
Submission to ASE Journal 1 Fischer

Seeding, Evolutionary Growth, and
Reseeding: Constructing, Capturing,
and Evolving Knowledge in Domain-

Oriented Design Environments

Gerhard Fischer

Center for LifeLong Learning and Design (L3D)
Department of Computer Science and Institute of Cognitive Science
Campus Box 430, University of Colorado, Boulder, Colorado 80309

gerhard@cs.colorado.edu

Abstract
We live in a world characterized by evolution – that is, by ongoing processes of development,
formation, and growth in both natural and human-created systems. Biology tells us that complex,
natural systems are not created all at once but must instead evolve over time. We are becoming
increasingly aware that evolutionary processes are ubiquitous and critical for technological
innovations as well. This is particularly true for complex software systems because these systems do
not necessarily exist in a technological context alone but instead are embedded within dynamic
human organizations.

The Center for LifeLong Learning and Design (L3D) at the University of Colorado has been involved
in research on software design and other design domains for more than a decade. We understand
software design as an evolutionary process in which system requirements and functionality are
determined through an iterative process of collaboration among multiple stakeholders, rather than
being completely specified before system development occurs. Our research focuses on the following
claims about software systems embedded within dynamic human organizations: (1) they must
evolve because they cannot be completely designed prior to use, (2) they must evolve to some extent
at the hands of the users, and (3) they must be designed for evolution.

 Our theoretical work builds upon our existing knowledge of design processes and focuses on a
software process model and architecture specifically for systems that must evolve. Our theories are
instantiated and assessed through the development and evolution of domain-oriented design
environments (DODEs) – software systems that support design activities within particular domains
and that are built specifically to evolve.

Keywords
design, domain-oriented design environments, evolution, end-user modification, knowledge
construction, computer network design

Submission to ASE Journal 2 Fischer

Table of Contents

1. INTRODUCTION 3

2. DOMAIN-ORIENTED DESIGN ENVIRONMENTS 3

2.1 Basic Design Criteria for DODEs 3

2.2 Architectures and Process Models for DODEs 4

3. EVOLUTIONARY DESIGN AT WORK: A SCENARIO FROM THE
DOMAIN OF COMPUTER NETWORK DESIGN 5

4. THE SEEDING, EVOLUTIONARY GROWTH, RESEEDING (SER)
PROCESS MODEL FOR DODES 8

4.1 The SER Model 8

4.2 Illustrations of the SER Model with Examples from our Work 11

5. ASSESSMENT OF DODES 12

5.1 Related Work 12

5.2 Assessment of our Approach 14

6. CONCLUSIONS 16

REFERENCES 16

Figure 1: NetDE in Use _ 6

Figure 2: The Network Evolves _ 8

Figure 3: The SER Model: A process model for the development and
 evolution of DODES _ 9

Note: This manuscript is a revised and extended version of the following paper — Gerhard Fischer:
“Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and Evolving Knowledge in
Domain-Oriented Design Environments” in A. Sutcliffe, D. Benyon and F. van Assche (eds.): Domain
Knowledge for Interactive System Design, IFIP Series, Chapman & Hall, London, 1996, pp. 1-16.

Submission to ASE Journal 3 Fischer

1. Introduction

Software engineering research has been concerned historically with the transition from
specification to implementation (“downstream activities”) rather than with the problem of how
faithfully specifications really address the problems to be solved (“upstream activities”). Many
methodologies and technologies were developed to prevent implementation disasters (i.e., creating
correct programs with respect to a given specification). The progress made to successfully reduce
implementation disasters (e.g., structured programming, information hiding, etc.) allowed an
equally relevant problem to surface: how to prevent design disasters [Lee, 1992] — meaning that a
correct implementation with respect to a given specification is of little value if the specification
does not adequately address the problem to be solved.

Design [Simon, 1981] in the context of our research approach refers to the broad endeavor of creating
artifacts as exercised by architects, industrial designers, curriculum developers, composers, and
others, rather than to a specific step in a software engineering life-cycle model (located between
requirements and implementation). Domain-oriented design environments (DODEs) [Fischer, 1994]
are computational environments that have been used for the design of software artifacts such as user
interfaces, voice dialog systems, and Cobol programs, and have served equally well for the
conceptual design of material artifacts such as kitchens, lunar habitats, and computer networks. The
fundamental assumption behind our research is that DODEs will become as valuable and as
ubiquitous in the future as compilers have been in the past. They will provide the design support
most desirable and most needed to avoid design disasters and will serve as prototypes for other
research efforts moving in the same direction, such as ARPA's research programs in domain-specific
software architectures (DSSA) [Garlan & Shaw, 1994] and evolutionary design of complex systems
(EDCS) [Salasin & Shrobe, 1995].

2. Domain-Oriented Design Environments

Domain-oriented systems [Fischer, 1994; Gamma et al., 1994; Sutcliffe, 1997] are rooted in the
context of use in a domain. Whereas the domain-oriented design environments approach itself is
generic, each of its applications is a particular domain-oriented system. Our emphasis on DODEs
acknowledges the importance of situated and contextualized communication [Greenbaum & Kyng,
1991] and design rationale [Moran & Carroll, 1996] as the basis for ef fect ive evolutionary design.
DODEs transcend the domain modeling approach [Prieto-Diaz & Arango, 1991] which assumes that
there exists a common concept of a domain shared by all practitioners and the problem is simply to
identify this model and codify it. These approaches do not pay enough attention to the situated and
tacit nature of professional knowledge [Polanyi, 1966] (i.e., we know more than we can say),
illustrating that domain knowledge is activated and constructed on an ongoing basis in actual
problem situations. The domain construction approach underlying DODEs addresses these
shortcomings by explicitly acknowledging that shared domain models do not de facto exist but are
socially constructed and evolved [Lave, 1991] by communities of practice.

