urban
transportation planning as an application domain). The
EDC attempts to leverage the powerful collaboration that
can take place in face-to-face settings and augment this
collaboration with boundary objects by integrating our
previous research work in simulation, decision-support,
and domain-oriented design environments.
The vision behind the EDC is to provide contextualized
support for reflection-in-action [Schön, 1983] within
collaborative design activities. Using the horizontal
electronic whiteboard, participants work “around the
table” incrementally creating a shared model of the
problem. They interact with computer simulations by
manipulating three-dimensional, physical objects, which
constitute a language for the domain. The position and
movement of these physical objects are recognized by
means of the touch-sensitive projection surface. The
vertical board provides information for reflection about
the events occurring in the action space.

Figure 2: KID (Knowing-in-Design) — A DODE for Kitchen Design

CHALLENGES FOR THE FUTURE
Understanding Promises and Pitfalls
Taking Evolutionary Models too Literally. We are
convinced that models from biology will be more relevant
to future software systems than models from mathematics.
But we have to be cautious: to follow an evolutionary
approach in software design successfully does not imply
that concepts from biological evolution should be
mimicked literally, but rather that they need to be
reinterpreted in the domain of software design [Basalla,
1988] — an attempt we undertake with the SER model.
Beyond Information. It is a myth that “anytime and
anywhere” access to information will solve the
information overload problem for designers. The scarce
resource for most people is attention: the real challenge is
to “say the ‘right’ thing at the ‘right’ time in the ‘right’
way” [Fischer, 2001b]. This can be done only with
computational environments that are able to take the
user’s context into account (e.g., what the users are doing,
what they know, where they are, what they have done in
the past). Future software technologies need to support
attention economies [Brown & Duguid, 2000], in which
attention is the most valued resource.
End-User Modification and Programming for
Communities: Evolution at the Hands of Users.
Because end-users experience breakdowns and
insufficiencies of software systems in their work, they

should be able to report, react to, and resolve those
problems. At the core of our approach to evolutionary
design lies the ability of end-users (in our case, domain
designers) to make significant changes to system
functionality and to share those modifications within a
community of designers. Mechanisms for end-user
modification and programming are, therefore, a
cornerstone of evolvable systems. DODEs (and
specifically components such as Modifier) make end-user
modifications feasible because they support human
problem-domain interaction. We do not assume that all
domain designers will be willing or interested in making
system changes, but within local communities of practice
local developers often exist who are interested in and
capable of performing these tasks.
Beyond Technologies: Socio-Technical Environments.
An important nontechnical challenge for collaborative
construction and evolution of information repositories is
to take motivation seriously. For sustained collaborative
work practices, an incentive must exist to create social
capital [Raymond & Young, 2001] by rewarding
stakeholders for contributing and receiving knowledge as
a member of a community. Social capital can be
characterized as follows: (1) human beings have an innate
drive to compete for social status; (2) social status is
determined not by what you control but by what you give
away; (3) prestige is a good way to attract attention and
cooperation from others; and (4) utilization is the

Figure 3: The CodeBroker System

sincerest form of flattery.
From Reuse to Collaborative Knowledge Construction
Sustained Knowledge Creation. The basic assumption
underlying our transitions from reuse to collaborative
knowledge construction is that knowledge is not a
commodity to be consumed but is collaboratively
designed and constructed. This focus emphasizes
innovation, continuous learning, and collaboration as
important processes. Collaborative design not only
requires building on knowledge as information stored in
repositories; it is a continual process in which knowledge
is created as a by-product of work, integrated in an open
and evolving repository, and then disseminated to others
in the organization when it is relevant to their work.
Systems must undergo sustained development, requiring
extensible systems and social structures that include users
who are able to make changes in systems [Henderson &
Kyng, 1991; Nardi, 1993]). These requirements are both
technical and social. Promising technical approaches to
enable continual evolution of systems include end-user
modification [Girgensohn, 1992] and end-user
programming [Repenning et al., 1998]. Development
practices and products must acknowledge the importance
of preserving knowledge that was generated in the design
process and it should be made part of the system. A key
issue for the capture of process information is the effort

