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Abstract. Collaboration among designers can be described 
with an "action-reflection-critique" model in which the ex­
plicit representation of the design contributes to a shared 
understanding and to the articulation of design knowledge. 
We describe how domain-oriented design environments 
based on this model support human-computer collaboration 
by intertwining knowledge delivery and elicitation. The KID 
(Knowing-In-Design) system has a shared understanding 
about the designers' "task at hand" through a partial design 
requirement specification and a solution. KID delivers design 
knowledge relevant to this task at hand, and the delivery 
helps designers uncover tacit design' concerns. Designers are 
encouraged to store the elicited design knowledge in KID, 
which results in the evolution of the system's knowledge­
bases. The evolution affects the system's subsequent be­
havior by tuning the delivery toward the designers. This 
cycle of knowledge delivery and elicitation processes sup­
ported by KlD allows designers to gradually coevolve design 
requirements and solutions. 

1. Introduction 
Design tasks are ill-defined (Simon, 1981) and open-ended 
(Ritte1, Webber, 1984). Much of the relevant knowledge 
required for design is tacit (Polanyi, 1966). Design ac­
tivities are best supported by taking a human-computer col­
laborative problem-solving approach. In this paper, we 
describe a model, an architecture, and a prototype system 
that support designers in collaborating with one another and 
with a computer system. Integrated, domain-oriented, 
knowledge-based design environments (Fischer, Nakakoji, 
1992) augment skills of designers instead of generating 
solutions for designers, as typified by the design automa­
tion approach (Gero, 1989). Design environments are com­
puter systems that provide design media and tools with 
which designers can represent their design, and intelligent 
agents that support designers in using the systems' design 
knowledge for understanding and reflecting on their partial 
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design. 

Based on theories of design and models of human-human 
collaborative problem solving, we have developed the 
action-reflection-critique model for understanding col­
laboration among stakeholders. l Applying this model to 
human-computer collaborative design has led us to develop 
an architecture for a design environment that intertwines 
knowledge delivery and elicitation. Knowledge delivery is 
the presentation of information by a design environment 
relevant to the partially constructed design represented in 
the environment. The explicit representation of the partial 
design and the delivered design knowledge serve as a 
knowledge elicitation mechanism: they may invoke 
relevant design knowledge of which designers had been 
previously unaware. Designers may then explicitly 
represent the elicited knowledge and store it in the system. 

In what follows, we illustrate our approach with the KID 
(Knowing-In-Design) (Nakakoji, 1993) kitchen design en­
vironment and demonstrate how the system intertwines 
knowledge delivery and elicitation in support of designers 
in coping with design tasks. 

2. A Model for Collaborative Design 
Collaboration in design requires not just coordinating 
divided design tasks; it is also important that designers 
learn and refine their performance in the course of solving a 
problem based on the evolving shared understanding. 

J Stakeholders of a design task include people with various 
roles, such as designers, clients, and end-users. To focus our 
discussion on issues of collaboration between people and com­
puters rather than among different people, we use the term 
"designers" to refer to stakeholders in general, and do not distin­
guish among the different roles of stakeholders. 
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Figure 1: An Action-Reflection Cycle in Design 

An action results in the creation and modification of an 
external design representation, whereas reflection occurs 
in a designer's mind and may not be explicitly 
represented. External design representations (such as 
paper, mockups, or computational artifacts) are essential 
to support designers to recognize unanticipated con­
sequences of their actions and to reflect upon sub­
sequent actions. 

In order to model collaboration in design and further apply 
it to human-computer collaborative design, we have in­
tegrated design theory with models of human-human col­
laborative problem solving. 

2.1. The Action-Reflection Model of Design 
According to Schoen's theory, designers work in an alter­
nating cycle of action and reflection (Schoen, 1983). The 
designer acts to shape the design situation by creating or 
modifying design representations, and the situation "talks 
back" to the designer, revealing unanticipated con­
sequences of the design actions. In order to understand the 
situation's back-talk, the designer reflects on the actions 
and consequences, and plans the next course of action (see 
Figure 1). 

2.2. An Action-Reflection-Critique Model for 
Collaborative Design 

In most problem solving situations, people are initially un­
able to articulate complete requirements for problems (Fis­
cher, Reeves, 1992). Through a means of critiquing, which 
reminds designers of other points of view (Miyake, 1986), 
people identify portions of the problem that have not yet 
been understood and refine the solution. In conversation, 
shared meanings are accrued incrementally, along with 
evidence of what has been understood so far (Brennan, Hul­
teen, 1993). People not only respond to what has been ar­
ticulated immediately before, but also gradually develop a 
context to be coherent throughout the conversation (Stein, 
Thiel, 1993). 
The action-reflection model represented in Figure 1 il­
lustrates the design activity of a single designer. Applying 
the action-reflection model to collaborative design requires 
that the result of reflection be made explicit to maintain a 
shared understanding among the stakeholders. We call this 
articulation of the result of reflection a critique, and suggest 
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Figure 2: The Action-Reflection-Critique Model in 
Collaborative Design 

Criticisms include pointing out possible breakdowns in 
the partial design and articulated knowledge as relevant 
to the shared context. 

an action-reflection-critique model for collaborative design. 
Figure 2 illustrates the action-reflection-critique model of 
the collaborative design task between designers. In the 
model, the shared context consists of representations of a 
partial design and criticisms including pointing out possible 
breakdowns in the partial design and articulated design 
knowledge as relevant to the shared context. Through the 
cyclic processes, designers both evolve a representation of 
their design and gradually construct and accumulate 
criticisms as articulated knowledge. This shared under­
standing helps the designers coevolve individual under­
standing of a problem and a solution, and increase the 
knowledge about the design domain. 

