
e Pergamon

Compu!. & Graphics, Vol. 21, No. I, pp. 79-87, 1997
({) 1997 Elsevier Science Ltd, All rights reserved

Printed in Great Britain
00978493/97 SI7()()+O,OQ

PH: SOO97-8493(96)OOO72-6
Technical Section

ADDI: A TOOL FOR AUTOMATING THE DESIGN OF
VISUAL INTERFACES

M. G. EL-SAID,I G. FISCHER,2 S. A. GAMALEL-DIN 1 and M. ZAKIlt

ISystems and Computer Engineering Department, AI-Azhar University, Nasr City, Egypt
e-mail: azhar@frcu.eun.eg

2Computer Science Department, University of Colorado at Boulder, Boulder, Colorado,
U.S,A.

Abstract-Visual interfaces are often poorly designed because the application developers lack graphics
design knowledge. Designing effective interfaces requires great effort, especially when many types of
graphical objects and relations are involved. In addition, many domain applications require interactive
and dynamic graphical interfaces. Existing automatic graphical presentation systems focus on interfaces
that convey only static information. Current user interface management systems that facilitate the process
of creating interfaces for applications provide no assistance to help developers design the visualization
features of interfaces. The aim of this research is to contribute to the design process of interfaces in
general and dynamic ones in particular. A model-based framework and prototype tool called ADDI
(Automatic Design of Dynamic Interfaces) has been created to help developers design domain-specific
visual interfaces. ADDI combines a specification application with various visualization knowledge-base
components to automatically generate a visual interface. Therefore, graphical user interface designers, by
using ADD I, can select visual properties and hence be able to rapidly and correctly convey information
visually according to the task specification in a domain application. Accordingly, high quality and
consistent interfaces are generated even when the application developers lack the necessary graphics
expertise. ADDI supports visual interface designers in four ways. The first is automatically determining
the visual appearance of the interface objects from the Application Model specification. The second is
computing the sizes and positions of the visual objects. The third is allowing developers to specify their
preferences of designing visual objects. The fourth is aiding them in creating specific interactive
presentation functions for end-users to interact with the interface. (0 1997 Elsevier Science Ltd

I. INTRODUCTION

Designing effective graphical interfaces to convey
information remains a very time consuming and
tedious task. The design process becomes even more
complex if it is necessary to convey heterogeneous
and dynamic infonnation via the graphical objects of
the interface. Heterogeneous infonnation implies
that graphical objects must be designed to convey
more than one type of information in the same
interface, for example, numeric and connection types
of information. A dynamic graphical object is an
object whose appearance may change over time to
reflect changes in the domain object's attribute
values [I]. The interfaces of many simulation and
visualization applications need such graphical objects
to display dynamic and heterogeneous information
[2].

Two types of systems can be used to assist
application developers design graphical interfaces.
One type is interface builders, which cover both
Graphical User Interface (GUI) toolkits and User
Interface Management Systems (UIMSs). Most of
these interface builders [3] supply a set of widgets

t Author for correspondence,

79

(objects) to help developers design windows, e.g.
scroll bars, menus, and buttons. No support is given
to designing the appearance of domain-specific
objects that are used by end-users to perfonn specific
activities in their work. These objects are constructed
according to their properties in the application data
base. The menu in Fig. I, for example, could be
designed using such tools, but no support is given for
the work area of the window. Although some
interface tools (e.g. [4, 5]) support the primitive
components that can be used to design dynamic
visual interfaces (e.g. rectangle, circle, shading) the
process of mapping the domain objects and their
properties into corresponding visual properties in the
interface is left to the developers, Developers may
therefore select poor properties that yield ambiguous
interfaces if they do not follow some graphics
guidelines [6].

The second type of system is automatic presenta­
tion systems [7--10], which use graphics knowledge to
automatically generate visual interfaces. These tools
are able to assess and design only static presenta­
tions, not interfaces that are dynamic and interactive.
As interface builders, they are not able to design the
graphical objects in the work area of Fig. I. For
instance, the box labeled "CISCO" in Fig. I
represents a node in a local area network (LAN)

80 M. G. EI-Said, G. Fischer, S. A. Gamalel-Din and M. Zaki

UOI : Computer Networtc DeslgA

I fiND-RESOURCE I I CREfITE-NlW-COMPONENT I I CONNECTION I

OT CR

, ..

CISCO

DUMPSTER

Fig. I. A user interface used in a local area network application.

and is attached to a line that represents the amount
of traffic flow that passes through the node.