2 .1 Basic Design Criteria for DODEs

DODEs emphasize a human-centered and domain-oriented approach facilitating communication
about evolving systems among all stakeholders. The integration among different components of
DODEs supports the co-evolution of specification and construction while allowing designers to
access relevant knowledge at each stage within the software development process.

Submission to ASE Journal 4 Fischer

Understanding the Problem Is the Problem. The predominant activity in designing complex systems
is the participants teaching and learning from each other [Greenbaum & Kyng, 1991]. Because
complex problems require more knowledge than any single person possesses, communication and
collaboration among all the involved stakeholders are necessary. Domain experts understand the
practice and system designers know the technology. None of these carriers of knowledge can
guarantee that their knowledge is superior or more complete compared to other people's knowledge.
To overcome this “symmetry of ignorance” [Rittel, 1984], as much knowledge from as many
stakeholders as possible should be activated with the goal of achieving mutual education and
shared understanding.

Integrating Problem Framing and Problem Solving. Design methodologists [Rittel, 1984; Schön, 1983]
demonstrate with their work the strong interrelationship between problem framing and problem
solving. They argue convincingly that (1) information cannot be gathered meaningfully unless the
problem is understood, but one cannot understand the problem without information about it; and (2)
professional practice has at least as much to do with defining a problem as with solving a problem.
New requirements emerge during development because they cannot be identified until portions of the
system have been designed or implemented.

Increasing the Shared Understanding Between Stakeholders. A consequence of the thin spread of
application knowledge [Curtis et al., 1988] is that specification errors often occur when designers do
not have sufficient application domain knowledge to interpret the customer's intentions from the
requirement statements – a communication breakdown based on a lack of shared understanding. The
main attribute of formal specifications is that they are “formal,” which means that they are
manipulable by mathematics and logic and interpretable by computers. As such, these
representations are often couched in the language of the computational system. However, such
representations are typically foreign and unintelligible to users and get in the way of trying to
create a shared understanding among stakeholders. Domain orientation reduces the large conceptual
distance between problem-domain semantics and software artifacts.

The Need for Change and Evolution. There are numerous fundamental reasons why systems cannot be
done “right.” Software systems model parts of our world. Our world evolves in numerous dimensions
– as users have new needs, as new artifacts and technologies appear, as new knowledge is
discovered, and as new ways of doing business are developed. Successful software systems need to
evolve [Salasin & Shrobe, 1995]. System maintenance and enhancement need to become ”first class
design activities.”

2.2 Architectures and Process Models for DODEs

Essential components developed in the context of our research for DODEs [Fischer, 1994] are:

A multifaceted, domain-independent architecture, including the following major components: (1) a
construction kit providing a palette of domain building blocks; (2) an argumentative hypermedia
system containing issues, answers, and arguments about the design domain and the design rationale
for a specific application built within the domain; (3) a catalog consisting of a collection of
prestored designs that illustrates the space of possible designs in the domain, and thereby supports
reuse and case-based reasoning [Maiden & Sutcliffe, 1992]; (4) a specification component supporting
the interaction among stakeholders in describing characteristics of the design they have in mind;
and (5) a simulation component allowing designers to carry out “what-if” games to simulate various
usage scenarios involving the artifact being designed.

Mechanisms for integration among components, including: (1) a specification matcher comparing a
partial specification with a partial construction, (2) a critiquing component linking construction and
argumentation and providing access to relevant information in the argumentative issue base, (3) an
argumentation illustrator helping users to understand the information given in the argumentation

Submission to ASE Journal 5 Fischer

base by finding relevant catalog examples that illustrate abstract concepts, and (4) a catalog
explorer assisting users in retrieving design examples from the catalog similar to the current
construction and specification situation.

A process model consisting of seeding, evolutionary growth, and reseeding (SER model) to account for
the evolutionary nature of DODEs [Fischer et al., 1994]. The components and the integration
mechanisms of the multifaceted architecture are illustrated in the context of a specific DODE,
namely for computer network design, in section 3, and the SER model is discussed in section 4.

3. Evolutionary Design At Work: A Scenario From The Domain Of
Computer Network Design

The following scenario illustrates how a DODE is applied to the exemplary domain of computer
network design emphasizing the importance of evolution. The system described, NetDE, is a DODE
for the domain of computer network design and incorporates and illustrates the following aspects of
DODEs:

• Domain-oriented components that provide computer network designers the capability to easily
create design artifacts.

• Features that allow the specification of design constraints and goals so that the system under-
stands more about particular design situations and gives guidance and suggestions for designers
relevant to those situations.

• Mechanisms that support the capture of design rationale and argumentation embedded within
design artifacts so that they can best serve the design task.

• Mechanisms that support end-user modifiability so that the communities of practice of network
designers experiencing deficiencies of NetDE can drive the evolution of the system.

• Features that increase communication between the system stakeholders.

The following scenario involves two network designers (D1 and D2) at the University of Colorado

who have been asked to design a new network for clients within the Publications Group in the dean’s
office at the College of Engineering.

Evolution of Design Artifacts: Designing a New Network. D1's clients are interested in networking

ten newly purchased Macintosh Power PCs and a laser printer. Through a combination of email
discussions and meetings, D1 learns that the clients want to be able to share the printer, swap files

easily, and send each other email. D1 raises the issue of connecting to the Internet, and is told that

the clients would be interested at some point, but not for the time being. It is also made clear that
the clients had spent most of their budget on the computer hardware, and do not have much left over
for sophisticated network services and tools.

As argued before and based on our previous work in network design, design specification and
rationale come from a number of stakeholders, including network designers and clients, and are
captured in different media including email and notes. To be most effective, design rationale needs
to be stored in a way that allows access to it from the relevant places within a design [Fischer et al.,
1996a].