2.3. Intertwining Knowledge Delivery and 
Elicitation 

Our design environments are human-computer collabora­
tive problem-solving systems based on the extension of the 
action-reflection-critique model. Challenges in applying the 
model to human-computer collaboration in design tasks 
have been support of communication and establishment of a 
shared context between a designer and a computer system. 
Design representations developed within media of a design 
environment, which include specified requirements and a 
constructed solution, provide a context to be shared by 
designers and the design environment. Monitoring what 
designers have been doing with the media allows the design 
environment to have a partial understanding about the 
design task. A design environment can critique the partial 
design, while designers can embed their criticisms within 
the partial design. The evolving explicit representations of 
the partial design and criticisms serve as a shared under­
standing between designers and a design environment. 

Figure 3 illustrates the model and describes how the action­
reflection-critique model is applied to human-computer col­
laboration in design tasks. We characterize critique of a 
design environment as knowledge delivery, implying that 
the system delivers the information relevant to the desig­
ners' task at hand in a timely manner without explicit re­
quests to the system. The system's critiquing (i.e., delivered 
knowledge) invokes designers' reflective thinking, and may 
make designers aware of tacit design knowledge and 
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Figure 3: Applying the Action-Reflection-Critique 
Model to Human-Computer Collaboration 

A design environment plays roles both as a design 
medium and as an inteIligent agent that collaborates 
with designers. In our approach; because a design en­
vironment does not produce or modify a design 
representation automaticaIly, there is no action arrow 
from the system. The partial design constructed in the 
design medium provides the shared context between the 
designer and the design environment. Based on the iden­
tified shared context, the system delivers the infor­
mation related to the context. Designers may become 
aware of tacit design knowledge as relevant to the con­
text, and store the elicited knowledge into the system as 
criticisms. The results of elicitation are taken into ac­
count by the system to modify its subsequent behavior. 

critique back the system. We characterize the system's in­
voking designers to articulate criticisms to the current situa­
tion as knowledge elicitation. The elicited and stored 
knowledge is taken into account by the system to change 
the subsequent behavior of the system. 

3. Technical Challenge 
As illustrated in Figure 3, a design environment consists of 
two major parts: a design medium and an intelligent agent. 
The intelligent agent interacts with designers by delivering 
knowledge from a knowledge-base; and changes and tunes 
its behavior according to the knowledge elicited by the 
designers during a design process. In this section, we focus 
our discussion on technical challenges of implementing 
knowledge delivery and elicitation mechanisms. 

3.1. Requirements for Knowledge Delivery 
Challenges for effectively implementing knowledge 
delivery mechanisms include how to deliver the right 
knowledge at the right time. 

Whether a piece of knowledge is "right" can be deter­
mined in terms of the relevance of information to the cur­
rent task. If the system provides a medium in which desig­
ners can represent their design, this partial design can be 
used to form a model of the task at hand. Using this model, 
the delivery mechanisms can retrieve relevant information 
from the knowledge-base. Determination of the relevant 
portions of knowledge presents a challenge because dif­
ferent design situations may need to view a piece of 
knowledge differently; thereby the definition of relevance 
changes dynamically. It is impossible to anticipate all pos­
sible design situations a priori (Suchman, 1987); thus a 

3 

static indexing scheme for design information of the 
knowledge-bases is inapplicable. 

Delivery mechanisms of a design environment continuously 
monitor user actions and intervene with them when a poten­
tial information need is detected. They are especially effec­
tive because delivered information is related to a specific 
condition in the current design. Intervention immediately 
after a suboptimal or unsatisfactory action has occurred has 
the advantage that the problem context is still active in the 
designer's mind and the designers still know how they ar­
rived at the problematic situation (Fischer et aI., 1993). At 
the same time, such immediate intervention should not dis­
tract designers from concentrating on the task at hand. 

3.2. Requirements for Knowledge Elicitation 
It is crucial that elicited knowledge is taken into account by 
the system to refine its subsequent behavior. In collabora­
tive design, designers adapt their own behavior according 
to the evolving shared understanding (Pollack, 1985). Our 
experience in building a design rationale system shows that 
people are not motivated to articulate knowledge and store 
it if they do not see immediate benefit by doing so (Fischer 
et aI., 1991). 

