
9
Making Argumentation

Serve Design

Gerhard Fischer
University of Colorado

Andreas C. Lemke
ALCA TEL-SEL

Raymond McCall
University of Colmado

Anders I. Morch
University of Oslo

Gerhard Fischer is a computer scientist in teresled in design and design suppon
S\"Stems, particularly in domain-oriented design environmenlS and how they make
:irgumemation serve design by supporting reflection-in-action; he is the direcwr
of the Center for Lifelong Learning and Design, a professor of Computer Science,
and a member of the lnstiwte of Cognitive Science at the Univer ity of Colorado.
Andreas Lemke is a computer scientist with interest in tools to support knowledge
.. ,orkers; he is a researcher at AJcarel, a major telecommunications company,
\,·orking on multimedia and mobile communication. Ray McCall is a design theorist
interested in issue-based argumentation and hypermedia-based CAD systems that
enable argurnencation to serve design; he is an Associate Professor in the Division
of Environmental Design ar the University of Colorado. Anders Morch is a
computer scientist with interes!S in human-computer interaction, object-oriented
;>rograrnming, and design rationale to bridge between th<' two; he was <l member
of technical staff at the NYNEX Science and Technology Center and is now
?ursuing a Ph.D. in Informatics at the University of Oslo.

267

268 FISCHER, LEMKE, McCALL, MORCH

CONTENTS

1. IN'IRODUCTION
2. DESIGN RATIONALE
3. SUPPORT FOR ARGUMENTATION

3.1. IBIS
3.2. PHI and the Critique of IBIS
3.3. PHI Hypertext
3.4. Grounding Argumentation in Construction

4. SUPPORT FOR CONSTRUCTION
5. INTEGRATED DESIGN ENVIRONMENTS

5.1. Reflection-in-Action
5.2. An Architecture for Integrated Design Environments
5.3. Evaluation, Shortcomings, and Limitations of JANUS

6. CURRENT AND FUTURE WORK
7. CONCLUSIONS

ABSTRACT

Documenting argumentation (i.e., design rationale) has great potential for
serving design. Despite this potential benefit, our analysis of Horst Rittel's and
Donald Schon's design theories and our own experience has shown that there are
the following fundamental obstacles to the effective documentation and use of
design rationale: (a) A rationale representation scheme must be found that organizes
information according to its relevance to the task at hand; (b) computer support is
needed to reduce the burden of recording and using rationale; (c) argumentative
and constructive design activities must be explicitly linked by integrated design
environments; and(d) design rationale must be reusable. In this chapter, we present
the evolution of our conceptual frameworks and systems toward integrated design
environments, describe a prototype of an integrated design environment including its
underlying architecture, and discuss some current and future work on extending it.

1. INTRODUCTION

Documenting argumentation (i.e., design rationale) has great potential
for improving design. In addition to being invaluable for maintenance,
redesign, and reuse, it promotes critical reflection during design. Despite
such potential benefits, our experience has shown that there are funda-
mental obstacles to the effective documentation and use of design ration-
ale. Argumentation does not naturally serve design; it must be made to
do so.

-

9. MA.KING ARGUMENTATION SERVE DESIGN 269

The structure of this chapter follows the history of our work, driven by
the development and evaluation of conceptual frameworks and prototype
systems. In Section 2, the term design rational,e is characterized. In Section
3, we discuss Issue-Based Infcmnation Systems (IBIS) and Procedural Hierarchy
of Issues (PHI), two frameworks for representing argumentation. We show
that IBIS has fundamental problems. IBIS represents neither dependency
relationships between issues nor nondeliberated issues. PHI is a variant of
IBIS that remedies these problems. In the past, argumentation has been
considered in isolation from the activity of solution construction. The
major breakthrough in our thinking, based on observing the shortcomings
of the two isolated approaches, was the realization that argumentation
must be integrated into the context of construction. In Section 4, we
desciibe approaches to devising tools for construction to reduce the trans-
fonnation distance from application domain to implementation domain
by supporting human problem-domain communication. In Section 5, we
discuss integrated design environments that unify construction and argumen-
tation. The theoretical basis for this integration is Schon's theory of re-
flection-in-action. In Section 6, we describe current and future work on
adaptive and reusable domain-oriented issue bases, enriched catalogs, and
improved representations of the task at hand.

Throughout the chapter, we use the JANUS system (Fischer, McCall, &
Morch, 1989a, 1989b) as an "object-to-think-with." The chapter discusses
aspects of the JANUS system only as they are relevant to our theme; details
about JANUS can be found in the given references.

2. DFSIGN RA TIO NALE

Design. In order to define design rationale, we must first define the
term design. Like design theorists Cross (1984), Rittel (1984), Schon (1983),
and Simon (1981), we see design not only as problem solving but also as
continual problem finding. It is a process of dealing with the kind of
"messy situations" that are characterized by uncertainty, conflict, and
uniqueness. It is an evolutiona1y process in which "understanding the
problem is identical with solving it" (Rittel, 1972, p. 392), and it can best
be characterized by creativity, judgment, and dilemma handling, rather
than by objective scientific methods.

We agree with Donald Schon's view of design. For Schon (1983) de-
signing is not primaiily a form of problem solving, information processing,
or search, but a kind of making: "I shall consider designing as a conver-
sation with the mateiials of the situation" (p. 78). This definition covers
a wide range of fields, including architectural (building) design, urban
design, software design, hardware design, and various types of engineering
design. We call the transactions of designers with materials and artifacts

270 TISCHER, LEMKE, McCALL, MORCH

construction, which is the activity of creating the actual form of the solution.
Construction cannot always be physical, but may have to be carried out in
the abstract (e.g., on the drafting board). Physical interactions with mate-
rials may be too expensive or too dangerous.

Design Rationale. In our approach, design rationale means statements
of reasoning underlying the design process that explain, derive, and justify
design decisions. A truly complete account of the reasoning relevant to
design decisions is neither possible nor desirable. It is not possible because
some design decisions and the associated reasoning are made implicitly
by construction and are not available to conscious thinking. Some of the
rationale must be reconstructed after design decisions have been made.
Many design issues are trivial; their resolution is obvious to the competent
designer, or the design issue is not very relevant to the overall quality of
the designed artifact. Accounting for all reasoning is not desirable because
it would divert too many resources from designing itself.

Design rationale in our approach is a synonym for argumentation. Rittel
(1972) was the first to advocate systematic documentation of design ra-
tionale as part of design. He saw design problems as fundamentally open-
ended and controversial in the sense that there are no objective criteria
for closing problem definitions and settling disagreements. Such closing
and settling are necessary for design, but for the designer the decisions
on closing and settling are judgmental and political in nature. The design
rationale takes the form of a network of issues (design questions), selected
and rejected answers, and arguments for and against these answers (see
Section 3).

The Promise of Design Rationale. Design rationale serves design if it helps
designers (a) to improve their own work, (b) to cooperate with other people
holding stakes in the design, and (c) to understand existing artifacts (i.e.,
communicate with past designers). Design rationale can trigger critical
thought in the individual designer. Writing an idea down allows the designer
to make the transition from simply creating that idea to thinking about it.

Design rationale can serve as a memory aid not only to individuals but
also to groups (Conklin & Begeman, 1988) by providing a forum for airing
issues crucial for coordinating group activities. It is useful for triggering
and focusing discussion among members of a project team. By making the
processes of reasoning public, it extends the number of people who can
participate in the critical reflection on decisions. This reduces the chances
of missing some important consideration and it rationalizes discussion.

