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ABSTRACT 
Complex (software) design problems require more 
knowledge than any single person or any single group 
possesses because the knowledge relevant to a problem is 
distributed among many different stakeholders. Software 
reuse exploits a collaboration process in which designers 
working on new problems can take advantage of the work 
of designers who have encountered similar problems in 
the past. Not only technical problems but also cognitive 
and social factors inhibit the widespread success of 
systematic software reuse. An important paradigm shift is 
to reconceptualize reuse as a collaborative process, in 
which software designers should not only take advantage 
of existing reuse repositories, but, through their own 
work, modify components and evolve reuse repositories. 
We discuss conceptual frameworks, practices, and 
systems that support software design as a collaborative 
knowledge construction process. 
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SOFTWARE REUSE: PROMISES AND CHALLENGES 
The basic premise of software reuse is support for design 
methodologies for which the main activity is not the 
building of new systems from scratch, but the integration, 
modification, and explanation of existing ones [Winograd, 
1996]. Software reuse is a promising design methodology 
because complex systems develop faster if they can be 
built on stable subsystems [Simon, 1996] and because 
reuse supports evolution [Dawkins, 1987]. Various types 
of software artifacts, such as design knowledge, 
application domain knowledge, software architectures, 
design patterns, and components, can be reused. However, 
merely providing a reuse repository is not enough. 
Reuse is not only a technical problem, it is also a 
cognitive and social problem [Fischer, 1987]. Designers 
must locate reusable software artifacts relevant to their 
tasks and understand them. In addition, new social 
practices and tools are needed to encourage and support 
designers to contribute to the reuse repository. 

Table 1 contrasts some of the past and present concerns of 
creating complex software systems that software 
technologies of the future must address. 

Table 1: Past and Present Concerns for Software 
Technologies 

dimension past present 

limiting 
resource 

information human attention 

models for 
collaboration 

access informed 
participation 

design tools focus: “downstream 
activities” — robust 
implementations of 
given specifications 

focus: “upstream 
activities” — co-
evolution between 
problem framing and 
problem solving 

design products finished systems evolution 

support for 
collaboration 

file transfer world-wide web 
(WWW) 

model for 
creation 

individual creativity social creativity 

documents formal and informal 
objects of specific 
communities of 
practices 

boundary objects: 
supporting 
collaboration 
between different 
communities  

focus of 
software reuse 

technical issues cognitive, social 
issues  

intellectual 
property 

closed, company-
owned 

models for sharing 
(e.g., open source) 

 
THE LOCATION, COMPREHENSION, AND 
MODIFICATION CYCLE 
The use of reusable objects suffers from the problem of 
information overload. Developers do not know what 
reusable artifacts exist; how to access them; how to 
understand them; and/or how to combine, adapt, and 
modify them to meet current needs. These challenges 
exist in each phase of the location-comprehension-
modification cycle [Fischer et al., 1991] depicted in 
Figure 1. Designers first have to locate potentially useful 



pieces of information (either through access mechanisms 
or delivery mechanisms), comprehend the retrieved 
information, and modify it according to their current 
needs. We have developed three systems to support the 
location-comprehension-modification cycle: Codefinder, 
Explainer, and Modifier. 
Location. Codefinder [Henninger, 1993] supports the 
process of retrieving software objects when information 
needs are ill-defined and users are not familiar with the 
vocabulary [Furnas et al., 1987] of the repository through 
an innovative integration of retrieval by reformulation, 
and spreading activation.  
Comprehension. Explainer [Redmiles, 1992] supports 
programmers’ use of examples as a powerful aid to 
problem solving. Examples not only provide objects to be 
reused but also present a context in which users can 
explore issues related to the task-at-hand. 