A challenge for implementing such a knowledge elicitation 
mechanism is that the newly created representation must be 
able to be manipulated by the system. This requires desig­
ners to represent the knowledge in the system's languages 
- often formal and very different from designers' domain 
languages. Forcing designers to state their design 
knowledge using a knowledge representation language un­
dermines their expressive ability. One approach to address 
this problem is to ask knowledge engineers to formulate 
their knowledge whenever they want to store elicited 
knowledge in the system, but this is not a feasible solution 
because there are risks of erroneous interpretation by 
knowledge engineers (Bonnardel, 1993), and it cannot be 
expected that knowledge engineers will be available 
throughout the lifetime of system usage. 

Our approach is to support the evolutionary growth of a 
knowledge-based system through a seeding, evolutionary­
growth, and reseeding cycle (see Figure 4) (Fischer et aI., 
1994). The system is first "seeded" by knowledge en­
gineers in collaboration with designers, with several 
mechanisms that would allow designers to represent their 
knowledge during the use of the system. As a second phase 
during use, the designers store their elicited knowledge 
using the mechanisms, "gradually evolving" the 
knowledge-base. Such mechanisms must allow designers 
to be able to represent their thoughts, ideas, and arguments 
directly and distinctly using their own language. End-user 
modifiability (Fischer, Girgensohn, 1990) allows designers 
to create computer-interpretable knowledge representations 
without a detailed knowledge of the underlying computa­
tional mechanisms. The system is occasionally "reseeded" 
by knowledge-engineers in collaboration with the designers 
to reorganize knowledge constructed by the designers that 
might have introduced inconsistencies or insufficient for­
malisms. 



Figure 4: A Seeding, Evolutionary Growth, and Reseeding Cycle of Development Processes 

Through the use of a design environment, designers gradually elicit knowledge by designing and responding to the knowledge 
delivery. Some part of the added knowledge may be inconsistent or not totally interpretable by the system. During the reseeding 
process, knowledge engineers, with the help of designers, can examine the knowledge-base and reconstruct it. Support for 
seeding and reseeding is discussed in Fischer et al. [1994]. 

4. The KID Design Environment 
We have developed the KID design environment (Nakakoji, 
1993) to instantiate our approach. KID is implemented in 
the CLOS programming language on Symbolics Genera 
8.1. The design environment consists of four major com­
ponents: 

I. KIDSPECIFICA TION, which allows designers to 
specify their design requirements and intentions 
(Figure 5); 

2. KIDCONSTRUCTION, which provides designers with 
a palette of domain abstractions and supports them 
in constructing design artifacts using direct 
manipulation styles (Figure 6); 

3. an argumentation-base, which stores design 
rationale represented in the IBIS structure (Conklin, 
Begeman, 1988) (i.e., a network of nodes, consist­
ing of issues, answers, and arguments) (see 
Figure 5); and 

4. a catalog-base, which stores completed floor plans 
(construction) together with associated specifica­
tions (see Figure 6). 

The components are integrated with various delivery and 
elicitation mechanisms (see Figure 7). Designers can· 
coevolve a problem and a solution by creating partial 
designs in KIDSPECIFICATION and KIDCONSTRUCTION. We 
define the representations given through the two com­
ponents as "a partial design." The partial designs provide 
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KID with a shared understanding about the designers' task 
at hand. KID delivers knowledge relevant to the task at 
hand by indicating potential breakdowns (Fischer, 1994) in 
the partial design and retrieving useful cases from the 
catalog-base for their design (Nakakoji, 1994). The 
delivery not only helps designers refine the partial design 
but also elicits tacit design knowledge from the designers 
by use of reminders. (Schank, 1988). Designers may store 
this uncovered knowledge by presenting it as argumen­
tation or as new design objects, which results in the evolu­
tion of the system's knowledge-bases. KID dynamically 
takes this evolution into account and refines its behavior 
while supporting designers. 
Through iterating this process, the designers gain an under­
standing of their design task as well as knowledge about the 
domain, and they articulate and accumulate design 
knowledge into the system. The system tunes its behavior 
and delivery according to the gradually evolving shared un­
derstanding and the elicited knowledge. 

4.1. Scenario 
The following scenario illustrates how a designer interacts 
with KID. A kitchen designer, Jeff, designs a kitchen floor 
plan. Jeff specifies requirements for his design task using 
KIDSPECIFICATION (Figure 5). Jeff starts constructing a 
floor plan using KIDCoNSTRUCTION (Figure 6). When he 
puts a dishwasher on the right side of a double-bowl sink, 
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A designer perfonns a design task through specification and construction components. The partial specification and construction 
provides KID with shared understanding of the task at hand. Using this understanding, a delivery manager of KID derives 
specification-linking rules from the argumentation-base. These rules are used by delivery mechanisms (Case Deliverer, Critic, 
and Argumentation Deliverer), which deliver corresponding knowledge for the designer. The designer can elicit knowledge by 
adding design objects to the catalog-base, by adding arguments to the argumentation-base, and by adding construction-analyzing 
rules using MODIFIER. 