To alter a design sensibly-adding, fixing, or modifying features-it is
crucial to have an understanding of why it has been designed the way it
has. Without knowing the rationale, a designer is apt to violate constraints

9. MAKING ARGUMENTATION SERVE DESIGN 271

and to repeat errors by ignoring what previous designers have learned.
That is, the rationale created in one design project may be a resource for
future, related design projects. Even if the difficulties encountered in a
project are not overcome, they might still be informative for future de-
signers. The mere existence of unforeseen problems is itself valuable
information. Often, design is based on mistaken predictions of how the
artifact will perform in use. If these predictions are documented, they can
be compared to actual use. This would allow the development of better
theories for predicting performance.

3. SUPPORT FOR ARGUMENTATION

On the basis of his theory of Wicked Problems, Rittel (1984) rejected
the efforts by the majority of design methodologists to automate design
reasoning. The argumentative approach tries to enhance design by im-
proving the reasoning underlying it and is aimed at supporting the rea-
soning of human designers rather than replacing it with automated rea-
soning processes (Fischer, 1990; Stefik, 1986).

3.1. IBIS

IBIS (Kunz & Rittel, 1970) is a method (not a computer system) for
structuring and documenting design rationale. The central activity of IBIS
is deliberation, that is, considering the pros and cons of alternative answers
to questions. The questions deliberated are called issues. Proposed an-
swers-including ones that are mutually exclusive-are called answers or
positions. Statements of the pros and cons of answers are called arguments.
The decision as to which answers to accept and reject is called the resolution
of the issue.

The various issue deliberations are connected by a variety of interissue
relationships. The original IBIS included "more general than," "similar
to," "replaces," "temporal successor of," "logical successor of," and others.
Graph diagrams with labeled nodes and links representing issues and their
relationships were used for visualization. Such diagrams, called issue maps,
were meant to facilitate navigation through the IBIS "problemscape."

From 1970 to 1980, a variety of projects were undertaken that attempted
to use IBIS in real-world settings. These projects included IBIS systems for
the United Nations, the Commission of European Communities, the (West)
German Parliament, the German Federal Office of the Environment, and
the German Office of Health (Reuter & Werner, 1983). None of these
systems got past the pilot project stage. At the end of this stage each was
judged as somehow failing to adequately serve the design tasks for which
it had been created.

272 FISCHER, LEMKE, McCALL, MORCH

After a decade of intensive and generally well-funded efforts to imple-
ment IBIS, it became difficult to believe that the failures to do so were
coincidental. Clearly, there were fundamental problems with the IBIS
method or the approach to implementing it.

The identification and solution offundamental problems in the creation
and use of issue-based design rationale has been a central concern of our
research. The first step in this research was a critique of IBIS and an
improved issue-based method called PHI (McCall, 1979). The next step
was the proposal of a new sort of software technology, hypertext, to handle
issue-based rationale (McCall, Mistrik, & Schuler, 1981). We next look at
these suggested improvements and the results of their implementation
and use.

3.2. PHI and the Critique of IBIS

McCall (1979) suggested that there are two related types of information
that are omitted from IBIS but that are required for an issue-based ap-
proach to serve design effectively. The first and most basic is dependency
relationships between issue resolutions, that is, relationships representing
the fact that the answering of issues often depends on how other issues
are answered. IBIS has no way of representing such dependencies. Instead
it treats issue-resolution processes as if they were separable.

The second type of information omitted from IBIS is questions that are
not deliberated-that is, questions for which pros and cons of alternatiYe
answers are not considered. IBIS ignores these in favor of those questions
with which debate and controversy are most likely to be associated. Yet
nondeliberated questions occur frequently in design and can influence
the resolutions of issues. Furthermore, many such questions themsekes
have answers that depend on the resolutions of issues.

In an effort to overcome these limitations of IBIS, McCall (1991) de-
veloped the PHI approach to documenting design rationale. PHI, like
IBIS, is a design method rather than a piece of software. It differs frohl
IBIS in two crucial respects: It uses a broader definition of the concept
issue, and it uses a new principle for linking issues together.

In IBIS, the term issue denotes a design question that is deliberated:
in PHI, however, every design question counts as an issue, whether delib-
erated or not. PHI also abandons the interissue relationships proposed b·.
Rittel (1980)-"temporal successor of," "similar to," "replaces," and s0,

forth. Instead it uses seroe relationships. We say Issue A serves Issue B iE
and only if the resolution of A influences the resolution of B. The
type of serve relationship used in PHI is the "subissue of" relationship.
which indicates that resolving one issue is a subtask of the task of resohing
another. More formally, we say Issue A is a subissue of Issue B if and onh
if A serves Band Bis raised before A. Note that this means that A's beinz

9. ARGUMENTATION SERVE DESIGN

Figure 1. An IBIS issue map.

logical
successor

temporal
temporal Where should successor

Where should successor the sink
the walls be located?

Where should
the stove
be located?

273

be located?

temporal \ f similar I I successor successor imilar temporal be located?
successor

Where Where should
the doors / simnar the counters •lmilar
be located? be located?

logical
successor

temporal
successor

Where should
the refrigerator
be located?

Figure 2. A PHI issue map. The starred issues, which are not deliberated, are
dealt with by PHI but not by IBIS.

•What should the
design of this

• ,,4tchenbe?

What types of Where should these
component& need components be
IObeerranged? localed?

•Where should the Where should the
architectural components kitchen equipment
be located? be located?

. .
What are the Where should Where should Where should What ere the Where should Where should Where should Where should
various types of the walls the doors the windows various types of the sink the counters the stove the refligerator
architectural be located? be located? be located? kitchen be located? be located? be located? be located?
components equipment

size of the
family?

a subissue of B implies that A serves B, but A's serving B does not in itself
imply that A is a subissue of B.

In Rittel 's IBIS, as evidenced by the many years of real-world and student
projects, an issue map is characteristically a dense and tangled network of
issues connected by a half dozen different relationships (see Figure 1). In
PHI, however, an issue map is a simple quasi-hierarchical structure con-
nected only by serve relationships and having a single root issue (see Figure
2). This structure is treelike but is seldom a pure tree, because issues can
share subissues (see Figure 2). The root of a PHI issue map is an issue that
represents the project as a whole. For example, if one is designing a kitchen,
the root issue might be "What should be the design of this kitchen?"

274 FISCHER, LEMKE, McCALL, MORCH

PHI has been in nearly continual test use both with and without com-
puter support since 1977. This testing has been informal rather than in
the framework of a formal, experimental setting. Furthermore, the testing
has emphasized intensive use by a relatively few users at a time rather than
extensive use by many people-a style we have found to be especially
informative for system-building efforts. Testing began in 1977 and 1978
with students at the University of California, Berkeley (McCall, 1979). It
continued in Heidelberg, Germany, from 1979 to 1984. Since 1984, con-
tinual test use has been made of PHI at the University of Colorado, Boulder.

Testing in Berkeley used eight undergraduates and was spread out over
a 2-year period. The most important results of this were the generation of
issue bases (i.e, networks of issues) that showed the applicability of the
PHI to student design projects.

3.3. PHI Hypertext

In Heidelberg, testing of PHI began with the attempt in 1979 to use
PHI with only typewriters and word processors. By 1980, these efforts ran
into severe difficulties in managing the issue-based information. In par-
ticular, the information management tasks were so labor intensive and
error prone that the decision was made to attempt to develop computer
support for PHI. The system developed, called MIKROPLIS (McCall et al.,
1981), became the first issue-based hypertext system.

The defining characteristics of hypertext are nonlinear structure and
navigation. The need for the former was understood at the beginning of the
MIKROPLIS project (McCall, 1979). The need for the latter emerged in
1982 from working with early users of MIKROPLIS who repeatedly pointed
to displayed nodes and asked how to retrieve the nodes linked to them.