Location

Modification Comprehension

explanation

reformulation

extraction

review / explanation

reformulation

 

Figure 1: The Location-Comprehension-Modification 
Cycle 

Modification. Modifier [Girgensohn, 1992] supports 
designers, specifically end-users and local developers 
(some end-users who have learned enough about a 
systems to make some modifications) [Nardi, 1993], in 
adapting reusable artifacts to their needs. Modification is 
necessary because different designers pursue different 
tasks, have different preferences, and have evolving needs 
or requirements due to changes in the world. 
CREATING SHARED UNDERSTANDING BETWEEN 
DIFFERENT DESIGN COMMUNITIES 
System development is difficult because it requires 
creating a shared understanding among different design 
communities. Over the years, we have developed a 
number of conceptual frameworks to facilitate the 
creation of shared understanding among different design 
communities. 
Supporting Human Problem-Domain Communication 
with Domain-Oriented Systems. Domain-oriented 
systems avoid the pitfall of excess generality. Instead of 
serving all needs obscurely and insufficiently with 
general-purpose programming languages, domain-
oriented systems serve a few needs well. The semantics of 
computing environments need to be better tuned to 
specific domains matching the mental models of the users. 

Human-computer communication needs to be advanced to 
human-problem domain communication, where the 
computer becomes "invisible" and users have the feeling 
of direct interaction with a problem domain.  
Situation and System Models. When software designers 
approach a problem, they often begin at a high level of 
abstraction, and conceptualize the design in terms of the 
application problem to be solved [Curtis et al., 1988]. 
This initial conceptualization must then be translated into 
terms and abstractions that the computer can understand. 
The gap between the application level and system level in 
conventional software engineering environments is large. 
The underlying problem can be characterized as a 
mismatch between the system model provided by the 
computing environment and the situation model of the 
user [Kintsch, 1998]. 
Putting Owners of Problems in Charge. Problems that 
can be clearly defined can be delegated. If a complete 
problem description could exist apart from its solution, 
then it would be possible to "delegate" that problem 
description to an intermediary. Compared to problem 
owners, however, intermediaries are severely limited 
when acting on an ill-defined problem. A key attribute of 
a problem is that the owner has the authority to change its 
description. The difficulty with delegating ill-defined 
problems is that the owner of the problem interacts only 
indirectly with the emergent solution and thus is not able 
to foresee implications that certain specifications and 
assumptions may have on the final solution. 
SUPPORTING SOFTWARE SYSTEMS AS LIVING 
ENTITIES: THE SEEDING, EVOLUTIONARY GROWTH, 
RESEEDING PROCESS MODEL 
We live in a world characterized by evolution. Biology 
tells us that complex, natural systems are not created all at 
once but must instead evolve over time. We are becoming 
increasingly aware that evolutionary processes are 
ubiquitous and critical for technological innovations as 
well. This is particularly true for complex software 
systems because these systems do not necessarily exist in 
a technological context alone but instead are embedded 
within dynamic human organizations. For many 
problems, software design is best understood as an 
evolutionary process in which system requirements and 
functionality are determined through an iterative process 
of collaboration among multiple stakeholders, rather than 
being completely specified before system development 
occurs [Curtis et al., 1988]. Our research focuses on the 
following claims about software systems embedded 
within dynamic human organizations: (1) they must 
evolve because they cannot be completely designed prior 
to use, (2) they must evolve to some extent at the hands of 
the users, and (3) they must be designed for evolution. 
The Seeding, Evolutionary Growth, Reseeding (SER) 
model [Fischer et al., 2001] is a process model that 
describes the evolution of complex systems, including the 
development of operating systems, design environments, 