critic messages appear on the screen, one of which notifies 
him that he should put the dishwasher on the left side of the 
sink (see the Message window in Figure 6). Wondering 
why, he clicks on the critic message. 
The corresponding argument is presented, describing that a 
kitchen should have a dishwasher on the left side of a sink 
because he specified that this kitchen is for a left-handed 
cook (see Figure 5). In fact, cafalog examples, each of 
which has a dishwasher on the left side of the sink, have 
been suggested by the system in the Catalog window 
(Figure 6) to be most appropriate for the design require­
ments specified in KIDSPECIFICATION. Jeff reflects on the 
argument and thinks about specializing the kitchen for a 
left-handed person. Then he remembers that the resale 
value of the kitchen is actually a very important concern. 
He adds this requirement using KIDSPEClFICATION, and 
creates an argument that having a dishwasher on the left 
side of a sink may affect the resale value (see the 
Argumentation window in Figure 5). The system takes this 
argument into account and defines a new interdependence 
between the location of a dishwasher with regard to a sink 
and the concern for a resale value. In the Catalog window, 
the catalog examples are automatically reordered according 
to this newly defined interdependence, showing a catalog 
example that has a dishwasher on the right side of a sink on 
top of the list (not shown in the figures). 

4.2. Architecture and Mechanisms of KID 
Figure 7 illustrates the architecture and mechanisms of the 
KID design environment. KID delivers three types of design 
knowledge from its knowledge-bases: 

• Catalog examples are ordered according to the ap­
propriateness to the current specification. 
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• Critic messages notify potential conflicts in the floor 
plan in terms of the current specification and generic 
design rules. 

• Argumentation describes alternatives to design deci­
sions, interdependences among design decisions, and 
how the critic messages are related to the current 
specification. 

KID allows designers to store elicited domain knowledge in 
the following manner: 

I. to add arguments to the argumentation-base; 
2. to add, modify, or delete questions and answers in 

KIDSPECIFICA TION; 

3. to store completed specifications and constructions as a 
catalog example; 

4. to add, modify, or delete palette items in 
KIDCONSTRUCTION; and 

5. to define or redefine construction-analyzing rules. 

Delivery mechanisms and some elicitation mechanisms 
(above 1 and 2) use specification-linking rules. These rules 
represent interdependences among design decisions and are 
used to infer the relevance between different types of 
design representations. The specification-linking rules are 
further described below. Other elicitation mechanisms 
(above 3, 4 and 5) are supported differently and described 
in detail in Nakakoji [1993] and in Girgensohn [1992]. The 
Store into Catalog command allows designers to store their 
specification and construction into the catalog-base, which 
is reconstructed on the fly. This allows designers to store 
several versions of their design as catalog examples. The 
MODIFIER system (Girgensohn, 1992) allows designers to 
create or modify design objects of KIDCONSTRUCTION, in­
cluding palette items and construction-analyzing rules . 
MODIFIER provides a property sheet interface to designers 
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Figure 5: KIDSPECIFICATION 

Designers can select answers pre~ented in the Questions window. The summary of currently selected answers appears in the 
Current Specifications for window. Each answer is accompanied by a slider that allows designers to assign a weight representing 
the relative importance of the answer (e.g., most importance to the left-handed cook requirement (i.e., 9) and little importance to 
the single-person household requirement (i.e., 3)). The Argumentation for window provides further explanation about how a 
presented critic message (i.e., a location of a dishwasher with regard to a sink) (see Figure 6) is related to the current specification 
(i.e., one of the selected answers - a left-handed cook), as well as alternatives for the location of a dishwasher including the one 
just created. 

for a design object that is internally represented as a CLOS 
object. MODIFIER helps designers to edit the attributes of 
the object by making suggestions and providing help mes­
sages. 

Representation of Specification-Linking Rules. Each 
specification-linking rule is derived from an argument 
stored in the argumentation-base. The argumentation-base 
consists of a network of nodes of issues, answers and ar­
guments, each of which is implemented as a CLOS object. A 
class node, which has subclasses issue, answer, and 
argument, provides methods necessary for dealing with 
display and maintaining links between nodes. Figure 8 
shows definitions of the issue, answer, and argument about 
the location of a dishwasher in terms of a sink, which cor­
responds to the presentation in the Argumentation-for win­
dow in Figure 5. Property sheet interfaces are provided for 
designers to define each of these objects (see Figure 9). 
The underlying formalism of the argumentation-base is a 
network structure of nodes, consisting of an issue, optional 
answers, and associated pro or con arguments. In order to 
form a structural network among the questions, each ques-
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tion must have at least one super issue. The root issue is 
called "Kitchen Specification." Currently, the root has 
three subtrees, "Facts," "Preferences" and "Feature 
Constraints." "Facts" contains the "Personal Infor­
mation," "Cooking Habits," and "Other Activities" sub­
trees. These structures can be modified on the fly by desig­
ners by editing an issue object definition using a property 
sheet interface. 