D1 invokes the NetDE system. A World-Wide Web (WWW) Browser appears on the desktop

presenting a drawing of the College of Engineering. By selecting the “New Design” option, D1 is

presented an empty NetDE page that he names “Publications OT 8-6” after the office where the

Submission to ASE Journal 6 Fischer

clients are located. The new page becomes a repository for all of the background information and
rationale that D1 has regarding the new network. This is achieved by sending all email and text

files that D1 has to the (automatically created) email address “Publications OT 8-6.” NetDE

insures that the WWW page immediately updates itself to show links to the received mails and
files (Figure 1 (1)).

(1)

(2)(3)

(4)

(5)

Figure 1: NetDE in Use

Selecting the “Launch Construction Component” option opens a palette of network objects (Figure 1
(2)). D1 starts by specifying certain design constraints to the system (Figure 1 (4)). Immediately the

Catalog (Figure 1 (5)) displays a selection of existing designs that have constraints similar to those
specified by D1. Selecting one of the designs represented in the Catalog moves that design into the

worksheet (Figure 1 (3)) so that D1 can modify it. D1 changes the design to reflect the specific needs

of the Publications Group.

NetDE is accessible through the World-Wide Web, so other network designers (D2...Dn) can use it

also. The existing designs represent contributions from the whole community of practice using NetDE
for their work.

NetDE provides a domain-specific construction kit (the palette and the worksheet), and allows the
specification of design constraints and goals. Using additional specification mechanisms, D1
describes how the network will be used, and what kinds of networking services are desired. This is
the first time D1 has networked Macs, so he takes advantage of the NetDE critiquing feature

Submission to ASE Journal 7 Fischer

[Fischer, 1994], which evaluates his design and compares it to the established design constraints.
During evaluation, NetDE suggests the use of the EtherTalk network protocol and the PowerTalk
email capabilities that come standard with Macs. D1 agrees with this assessment because they

limit the cost of the network. He finishes creating his design. The integration of specification,
construction, catalog, and argumentation components is the characteristic strength of a DODE such
as NetDE. These components and their interactions are critical to the “evolvability” of the system.

Evolution of NetDE. Several months pass, and Publications is interested in changing its network. D1
is not available, so D2 is to design the new changes. D2 receives email from Publications indicating

that their network needs have changed. They want to start publishing WWW pages and will need
Internet access. They will also be using a Silicon Graphics Indy computer. They have received a
substantial budget increase for their network.

First, D2 accesses the NetDE page that describes the Publications network. She quickly reviews the

current design and rationale to learn what has already occurred. She updates the design speci-
fication to reflect the fact that cost has become less important, and speed has become more impor-
tant. Then she searches the NetDE palette to see if it has an icon representing the Indy. She does
not find one, and realizes that it must be added. After reviewing the specs for the Indy from the
Silicon Graphics Web Page, D2 creates a new palette element for the Indy (Figure 2 (1)), and then

defines its characteristics using NetDE’s end user modifiability features (Figure 2 (2)). According to
the company’s specs, the Indy has built-in networking capabilities and understands the TCP/IP
network protocol. D2 enters this information, and the new icon appears in the palette. D2 adds the

Indy to the design, and NetDE indicates (by displaying different colored wires) that the two types
of machines (Macs and the Indy) are using different network protocols. D2 knows that Macs can

understand TCP/IP protocol, so she changes the network’s protocol to TCP/IP. After invoking
NetDE’s critiquing mechanism, D2 receives a critiquing message indicating that the use of TCP/IP

violates the easy file-sharing design constraint (Figure 2 (3)). After reading through some of the
argumentation (Figure 2 (4)), D2 learns that although file sharing is possible in TCP/IP with the

Macs, it is not as easy as using EtherTalk. D2 decides that this is not a constraint she would like to

break, and asks some other network designers if there is a way to get the Indy to understand
EtherTalk. D2 learns that there is software the Indy can run to translate protocols, and she adds an

annotation to the Indy object to reflect this.

Submission to ASE Journal 8 Fischer

(1)

(2)

(3)

(4)

Figure 2: The Network Evolves

4. The Seeding, Evolutionary Growth, Reseeding (SER) Process Model
For DODEs

4.1 The SER Model

As illustrated in the previous sections design knowledge as embedded in DODEs will never be
complete because (1) design in real-world situations deals with complex, unique, uncertain,
conflicted, and unstable situations of practice [Rittel, 1984]; (2) design knowledge is tacit (i.e.,
competent practitioners know more than they can say) [Polanyi, 1966]; and (3) additional
knowledge is triggered and activated by actual use situations leading to breakdowns. Because these
breakdowns are experienced by the users and not by the developers, computational mechanisms
supporting end-user modifiability are required as an intrinsic part of a DODE.

We distinguish three intertwined levels of design activities and system developments; their
interactions form the essence of our seeding, evolutionary growth, reseeding model (see Figure 3):

Submission to ASE Journal 9 Fischer

• On the conceptual framework level (lowest band in the figure), the multifaceted, domain-
independent architecture constitutes a framework for building evolvable complex software
systems.

• When this architecture is instantiated for a particular domain (e.g., computer network design),
a DODE (representing an application family [Salasin & Shrobe, 1995]) is created on the domain
leve l (middle band in the figure).

• Individual artifacts (e.g., the computer network of CU Boulder) in the domain are developed by
exploiting the information contained in the DODE (highest band in the figure).

The SER model describes continual DODE evolution in terms of three levels (artifact, domain, and
software architecture), three phases (seeding, evolutionary growth, and reseeding), and three
groups of stakeholders (developers, domain designers, and clients). Figure 3 illustrates the
interplay of those three layers in the context of our SER model. Darker gray indicates knowledge
domains close to the computer, whereas the light band emphasizes closeness to the design work in a
domain. The figure illustrates the role of different professional groups in the evolutionary design:
environment developers (professional software designers) provide the domain-independent
framework, and instantiate it into a DODE in collaboration with the domain designers
(knowledgeable domain workers) who use the environment to design artifacts in collaboration with
clients. In the figure, the dashed arrow from the DODE level and Artifact level indicates that
artifacts are built using domain knowledge contained in the DODE (e.g., palette items, design
rationale, catalog items). The fat arrows (along the time dimension) indicate that artifacts are not
simply designed at one time, but instead evolve over time. The solid arrows from artifact to DODE
level indicate that the design and evolution of artifacts produces new domain knowledge, which is
stored in the design environment.