required in addition to the normal development tasks
[Grudin, 1994].
Collaborative Design. Increasingly, design tasks are
done not by individuals, but by groups or communities
working together. Complexity in collaborative design
arises from the need to synthesize different perspectives
of a problem, the management of large amounts of
information relevant to a design task, and the
understanding of the design decisions that have
determined the long-term evolution of a designed artifact.
Our work has focused on two types of groups,
communities of practice (CoPs) [Wenger, 1998] and
communities of interest (CoIs) [Fischer, 2001a]:
1. CoPs consist of people sharing a common practice, or

domain of interest (e.g., software engineers). CoPs
are sustained over time. They provide a means for
newcomers to learn about the practice and for
established members to share knowledge about their
work and to collaborate on projects. CoPs need
support to understand the long-term evolution of
artifacts as well as the problems caused by rapid
change in their domain.

2. CoIs consist of people from different fields who come
together to work on a particular project or problem
(e.g., teams involved in software development,
especially in the requirement analysis phase, are best

Figure 4: The Current Prototype of the EDC

understood as CoIs involving at least software
engineers and users). CoIs typically exist for the
duration of the project. They need support for
creating shared understanding among stakeholders
from different backgrounds, who bring different
perspectives and languages to the problem.

CoIs are important for software design as projects become
more interdisciplinary and collaborative design brings
together specialists from many domains. System
developments such as the EDC try to integrate multiple
perspectives and help CoIs to create shared
understanding. The EDC supports “design as a
conversation with external representations” [Schön, 1983]
that are used not only to facilitate a conversation with the
design situation, but with other designers as well.
CONCLUSIONS
The development of complex software systems is
challenging design activity. The process is made difficult
“not because of the complexity of technical problems, but
because of the social interaction when users and system
developers learn to create, develop and express their
ideas and visions” [Greenbaum & Kyng, 1991].
Designing complex software systems is an intrinsically
collaborative process in which the major source of
complexity arises from the need to synthesize different
perspectives on the problems to be solved. These
perspectives originate from the many stakeholders
involved in system development. The fundamental
challenge for software technologies of the future is to
provide support for achieving a shared understanding
among groups of people that see the world in
fundamentally different ways.
Acknowledgements
The author thanks the members of the Center for
LifeLong Learning and Design at the University of
Colorado, who have made major contributions to the
conceptual frameworks described in this paper. A special
thanks goes to the authors of the systems used as
examples in this paper: Scott Henninger (Codefinder);
David Redmiles (Explainer); Andreas Girgensohn
(Modifier); Kumiyo Nakakoji (KID); Yunwen Ye
(CodeBroker); and Ernesto Arias, Hal Eden, Andy
Gorman, and Eric Scharff (EDC). The feedback from
Yunwen Ye and Taro Adachi on an earlier version of this
paper led to numerous improvements.
The research was supported by (1) the National Science
Foundation, Grant REC-0106976; (2) SRA Key
Technology Laboratory, Tokyo, Japan; and (3) the
Coleman Family Foundation, San Jose, CA.

REFERENCES
Arias, E. G., Eden, H., Fischer, G., Gorman, A., &
Scharff, E. (2000) "Transcending the Individual Human
Mind— Creating Shared Understanding through
Collaborative Design," ACM Transactions on Computer
Human-Interaction, 7(1), pp. 84-113.