reuse repositories, and open source development efforts 
[Raymond & Young, 2001].  
Seeding. In the seeding phase, system developers and 
users work together to develop an initial seed. As the 
name suggests, the seed is considered as a starting point 
for ongoing growth. System developers are necessary in 
the seeding phase because the product is a complex 
software system. Participation of users is also necessary 
because they have the knowledge necessary to decide 
what content should be included in the seed, and how the 
content will need to evolve over time. Although the SER 
model acknowledges that the initial seed cannot be 
complete, the seeding process still requires a substantial 
up-front investment. 
Evolutionary Growth. During this phase, the 
information repository plays two simultaneous roles: (1) 
through dissemination, it informs work; and (2) through 
integration, it accumulates the products of work. An 
essential aspect of this phase is that the user community is 
responsible for making changes to the seed. Making 
contributions of domain knowledge should be a part of 
everyone’s job. But formalization of information and 
modification of system functionality may require 
significant programming knowledge, and therefore will be 
the responsibility of local developers [Nardi, 1993] who 
are technically inclined and motivated to do this work. 
During the evolutionary growth phase, the software 
designers are not present. Therefore, it is necessary to 
allow some new design knowledge to be added by the 
users, thus requiring computational mechanisms that 
support end-user modifiability [Girgensohn, 1992] and 
end-user programming [Repenning et al., 1998].  
Reseeding. From the perspective of software systems, 
evolutionary growth increases the chaos of the original 
system that makes further growth impossible. Reseeding 
is a process to reduce such chaos. Reseeding is a complex 
process by which users, together with system developers, 
must take a stake in the current system, synthesize the 
current state of the system, and reconceptualize the 
system. The result of the reseeding process is a new 
system that can serve as the basis for future evolution. 
The cycle of evolution and reseeding continues as long as 
people actively use the system to solve problems. 
EXAMPLES OF SYSTEMS  
Over the last decade, our conceptual frameworks co-
evolved with system building efforts to make reuse more 
successful and move it from a one-way street of 
knowledge transfer to a collaborative knowledge 
construction process. Table 2 gives an overview; 
Codefinder, Explainer, and Modifier were briefly 
discussed previously, and three other system building 
efforts are described in this section. 

Domain-Oriented Design Environments 
Domain-oriented design environments (DODEs) [Fischer, 
1994] reduces the large conceptual distance between 
problem-domain semantics and software artifacts. The 
integration among different components of DODEs 
supports the co-evolution of specification and 
construction while allowing designers to access relevant 
knowledge at each stage within the software development 
process. DODEs have been used for the design of such 
software artifacts as user interfaces, voice dialog systems 
and Cobol programs, and have served equally well for the 
conceptual design of such material artifacts as kitchens, 
lunar habitats, and computer networks. The fundamental 
assumption behind our research is that DODEs will 
become as valuable and as ubiquitous in the future as 
compilers have been in the past.  
An important aspect of DODEs is making information 
relevant to the task-at-hand. The scarce resource in our 
information-rich society is attention. To address the 
problem of information overload, environments must 
focus on providing workers with the information they 
need, and at a time when they need it. The standard 
approach for knowledge dissemination is to support 
access with either search or browsing. Although such 
approaches are necessary to locate information, they are 
not sufficient for the following reasons: (1) users may not 
be able to articulate their information needs in a way that 
the access mechanisms require; (2) users may not be 
motivated to search for information if they are not aware 
of the existence of information relevant to their needs; and 
(3) users may not be aware of a need for information in 
the first place. 
Figure 2 shows the KID (Knowing-in-Design) [Nakakoji, 
1993] system, a DODE for the domain of kitchen design. 
KID increases the chance that designers will encounter 
useful design knowledge as they design. Design 

Table 2: Overview of Conceptual Frameworks and 
Systems 

Fundamental 
Challenge 

Conceptual 
Frameworks 

Systems 

Complex systems; 
high-functionality 
applications 

Software Reuse Codefinder, 
Explainer, 
Modifier 

Problem-specific 
interaction 

Human-Problem 
Domain Interaction; 
Domain-Oriented 
Design 
Environments 

KID 
(Knowing-in-
Design) 