Domain
Designer

Environment
Developer

Client

Legend

build on
lower level

modify
lower level

Evolutionary Growth

ReSeeding

Artifact A

Artifact B

Multifaceted
Architecture

DODE

Artifact

Catalog

Specification

Argumentation
Illustrator

Catalog
Explorer

Catalog

ConstructionSpecification

Argumentation

Illustrator

Catalog

Explorer

Construction
Analyzer

Specification
Matcher

Seeding

le
ve

ls

time

The SER Model

Figure 3: The SER Model: A process model for the development and evolution of DODES

Submission to ASE Journal 10 Fischer

The evolution of complex systems in the context of the SER model will be described below (details
can be found in [Fischer et al., 1994]):

Seeding. A seed will be created through a participatory design process between environment
developers and domain designers (e.g., computer network professionals). It will evolve in response to
its use in new design projects because requirements fluctuate, change is ubiquitous, and design
knowledge is tacit. Postulating the objective of a seed (rather then a complete domain model or a
complete knowledge base) sets our approach apart from other approaches in knowledge-base
systems development and emphasizes evolution as the central design concept.

The seed incorporates domain-specific knowledge into the domain-independent multifaceted
architecture underlying the design environment. Seeding entails embedding as much knowledge as
possible into all components of the architecture. But any amount of design knowledge embedded in
DODEs will never be complete because (as argued before) real-world situations are complex, unique,
uncertain, conflicted, and unstable, and knowledge is tacit, implying that additional knowledge is
triggered and activated only by experiencing breakdowns in the context of specific use situations.
The seed should provide a strong information base for evolution by giving users something to which
to react.

Domain designers must participate in the seeding process because they have the expertise to
determine when a seed can support their work practice. Rather than expecting designers to
articulate precise and complete system requirements prior to seed building, we view seed building as
knowledge construction (in which knowledge structures and access methods are collaboratively
designed and built) rather than as knowledge acquisition (in which knowledge is transferred from
an expert to a knowledge engineer and finally expressed in formal rules and procedures) [Fischer et
al., 1996b]. New seed requirements are elicited by constructing and evaluating domain-oriented
knowledge structures.

The seeding process for the NetDE DODE was driven by observations of network design sessions,
prototypes of proposed system functionality, and discussions centered on the prototypes. Evaluation
of the NetDE seed indicated that designers need support for communication in the form of critiques,
reminders, and general comments. An important lesson we learned during the seeding of NetDE was
to base our design discussions and prototyping efforts on existing artifacts. Discussing the existing
computer science network at CU Boulder was an effective way to elicit domain knowledge because it
provided a concrete context that triggered domain designers' knowledge. We found high-level
discussions of general domain concepts to be much less effective than discussions focused on existing
domain artifacts. In addition, information to seed NetDE was acquired from existing databases
containing information about network devices, users, and the architectural layout of the building.

Evolutionary growth takes place as domain designers use the seeded environment to undertake
specific projects for clients. During these design efforts, new requirements may surface (in the
scenario: access to the Internet is needed), new components may come into existence (in the scenario: a
Silicon Graphics Indy computer will be used), and additional design knowledge not contained in the
seed may be articulated (in the scenario: annotation to the Indy object that software exists for
translating protocols). During the evolutionary growth phase, the environment developers are not
present, thus making end-user modification a necessity rather than a luxury (at least for small-scale
evolutionary changes). We have addressed this challenge with end-user modifiability [Eisenberg
& Fischer, 1994] and end-user programming [Nardi, 1993].

Reseeding, a deliberate effort of revision and coordination of information and functionality brings
the environment developers back in to collaborate with domain designers to organize, formalize,
and generalize knowledge added during the evolutionary growth phases. After a period of use, the
information space can be a jumble of annotations, partial designs, and discussions mixed in with the
original seed and any modifications performed by the domain designers. Organizational concerns
[Terveen et al., 1995] play a crucial role in this phase. For example, decisions have to be made as to

Submission to ASE Journal 11 Fischer

which of the extensions created in the context of specific design projects should be incorporated in
future versions of the generic design environment. Drastic and large-scale evolutionary changes occur
during the reseeding phase. Periodically, the growing information space must be structured,
generalized, and formalized to increases the computational support the system is able to provide to
designers [Shipman & McCall, 1994].

4.2 Illustrations of the SER Model with Examples from our Work

Collaboration and Communication Between Stakeholders as Facilitated by the SER Model. The
SER model emphasizes several collaboration and communication processes among stakeholders. At
the level of an individual artifact (e.g., a particular computer network evolving over many years),
we have emphasized the need for long-term, indirect collaboration [Fischer et al., 1992], which
takes place when an artifact functions and is repeatedly redesigned over a relatively long period of
time. Collaboration and communication between designers is not only asynchronous with respect to
time and place, but it is indirect in the sense that groups of designers may have no opportunity to
meet or communicate directly. This requires that the relevant design information such as design
rationale is associated and embedded in the artifact. Long-term projects are unpredictable with
regard to the team members and users who need to communicate. Support for collaboration and
communication allows team members to work separately — across substantial distances in space and
time — but alert them to the existence of potential interactions between their work and the work of
others.

Evolution at the Different Levels of the SER Model. The SER model can be used to illustrate
evolutionary processes within each of the three levels shown in Figure 3.