Since the beginning of the MIKROPLIS project, a number of other
issue-based hypertext systems have been developed. These include Rittel's
own system (Conklin, 1987), gIBIS (Conklin & Begeman, 1988), JANUS-
ARGUMENTATION (Fischer et al., 1989b), and PHIDIAS (McCall et al.,
1990). MIKROPLIS, PHIDIAS, and JANUS-ARGUMENTATION differ
from the others by using PHI rather than IBIS.

To further test PHI and the computer support being developed for it,
the MIKROPLIS team kept a PHI issue base for the design of the system.
As soon as MIKROPLIS became usable, this issue base was maintained
using the MIKROPLIS system itself. This "self-referential use" encouraged
a certain level of awareness and honesty about the performance of PHI
and MIKROPLIS.

Additional testing of PHI and MIKROPLIS involved the development
of issue bases with MIKROPLIS by a dozen users of various kinds over a
period of 3 years. These users included MIKROPLIS project members,

9. MAKING ARGUMENTATION SERVE DESIGN 275

people from other project groups within the organization in Heidelberg,
and several "knowledge workers" from other organizations. In 1984, an
_.\merican physician was hired to test the system on a full-time basis for 3
months by attempting to develop an issue base on health care policy. In
11 weeks he developed a tightly structured issue base equivalent to exactly
500 single-spaced pages in length. This was taken by the physician and
others as evidence of the usefulness and usability of both PHI and MI-
KROPLIS. In particular, the physician felt that he could not have achieved
these results with alternative methods or technologies.

Despite this success, there were still problems with using both PHI and
:YIIKROPLIS. The artifact the physician was trying to produce was the issue
base itself. To those for whom the issue bases were only means for designing
other kinds of artifacts, the use of PHI involved a great deal of work over
and above the ordinary work of design. MIKROPLIS substantially reduced
the errors and secretarial work of creating an issue base, but there remained
a large amount of conceptual and editorial work. Many people were
therefore disinclined to use PHI because the costs of invested effort ex-
ceeded the immediate payoff. For them, even with MIKROPLIS support,
PHI still did not serve sufficiently the design task at hand.

3.4. Grounding Argumentation in Construction

PHI hypertext with domain-oriented issue bases reduced the cost and
increased the benefits of design rationale. But as our systems dealt suc-
cessfully with this aspect of design rationale, another, more fundamental
obstacle was revealed. There is a crucial design activity not supported by
argumentative hypertext: construction. In fields such as architectural design,
construction is a graphic activity traditionally done by drawing. Construc-
tion is the sine qua non of design, for no design project can be completed
until the construction is done. Argumentation gets its usefulness in design
only by influencing construction. For argumentation to serve design it
must serve construction.

Test use of PHI at the University of Colorado, Boulder, provided evidence
for the need to integrate argumentation with construction. The test use
began with two junior-level undergraduate environmental design studios,
each with about 20 students-taught by Raymond McCall in 1985. Each
studio involved the same semester project: designing a neighborhood
shopping center at a particular location in Boulder. Students were asked to
record their rationale in PHI form during the project. In both studios, this
worked well until students began working out the details of the solution form,
that is, actual drawings of buildings. At this point, it became effectively
impossible to get students to document their rationale.

To see if these difficulties were independent of instructor and project,
two independent study students were asked to document a studio on

276 TISCHER, LEMKE, McCALL, MORCH

housing design taught by a nationally known architect. In an effort to keep
this inquiry unbiased, the students who did the documentation were not
told anything about the hypothesis being investigated and were given only
minimal supervision by McCall. The students produced a 175-page docu-
ment in PHI form, representing the work of a project group of five students
in the studio. Again, the documentation of rationale ceased shortly after
the construction of solution form began. According to the students who
did the documentation, the project group members became unable or
unwilling to talk to the documenters as form generation began.

The difficulties encountered in attempting to document the studio
projects suggested that there was a fundamental incompatibility between
form construction and PHI. To understand what this incompatibility might
be, McCall made a series of three videotaped think-aloud protocols of
student designers from the College of Environmental Design.

The first protocol involved two juniors who worked for 6 weeks on the
design of a store. The second involved a senior working for 10 weeks on the
design of a house. The third involved a single senior working for 3 weeks on
the design of a kitchen. All were analyzed informally and the second was
selected for intensive formal analysis. In particular, representative sections
of the form construction process were transcribed and compared to the
structures of PHI on a sentence-by-sentence and drawing-by-drawing basis.

These results suggested some possible additions to PHI. One would be
to enable explicit representation of criteria on occasion-as in the "goals"
of DRL (see Lee & Lai, 1991 [chapter 2 in this book])-though not to
always require this-as in QOC (see MacLean, Young, Bellotti, & Moran,
1991 [chapter 3 in this book]) (also see Buckingham Schum, 1995 [chapter
6 in this book] on use of criteria in QOC). Another addition would be to
enable better representation of hypothetical reasoning--something not
provided by any of the rationale representation schemes presented in this
book. On the whole, however, our protocol studies showed a clear match
between the processes the student used in form generation and the proc-
esses represented in PHI.

The student who created the 10-week protocol was asked whether he
felt the conclusions of this analysis were accurate. Before being shown the
actual videotapes of his protocol he claimed that he would not be able to
think in PHI form while he was designing. When shown the videotapes
and their analysis he agreed that the analysis was correct, but he professed
great surprise at this fact.

At first, these results were quite puzzling. It seemed that students claimed
not to be able to use exactly the kind of thinking that they in fact used.
Eventually, we found a solution to this puzzle in Schon's (1983) theory of
reflection-in-action, which is explained later. This theory suggests that the
problem was not that students could not think in a PHI-type manner while

:\IAKING ARGUMENTATION SERVE DESIGN 277

:hey devised a solution form, but rather that they could not be self-con-
5'.::iously aware of doing so. The principle is the same as that which makes it
:mpossible to watch one's own fingers while playing the piano and which
incapacitated the fabled centipede who attempted to think about his feet
while running.

In the past 3 years, additional informal testing of PHI has gone on at Boulder,
Colorado, within the framework of an undergraduate course on design
theory and methods. Each of the three times this course has been offered a
consistent pattern has emerged that confirms the earlier results: Students
do not deal issues of form construction until given a project that requires
mem to do so. To do this project, students rely heavily on taped protocols.

One reason for the need to support construction is that design argu-
mentation is densely populated with deictic references to parts of the
?artially constructed solution. Without the ability to relate construction
and argumentation to each other, it is impossible to discuss the solution.
·without construction situations, design rationale cannot be contextualized.
Students using our systems to generate issue-based design rationale invari-
J.bly left out all the issues dealing with construction. They instead concen-
rrated on philosophical discussion, requirements, programmatic analysis,
3.Ild other preparatory issues rather than actually "getting into the design."

. .\nother problem was that serve relationships were often not effective
in helping the designer to generate the important rationale. Designers
tended to waste time on issues with little impact on the outcome of the
project. This too resulted from lack of support for construction. Designers
were often unable to judge the relative merits of issues because they could
not see their influence on construction. It is only by being relevant to
construction that issues serve the project. The serve relationships of PHI
showed that resolving one issue was valuable for resolving another. They
could not, however, guarantee that any issue served the project as a whole,
for this depended on its influencing construction. This lack of relevance
w construction promoted what architects call "talkitecture" (i.e., extended
discussion having little impact on the solution).

In a good design project, construction generates and regulates argu-
mentation. Argumentation arises out of construction, and is often tested
by construction. Creating good design rationale requires support for con-
struction.