In summary, neither type of system is able to
support the design of dynamic visual interfaces for
domains such as LANs. Designing a visual interface
such as that shown in Fig. I entails two main tasks.
The first is to determine the appearance of the
graphical objects that make up the interface as well
as how those objects would respond dynamically to
changes in the state of the application object. The
second task is to attach the semantic (behavior) to
interface objects so that their dynamic characteristics
could be described. To achieve the second task we
must describe the computational and behavioral
relations between graphical objects in terms of their
domain's semantics.

A system called Automatic Design of Dynamic
Interfaces (ADDI) has been created to address
shortcomings in the types of systems described
above. ADDI generates visual interfaces from a data
model in which the domain is formally specified, and
from design principles that are kept in the system's
knowledge base. The notion of event, which is part
of the application model, has been introduced to
describe the ways that end-users will interact with the
interfaces produced. This will allow one to auto­
matically produce effective visual interfaces that are
both dynamic and heterogeneous.

2. CONCEPTUAL FRAMEWORK

Automating the process of generating visual
interfaces from the Application ModeJ specification
can be achieved by building bridges that fill the gap
between the interface and that specification. The

framework developed in this research bridges this
gap through two main conceptual parts, the Appli­
cation Model and the Presentation Manager (PM).
The Application Model part covers the Data Model
and Task Specification Component. Figure 2 illus­
trates these components along with the roles of
ADDI, developers and end-users. Developers define
the Data Model of a domain, which covers applica­
tion object hierarchy, object properties, and events.
In most applications, neither all application objects
nor their properties are required to be displayed at
once in the interface. The role of the Task Specifica­
tion Component is to let end-users define a subset of
Data Model entities that must be visualized to serve
the task at hand. In other words, it simply
determines which properties and objects as well as
events in the Data Model are required to be
visualized in the interface. Application specifications
are internally represented as predicates called Appli­
cation Model Entities (AMEs).

The PM visually presents the application elements
selected by the Task Specification Component
considering visualization preference determined by
a Preferences Component. The PM consists of five
components: Preference Component, Data Prepro­
cessor, Visual Planner, Layout Manager, and Picture
Generator. The Data Preprocessor paves the way to
the activities that are performed by other parts of the
PM by deducing both the comparison logical
relations among a group of application properties
and their appearance behavior (i.e. whether an
application property has a dynamic or static
behavior).

Based on that mapping result the Visual Planner

Automating the design of visual interfaces 81

Fig. 2. Overview of ADD I architecture.

(VP) detennines other graphical specification such as
the spatial relation between these primitives. Since
the graphical specification is different than applica­
tion specification, a different representation than
AMEs is needed. The Visual Entities (VEnts) which
are internally represented as frames are used for that
purpose. The slots of these entities which are
manipUlated by the different parts of the PM capture
all the graphical specification in the interface that is
used to present an application specification.

The output of VP is fed directly into the Layout
Manager, which computes the positions of the
interface graphical objects that are captured as slots
of the VEnts. The Layout Manager satisfies the
spatial arrangement constraints of the interface
objects, such as connection and containment. At
this point, the visual features and the positions of
interface objects are detennined, and the Layout
Manager forwards this information into the Picture
Generator to instantiate these specifications into
actual images on the screen. This generator is a
module that accepts the high-level graphical specifi­
cation described in VEnts and generates images that
match precisely the contents of VEnts.

Having been presented with the required infonna­
tion detennined by the Task Specification Compo­
nent, the end-user would be able to manipUlate
interface objects through Events. These events, which
are created by application developers, are used to
interact with the underlying application. Their
semantic feedback is visualized on the interface,
creating a dynamic behavior. The programming
effort of events is divided into two parts. One part
is to prepare the infonnation to be presented in the
interface and the other part is concerned with the
interface visualization issues. Developers are sup-

ported in programming the second part by delegating
the visualization issues of the interface to the PM.

It is almost impossible to totally automate the
design of visual user interfaces that are suitable for
all application domains, so the Preferences Compo­
nent is used by developers to override automatic
decisions. Via this component, developers can
change any visual primitive or spatial layout relation
that is used to present infonnation in the interface.
The developer can go back and forth between the
Preferences Component and the generation of an
interface until a satisfactory presentation is achieved.