Organization of large 
bodies of knowledge; 
information overload 

Personalized 
Information 
Delivery 

CodeBroker 

Collaboration Social Creativity Envisionment 
and Discovery 
Collaboratory 

 



knowledge stored in KID is integrated, so different types 
of design knowledge are linked together. Critics in KID 
[Fischer et al., 1998] check the compliance of the current 
construction to the current specification supporting 
designers in the co-evolution of a partial specification 
(problem) and a partial construction (solution).  
The CodeBroker System 
The long-term goal of software reuse is thwarted by an 
inherent design conflict: to be useful, a reuse system must 
provide many building blocks (thereby facing all design 
challenges associated with high-functionality applications 
[Fischer, 2001b]), but when many building blocks are 
available, finding and choosing an appropriate one (one 
relevant to the task-at-hand) becomes a difficult problem.  
CodeBroker [Ye, 2001] (see Figure 3) is a system that 
supports software reuse by delivering components 
relevant to the task-at-hand. The task-at-hand is inferred 
from a partially written program by exploiting 
information contained in comments and signatures. It 
identifies the most promising components in the 
repository and delivers them to the designer. To avoid 
confronting designers with too much information that they 
may already know or in which they have indicated no 
interest, user and discourse models are employed to make 
the information not only relevant to the task-at-hand, but 
personalized to the goals and background knowledge of 
specific designers. 

The Envisionment and Discovery Collaboratory 
The Envisionment and Discovery Collaboratory (EDC) 
[Arias et al., 2000] supports social creativity by 
empowering stakeholders to act as designers, allowing 
them to create shared understanding, to contextualize 
information to the task-at-hand, and to create boundary 
objects (objects that are understood by designers coming 
from different communities of practice) [Fischer, 2001a] 
in collaborative design activities. The EDC framework is 
applicable to different domains. Figure 4 shows part of 
the current prototype of the EDC (which explored urban 
transportation planning as an application domain). The 
EDC attempts to leverage the powerful collaboration that 
can take place in face-to-face settings and augment this 
collaboration with boundary objects by integrating our 
previous research work in simulation, decision-support, 
and domain-oriented design environments.  
The vision behind the EDC is to provide contextualized 
support for reflection-in-action [Schön, 1983] within 
collaborative design activities. Using the horizontal 
electronic whiteboard, participants work “around the 
table” incrementally creating a shared model of the 
problem. They interact with computer simulations by 
manipulating three-dimensional, physical objects, which 
constitute a language for the domain. The position and 
movement of these physical objects are recognized by 
means of the touch-sensitive projection surface. The 
vertical board provides information for reflection about 
the events occurring in the action space. 

 
Figure 2: KID (Knowing-in-Design) — A DODE for Kitchen Design 



CHALLENGES FOR THE FUTURE 
Understanding Promises and Pitfalls 
Taking Evolutionary Models too Literally. We are 
convinced that models from biology will be more relevant 
to future software systems than models from mathematics. 
But we have to be cautious: to follow an evolutionary 
approach in software design successfully does not imply 
that concepts from biological evolution should be 
mimicked literally, but rather that they need to be 
reinterpreted in the domain of software design [Basalla, 
1988] — an attempt we undertake with the SER model. 
Beyond Information. It is a myth that “anytime and 
anywhere” access to information will solve the 
information overload problem for designers. The scarce 
resource for most people is attention: the real challenge is 
to “say the ‘right’ thing at the ‘right’ time in the ‘right’ 
way” [Fischer, 2001b]. This can be done only with 
computational environments that are able to take the 
user’s context into account (e.g., what the users are doing, 
what they know, where they are, what they have done in 
the past). Future software technologies need to support 
attention economies [Brown & Duguid, 2000], in which 
attention is the most valued resource. 
End-User Modification and Programming for 
Communities: Evolution at the Hands of Users.  
Because end-users experience breakdowns and 
insufficiencies of software systems in their work, they 

should be able to report, react to, and resolve those 
problems. At the core of our approach to evolutionary 
design lies the ability of end-users (in our case, domain 
designers) to make significant changes to system 
functionality and to share those modifications within a 
community of designers. Mechanisms for end-user 
modification and programming are, therefore, a 
cornerstone of evolvable systems. DODEs (and 
specifically components such as Modifier) make end-user 
modifications feasible because they support human 
problem-domain interaction. We do not assume that all 
domain designers will be willing or interested in making 
system changes, but within local communities of practice 
local developers often exist who are interested in and 
capable of performing these tasks. 
Beyond Technologies: Socio-Technical Environments. 
An important nontechnical challenge for collaborative 
construction and evolution of information repositories is 
to take motivation seriously. For sustained collaborative 
work practices, an incentive must exist to create social 
capital [Raymond & Young, 2001] by rewarding 
stakeholders for contributing and receiving knowledge as 
a member of a community. Social capital can be 
characterized as follows: (1) human beings have an innate 
drive to compete for social status; (2) social status is 
determined not by what you control but by what you give 
away; (3) prestige is a good way to attract attention and 
cooperation from others; and (4) utilization is the 