4. SUPPORT FOR CONSTRUCTION

Construction, a subactivity of design, is the composition of elementary
building blocks or materials to form an artifact. Sometimes the designer
constructs the artifact directly, but in many domains the designer constructs
it by making a model or plan of the artifact to be realized by others. The

278 FISCHER, LEMKE, McCALL, MORCH

elementary building blocks and materials available for construction activi-
ties form the design substrate.

Construction is a crucial aspect of design because it creates situations
that can "talk back" to the designer:

Typically [the designer's] making process is complex. There are more
variables-kinds of possible moves, norms, and interrelationships of these-
than can be represented in a finite model. Because of this complexity, the
designer's moves tend, happily or unhappily, to produce consequences other
than those intended. When this happens, the designer may take account of
the unintended changes he has made in the situation by forming new
appreciations and understandings and by making new moves. He shapes the
situation, in accordance with his initial appreciation of it, the situation "talks
back," and he responds to the situation's backtalk. (Schon, 1983, p. 79)

Human Problem-Domain Communication. The substrate used to design
computer-based artifacts typically consists of low-level abstractions (e.g.,
statements and data structures in programming languages, and primitive
geometric objects in engineering computer-aided design). Abstractions at
that level are far removed from the concepts that form the basis of thinking
in the application domains in which these artifacts are to operate. The great
transformation distance between the design substrate and the application
domain (Hutchins, Hollan, & Norman, 1986) is a reason for the high cost
and the great effort necessary to construct artifacts using computers. To
reduce this transformation distance, high-level, domain-oriented substrates
are required. Akin (1978) and others have shown that designers design with
meaningful abstractions at different levels. For example, architects use
domain-related chunks or parts of buildings such as clusters of rooms,
individual rooms, areas, and furniture when they design.

Rather than communicating with computers, designers should perceive
design as communication with an application domain; the computer should be-
come effectively invisible. Human problem-domain communication (Fischer &
Lemke, 1988) tries to achieve this goal. It provides a new level of quality in
human-computer communication because the important abstract opera-
tions and objects in a given area are built directly into the computing
environment. In an environment supporting human problem-domain com-
munication, designers build artifacts from application-oriented building
blocks according to the principles of that domain-not the principles of
software or geometry.

Constructwn Kits. Construction kits (Fischer & Lemke, 1988) support
human problem-domain communication by offering domain-oriented
building blocks presented in a palette and a work area for construction by
direct manipulation. Interacting with a computer-based construction kit
does not provide the same "back-talk" afforded by designing with real objects.

-
9. MAKING ARGUMENTATION SERVE DESIGN 279

Figure 3. JANUS-CONSTRUCTION: The work triangle critic. JANUS-CON-
STRUCTION is the construction part of JANUS. Building blocks (design units)
are selected from the Palette and moved to desired locations inside the Work Area.
Designers can reuse and redesign complete floor plans from the Catalog. The
Messages pane displays critic messages automatically after each design change that
triggers a critic. Clicking with the mouse on a message activates JANUS-ARGU-
MENTATION and displays the argumentation related to that message (see Figure 5).

Janus-Const;ruct;ion
Appliance Palette

o rn
Catalog

•• ••
L-Shaped-Kltchen

J _..

Clear Work Area
load Catalog

Critique All Edit Global Descriptions
Save In Catalog Select Context

However, construction kits are an active medium that can react to the
designer's actions in ways that are different from real objects. To illustrate
the concept of a construction kit, we describe JANUS-CONSTRUCTION, a
part of the JANUS system for the domain of residential kitchen design.

JANUS-CONSTRUCTION is a construction kit for the domain of kitchen
design. The palette of the construction kit contains domain-oriented build-
ing blocks called design units, such as sink, stove, and refrigerator (Figure
3). Designers construct by obtaining design units from the palette and
placing them into the work area. They can thus see how different configu-
rations fit the floor plan and how requirements about storage space, work
flow, and other considerations can be satisfied. A situation is constructed
that can "talk back" to a skilled designer.

In addition to design by composition (using the palette and constructing
an artifact from scratch), JANUS-CONSTRUCTION also supports design
by modification. Existing designs can be modified by retrieving them from
the catalog and manipulating them in the work area. The catalog can also
serve as a learning tool. The user can copy both good and bad examples
into the work area. The system can critique such designs to show how they

280 FISCHER, LEMKE, McCALL, MORCH

can be improved, thus allowing users to learn from negative examples.
Designers can learn about the good features of prestored designs as well.

Designers using JANUS-CONSTRUCTION expressed that they experi-
enced a sense of accomplishment in using the system because it enabled
them to construct something quickly without having detailed knowledge
about computers. But construction kits do not in themselves lead to the
production of interesting artifacts (Fischer & Lemke, 1988; Norman, 1986).
Construction kits do not help designers perceive the shortcomings of an
artifact they are constructing. In that they are passive representations,
constructions in the work area do not talk back unless the designer has
the skill and experience to form new appreciations and understandings
when constructing. Designers often do not see characteristics that lead to
breakdowns in later use situations. As Rittel put it: "Buildings do not speak
for themselves."1 Designers who are unaware of the work triangle rule do
not perceive a breakdown if that rule is violated (i.e., if the total distance
between stove, sink, and refrigerator is greater than about 23 feet).

Critics. Critics operationalize Schon 's (1983) concept of a situation that
talks back. They use knowledge of design principles to detect and critique
suboptimal solutions constructed by the designer.

The critics in JANUS-CONSTRUCTION identify potential problems in
the artifact being designed. Their knowledge about kitchen design includes
design principles based on building codes, safety standards, and functional
preferences. An example of a building code is "the window area shall be
at least 10% of the floor area"; an example of a safety standard is "the
stove should be at least 12 inches away from a door"; and an example of
a functional preference is the work triangle rule (Jones & Kapple, 1984;
Paradies, 1973). Functional preferences may vary from designer to de-
signer, whereas building codes and safety standards should be violated
only in exceptional cases.

Critics detect and critique partial solutions constructed by the designer
based on knowledge of design principles. Critics' knowledge is represented
as relationships between design units. The stove design unit, for example,
has critics with the following relations: away-from stove door, away-
frorn stove window, near stove sink, near stove refrigera-
tor, and not-immediately-next-to stove refrigerator. These
critics are implemented as condition-action rules, which are tested when-
ever the design is changed. The changes that trigger a critic are operations
that modify the design in the work area. When a design principle is violated,

1. One of Rittel's favorite sayings, it was a standard part of the lectures for his
Architecture 130 course at Berkeley.

9. MAKING ARGUMENTATION SERVE DESIGN 281

a critic will fire and display a critique in the messages pane of Figure 3.
In the figure, the work triangle critic fired telling the designer that the
"work triangle is greater than 23 feet." This identifies a possibly problematic
situation (a breakdown), and prompts the designer to reflect on it. The
designer has broken a rule of functional preference, perhaps out of
ignorance or by a temporary oversight.

Users can modify and extend JANUS-CONSTRUCTION by modifying
or adding design units, critic rules, and relationships (Fischer & Girgen-
sohn, 1990). This end-user modifiability allows for evolution of the envi-
ronment as design practice and requirements change. Designers can also
modify critic rules when they disagree with the critique given. Standard
building codes (hard rules) should not be changed, but functional pref-
erences (soft rules) vary from designer to designer and thus can and should
be adapted. Designers have the capability to express their preferences. For
example, if designers disagree with the design principle that the stove
should be away from a door, they can edit the stove-door rule by replacing
the away-from relation between stove and door with another relation
(selected from a menu) such as near. After this modification, they will
not be critiqued when a stove is not away from a door.