Through a detailed scenario, the following sections
describe the roles of the different elements of the
system's architecture and knowledge representation
as shown in Fig. 2. This scenario illustrates the roles
of the end-users, the application developers, ADDI
subsystem modules, and the knowledge bases.

3. EXAMPLE SCENARIO: LOCAL AREA NETWORKS (LANS)

Before we demonstrate how the different compo­
nents of ADDI work to achieve the overall objective
of the interface visualization, an example has been
introduced here to explain ADDI's components.
This example describes how to create visual inter­
faces for a LAN design environment. The example
shows how network administrators benefit from
visual interfaces to enhance their ability to simulate
modifications to networks, such as adding new
components (e.g. workstations) into the network or
reassigning the roles of servers and clients, thus
enabling them to explore design alternatives. An
important goal is to observe changes in traffic flow
and server dependencies, which are dynamic III

nature to get a better design alternative.

82 M. G. EI-Said, G. Fischer, S. A. Gamalel-Din and M. Zaki

Table \. Task properties

Object Type

Subnet
Network node

Object Scope

CR,OT
CISCO, DUMPSTER

The task of adding a new component to a subnet
in the network depends on the component's physical
location and its technical specification. Network
administrators may use a form-based interface in
ADDI to specify the task by which the system
determines an initial interface. End-users (network
administrators) specify the task by entering the
object types followed by the objects' names and
eventually the required properties for these objects
(see Table I). Object class types, which represent the
network components in this application, are subnet,
network node, and resource. Network administrators
may select from more than twenty different proper­
ties to specify their tasks. Ultimately, this task
specification will cause ADDI to generate the inter­
face shown in Fig. I.

4. THE ARCHITECfURE OF ADD!

4.1. Application model
The application model, which consists of a data

model and interaction events, describes the computa­
tional and behavioral relations of the domain objects
and their properties (attributes). Figure 3 shows the
menu used by an application developer to define a
data model for the LAN domain. The radio buttons
beside each entry declare the options available to the
developer. Each network property required to be
displayed in the interface has to be defined through
the entries in this menu. ADDI compiles these entries
into domain entities and keeps them in the knowl­
edge base. According to the specification of the task,
the system extracts the corresponding DEnts and
sends them to the VP to be presented visually. Figure
3 shows a part of the corresponding domain entities
for the information specified in Table I.

The data model which is used to define an
application property is depicted in Fig. 4. Its entities,
which are not application specific, must be specified
for each application property that might appear in

Application Property

Traffic flow, load limit, name, connection
Traffic flow, name, number-of-services, number-or-users

the interface. A Visual Knowledge Base is developed
to support different possible combinations of these
entities. Each combination defines different charac­
teristics of a property that constrain its appearance
in the interface.

4.2. Presentation Manager
The structure of the PM is designed so that it

automates the construction of the interface from a
high-level application description to that kept in the
Application Model. Each component performs
different activities required to develop the interface.
Figure 5 shows how the representation of the initial
application specification, represented as AMEs, is
transformed by ADDI's components until the inter­
face is generated.

The input of the PM comes from the Task
Specification Component and contains the instances'
names of each application object class, the applica­
tion properties, and the required events for that task.
These specifications are cross-referenced to their
Application Model description, which is represented
as AMEs by the Data Preprocessor (DP). The DP
paves the way for the other PM's components by
preparing some data characteristics of that applica­
tion specification, which helps these components
perform their activities. These characteristics com­
pose the logical comparison relations and the
behavioral appearance of each application property.
Finally, the DP sorts the properties according to a
priority scheme.

The VP sends the application properties to the
Visual Knowledge Base (VKB) for mapping them
into visual primitives. The result of the VKB is saved
in 'mapping-predicates' which contain each applica­
tion element and its corresponding visual primitive(s)
in the interface. The VP instantiates a new structure,
called the Visual Entities, to capture the detail
implementation of the interface. The VP performs

RDDI : Doto Model

Rttrlbute Nome: traffic now Object: sub net

Data Type: @ Numerlcol 0 Nominal 0 Ordinal

Rehlll/ior-Type: 0 StoUe 0 Dynamic

Unit: pactet per second Range: (0 .. 6)
Min: 0 MaH: 6

Fig. 3. Part of data model definition for a LAN domain.