 
Figure 3: The CodeBroker System 



sincerest form of flattery. 
From Reuse to Collaborative Knowledge Construction 
Sustained Knowledge Creation. The basic assumption 
underlying our transitions from reuse to collaborative 
knowledge construction is that knowledge is not a 
commodity to be consumed but is collaboratively 
designed and constructed. This focus emphasizes 
innovation, continuous learning, and collaboration as 
important processes. Collaborative design not only 
requires building on knowledge as information stored in 
repositories; it is a continual process in which knowledge 
is created as a by-product of work, integrated in an open 
and evolving repository, and then disseminated to others 
in the organization when it is relevant to their work. 
Systems must undergo sustained development, requiring 
extensible systems and social structures that include users 
who are able to make changes in systems [Henderson & 
Kyng, 1991; Nardi, 1993]). These requirements are both 
technical and social. Promising technical approaches to 
enable continual evolution of systems include end-user 
modification [Girgensohn, 1992] and end-user 
programming [Repenning et al., 1998]. Development 
practices and products must acknowledge the importance 
of preserving knowledge that was generated in the design 
process and it should be made part of the system. A key 
issue for the capture of process information is the effort 

required in addition to the normal development tasks 
[Grudin, 1994]. 
Collaborative Design. Increasingly, design tasks are 
done not by individuals, but by groups or communities 
working together. Complexity in collaborative design 
arises from the need to synthesize different perspectives 
of a problem, the management of large amounts of 
information relevant to a design task, and the 
understanding of the design decisions that have 
determined the long-term evolution of a designed artifact.  
Our work has focused on two types of groups, 
communities of practice (CoPs) [Wenger, 1998] and 
communities of interest (CoIs) [Fischer, 2001a]: 
1. CoPs consist of people sharing a common practice, or 

domain of interest (e.g., software engineers). CoPs 
are sustained over time. They provide a means for 
newcomers to learn about the practice and for 
established members to share knowledge about their 
work and to collaborate on projects. CoPs need 
support to understand the long-term evolution of 
artifacts as well as the problems caused by rapid 
change in their domain. 

2. CoIs consist of people from different fields who come 
together to work on a particular project or problem 
(e.g., teams involved in software development, 
especially in the requirement analysis phase, are best 

 
Figure 4: The Current Prototype of the EDC 



understood as CoIs  involving at least software 
engineers and users). CoIs typically exist for the 
duration of the project. They need support for 
creating shared understanding among stakeholders 
from different backgrounds, who bring different 
perspectives and languages to the problem. 

CoIs are important for software design as projects become 
more interdisciplinary and collaborative design brings 
together specialists from many domains. System 
developments such as the EDC try to integrate multiple 
perspectives and help CoIs to create shared 
understanding. The EDC supports “design as a 
conversation with external representations” [Schön, 1983] 
that are used not only to facilitate a conversation with the 
design situation, but with other designers as well.  
CONCLUSIONS 
The development of complex software systems is 
challenging design activity. The process is made difficult 
“not because of the complexity of technical problems, but 
because of the social interaction when users and system 
developers learn to create, develop and express their 
ideas and visions” [Greenbaum & Kyng, 1991]. 
Designing complex software systems is an intrinsically 
collaborative process in which the major source of 
complexity arises from the need to synthesize different 
perspectives on the problems to be solved. These 
perspectives originate from the many stakeholders 
involved in system development. The fundamental 
challenge for software technologies of the future is to 
provide support for achieving a shared understanding 
among groups of people that see the world in 
fundamentally different ways. 
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