Each question and answer has a unique name as an iden­
tifier. For example, the question "Where should a dish­
washer be?" has a name "where-dishwasher," and the 
answer "left side of a sink" has a name 
"left-side-of-a-sink." A pair of the identifiers of an issue 
and answer is called a domain-distinction, which constitutes 
vocabulary over the domain (Winograd, Flores, 1986). 

An argument object has the Related Domain Distinction 
slot (see Figures 8 and 9) that relates this argument to 
another issue-answer pair, and dynamically infers the 
dependency among the two issue-answer pairs (i.e., 
specification-linking rules), as described below. When 
designers want to relate an argument to another question, 
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Figure 6: KIDCONSTRUCTION 

Designers construct a kitchen floor plan in the Work Area using a direct manipulation style to select and place design units from 
the appliance palette. Designers may copy an example from the Catalog window, where catalog examples are presented in the 
order of accordance with the current specification (see Figure 5). The Messages window presents critiquing messages that are 
detected by KID. Numbers indicate computed relative importance of each critiquing message in terms of the current specification. 

(defobj ect where-dishwahser issue 
:name "where-dishwasher" 
:superissues '("feature-constraints") 
:subissues nil . 
: text-description "Where should a dishwasher be?" 
:type :single-value 
:answers '("left-side-of-a-sink" 

"right-side-of-a-sink" 
"near-wall-cabinet" ) 

:condition t) 
(defobj ect Ieft-side-of-a-sink answer 

:name "left-side-of-a-sink" 
:issue "where-dishwasher" 
: text-description "Left side of a sink" 
:critic-rule "Left-Of (Dishwasher, Sink)" 
:arguments '(left-side-of-a-sink-arg-l)) 

( de f obj ec t left-side-of-a-sink-arg-l argumen t 
: text-description "If/ou are left handed, a dishwasher should be on the left side of a sink" 
:answer "left-side-o -a-sinK" 
:polarity :pro 
:author "Nakakoji, Kumiyo" 
:Time 2938902977 
:related-domain-distinction (eq "left-right" "left")) 

Figure 8: Issue, Answer, and Argument Objects in the Argumentation-Base 
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Rel~ted DOI"Il!in Di:5tinction: left·nght _ left 
Til"'tf!: None .... 24 ... 'ji3 15:22:51 
Author: Hone: H.akakoJf .. J.ulffyo 

Figure 9: A Property Sheet Interface for Modifying the Argument Object 

A property sheet for modifying or creating an argument. 

hitting the HELP key triggers KIDSPECIFICATION to show 
all the names of existing issues (Figure 10). Designers can 
pick one of them, followed by either "=" or "#;", fol­
lowed by the name of one of the related answers. 
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Derivation of a Specification-Linking Rule. 
Specification-linking rules are a subset of "serve relation­
ships" (Fischer et aI., 1991) that can be defined over the 
argumentation base. The serve relationships represent 



Help for Modify Argument 

You are being asked to enter an Issue condftlon. 
These are the possible Issues: 

both-work FACTS 
childrens-hangout FEATURE -CONSTRAINTS 
cooking-habits how-many-cooks 
eating-space how-many-meals 
effie ient-ki tchen Kitchen-Speci f !cation 
entertainment-requirement light-kitchen 

methods-of-cooking 
need-dishwasher 
other-activltl~s 
personal-Info 
PREFERENCE 
right-left 

safety 
shape-of-kltchen 
slze-of-fam; Iy 
size-of-meals 
type-oF-kitchen 
type-oF-refrigerator 

type-of-sink 
type~of-5tove 

use-of-mlcrowave 
where-dIshwasher 
where-refrigerator 
where-sInk 

where-stove 

These afe the possible special tokens: 
False 
True 

Figure 10: Existing Issue Names 

A list of names of currently existing issues. When designers create a new issue using a property sheet, the defined name is 
automatically added to this list. 

which issue resolution affects the resolution of other issues. 
For example, if you answer that the size of the household is 
one, then the meal size suggested is small. Specification­
linking rules represent this dependency, namely, a certain 
issue resolution detennines how to answer other issues. 
Some answers are related to features in the representation 
of constructions. In short, those rules fonn a decision­
making network, and some of the decisions are related to 
surface features in the partial construction. 
KID automatically derives such a serve relationship be­
tween two issue-answer pairs from an argument of the 
argumentation-base. Often, an argument to an issue-answer 
pair X is related to another issue-answer pair Y, and this 
association is made by designers filling in the 
related-domain-distinction field using the property sheet 
(Figure 9). If the argument is a pro argument, the relation­
ship is an implication: Y impl ies X. If the argument is a 
con argument, the relationship is an implication of the 
negation of the issue-answer pair: Y implies not X. 
For example, the argument "If you are left-handed, a dish­
washer should be on the left side of a sink" is related to the 
issue-answer pair "left-right=left" and because the ar­
gument is a pro argument for the answer "Where should a 
dishwasher be?: Left side of a sink," the specification­
linking rule "left-right= left " ~ 