Automating the design of visual interfaces 83

ApplicatioD Property

app-<>bj

number of obj
Cardinality

Value
Origin

~
II! function

/"\ ~-'--' I Appearance

set.o~~ lseliSC<JP" /\n~a_ 7\ Unit Data-Type ~~

$!alic dynamic
high low • nume~leanA · A pI\rojection

.
single enumerated .

local distn1>uted

derived driv

Fig. 4. The data model entities used to define application properties.

various activities to fill out the structure of the
entities. The key activities are the computation of
graphical values for each selected visual property and
the determination of the size of interface objects
based on their graphical values.

Based on the sizes of interface objects, the Layout
Manager computes the positions of interface objects
using two different layout algorithms. The Render
Component generates the physical images on the
screen based on the values stored in the Visual
Entities.

The Preference Component is used to override

automatic decisions that violate graphical conven­
tions specific for an application domain and to
design more effective visual presentation. The devel­
oper can go back and forth between the Preferences
Component and the generation of an interface until a
satisfactory presentation is achieved.

4.3. The Visual Knowledge Base
The design principles used by ADDl to construct

visual interfaces are formalized in what is called the
Visual Knowledge Base (VKB).

Figure 6 shows the relationship between the Visual

preference specification

VisuAl User interfa

Fig. 5. The PM components and the knowledge they manipulate.

84 M. G. El-Said, G. Fischer, S. A. Gam aiel-Din and M. Zaki

J Visual Planner I
I J

1
Application T Properties Preferences

T
Visual Knowledge Base

Visual Rules & Predicates
Primitives

Shape! Selection Rules
Visual Pr~rties Combination Rules
Graphical &lues Rermement Rules

Fig. 6. The relationship of the VKB with the Visual Planner.

Planner and the VKB to map application properties
into visual primitives. The Visual Planner sends a
group of properties into the VKB. Based on their
Application Model specification, the VKB maps
them into visual primitives. The knowledge of the
VKB is represented through two components in­
dicated in the figure to achieve this mapping. The
first component contains the visual primitives, which
are the elementary units used to compose the visual
interface. The second component contains the rules
used to synthesize the visual appearance of the
interface objects. The synthesis process is encoded
via three different sets of rules by which the
primitives are selected, combined, and refined. The
result of the mapping process goes back into the
Visual Planner to instantiate visual entities for the
mapped application properties.

4.4. Design principles used to create ADDf's VKB
Based on the capability of the human visual

system, the following factors summarize the princi­
ples that are taken into consideration by ADDI for
guiding the design of dynamic visual interfaces. The
rest of this section describes how these factors are
addressed by the VKB rules.

• Locality factor [II]: Larkin and Simon demon­
strated that the satisfaction of the locality principle
would allow viewers to comprehend visually
presented information more rapidly and accu­
rately. This principle aims at reducing the eye
search in the interface by combining visual
primitives to present several related application
properties in one graphical object. For instance, in
the computer network interface of Fig. 7 (left), a
box presents a network node, while the filling
marks encode information about the resources a
node has. The eye, reading this figure, can infer all

infomlation by looking at only one spatial
location in the interface. On the other hand, Fig.
7 (right), ignoring the locality principle, presents
the available resources in a table which has a
different spatial location than the boxes; hence, the
eye must search between different locations in the
presentation to read the needed information.

• Expressiveness and effectiveness criteria [12, 13]: If
more than one visual primitive can convey the
same information, the role of effectiveness criteria
is to select the most rapid and accurate one to
convey the information. The ADDI's VKB has its
own expressiveness criteria by which it selects
visual primitives that are capable of clearly
expressing desired information. To illustrate, con­
sider the example of Fig. 8. The traffic flow of a
network node may be close or equal to zero under
certain circumstances, such as a server breakdown.
If the height of a box were to be used to represent
traffic flow, the box's border could vanish as in
Fig. 8(a). Therefore, the presentation in this figure
does not satisfy the expressiveness criteria. Ob­
servations indicated that network administrators
had problems in interpreting the shape (box) in
that figure as well as its relationship with the
circles. The containment relationship is lost, in this
example, since the height vanishes. Two possible
solutions here: either the contents of the box or the
height of the box is replaced by different visual
primitives. Since it is hard to graphically present
visual property which uses the area of a shape with
different properties, the VKB adapts the second
solution. It uses the composite shape technique to
augment a new shape so that its dynamic change
does not affect the expressiveness of the interface
object. The presentation of Fig. 8(b) maintains the
box shape and the containment relationship and,
hence, satisfying the expressiveness criteria.