Evolution at the Conceptual Framework Level. Our work at this level started many years ago using
object-oriented environments to decompose complex systems into modules and take advantage of
inheritance among them. The lack of support for interaction between humans and problem domains
in general object-oriented environments led to the development of domain-oriented construction kits.
Although construction kits allowed us to create artifacts quickly, there was no support for
evaluating the quality of an artifact [Schön, 1983]. This led to the development of critics and
explanation components. Driven by our understanding of design as an argumentative process and the
need to support “reflection-in-action” by making argumentation serve design, we added an
argumentation component and a specification component to the framework. Accounting for the
requirement that environments need to be changed by their users led to the development of end-user
modification components, turning DODEs into programmable DODEs [Eisenberg & Fischer, 1994].

Evolution of the Domain. Computer network design has undergone dramatic changes over the last
ten years, including new network devices, new design guidelines, new simulation support, and new
design rationale. This evolution was driven by new needs and expectations of users as well as new
technology (either responding to these needs and expectations or creating them). It is obvious that a
DODE modeling this domain has to evolve in accordance with the evolution of the domain.

Evolution of Individual Artifacts. We have tracked the development of the computer networks
within CU Boulder and the Computer Science Department specifically — and they have served us
well to understand the processes associated with the evolution of an individual artifact. Analysis
of the difficulties in evolving these complex artifacts over many years has been an important source
for insight about our developments to capture design rationale and associate it with the artifact to
support indirect, long-term collaboration.

System-Building Efforts in Support of the SER Model. We are in the process of developing several
systems in support of the SER model, which are described briefly.

Group Interactive Memory Manager (GIMMe). GIMMe ([Fischer et al., 1996b] and http://www-
l3d.cs.colorado.edu/~stefanie/GM_Info.html) is a World-Wide Web-based group memory system

Submission to ASE Journal 12 Fischer

that is used for the capture and retrieval of design rationale [Moran & Carroll, 1996]. GIMMe
supports the SER model by assisting users to understand the design decisions that led to the current
artifact. It addresses the problem of how to capture design rationale, structure it for later reuse, and
make it available to the users by letting it emerge as a by-product of normal work. This is critical
because we know from empirical evidence that most design rationale systems have failed not
because of the inadequacy of a computational substrate, but because they did not pay enough
attention to the question, “who is the beneficiary and who has to do the work?” [Grudin, 1991].

Expectation Agents. Expectation Agents [Girgensohn et al., 1994] are computational structures that
support communication between end users and developers of an interactive system during actual use
situations [Henderson & Kyng, 1991]. They observe and analyze the reactions of end users to the
system by not only relying on a small subset of end users but by reaching the whole (or a large subset)
of the community of practice. If an Expectation Agent notices a discrepancy between actual system
use and the designer’s expectation, it will communicate the discrepancy to the designer. Expectation
Agents are general mechanisms that support the concept of design-in-use and are used within the
DODE architecture not only to notify designers when existing design expectations have not been met,
but also when the domain designer adds new functionality to the DODE. Expectation Agents
contribute to the SER model by supporting evolutionary growth based on discrepancies between
design decisions of the designers and actual work practices.

Visual AgenTalk. Visual AgenTalk (http://www.cs.colorado.edu/~l3d/systems/agentsheets/) is
an environment for developing domain-oriented end-user programming languages that are
tailorable to a particular domain, promote program comprehensibility, and provide end users with
control over powerful, multimodal interaction capabilities. It provides mechanisms for the creation
of commands so that domain-specific languages can be developed. Conditions, actions, and rules are
all graphical objects, and end users can try out their programs by dragging and dropping them onto
agents in a worksheet. The ability to test programs within the context of a particular agent
increases the end user’s ability to comprehend Visual AgenTalk programs. In addition, Visual
AgenTalk commands are powerful, providing users with access to a rich set of communication
modalities including mouse clicks, timers, sound input, and animation. Visual AgenTalk supports
the SER model by enabling end users to modify and program the behavior of active agents inside a
simulation environment. New agent types can be created, modified, and shared, promoting
evolutionary growth at the hands of end users.

Behavior Exchange. The Behavior Exchange [Repenning & Ambach, 1997] involves communities of
practice in the evolution of systems by supporting two-way interaction over the World-Wide Web.
It provides a forum in which developers can make their systems publicly available with the help
of the World-Wide Web, so that everybody not only can look at the systems available, but also can
use them to create new artifacts, and make these new artifacts available as well. Communication is
encouraged and triggered by interactive exhibits. The Behavior Exchange is a contribution to
change the World-Wide Web from an information distribution environment to a collaboration
environment. It supports the SER model as a seed-distribution and growth-capturing mechanism. It
enables developers to make their systems available to potential users. Those users create artifacts,
make them publicly available, evolve the available systems, and make the added/modified
functionality available to the distributed stakeholder community.

5. Assessment Of DODEs

5.1 Related Work

Submission to ASE Journal 13 Fischer

The Centrality of Evolution in the Design of Complex Systems. Evolution of complex systems is a
ubiquitous phenomenon. Many researchers have addressed the evolutionary character of successful
complex systems and of scientific endeavor. New paradigms are emerging in many fields, leading to
a replacement of earlier ideas that were based on mechanistic determinism toward new models of
change, indeterminance, and evolution. Knowledge in all fields should be open to critical
examination, and the advance of knowledge consists of the modification of earlier knowledge. Big-
step reductionism [Dawkins, 1987] cannot work as an explanation of mechanism; we can't explain a
complex thing as originating in a single step, but complex things evolve . This is true in the physical
domain, where, for example, artificial cities such as Brasilia are missing essential ingredients from
natural cities such as London or Paris. “Natural” cities gain essential ingredients through their
evolution — designers of “artificial” cities are unable to anticipate and create these ingredients. It
is equally true for software systems for the reasons argued in this paper. A challenge for the future
is to make software designers aware of essential concepts that originated and were explored in
evolution, such as ontogeny, phylogeny, and punctuated equilibrium. For example, the evolution of
individual artifacts (as illustrated in the upper level of Figure 3) can be described as the ontogenic
development of an individual artifact, whereas the middle band of Figure 3 shows the phylogenic
development of a generic species, namely a family of software systems as represented by a DODE.
The development of operating systems (characterized with the SER model) illustrates the notion of
a punctuated equilibrium, namely that they often go through lengthy periods where they remain
unchanged, followed by brief periods of rapid change (e.g., when a new major version is released).
Even though we are convinced that models from biology may be more relevant to future software
systems than models from mathematics, we also have to be cautious: to follow an evolutionary
approach in software design successfully does not imply that concepts from biological evolution
should be mimicked literally, but rather they need to be reinterpreted in the domain of software
design [Basalla, 1988] — an attempt which we undertake with the SER model.