"where-dishwasher=left-side-of-a-sink" is derived. 
The system dynamically identifies this interdependence be­
tween two issue-answer pairs and derives a specification­
linking rule. Each time designers select an answer to an 
issue (Y), the system scans all the arguments to identify 
issue-answer pairs X that have arguments that are as­
sociated with the selected issue-answer pair, Y. Then, ac­
cording to its polarity, pro or con, the system defines a 
PROLOG term "require (X Y)" or "require (X 
(not Y))." For example, from the example above, the 
following tenn is defined: 
require((EQ left-right left) 

(EQ where-dishwasher 
left-side-of-a-sink) ) 

The system uses the PROLOG engine to perfonn inference, 
and the maximum number of steps of inference can be 
detennined by designers (the default is 3). This way, a 
newly added argument is immediately reflected in the 
derivation of the specification-linking rules. 
Knowledge Delivery in KID. The Delivery Manager of 
KID monitors KIDCONSTRUCTION and KmSPECIFICATION 
and refonnulates the interdependence network represented 
by specification-linking rules each time a modification is 
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made in the two components. Because KIDSPECIFICA TION 
has been built as a hypertext interface to the argumentation­
base, selecting answers in KIDSPECIFICATION is reflected in 
reorganizing the specification-linking rules. In order to 
reflect the current construction to the fonnation of the 
specification-linking rules, the delivery manager consults 
with the construction-analyzing rules that can parse the 
Work Area of KIDCONSTRUCTION and identify notable 
characteristics, such as whether a dishwasher is on the left 
side of a sink. 
The interdependence network fonnulated from 
specification-linking rules is used by three mechanisms to 
deliver three types of design knowledge. The Case 
Deliverer mechanism applies the rules to each catalog ex­
ample, computes an appropriateness value for each ex­
ample, and orders the examples in the Catalog window by 
the computed values. The Critic mechanism applies the 
rules to the current construction, detects conflicts in the 
construction in tenns of the rules, computes the importance 
of each conflict in tenns of the current weighted specifica­
tion, and presents critiquing messages with a number in­
dicating the importance in the Message window. Finally, 
the Argumentation Deliverer mechanism maintains the 
derivation of specification-linking rules from the 
argumentation-base, and presents related arguments in the 
Argumentation window when designers request further ex­
planation for the presented critiquing messages. The 
mechanisms are described in detail in Nakakoji [1993]. 

5. User Study 
KID has been evaluated by observing ten subjects, including 
both domain-experts and novices, using the system. The 
constructive interaction method (Miyake, 1986) was used 
to analyze the interaction between the subjects and the sys­
tem. The method uses two subjects in each group and ob­
serves them talking to each other. The subjects were asked 
to design a kitchen floor plan, given the infonnal require­
ment description shown in Figure 11. Test sessions were 
videotaped, and the protocols were partially transcribed. 
Figure 12 summarizes types of reactions made by the sub­
jects when KID presented critics. The classification in the 
figure is simplified for the sake of clarity. When design 
knowledge was delivered, subjects responded in one of the 
following ways: (1) they applied the delivered knowledge 
to refine the partial design, (2) they explored the related 
infonnation space to the delivered knowledge, or (3) they 
articulated new design knowledge by arguing against the 



Initially Given Specifications: 
o Both the wife and husband have jobs. 
o During weekdays, the wife mostly cooks. 
0 During weekends, the couple cooks meals together. 
• The wife is left-handed. 

Hidden Requirements: 
o The couple lives with five children. 
• They come home for lunch. Therefore, they prepare 
meals three times a day in the kitchen. · They often entertain. · They do not need an eating space. 
o They need a dishwasher. 
o They need a double-bowl sink. 
0 Safety and efficiency are important factors for them. 

Figure 11: The Requirement Description of the Task 

In order to observe how subjects understand new aspects 
of the design problem, some of the conditions were 
initially hidden. These conditions were revealed to the 
subjects as requested. Anything asked that was not 
stated in the conditions was answered as unknown. 

delivery. 
Active knowledge delivery was often found to trigger the 
subjects to reflect on their partial design. Subjects often 
discovered breakdowns or important considerations about 
which they had not previously been aware, and they often 
reacted to delivered knowledge and argued against it in 
terms of their task at hand. 
An unexpected benefit of knowledge delivery was that it 
encouraged the subjects to explore the system's information 
space. There is evidence that people search longer for 
answers to questions when they believe they know the 
answer (Reder, Ritter, 1992). High feelings of knowing 
correlate with longer search times. When KID delivered 
information that was relevant to the task at hand but not 
quite right, the subjects then gained this "feeling of know­
ing," which made their information search longer. 
When presented with a critic message, the initial reaction of 
the subjects was often to ask for further explanations of 
why the message was significant and how it was related to 
their specification. For example, when KIDCONSTRUCTION 
displayed the critic message "the dishwasher should not be 
used, " subjects did not discuss this initial critic message, 
but instead they examined the underlying argumentation of 
the message, which was displayed in the Argumentation 
window, by clicking on the initial critic message. When the 
subjects disagreed with the argument, they often articulated 
counterargument,>. When the subjects attended to a catalog 
example that was on top of the ordered list in the Catalog 
window in KIDCONSTRUCTION, they responded either by 
discovering favorable or problematic features in the ex­
ample, or by wanting to know why and how the example 
was relevant to their current specification. 
In what follows, we focus on the three types of user reac­
tions and effects of knowledge delivery, and illustrate each 
with transcripts collected through the user studies. 