Lack of Argumentative Supp01t. The advantage of constructing something
is that the constructed artifacts and situations can talk back to the designer.
The back-talk of the situation is enriched in our framework with the critics,
but the short messages the critics present to designers cannot reflect the
complex reasoning behind the corresponding design issues. To overcome
this shortcoming, we initially developed a static explanation component
for the critic messages (Lemke & Fischer, 1990; Neches, Swartout, & Moore,
1985). The design of this component was based on the assumption that
there is a "right" answer to a problem. But the explanation component
proved to be unable to account for the deliberative nature of design
problems. Therefore, argumentation about issues raised by critics must be
supported, and argumentation must be integrated into the context of
construction.

5. INTEGRATED DESIGN ENVIRONMENTS

Separate systems for construction and argumentation have major defi-
ciencies (as articulated in the previous sections and by Fischer et al., l 989b).
If argumentation is to serve design, it must do so by informing construction.
If construction acknowledges the nature of design processes (messy situ-
ations that are characterized by uncertainty, conflict, and uniqueness), it
must have access to the argumentative component. This can happen only

282 FISCHER, LEMKE, McCALL, MORCH

if construction and argumentation are explicitly linked in an integrated
design environment.

5.1. Reflection-in-Action

Our original attempt at integrating construction and argumentation was
to have construction take place within the framework of argumentation-in
other words, to raise an issue for each construction step ("What should
the next step be?"), deliberate it, and turn the resolution into a constructive
action. Unfortunately, trials of this approach with design students showed
that it did not work (Section 3). A reason for this failure can be found in
Schon's (1983) theory of design. Schon portrayed design as a continual
alternation between two radically different and mutually exclusive types of
design processes: "knowing-in-action" and "reflection-in-action." As he ex-
plained, "In a good process of design, this conversation with the situation
is reflective. In answer to the situation's back-talk, the designer reflects-in-
action on the construction of the problem, the strategies of action, or the
model of the phenomena, which have been implicit in his moves" (p. 79).

Knowing-in-action is the unself-conscious, nonreflective doing that con-
trols the situated action of constructing the actual artifact. Reflection-in-action
is the self-conscious, rational process of reflecting about this action within
the "action-present," that is, the time period during which reflection can
still make a difference to what action is taken. Reflection is required when
there is a breakdown in knowing-in-action. Such a breakdown typically
occurs when action produces unforeseen consequences, either good or
bad. When a breakdown occurs, reflection can be used to repair the
breakdown situation, and then action can continue.

Schon 's (1983) concepts do not in themselves tell us what the architecture
of design support environments should be. His concepts must be further
operationalized and substantially augmented if they are to provide a basis
for computerbased systems. In our work, we interpret action as "construction"
and reflection as "argumentation." For argumentation to get used, it must be
part of reflection-in-action, implying that it should be brought to the
designer's attention only in breakdown situations. Construction cannot be
done within an argumentative framework because the former implies
unself-conscious, nonreflective engagement in creating the solution whereas
the latter implies self-conscious, reflective thinking about the solution.
Argumentation must take place within the "action present." If the time
required to read and/ or record the argumentation is greater than the action
present, design is disrupted and the required context is lost. Design rationale
can aid reflection by informing it with design knowledge, principles, and
ideas, and by triggering critical thought in the designer. Schon's theon·,
when operationalized, can then be used as the basis for a system architecture.

9. MAKING ARGUMENTATION SERVE DESIGN 283

Figure 4. A multifaceted architecture. The links between the components are
crucial for exploiting the synergy of the integration.

provide
context

Simulation
Component

constrain
scenarios

inform

Specification
Component

modify

verify Construction
Kit

reduce
search

Catalog

Construction
Analyzer

critique
reduce .-----'----.
search Argumentative

Hypertext

Argumentation
Illustrator

5.2. An Architecture for Integrated Design Environments

Over the last few years, we have developed an integrated, multifaceted
architecture for design environments (see Figure 4). The multifaceted
architecture consists of the following five components:

1. A construction kit is the principal medium for implementing design.
It provides a palette of domain-specific building blocks and supports
the construction of artifacts using direct manipulation and form filling.

2. An argumentative hypertext system contains issues, answers, and
arguments about the design domain. Users can annotate and add
argumentation as it emerges during design processes.

3. A catalog provides a collection of prestored design examples illus-
trating the space of possible designs in the domain and supporting
reuse and case-based reasoning.

4. A specification component allows designers to describe some char-
acteristics of the design they have in mind. The specifications are
expected to be modified and augmented during the design process,
rather than to be fully articulated at the beginning. They are used
to retrieve design objects from the catalog and to filter information
in the hypertext.

284 FISCHER, LEMKE, McCALL, MORCH

5. A simulation component allows designers to carry out "what-if" games
simulating usage scenarios with the artifact being designed.

Integration. The multifaceted architecture derives its essential value
from the integration of its components and links between the components.
Used individually, the components are unable to achieve their full poten-
tial. Used in combination, however, each component augments the value
of the others, forming a synergistic whole. At each stage in the design
process, the partial design embedded in the design environment serves as
a stimulus to users for suggesting what they should attend to next.

Links among the components of the architecture are supported by
various mechanisms (see Figure 4):

1. CONSTRUCTION ANALYZER- Users need support for construction,
argumentation, and perceiving breakdowns. Experience with our early
systems has shown that users too often fail to hear the situation talk back;
breakdowns do not occur that trigger reflection-in-action. Additional sys-
tem components are needed to signal breakdowns. This is the role of the
CONSTRUCTION ANALVZER in the multifaceted architecture. The CON-
STRUCTION ANALVZER is a version of the critics described in Section 4
enhanced with pointers into the argumentation issue base. The firing of
a critic signals a breakdown to users and provides them with entry into
the exact place in the argumentative hypertext system at which the corre-
sponding argumentation is located.

2. ARGUMENTATION ILLUSTRATOR· The explanation given in argu-
mentation is often highly abstract and very conceptual. Concrete design
examples that match the explanation help users to understand the concept.
The ARGUMENTATION ILLUSTRATOR helps users to understand the
information given in the argumentative hypertext by finding a catalog
example that realizes the concept (Fischer, 1990).

3. CATALOG EXPLORER· This helps users to search the catalog space
according to the task at hand (Fischer & Nakakoji, 1991). It retrieves design
examples similar to the current construction situation, and orders a set of
examples by their appropriateness to the current specification.

A typical cycle of events supported by the multifaceted architecture is:
(a) Users create and refine a partial specification or construction, (b)
breakdowns occur, (c) users switch and consult other components in the
system made relevant by the system to the partially articulated task at hand,
and (d) users refine their understanding based on the "back talk of the
situation." As users go back and forth among these components, the
problem space is narrowed, a shared understanding between users and
the system evolves, and the artifact is incrementally refined. This chapter

9. MAKING ARGUMENTATION SERVE DESIGN 285

Figure 5. JANUS-ARGUMENTATION: Rationale for the work triangle rule.
JANUS-ARGUMENTATION is an argumentative hypertext system based on the
PHI method. The Viewer pane shows a diagram illustrating this answer generated
by the ARGUMENTATION ILLUSTRATOR The Visited Nodes pane lists in
sequential order the previously visited argumentation topics. By clicking with the
mouse on one of these items, or on any bold or italicized item in the argumentation
text itself, the user can navigate to related issues, answers, and arguments.
Hypertext access and navigation is made possible using this feature, inherited
from the SYMBOLICS DOCUMENT EXAMINER.

Janus-Argument;at;ion catalog Exampl•

Answer (Rerrlgerator, Sink, Stove)
The distance between sink, sto\le and refrigerator, the worl< triangle,
should be less than 23 feet.