Evolution is essential in software systems because the assumption of complete requirements at any
point in time is detrimental to the development of useful and usable software systems. Successful
software gets changed because it offers the possibility to evolve. Lee [Lee, 1992] describes many
convincing examples (including the failure of the Aegis system in the Persian Gulf) that design
approaches based on the assumption of complete and correct requirements do not correspond to the
realities of this world. Curtis and colleagues [Curtis et al., 1988] identified in a large-scale
empirical investigation that fluctuating and conflicting requirements are critical bottlenecks in
software production and quality and that a large percent of the lifecycle costs of a complex system is
absorbed and needs to be dedicated to enhancements. Much of this cost is due to the fact that a
considerable amount of essential information (such as design rationale [Moran & Carroll, 1996]) is
lost during development and must be reconstructed by the designers who maintain and evolve the
system. Development, maintenance and enhancement have to merge into cycles of an evolutionary
process, making capturing of design rationale a necessity rather than a luxury.

Understanding Pitfalls Associated with Evolutionary Design. The Oregon Experiment [Alexander et
al., 1975] (a housing experiment at the University of Oregon instantiating the concept of end user-
driven evolution) serves as an interesting case study that end user-driven evolution is no guarantee
for success. The analysis of its unsustainability indicated two major reasons: (1) there was a lack of
continuity over time, and (2) professional developers and users did not collaborate, so there was a
lack of synergy. These findings led us in part to postulate the need for a reseeding phase (making
evolutionary development more predictable), in which developers and users engage in intense
collaborations. With design rationale captured, communication enhanced, and end user
modifiability supported, developers have a rich source of information to evolve the system in the
way users really need it.

Comparison with other Domain-Oriented Approaches. DODEs transcend many existing design
methodologies: (1) they reconceptualize domain modeling [Prieto-Diaz & Arango, 1991] with
domain construction, and knowledge acquisition with knowledge construction [Fischer et al., 1996b];
(2) they transcend current object-oriented approaches by providing new support mechanisms for

Submission to ASE Journal 14 Fischer

extensibility, reusability and evolvability [Fischer et al., 1995]; (3) they have contributed to
paradigm shifts from the “specify-build-then-maintain” cycle to one of continuous evolution, and
from developing a single application to designing domain-oriented application families; and (4)
they force us to abandon closed systems in favor of open, living systems, which evolve over time and
need to be sustained on an ongoing basis.

Our work in DODEs will be more tightly integrated with the theory of domain knowledge as
developed by Sutcliffe and his colleagues [Maiden & Sutcliffe, 1992; Sutcliffe, 1997], who have
explored the relevance of generic components of domains that can be reused in a variety of different
domain. For example, many of the DODEs we have built over the last ten years [Fischer, 1994]
capture knowledge about spatial relationships that could be shared among all of them. The two
approaches complement each other: DODEs can give (1) more detailed advice for learning for
specific problems and (2) generic components support for more widespread reuse of requirements and
design knowledge.

WWW Support for the SER Model. Advances in networking have created new opportunities for
communication among members of widely distributed communities. Whereas in the past, complex
systems have been created by a very large effort by a small group of people, environments now
coming into existence promise that complex systems (by building on a seed) can be evolved by small
contributions of a (very) large community of practice. We can envision a world that encourages
people to become active producers of knowledge. Examples of first steps toward creating an economy
of knowledge based on community participation is beginning to take form in the software design
community. Due to the contributions of developers around the world, the Java programming
community has used community repositories of knowledge to produce incredible technical advances
in an extremely short period of time. Gamelan (http://www.gamelan.com) was one of the first and
largest of the community repositories of knowledge. The primary users of Gamelan are Java
developers looking for information about what other people are doing with Java. Based on the large
number of developers who contribute to the Gamelan repository and the number of people who
search for information in Gamelan, it appears that the Java community has taken a great deal of
interest in using community repositories to locate information.

The Educational Object Economy (http://trp.research.apple.com/EdEconomy) provides an example
that is more domain-oriented than Gamelan by providing educational support that is lacking in
more global systems such as Gamelan. The Educational Object Economy is currently realized as a
collection of Java objects (mostly completed applets) designed specifically for education. The target
users of the Educational Object Economy are teachers wishing to use new interactive technology and
developers interested in producing educational software.

5.2 Assessment of our Approach

Evolution in DODEs. Our experience with DODEs clearly indicates that DODEs themselves and
artifacts created with them need to evolve. The ability of a DODE to co-evolve with the artifacts
created within it makes the DODE architecture the ideal candidate for creating evolvable ap-
plication families. We believe that reseeding is critical to sustain evolutionary development. With
design rationale captured, communication enhanced, and end-user modification available,
developers have a rich source of information to evolve the system in the way users really need it to
be evolved.

Our research provides theoretical and empirical evidence that requirements for such systems cannot
be completely specified before system development occurs. Our experience can be summarized in the
following principles:

• Software systems must evolve – they cannot be completely designed prior to use. Design is a
process that intertwines problem solving and problem framing. Software users and designers

Submission to ASE Journal 15 Fischer

will not fully determine a system’s desired functionality until that system is put to use. Systems
must be open enough to allow “emergent behavior.”

• Software systems must evolve at the hands of the users . End users experience a system’s
deficiencies; subsequently, they have to play an important role in driving its evolution.
Software systems need to contain mechanisms that allow end-user modification of system
functionality.