Reframing a Problem Specification. Often the subjects 
found a design concept of which they had not been aware 
by being reminded by a delivered catalog example. For 
example, in the following transcript, the subject was given 
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Reactioas 

Figure 12: Subjects' Reactions to the Critics 

The subjects' reactions to the system's knowledge 
delivery are classified. When they were presented with 
the associated argument through a critic message, the 
subjects either agreed or disagreed with the argument, 
and different reactions were made accordingly. When 
ordered catalog examples were presented, the subjects 
either liked or disliked one of the examples, depending 
on whether they discovered a good or unknown feature 
or an unfavorable feature in the example. When they 
accessed arguments explaining how and why the catalog 
examples are related to their current task, the reaction 
was the same as that of the critic messages discussed 
above. 

the requirement description (Figure 11), and he had not 
been aware of the concept of ''family size" until he read 
the specification of Dreyer-Kitchen, a delivered catalog ex­
ample. Then, he realized that the concept is important for 
the design task and developed the specification after asking 
the question. 

[1]: [Dreyer-Kitchen was presented on top of the catalog 
example list. The subject was reading the specification of 
the example.] .. both work, seven family ... umm ... We do 
not know how many family she [the hypothesized client] 
has ... we just don't have enough infonnation about the 
size of family, and the size might grow, so.... Can I ask 
you the size offamily now? 

Reframing a Solution Construction. The system's 
delivered knowledge sometimes helped the subjects to 
refine their partial solution. The below transcripts illustrate 
one of many examples that were observed during the study. 

[2]: [The system presented a critic "a double-door 
refrigerator is not used. "] 

Why so ... ? 

[The subject asked for the explanation. and found the 
argumentation "if you often use a microwave, you prob­
ably need to store a lot of frozen food, therefore you need 
a big refrigerator. "] 

Oh, because I answered I need a microwave [in 
KIDSPECIFICATION]. OK, then probably you need to 
change that [in KIDCONSTRUCTION]. That's a good point. 
Actually .. 

In this transcript, the subject agreed with the critic about the 
type of refrigerator in terms of the specification of the use 
of a microwave oven. Then, he replaced the single-door 
refrigerator of his floor plan with a double-door 
refrigerator. 



Articulating a New Argument. The subjects not only 
learned delivered domain knowledge but also articulated 
counter opinions against the delivered knowledge. The fol­
lowing three portions of scripts illustrate how they articu­
lated previously tacit knowledge. Some of the elicited 
knowledge was incorporated into the system using the 
property sheet interfaces. 

[3]: [when the system suggested having an L-shaped 
kitchen for two cooks and the subject read an argument for 
the L-shaped kitchen] I see ... Let's check out the ar­
gument for an island kitchen and what it said about two 
cooks kitchen ... No ... ? Umm .. well, could I create another 
argument? [the partner invoked the property sheet to 
create a new argument] OK. An island kitchen is good for 
two cooks because it provides additional counter space ... 
well .. Two or more (cooks) actually .... 

In the transcript, the subject did not disagree with the L­
shaped critic, but was motivated by the argument to explore 
the related argumentation space by'looking for alternatives. 
Consequently, she remembered a more interesting ar­
gument for the island kitchen, and added the argument into 
the system. 

[4]: [a critic fired "a refrigerator should be close to a 
door" so that "incoming cold food can quickly be stored 
in the refrigerator"] No, because a garage is not next to a 
kitchen, right? You have to carry groceries anyway. 

[5]: [the same critic fired] all right ... but this way 
[pointing to their current construction], you can come in 
and put them on the counter, and put it in the refrigerator. 
So let's add an argument to this ... 

This type of reaction was most often found. When the sub­
jects disagreed with a presented argument, the subjects of­
ten articulated arguments against the argument. The 
refrigerator-door critic rule was disputed by many subjects. 
The subjects came up with many arguments against the 
incoming food argument. Some of such counterarguments 
were generally discussed (i.e., transcript [4]), and others 
were discussed in terms of their current construction (i.e., 
transcript [5]). 

6. Discussion 
The results of the user studies have demonstrated that col­
laboration between designers and the design environment 
was supported through a series of delivery and elicitation of 
design knowledge. At the same time, the studies have un­
covered many future research issues including: 
• support for providing perspectives: The subjects some­

times wanted to apply totally different design knowledge 
without changing the underlying knowledge-base; for ex­
ample, one wanted to apply specific design knowledge 
for a Japanese style kitchen. The knowledge-base of the 
system should be partitioned according to mUltiple 
perspectives that designers can choose for individual 
design tasks (Nakakoji, Sumner, Harstad, 1994). 