One-Wall-Kitchen

lllJ q DD I IDDl 0w1.•.1
The length of the work triangle (Stove,
Refrigerator, Sink) Is less than 23 feet. D Vlaltad Node& . Answer (Refr-igel"'ator, Sink, Stove) Section ... d;i ... d3 < 23 f•d

Figure 10: the work triangle

Argument (Walklng Distance)
The work triangle la an Important concept In kitchen design. The
work triangle denotee the center front distance between the

three main appltancee: afnl<., and refrfgent.tor. This length
should be lesa than 23 feet to avoid unnece&H.ry walking and to
ensure an efficient work flow In tha kitchen!

Argument (Small Room)
In emall kitchens where the work trlancile Is lees than Hi feet,

Vl•wer: o.fault Vl•WIN"

"°"""""" Show Outline R&sume Const.ruction

'""''" "'"'"" ""'''"""'· ""'· "°"'" Search F' or Topics Show Const.ruction
Show Argument.at.ion

Sho11 EKMS>l• f111S111Wr (R•/rt11•rator, 6fr,)f, Stou•) Show Cont.ext

focuses on the integration of construction and argumentation. Other
components of the multifaceted architecture are described elsewhere (Fischer,
1990; Fischer & Nakakoji, 1991).

]ANUS-ARGUMENTATION: The Argumentation Component of JANUS.
JANUS-ARGUMENTATION is the argumentation component of JANUS
(Figure 5). It is an argumentative hypertext system based on the PHI method
and implemented using the SYMBOLICS DOCUMENT EXAMINER
(Walker, 1987). JANUS-ARGUMENTATION offers a domain-oriented, ge-
neric issue base about how to construct residential kitchens. This design
knowledge has been acquired from protocol studies (Fischer et al., 1989a)
and from kitchen design books (Jones & Kapple, 1984). In JANUS-ARGU-
MENTATION, designers explore issues, answers, and arguments by navigat-
ing through the issue base. The starting point for the navigation is the
argumentative context triggered by a critic message inJANUS-CONSTRUC-

286 F1SCHER, LEMKE, McCALL, MORCH

TION. Clicking with the mouse on a critique in JANUS-CONSTRUCTION
(see Figure 3) activates JANUS-ARGUMENTATION and accesses the issue
and answer corresponding to the critique. At any place in the issue base,
designers can invoke the ARGUMENTATION ILLUSTRATOR to obtain an
example from the catalog that implements the current issue answer.

5.3. Evaluation, Shortcomings, and Limitations of JANUS

Evaluation. We have informally evaluated JANUS with subjects ranging
from neophyte to expert designers and from neophyte to expert computer
users (Fischer et al., 1989b). The subjects were tested in an experiment
consisting of two tasks: a learning task and a design task. The learning
task consisted of improving a "bad" kitchen design from the catalog (see
Figure 3), and the design task consisted of designing a "good" kitchen
given a set of constraints. The constraints were imposed to test the various
operations of the system. Users unfamiliar with the computer system were
given help by the experimenter during an initial learning task. A final
questionnaire was given to the subjects after the experiment.

Designers with limited domain knowledge were able to understand the
critics and learn from them to create reasonable kitchen designs. For
example, several students did not know that building codes require that
at least one of the entrances into a kitchen should be at least 36 inches
wide. One user also learned that the stove should be away from a door,
based on safety requirements with respect to fire and burn hazard. He
found this to be especially relevant to his own home where small children
are constantly running in and out of the kitchen.

The critics were appreciated, but were often ignored when they actively
critiqued the user during construction. One user replied to this by saying
that too much information was presented and that she could give attention
to only one thing at a time. She preferred to complete some part of the design
and then ask the system for a critique by using the Critique All command.
Other users explained that they ignored critics because they had already
been aware of them, either by a previous critique or by the fact that they
already knew about them (such as that the sink should be in front of a
window). In the questionnaire, all users found that critiquing was helpful in
reminding them about design rules they did not think about while they were
designing.

Users uncertain about a critique from the system or interested in more
background information about design principles entered the hypertext
system by clicking on the critique message. No users got "lost" in the
hyperdocument, but one found that some of the arguments were not
justified from his point of view. He would have liked to add his own
counterarguments to it. Currently end-user modifications of the issue base

9. MAKING ARGUMENTATION SERVE DESIGN 287

are not supported. Another user found that some arguments did not go into
enough depth in order to be persuasive. For example, he would have liked
to know why a building code requires that a kitchen entrance should be
greater than 36 inches wide.

Sh01tcomings and Limitations. Our integrated design environments in
their current form still suffer from a number of major limitations:

1. Design environments need to evolve for the following reasons: (a) The
world modeled in these design environments changes (Curtis, Krasner, &
Iscoe, 1988), and (b) the background knowledge for a design domain cannot
be fully articulated-it is tacit and requires breakdown situations to be
activated (Ehn, 1988; Winograd & Flores, 1986). End-user modifiability is a
prerequisite for evolution because the breakdown situations are experienced
by the domain experts using these systems, not by the knowledge engineers
who built them originally. Fischer and Girgensohn (1990) described a
mechanism to make JANUS-CONSTRUCTION end-user modifiable. RE-
FLACT (described in the next section) is an effort to make the argumentative
component adaptive. One reason that JANUS-ARGUMENTATION failed to
achieve this goal is that the DOCUMENT EXAMINER (Walker, 1987) is only
a reader's interface to the hypertext system and requires a different writer's
interface (Walker, 1988). Therefore,JANUS-ARGUMENTATIONprimarily
serves as a design information system and does not allow the addition of new
design rationale in a contextualized manner.

2. The back-talk of the situation must be enhanced further with a
simulation component providing us with insights that argumentation does
not capture. This requirement became obvious in our experiments with
professional kitchen designers who tested their design by running mental
simulations of specific situations (e.g., preparing a fancy dinner, imagining
work-flow patterns with more than one person working in the kitchen).

3. The issue base of JANUS-ARGUMENTATION is generic; that is, it
is used for any kitchen design project. The issue base is also static in that
it does not adapt to the individual design projects. Some issues are only
relevant to some of the design projects addressed by the issue base. For
example, if the kitchen has no eating area, then issues relating to the
eating area in the kitchen are irrelevant. Structures in the issue base
irrelevant to the task at hand make the issue base unwieldy and make it
difficult to find the relevant information. To filter out irrelevant informa-
tion from a generic issue base, the serves relationship must be dynamically
computed from the task at hand. The exploratory nature of design makes
any static argumentative hypertext system, such as JANUS-ARGUMENTA-
TION, inadequate. A dynamic hypertext system adapts to design decisions
such as adding or removing an eating area.

288 FISCHER, LEMKE, McCALL, MORCH

6. CURRENT AND FUTURE WORK

Our current and future work is focused on four ways to make argumen-
tation better serve design: (a) Static issue bases are made extensible and
dynamic, (b) the reusability of issue bases is being improved, (c) design
rationale is being added to the examples in the catalog, and (d) a system
component for articulating and representing the task at hand is being
developed. Some of these extensions are being carried out as separate
efforts later to be integrated into the overall environment.

Adaptive Issue Bases. In response to the problems caused by the static
nature of JANUS-ARGUMENTATION, we are exploring ways to make
reusable issue bases more active and responsive to the situation, thus
increasing the immediate benefit of issue bases. We have implemented these
methods in REFLACT, a PHI-based hypertext system (Lemke, 1990). In
REFLACT, the designer not only consults the issue base but also indicates
design decisions-whether deliberated or not-by selecting one or more
answers. The selected answers determine which issues the system raises from
its issue base. This is done with the help of the PHI subissue relationship. In
REFLACT, issue bases are fully modifiable and extensible by end users.
Designers can add, modify, or delete issues, answers, and arguments without
leaving REFLACT.