• Software systems must be designed for evolution. Through our previous research in software
design, we have discovered that systems need to be designed a priori for evolution. Systems must
be underdesigned to support emergent new ideas. Software architectures need to be developed for
software that is designed to evolve.

End-User Modification and Programming for Communities: Evolution at the Hands of Users.
Because end-users experience breakdowns and insufficiencies of a DODE in their work, they should
be able to report, react to, and resolve those problems. At the core of our approach to evolutionary
design lies the ability of end-users (in our case, domain designers) to make significant changes to
system functionality and to share those modifications within a community of designers. Mechanisms
for end-user modification and programming are, therefore, a cornerstone of evolvable systems.
DODEs make end-user modifications feasible because they support interaction at the domain level.
We do not assume that all domain designers will be willing or interested in making system changes,
but within local communities of practice there often exist local developers and power users [Nardi,
1993] who are interested in and capable of performing these tasks.

Assessment of the Multifaceted Architecture. The multifaceted architecture derives its essential
value from the integration of its components. Used individually, the components are unable to
achieve their full potential. Used in combination, each component augments the values of the
others, forming a synergistic whole to support evolutionary design. At each stage in the design
process, the partial design embedded in the design environment serves as a stimulus to users, focuses
their attention, and enriches the “back-talk” of a design situation [Schön, 1983] by signaling
breakdowns and by making task-relevant argumentation and catalog examples available.

Assessment of the SER Model. The SER model is motivated by how large software systems, such as
Emacs, Symbolics' Genera, Unix, and the X Window System, have evolved over time. In such
systems, users develop new techniques and extend the functionality of the system to solve problems
that were not anticipated by the system's authors. New releases of the system often incorporate
ideas and code produced by users. In the same way that these software systems are extensible by
programmers who use them, DODEs need to be extended by domain designers who are neither
interested in nor trained in the (low-level) details of computational environments. The SER model
explores interesting new ground between the two extremes of “put-all-the-knowledge-in-at-the-
beginning” and “just-provide-an-empty-framework.” Designers are more interested in their design
task at hand than in maintaining a knowledge base. At the same time, important knowledge is
produced during daily design activities that should be captured. Rather than expect designers to
spend extra time and effort to maintain the knowledge base as they design, we provide tools to help
designers record information quickly and without regard for how the information should be
integrated with the seed. Knowledge-base maintenance is periodically performed during the
reseeding phases by environment developers and domain designers in a collaborative activity.

Current Limitation and Research Issues for DODEs. There are numerous reasons that the DODE
approach will not be readily accepted (for some arguments see the commentaries in [Fischer,
1994]).Software designers often feel that they need to create “universal solutions” that make
everyone happy. They have difficulty sacrificing generality for increased domain-specific support.
DODEs replace the clean and controllable waterfall model with a much more interactive situation
in which control is distributed among all stakeholders. Several of our DODEs have been used in real
work environments [Girgensohn et al., 1995; Sumner, 1995] and their impact, strengths and
weaknesses have been carefully analyzed [Sumner et al., 1997].

Submission to ASE Journal 16 Fischer

Creating seeds for a variety of different domains will require substantial resources and the
willingness of people from different disciplines to collaborate. In order to make the creation of a
large number of domain-specific environments economically feasible, powerful substrates are needed
(such as Agentsheets, Expectation Agents, Visual Agentalk, Behavior Exchange, and Gimme,
mentioned earlier). The necessity of investing in long-term benefits must be taken seriously.
Designers who do the work (e.g., provide design rationale) without directly benefiting from their
efforts must be rewarded [Grudin, 1991]. Evolving seeds over time will require more involvement of
users, and a willingness to acquire additional and different qualifications, as well as different
organizational commitments [Nardi, 1993].

As high-functionality systems, DODEs create a tool mastery burden. Our experience has shown that
the costs of learning a programming language are modest compared to those of learning a full-
fledged design environment. New tools, such as critics, and support mechanisms for learning on
demand are needed to address these problems.

6. Conclusions

The appeal of the DODE approach lies in its compatibility with an emerging methodology for
design, views of the future as articulated by practicing software engineering experts, findings of
empirical studies, and the integration of many recent efforts to tackle specific issues in software
design (e.g., recording design rationale, supporting case-based reasoning, creating artifact
memories). We are further encouraged by the excitement and widespread interest in DODEs and the
numerous prototypes being constructed, used, and evaluated in the last few years.

Acknowledgments. The author would like to thank the members of the Center for LifeLong Learning
and Design at the University of Colorado who have made major contributions to the conceptual
framework and systems described in this paper. Jim Ambach and Ernesto Arias collaborated with
the author to establish parts of the conceptual framework and to develop the scenario. The author
also would like to thank the colleagues who provided important feedback and commentaries to his
earlier article in Automated Software Engineering, 1(2). These commentaries served as an
important input for the future development of our work. The work was further stimulated by many
discussions with Alistair Sutcliffe over the last two years.

The research was supported by (1) the National Science Foundation, Grants REC-9631396 and IRI-
9711951; (2) NYNEX Science and Technology Center, White Plains; (3) Software Research
Associates, Tokyo, Japan; (4) PFU, Tokyo, Japan; and (5) Daimler-Benz Research, Ulm, Germany.

References

Alexander, C., Silverstein, M., Angel, S., Ishikawa, S., & Abrams, D. (1975) The Oregon
Experiment, Oxford University Press, New York, NY.

Basalla, G. (1988) The Evolution of Technology, Cambridge University Press, New York.

Curtis, B., Krasner, H., & Iscoe, N. (1988) "A Field Study of the Software Design Process for Large
Systems," Communications of the ACM, 31(11), pp. 1268-1287.

Dawkins, R. (1987) The Blind Watchmaker , W.W. Norton and Company, New York - London.

Submission to ASE Journal 17 Fischer

Eisenberg, M., Fischer, G. (1994) "Programmable Design Environments: Integrating End-User
Programming with Domain-Oriented Assistance," Human Factors in Computing Systems,
CHI'94, pp. 431-437.