• support for designers to find appropriate domain distinc­
tions: currently, a list of existing names for issues is 
provided in an alphabetical order, but the subjects had 
trouble finding it. 

• support for annotating design: some of the subjects 
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wanted to directly annotate their partial design rather 
than recording arguments in a separate interface. 

• support for using the complex design environment: al­
though the effectiveness of KID comes from the integra­
tion, the system currently is so complex that the subjects 
often got lost. Mechanisms such as intelligent agents are 
necessary to guide designers in using KID . 

• support for consistency checking: currently, KID allows 
designers to make any modification to the system's 
knowledge-base, assuming that possible inconsistencies 
could be checked during the reseeding phase. In order to 
prevent unnecessary iterations, the system should help 
designers when making modifications regarding obvious 
inconsistencies of knowledge-bases. 

Despite these findings, the results of the studies have as­
sured us that our architecture will provide an effective 
framework for supporting human-computer collaboration in 
design tasks. In what follows, we briefly discuss how our 
design environment approaches address other research chal­
lenges. 

Information Overload Problems. The large and growing 
discrepancy between the amount of potentially relevant in­
formation and the amount anyone designer can know and 
remember limits the ability of designers to take advantage 
of high-functionality knowledge-based design environ­
ments (Fischer, Henninger, Nakakoji, 1992). Designers 
may not know what information they need, how to ask for 
that information, or that potentially useful information ex­
ists in the system. The knowledge delivery mechanisms of 
KID address this problem. The system uses the partial 
design represented in the system to identify the designer's 
information needs and to deliver information relevant to the 
task at hand. The partially identified current task through 
KIDSPECIFICATION and KmCONSTRUCTION can be used as 
queries submitted to information retrieval mechanisms, 
providing the background context for an information search 
(Fischer, Nakakoji, 1991). 

Knowledge Acquisition Problems. People are good at 
responding to a given situation, but it is difficult for domain 
experts to start articulating domain knowledge given no 
context. Delivering knowledge by a design environment 
stimulates designers to elicit tacit knowledge (Brown, 
Duguid, 1992). In the user study, we have observed that 
the subjects successfully articulated their criticisms to what 
the system had done. They often disagreed with the 
rationale behind KID's delivery, and started to articulate 
argumentation. They often wanted to store the arguments 
into the system and to define a new interdependence be­
tween design concepts "to see what would happen." 

Long-term Indirect Collaboration Among Designers. 
An argumentation-base and catalog-base of a design en­
vironment facilitate long-term indirect communication 
among designers (Fischer et aI., 1992). Designers com­
municate through accrued design representations in a 
design environment. A portion of argumentation articu­
lated and stored by a designer can be used to produce a 
specification-linking rule, which helps other designers at 



other times to solve other design problems. Designers store 
a design into a catalog-base, which helps other designers to 
produce ideas for a solution. Thus, a design environment 
that intertwines knowledge delivery and elicitation supports 
designers to naturally carry out design as an argumentative 
process (Rittel, Webber, 1984) among designers over a long 
period of time. 

Thought-provoking Mechanisms. It is noteworthy that 
delivering not-quite-right knowledge may also help desig­
ners. We observed during the user study that even when 
designers found the delivered infonnation to be of little 
relevance, they often were willing to attend to the delivered 
knowledge and modify the knowledge-base by adding new 
design principles or concepts in response to it, leading to 
knowledge elicitation. A computational agent does not al­
ways have to provide the right answer to the problem at 
hand; it can be thought provoking, as a novice's critiquing 
enhanced an expert's perfonnance in Miyake's study 
(Miyake, 1986). The system's delivery of both "right" 
and "not-quite-right" knowledge reminds designers of 
potentially important design infonnation, and invokes them 
to uncover their tacit knowledge. 

7. Conclusion 
The specification and construction components embedded 
in KID provide the shared understanding between designers 
and the system. In our work, shared understanding is used 
to identify the designers' infonnation needs, to locate 
relevant information to support the designers' task at hand, 
and to deliver the information to the designers. By having 
shared understanding, knowledge delivery mechanisms are 
more tuned toward delivering the right knowledge at the 
right time. The delivered knowledge helps designers un­
cover breakdowns in a partially represented design, 
provokes designers in their reflective thinking, and helps 
them to become aware of tacit design knowledge and to 
articulate it. The elicited knowledge from designers con­
tributes to the evolution of a knowledge-base, and the sys­
tem tunes their subsequent behavior based on the evolving 
shared understanding. 
We have presented a model for supporting human­
computer collaborative design and discussed an architecture 
for the model. The study of KID, which has been built based 
on the architecture, has demonstrated that intertwining 
knowledge delivery and elicitation is critical for supporting 
human-computer collaboration. 
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