•

Automating the design of visual interfaces 85

ANCHOR
ANCHOR

D
s = ANCHO

X-WIodoM Y .. Yea

X_ lNX SWIf> UNIX Y .. Yea e _ @

SWAP Y .. NO

Fig. 7. Two different presentations of the same information.

• Logical operations: Ignoring the logical relation of
application properties would lead to uncompleted
mapping between the properties and visual primi­
tives. Not only should each application property
be mapped into visual primitive(s) but their logical
relations should be considered during the mapping
process .

• Dynamic behavior: During the selection of visual
primitives the dynamic behavior of the application
properties is assessed. Based on this assessment,
those that can more effectively display the dynamic
appearance of the properties are selected.

5. THE VISUALIZATION SYNTHESIZING PROCESS

The synthesis process which embodies the above
described design principles is broken into three
processes to select, combine, and refine the visual
primitives. These processes shown in Fig. 9 are
captured as rules of the VKB. The selection rules are
responsible for selecting a visual property and its
shape for an application property. The combination
rules define the constraints that must be satisfied to
accept a visual property and a shape which are
chosen by the selection rules. The refinement rules
assess the impact of the dynamic behavior on the
interface objects and enhance the aesthetic features
of the interface.

asco

•• O C'\.' .. ' V

--""CI ====:::::1

5.1. The selection rules
The selection rules are used to achieve the

following steps in the synthesis process: (i) select
shape(s) for each application object; (ii) select a
visual property according to a selected shape and
determine its type, the allowable graphical values,
and the scope; (iii) prevent the selection of a visual
primitive that is mapped to another application
property. The VKB checks the preferences associated
with each visual primitive prior to apply the selection
rules to select the primitives. These preferences are
set by either application developers, through the
Preference Component, or the rules of the perceptual
organization features.

Each application object is mapped into one or
more shapes. If the application object of the property
is not assigned to a graphical shape, a shape IS

randomly selected from the simple Jist of shapes.

5.2. The combination rules
Prior to assigning the visual pnmltIves that are

generated by the selection rules, the effect of
combining them into previously selected primitives
has to be scrutinized. In other words, these generated
primitives work as input to the constraints which
accepts or rejects them. These constraints that are
used to prevent any ambiguity might arise due to an
amalgamation of visual primitives. The constraints

asco

•• 00

Fig. 8. The impact of dynamic behavior.

86 M. G. EI-Said, G. Fischer, S. A. Gamalel-Din and M. Zaki

Data Type of the application properties

length of cardinality set & the maximum
graphical values of visual properties

Shape compatibility with the visual prol[Jertiel

Visualization constraints : check the yield
combining more than one visual property

Logical relation constraints (LRCs): map
the domain properties involved in logical
relation into perceptual organization
features (POFs) of visual primitives

checked
Visual prmitives

enhance the aesthetic features of the

rejected visual primitives addedJ~ted
visual prinntives

Fig. 9. Visualization synthesizing process.

are classified, according to their appearance effect on
the interface, into three categories: axis, visualiza­
tion, and logical relation constraints.

5.3. The refinement rules
The last set of rules applied by the YKB to

accomplish the mapping process is the refinement
rules which are applied right after the selection and
combination sets of rules. The refinement rules
consider two presentation issues in designing the
interface objects. First, the impact of the dynamic
behavior on the objects is assessed. This may reject
the result of the other two sets of rules and replace
some visual primitives by new ones to satisfy the
expressiveness of the dynamic properties. Second,
more than one visual primitive for the same
application property are selected to increase its
aesthetic feature.

During the selection process it is not possible to
predict the following visual primitives that are to be
used for the same interface object and hence it is hard
to assess the dynamic behavior of the currently
selected property on the entire object. The set of
dynamic behavior rules (part of the refinement rules)
assess the impact of the previously selected properties,
having a dynamic nature, on their graphical objects.

6. CONCLUSION

Automatic generation of the design of visual
interfaces based on high-level Application Model
specifications makes it easier to enforce and maintain
consistency among all interfaces of the same
application domain which is achieved because the
same graphical principles are guaranteed to apply.
When these visualization principles are well tested
and widely accepted, the reSUlting interface is even
better.

The main objective of this research was to identify
the knowledge, graphical functions, and rules used to
automate the dynamic visual user interfaces and to
base on them a prototype of a CASE tool that aids
the interface design. The main contribution of this
work is spotted in:

• A framework that unifies different presentation
components needed for automatically designing
visual interfaces based on the Application Model
of a domain.