Fischer, G. (1994) "Domain-Oriented Design Environments," Automated Software Engineering, 1(2),
pp. 177-203.

Fischer, G., Grudin, J., Lemke, A. C., McCall, R., Ostwald, J., Reeves, B. N., & Shipman, F. (1992)
"Supporting Indirect, Collaborative Design with Integrated Knowledge-Based Design
Environments," Human Computer Interaction, Special Issue on Computer Supported Cooperative
Work , 7(3), pp. 281-314.

Fischer, G., Lemke, A. C., McCall, R., & Morch, A. (1996a) "Making Argumentation Serve Design,"
In T. Moran & J. Carrol (eds.), Design Rationale: Concepts, Techniques, and Use, Lawrence
Erlbaum and Associates, Mahwah, NJ, pp. 267-293.

Fischer, G., Lindstaedt, S., Ostwald, J., Schneider, K., & Smith, J. (1996b) "Informing System Design
Through Organizational Learning," International Conference on Learning Sciences (ICLS'96),
pp. 52-59.

Fischer, G., McCall, R., Ostwald, J., Reeves, B., & Shipman, F. (1994) "Seeding, Evolutionary
Growth and Reseeding: Supporting Incremental Development of Design Environments," Human
Factors in Computing Systems (CHI'94), pp. 292-298.

Fischer, G., Redmiles, D., Williams, L., Puhr, G., Aoki, A., & Nakakoji, K. (1995) "Beyond Object-
Oriented Development: Where Current Object-Oriented Approaches Fall Short," Human-
Computer Interaction, 10(1), pp. 79-119.

Gamma, E., Johnson, R., Helm, R., & Vlissides, J. (1994) Design Patterns - Elements of Reusable
Object-Oriented Systems, Addison-Wesley,

Garlan, D., Shaw, M. (1994) An Introduction to Software Architecture , (Technical Report No.
CMU/SEI-94-TR-21). Software Engineering Institute.

Girgensohn, A., Redmiles, D., & Shipman, F. (1994) "Agent-Based Support for Communication
between Developers and Users in Software Design," In Proceedings of the 9th Annual
Knowledge-Based Software Engineering (KBSE-94) Conference (Monterey, CA), IEEE Computer
Society Press, Los Alamitos, CA, pp. 22-29.

Girgensohn, A., Zimmerman, B., Lee, A., Burns, B., & Atwood, M. (1995) "Dyanmic Forms: An
Enhanced Interaction Abstraction Based on Forms," Fifth International Conference on Human-
Computer Interaction (Interact '95), pp. 362-367.

Greenbaum, J., Kyng, M. (1991) Design at Work: Cooperative Design of Computer Systems, Lawrence
Erlbaum Associates, Inc., Hillsdale, NJ.

Grudin, J. (1991) "Interactive Systems: Bridging the Gaps Between Developers and Users,"
Computer, 24(4), pp. 59-69.

Henderson, A., Kyng, M. (1991) "There's No Place Like Home: Continuing Design in Use," In J.
Greenbaum & M. Kyng (eds.), Design at Work: Cooperative Design of Computer Systems,
Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, pp. 219-240.

Lave, J. (1991) "Situated Learning in Communities of Practice," In L. Resnick, J. Levine, & S. Teasley
(eds.), Perspectives on Socially Shared Cognition, American Psychological Association,
Washington, DC, pp. 63-82.

Lee, L. (1992) The Day The Phones Stopped, Donald I. Fine, Inc., New York.

Maiden, N. A. M., Sutcliffe, A. G. (1992) "Exploiting Reusable Specifications through Analogy,"
Communications of the ACM, 35(4), pp. 55-64.

Moran, T. P., Carroll, J. M. (1996) Design Rationale: Concepts, Techniques, and Use, Lawrence
Erlbaum Associates, Inc., Hillsdale, NJ.

Submission to ASE Journal 18 Fischer

Nardi, B. A. (1993) A Small Matter of Programming, The MIT Press, Cambridge, MA.

Polanyi, M. (1966) The Tacit Dimension, Doubleday, Garden City, NY.

Prieto-Diaz, R., Arango, G. (1991) Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, Los Alamitos, CA.

Repenning, A., Ambach, J. (1997) "The Agentsheets Behavior Exchange: Supporting Social
Behavior Processing," Computer-Human Interaction (CHI '97), pp. 26-27 (Extended Abstracts).

Rittel, H. (1984) "Second-Generation Design Methods," In N. Cross (eds.), Developments in Design
Methodology, John Wiley & Sons, New York, pp. 317-327.

Salasin, J., Shrobe, H. (1995) "Evolutionary Design of Complex Software (EDCS)," Software
Engineering Notes, 20(5), pp. 18-22.

Schön, D. A. (1983) The Reflective Practitioner: How Professionals Think in Action, Basic Books,
New York.

Shipman, F., McCall, R. (1994) "Supporting Knowledge-Base Evolution with Incremental
Formalization," In Human Factors in Computing Systems, INTERCHI'94 Conference
Proceedings, pp. 285-291.

Simon, H. A. (1981) The Sciences of the Artificial, The MIT Press, Cambridge, MA.

Sumner, T. (1995) Designers and Their Tools: Computer Support for Domain Construction, Ph.D.,
Department of Computer Science, University of Colorado at Boulder.

Sumner, T., Bonnardel, N., & Kallak, B. H. (1997) "The Cognitive Ergonomics of Knowledge-Based
Design Support Systems," Human Factors in Computing Systems, CHI'97, pp. 83-90.

Sutcliffe, A. (1997) "Using Domain Knowledge in Interactive System Design," In (submitted for
publication):

Terveen, L. G., Selfridge, P. G., & Long, D. M. (1995) "Living Design Memory: Framework,
Implementation, Lessons Learned," Human-Computer Interaction, 10, pp. 1-37.