Reusable Domain-Oriented Issue Bases. A design rationale is a large addi-
tional product of the design process. Creating and representing a design
rationale is a great effort. Reuse of existing issue bases has the potential to
dramatically reduce this effort. Every project is unique in some respects; few
if any projects are unique in all respects. Therefore, the contents of a project
issue base are not entirely unique to that project. Similar projects overlap
substantially in issues, answers, and arguments. This is not to say that the
issues are resolved in the same way, but merely that a great deal of the
reasoning is shared by projects.

Reusable issue bases can serve as seeds that grow with each new design
project. Each project extends and enhances the reusable issue base. The
issue base being reused provides information about how to decompose the
task, possible answers to issues, and principles of design. The issue base also
warns designers of potential dead ends and unproductive solution direc-
tions. This is important because designers need better access to domain-ori-
ented information (Curtis, et al., 1988). Even expert designers can no longer
master all the relevant knowledge, especially in technologically oriented
design, where growth and change of the knowledge base are incessant
(Draper, 1984; Norman, 1988).

9. MAKING ARGUMENTATION SERVE DESIGN 289

Domain-oriented issue bases also amplify the designer's ability to reflect
on issues. Recurring design issues could be researched intensively and the
results of this could then be stored at the appropriate location in the issue
base for use by future designers encountering similar decisions in the
future. This would, for example, allow the "folk theories" of designers to
be subjected to rigorous scientific scrutiny. Cumulative domain-oriented
issue bases could also foster communication among designers, researchers,
and users about recurring matters of design.

The PHI subissue relationship is crucial to making issue bases reusable.
The hierarchical grouping of issues allows argumentation systems to be
built that filter issue bases according to the specifics of the new task.
REFLACT filters issue bases using its mechanism of issue conditions. The
system provides a common issue base for all projects in a domain such as
kitchen design. This issue base includes issues, answers, and arguments at
all levels of generality. As pointed out earlier, not every issue applies in
each design project, even if it falls into one general domain.

Enriched Catalogs. The JANUS catalog does not currently contain the
design rationale for the designs it contains. By adding the rationale to each
catalog example, designers can better understand the examples, can more
easily find examples that are similar to the kitchens they are designing, and
can reuse the rationale.

Representation of the Task at Hand. More support to incrementally cap-
ture the task at hand is needed. Beyond the information contained in the
construction situation, our specification component needs to be further
developed to let designers articulate the specifics of their design effort.
This knowledge can be used by REFLACT to filter out irrelevant informa-
tion from a reusable issue base. An initial effort in this direction is described
in Fischer and Nakakoji (1991).

7. CONCLUSIONS

Approximately 25 years ago, Horst Rittel began the first work on design
argumentation (i.e., rationale). The central idea of his approach was to
represent rationale as the argumentative evaluation of alternative answers
to questions. Half the chapters in this book deal with some variant of that
idea. As our experience and the experiences of others (see Buckingham
Shum, 1995 [chapter 6 in this book]; Conklin & Burgess-Yakemovic, 1991
[chapter 14 in this book]) make clear, this approach has run into funda-
mental difficulties. Argumentation does not naturally and easily serve
design; it must be made to do so. The central challenge facing advocates

290 FISCHER, LEMKE, McCALL, MORCH

of design rationale capture is to understand and overcome these difficulties.
This chapter has confronted this challenge.

We began by identifying fundamental difficulties in making argumen-
tation serve design. Creating and using design rationale is a time-consum-
ing process that must be carried out in addition to standard design activi-
ties, and there is little immediate reward. Recording and accessing design
rationale can disrupt design and interfere with reflection-in-action. Argu-
mentation that is removed from construction loses relevance to the task
at hand. Without tight integration of argumentation and construction,
designers fail to apply argumentation in the construction activity.

To understand how to overcome these difficulties, we analyzed them
within the design theories of Schon (1983) and Rittel (1984). This gave us
a constructive understanding that suggested the following solution ap-
proaches. First, the IBIS method should be modified to emphasize relevance
to (i.e., serving) the task at hand. This notion resulted in the development
of the PHI method. Refinement of the rationale representation scheme is
not enough; substantial computer support is also needed. Hypermedia
systems can be created to reduce the secretarial work of managing issue
bases. Support is also needed to reduce the conceptual work of creating
project rationale whose content and form correspond to the designer's
changing understanding of the problem. This can be done through support
for reuse of issue bases. Argumentation must be made to serve the construc-
tion of solution form. To do this support for construction must be integrated
with support for argumentation. We developed tools for construction that
support human problem-domain communication, and integrated them with
tools for argumentation via critics. These integrated design environments
form a synergistic whole by causing the construction situation to talk back
to the designer.

A final word on the generality of our approach. JANUS was used as an
"object-to-think-with" in this chapter. We used the same basic approach
for user interface design (Lemke & Fischer, 1990), development and
maintenance of Cobol programs (Atwood et al., 1991), river basin planning
and operations (Lemke & Cance, 1990), computer network design (Fischer
et al., 1991), knowledge editing, and design and planning of lunar habi-
tation. As these systems get used in realistic work environments, we will get
valuable feedback about the viability, the strengths, and the weaknesses of
this approach.

NOTES

Background. This chapter first appeared in the Human-Computer Interaction Special
Issue on Design Rationale in 1991.

9. MAKING ARGUMENTATION SERVE DESIGN 291

Acknowledgments. The authors thank the members of the Human-Computer
Communication group at the University of Colorado, who contributed to the
conceptual framework and the systems discussed in this chapter.

Support. The research was supported by the National Science Foundation under
Grants IRI-9015441, CDA-8420944, IRI-8722792, and MDR-9253425; by the Army
Research Institute under Grant MDA-903-8E>-C0143; and by grants from the Intelli-
gent Interfaces Group at NYNEX, and from Software Research Associates (SRA) in
Tokyo.

Authors' PresentAddresses. Gerhard Fischer, Department of Computer Science and
Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430;
Andreas C. Lemke, ALCATEL-SEL, ZFZ/SWl, Stuttgart, Germany; Raymond
McCall, Division of Environmental Design and Institute of Cognitive Science, Uni-
versity of Colorado, Boulder, CO 80309-0314; Anders Morch, Department of Infor-
matics, University of Oslo, P.O. Box 1080, Blindern, 0316, Oslo, Norway. Email:
gerhard@cs.colorado.edu, alemke@rcs.sel.de, mccall r@cubldr.
colorado.edu,andandersm@ifi.uio.no

REFERENCES

Akin, 0. (1978). How do architects design? In J. La tom be (Ed.), Artificial intelligence
and pattern recognition in computer aided design (pp. 65-104). New York: North-
Holland.

Atwood, M. E., Burns, B., Gray, W. D., Morch, A. I., Radlinski, E. R., & Turner,
A (1991). The Grace integrated learning environment-A progress report.
Proceedings of the Fourth Intemational Conference on Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems (IEA/AIE 91), 741-745. New
York: ACM Press.

Buckingham Shum, S. (1995). Analyzing the usability of a design rationale notation.
In T. P. Moran & J. M.Carroll (Eds.), Design rationale: Concepts, techniques, and
use. Hillsdale, NJ: Lawrence Erlbaum Associates. [Chapter 6 in this book.]

Conklin, E.J. (1987). Hypertext: An introduction and survey. IEEE Computer, 20(9),
17-41.

Conklin, E. J., & Begeman, M. (1988). gIBIS: A hypertext tool for exploratory
policy discussion. Proceedings of the Conference on Computer Supported Coojlerative
Work, 140-152. New York: ACM.