• A model of the properties and attributes of
visualizing application domains (Application
Models) which captures the characteristics and
properties of the application objects and which is
used to define the dynamic behavior of the
interface through the event mechanism.

• A knowledge-base containing graphical design
principles and guidelines, as identified by the
experts, of designing expressive and effective
dynamic interfaces based on the continuously
evolving Application Model over time.

ADDI is implemented in Macintosh Common
Lisp and runs on Macintosh Computers. It has been
applied for three different application domains: local
area networks, elevator control systems, and an
organization accounting model. Using ADDI's
framework, it has been demonstrated that applica­
tion designers can now focus only on the non­
graphical aspects of the application while ADD!
deals with the graphical design aspects.

A future extension of ADDI is to accommodate a
critiquing component in its conceptual framework.
In its current design, the impact of the developer's
preferences on the interface design is not evaluated.
ADDI accepts these preferences whether or not they
violate graphical principles. This critiquing compo­
nent, which takes advantage of the knowledge hosted
by ADDI, is to analyze the developers' input and to
provide them with the appropriate feedback when­
ever a graphical design principle is violated.

•

•

Automating the design of visual interfaces 87

REFERENCES
I. Hsia, Y.-T. and Ambler, A. L, The use of iconic

display functions in visual programming. In Visual
Languages and Visual Programming, ed. S.-K. Chang.
Plenum Press, NY, 1990, pp. 143-158.

2. Szekely, P., Luo, P. and Neches, R., Beyond interface
builders: model-based interface tools, human factors in
computing systems. In INTERCHI'93 Conference
Proceedings, 1993, pp. 383-390.

3. Myers, B. A., Giuse, D. A., Dannenberg, R. B.,
Zanden, B. V., Kosbie, D. S., Pervin, E., Mickish, A.
and Marchal, P., Gamet: comprehensive support for
graphical highly-interactive user interfaces. IEEE Com­
puter, 1990,23,71-85.

4. Singh, G., Kok, C. H. and Ngan, T. Y., Druid: a
system for demonstrational rapid user interface devel­
opment, In UIST'90 Conference Proceedings. Third
Annual Symposium on User Interface Software and
Technology, New York, 1990, pp. 167-177.

5. DeSoi, J., Lively, W. and Sheppard, S., Graphical
specification of user interfaces with behavior abstrac­
tion. In Human Factors in Computing System~. CHJ'89
Conference Proceedings, 1989, pp. 139-144.

6. Johnson, 1., Selectors: going beyond user-interface
widgets. In Human Factors in Computing Systems.
CHf'92 Conference Proceedings, Monterey, CA, 1992,
pp. 195-202.

7. Hsia, Y.-T. and Ambler, A. L, The use of iconic
display functions in visual programming. In Visual
Languages and Visual Programming, ed. S.-K. Chang.
Plenum Press, NY, 1990, pp. 143-158.

8. Casner, S., A task-analytic approach to the automated

design of graphic presentations. ACM Transactions on
Graphics, 1991, 10,111-151.

9. MacKinlay, J., Automating the design of graphical
presentations of relational information. ACM Transac­
tions on Graphics, 1986, 5, I 10-141.

10. Marks, 1., A formal specification scheme for network
diagrams that facilitates automated design. Visual
Languages and Computing, 1991,2,395-414.

II. Larkin, J. H. and Simon, H. A. Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 1987, 11,65-99.

12. Mackinlay, J., Automatic design of graphical presenta­
tions. Ph.D. Dissertation, CS-86-1138, Stanford Uni­
versity, 1986.

13. MacKinlay, J., Automating the design of graphical
presentations of relational information. ACM Transac­
tions on Graphics, 1986,5, 110-141.

14. Marks, J., Automating the design of network diagrams.
Ph.D. Dissertation, Harvard University, 1991.

15. Harel, D., On visual formalisms. Communications of the
ACM, 1988,31,514-530 .

16. Roth, S. F. and Mattis, J., Data characterization for
intelligent graphics presentation. In Human Factors in
Computing Systems. CHl'90 Conference Proceedings,
Seattle, WA, 1990, pp. 193-200.

17. Fischer, G., Lemke, A. c., Mastaglio, T. and Morch,
A., Using critics to empower users. In Human Factors
in Computing Systems. CHl'90 Conference Proceedings,
Seattle, W A, 1990, pp. 337-347.

18. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G. and
Sumner, T., Embedding critics in design environments.
The Knowledge Engineering Review Journal, 1993.