Basalla, G. (1988) The Evolution of Technology,
Cambridge University Press, New York.
Brown, J. S. & Duguid, P. (2000) The Social Life of
Information, Harvard Business School Press, Boston,
MA.
Curtis, B., Krasner, H., & Iscoe, N. (1988) "A Field Study
of the Software Design Process for Large Systems,"
Communications of the ACM, 31(11), pp. 1268-1287.
Dawkins, R. (1987) The Blind Watchmaker, W.W. Norton
and Company, New York - London.
Fischer, G. (1987) "Cognitive View of Reuse and
Redesign," IEEE Software, Special Issue on Reusability,
4(4), pp. 60-72.
Fischer, G. (1994) "Domain-Oriented Design
Environments," Automated Software Engineering, 1(2),
pp. 177-203.
Fischer, G. (2001a) "Communities of Interest: Learning
through the Interaction of Multiple Knowledge Systems,"
24th Annual Information Systems Research Seminar In
Scandinavia (IRIS'24), Ulvik, Norway, pp. 1-14.
Fischer, G. (2001b) "User Modeling in Human-Computer
Interaction," User Modeling and User-Adapted
Interaction (UMUAI), Dordrecht, The Netherlands:
Kluwer Academic Publishers, 11(2), pp. 65-86.
Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles,
D., Reeves, B., & Shipman, F. (2001) "Seeding,
Evolutionary Growth and Reseeding: The Incremental
Development of Collaborative Design Environments." In
G. M. Olson, T. W. Malone, & J. B. Smith (Eds.),
Coordination Theory and Collaboration Technology,
Lawrence Erlbaum Associates, Mahwah, New Jersey, pp.
447-472.
Fischer, G., Henninger, S. R., & Redmiles, D. F. (1991)
"Cognitive Tools for Locating and Comprehending
Software Objects for Reuse." In Thirteenth International
Conference on Software Engineering (Austin, TX), IEEE
Computer Society Press, Los Alamitos, CA, pp. 318-328.
Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., &
Sumner, T. (1998) "Embedding Critics in Design
Environments." In M. T. Maybury & W. Wahlster (Eds.),
Readings in Intelligent User Interfaces, Morgan
Kaufmann, San Francisco, pp. 537-561.
Furnas, G. W., Landauer, T. K., Gomez, L. M., &
Dumais, S. T. (1987) "The Vocabulary Problem in
Human-System Communication," Communications of the
ACM, 30(11), pp. 964-971.
Girgensohn, A. (1992) End-User Modifiability in
Knowledge-Based Design Environments, Ph.D.
Dissertation, Department of Computer Science,
University of Colorado at Boulder, Boulder, CO.
Greenbaum, J. & Kyng, M. (Eds.) (1991) Design at Work:
Cooperative Design of Computer Systems, Lawrence
Erlbaum Associates, Inc., Hillsdale, NJ.

Grudin, J. (1994) "Groupware and social dynamics: Eight
challenges for developers," Communications of the ACM,
37(1), pp. 92-105.
Henderson, A. & Kyng, M. (1991) "There's No Place Like
Home: Continuing Design in Use." In J. Greenbaum & M.
Kyng (Eds.), Design at Work: Cooperative Design of
Computer Systems, Lawrence Erlbaum Associates, Inc.,
Hillsdale, NJ, pp. 219-240.
Henninger, S. R. (1993) Locating Relevant Examples for
Example-Based Software Design, Ph. D Dissertation,
Department of Computer Science, University of Colorado
at Boulder, Boulder, CO.
Kintsch, W. (1998) Comprehension: A Paradigm for
Cognition, Cambridge University Press, Cambridge,
England.
Nakakoji, K. (1993) Increasing Shared Understanding of
a Design Task Between Designers and Design
Environments: The Role of a Specification Component,
Ph.D. Dissertation, Department of Computer Science,
University of Colorado at Boulder, Boulder, CO.
Nardi, B. A. (1993) A Small Matter of Programming, The
MIT Press, Cambridge, MA.
Raymond, E. S. & Young, B. (2001) The Cathedral and
the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O'Reilly & Associates,

Sebastopol, CA.
Redmiles, D. F. (1992) From Programming Tasks to
Solutions: Bridging the Gap Through the Explanation of
Examples, Ph.D. Dissertation, Department of Computer
Science, University of Colorado at Boulder, Boulder, CO.
Repenning, A., Ioannidou, A., Rausch, M., & Phillips, J.
(1998) "Using Agents as a Currency of Exchange between
End-Users," Proceedings of the WebNET 98 World
Conference of the WW, Internet, and Intranet, pp. 762-
767.
Schön, D. A. (1983) The Reflective Practitioner: How
Professionals Think in Action, Basic Books, New York.
Simon, H. A. (1996) The Sciences of the Artificial, (Third
ed.), The MIT Press, Cambridge, MA.

Wenger, E. (1998) Communities of Practice — Learning,
Meaning, and Identity, Cambridge University Press,
Cambridge, England.
Winograd, T. (Ed.) (1996) Bringing Design to Software,
ACM Press and Addison-Wesley, New York.
Ye, Y. (2001) Supporting Component-Based Software
Development with Active Component Repository Systems,
Ph.D. Dissertation, Department of Computer Science,
University of Colorado, Boulder, CO.