Conklin, E.J., & Burgess-Yakemovic, KC. (1991). A process-oriented approach to
design rationale. In T. P. Moran &J.M. Carroll (Eds.), Design rationale: Concepts,
techniques, and use. Hillsdale, NJ: Lawrence Erlbaum Associates, 1996. [Chapter
14 in this book.]

Cross, N. (1984). Develojlments in design methodology. New York: Wiley.
Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design

process for large systems. Communications of the ACM, 31(11), 1268-1287.
Draper, S. W. (1984). The nature of expertise in UNIX. Proceedings of IiVTERACI'

'84, IFIP Conference on Human-Computer Interaction, 182-186. Amsterdam: Elsevier
Science Publishers.

292 FISCHER, LEMKE, McCALL, MORCH

Ehn, P. (1988). Work-oriented design of computer artifacts. Stockholm, Sweden:
Almquist & Wiksell International.

Fischer, G. (1990). Cooperative knowledge-based design environments for the
design, use, and maintenance of software. Software Symposium '90, 2-22. Tokyo,
Japan: Software Engineering Association.

Fischer, G., & Girgensohn, A. (1990). End-user modifiability in design environ-
ments. Human Factors in Computing Systems, CHI '90 Conference Proceedings, 183--191.
New York: ACM.

Fischer, G., Grudin,J., Lemke, A. C., McCall, R., Ostwald,]., & Shipman, F. (1991).
Supporting asynchronous collaborative design with integrated knowledge-based
design environments (Tech. Rep.). Boulder: University of Colorado, Department
of Computer Science.

Fischer, G., & Lemke, A. C. (1988). Construction kits and design environments:
Steps toward human problem-domain communication. Human-Computer Interac-
tion, 3(3), 179-222.

Fischer, G., McCall, R., & Morch, A. (1989a). Design environments for constructive
and argumentative design. Proceedings of the CHI '89 Conference on Human Factors
in Computing Systems, 269-276. New York: ACM.

Fischer, G., McCall, R., & Morch, A. (1989b). JANUS: Integrating hypertext with a
knowledge-based design. Proceedings of Hypertext '89, 105--117. New York: ACM.

Fischer, G., & Nakakoji, K. (1991). Empowering designers with integrated design
environments. In J. Gero (Ed.), Proceedings of the First International Conference on
Artificial Intelligence in Design (Edinburgh, Scotland) (pp. 191-209). Cambridge,
England: Butterworth-Heinemann, Ltd.

Hutchins, E. L., Hollan,]. D., & Norman, D. A (1986). Direct manipulation
interfaces. In D. A Norman & S. W. Draper (Eds.), User-centered system design. New
perspectives on human-computer interaction (pp. 87-124). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Jones, R J., & Kapple, W. H. (1984). Kitchen planning principles-Equipment-appli-
ances. Urbana-Champaign: University of Illinois, Small Homes Council-Building
Research Council.

Kunz, W., & Rittel, H. W.]. (1970). Issues as elements of information systems (Working
Paper No. 131). Berkeley: University of California, Berkeley, Center for Planning
and Development Research.

Lee,]. & Lai, K.-Y. (1991). What's in design rationale? Human-Computer Interaction,
6, 251-280. Also in T. P. Moran &J.M. Carroll (Eds.), Design rationale: Concepts,
techniques, and use. Hillsdale, NJ: Lawrence Erlbaum Associates, 1996. [Chapter
2 in this book.]

Lemke, A. C. (1990). Framer-hypertext: An active issue-based hypertext system.
Proceedings of the Workshop on, Intelligent Access to Information Systems, 34-38.
Darmstadt, Germany: GMD-IPSI.

Lemke, AC., & Fischer, G. (1990). A cooperative problem solving system for user
interface design. Proceedings of AAAI-90, Eighth National Conference on Artificial
Intelligence, 4 79-484. Cambridge, MA: AAA! Press/MIT Press.

Lemke, A. C., & Cance, S. (1990). End-user modifiability in a water management
application (Tech. Rep.). Boulder: University of Colorado, Department of
Computer Science.

MacLean, A., Young, R. M., Bellotti, V. M. E., & Moran, T. P. (1991). Questions,
options, and criteria: Elements of design space analysis. Human-Computer

9. MAKING ARGUMENTATION SERVE DESIGN 293

Interaction, 6, 201-250. Also in T. P. Moran &J.M. Carroll (Eds.), Design rationalR:
Concepts, techniques, and use. Hilldale, NJ: Lawrence Erlbaum Associates, 1996.
[Chapter 3 in this book.]

R. (1979). On the structure and use of issue systems in design. Unpublished
doctoral dissertation, University of California, Berkeley.

R (1991). PHI: A conceptual foundation for design hypermedia. Design
Studies, 12, 30--41.

R., Bennett, P., d'Oronzio, P., Ostwald, J., Shipman, F., & Wallace, N.
(1990). PHIDIAS: A PHI-based design environment integrating CAD graphics
into dynamic hypertext. In A. Rizk, N. Streitz, & J. Andre (Eds.), Hypertext:
Concepts, systems and applications (pp. 152-165). Cambridge, England: Cambridge
University Press.

YfcCall, R., Mistrik, I., & Schuler, W. (1981). An integrated information and
communication system for problem solving. Proceedings of the Seventh International
CODATA Conference, 107-115. London: Pergamon.

:'\eches, R., Swartout, W. R., & Moore, J. D. (1985). Enhanced maintenance and
explanation of expert systems through explicit models of their development.
IEEE Transactions on Software Engineering, SE-11 (11), 133 7-1351.

:"Jorman, D. A (1986). Cognitive engineering. In D. A Norman & S. W. Draper (Eds.),
User-amtered system design (pp. 31-62). Hillsdale, NJ: Lawrence Erlbaum Associates.

:"Jorman, D. A. (1988). The psychology of everyday things. New York: Basic Books.
Paradies, K. (1973). The kitchen book. New York: Wyden.
Reuter, W., & Werner, H. (1983). Thesen und empfehlungen zur anwendung von

argumentativen informationssystemen [Theses and recommendations about the
use of argumentative information systems] (Working Paper). Institut fuer
Grundlagen der Planung, University of Stuttgart, Germany.

Rittel, H. W. J. (1972). On the planning crisis: Systems analysis of the first and
second generations. Bedriftsokonomen, 8, 390-396.

Rittel, H. W. J. (1980). APIS: A concept for argumentative planning information systems
(Working Paper 324). University of California, Berkeley: Institute of Urban and
Regional Development.

Rittel, H. W. J. (1984). Second-generation design methods. In N. Cross (Ed.),
Developments in design methodol.ogy (pp. 317-327). New York: Wiley.

Schon, D. A. (1983). The reflective practitioner: How professionals think in action. New
York: Basic Books.

Simon, H. A (1981). The sciences of the artifidal. (2nd ed.) Cambridge, MA: MIT
Press.

Stefik, M.J. (1986). The next knowledge medium. AI Magazine, 7(1), 34-46.
Walker, J. H. (1987). Document examiner: Delivery interface for hypertext

documents. Hypertext '87 Papers, 307-323. Chapel Hill: University of North
Carolina Press.

Walker, J. H. (1988). Supporting document development with concordia. IEEE
Computer, 21(1), 48-59.

Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new
foundation for design. Norwood, NJ: Ablex.

Design Rationale

Concepts, Techniques, and Use

Edited by

Thomas P. Moran
Xerox Palo Alto Research Center

John M. Carroll
Virginia Polytechnic Institute and State University

m
1996

LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Mahwah, New Jersey

	Pages2on making.pdf
	Pages3on making

