
~ University of Colorado at Boulder

Kumiyo Nakakoji and Gerhard Fischer
Department of Computer Science

ECOT 7-7 Engineering Center
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-7514, FAX: (303) 492-2844

Intertwining Knowledge Delivery and Elicitation:
A Process Model for Human-Computer Collaboration in Design

Kumiyo Nakakoji l ,2 and Gerhard Fischer2

1 Software Engineering Laboratory
Software Research Associates Inc.,

1-1-1 Hirakawa-cho, Chiyoda-ku, Tokyo 102, Japan

2Department of Computer Science and Institute of Cognitive Science
University of Colorado

Boulder, Colorado 80309-0430, USA

Tel: +1 (303) 492-3912 Fax: +1 (303) 492-2844

kumiyo@cs.colorado.edu, gerhard@cs.colorado.edu

APPEARED IN
"KNOWLEDGE-BASED SYSTEMS", SPECIAL ISSUE: HUMAN-COMPUTER COLLABORATION,

BUTIERWORTH-HEINEMANN, OXFORD, UK, 1995

Abstract: Collaboration among designers can be described with an "action-reflection-critique" model in
which the explicit representation of the design contributes to a shared understanding and to the articula­
tion of design knowledge. We describe how domain-oriented design environments based on this model
support human-computer collaboration by intertwining knowledge delivery and elicitation. The KID
(Knowing-In-Design) system has a shared understanding about the designers' "task at hand" through a
partial design requirement specification and a solution. KID delivers design knowledge relevant to this
task at hand, and the delivery helps designers uncover tacit design concerns. Designers are encouraged to
store the elicited design knowledge in KID, which results in the evolution of the system's knowledge­
bases. The evolution affects the system's subsequent behavior by tuning the delivery toward the desig­
ners. This cycle of knowledge delivery and elicitation processes supported by KID allows designers to
gradually coevolve design requirements and solutions.

Acknowledgements: We thank the HCC group at the University of Colorado, who contributed to the conceptual

framework and the systems discussed in this paper. We also thank Barbara Gibbons of Kitchen Connection at

Boulder, Colorado, for her valuable time and her comments on our work. We thank Loren Terveen of AT&T Bell

Labs, for his comments and suggestions on an earlier version of the paper. The research was supported by the

National Science Foundation under grants No. 00- 9015441 and MDR-9253425; Software Research Associates,

Inc. (Tokyo); the Colorado Advanced Software Institute; US WEST Advanced Technologies; and NYNEX Science

and Technology Center.

Intertwining Knowledge Delivery and Elicitation:
A Process Model for Human-Computer Collaboration in Design

Kumiyo Nakakoji1,2 and Gerhard Fischer2

1 Practical Software Engineering Laboratory
SRA Inc.,

1-1-1 Hirakawa-cho, Chiyoda-ku, Tokyo 102, Japan

2Departrnent of Computer Science and Institute of Cognitive Science
University of Colorado

Boulder Colorado 80309-0430, USA

Tel: + 1 (303) 492-3912 Fax: + 1 (303) 492-2844

kumiyo@cs.colorado.edu, gerhard@cs.colorado.edu

Abstract. Collaboration among designers can be described
with an "action-reflection-critique" model in which the ex­
plicit representation of the design contributes to a shared
understanding and to the articulation of design knowledge.
We describe how domain-oriented design environments
based on this model support human-computer collaboration
by intertwining knowledge delivery and elicitation. The KID
(Knowing-In-Design) system has a shared understanding
about the designers' "task at hand" through a partial design
requirement specification and a solution. KID delivers design
knowledge relevant to this task at hand, and the delivery
helps designers uncover tacit design' concerns. Designers are
encouraged to store the elicited design knowledge in KID,
which results in the evolution of the system's knowledge­
bases. The evolution affects the system's subsequent be­
havior by tuning the delivery toward the designers. This
cycle of knowledge delivery and elicitation processes sup­
ported by KlD allows designers to gradually coevolve design
requirements and solutions.

1. Introduction
Design tasks are ill-defined (Simon, 1981) and open-ended
(Ritte1, Webber, 1984). Much of the relevant knowledge
required for design is tacit (Polanyi, 1966). Design ac­
tivities are best supported by taking a human-computer col­
laborative problem-solving approach. In this paper, we
describe a model, an architecture, and a prototype system
that support designers in collaborating with one another and
with a computer system. Integrated, domain-oriented,
knowledge-based design environments (Fischer, Nakakoji,
1992) augment skills of designers instead of generating
solutions for designers, as typified by the design automa­
tion approach (Gero, 1989). Design environments are com­
puter systems that provide design media and tools with
which designers can represent their design, and intelligent
agents that support designers in using the systems' design
knowledge for understanding and reflecting on their partial

1

design.

Based on theories of design and models of human-human
collaborative problem solving, we have developed the
action-reflection-critique model for understanding col­
laboration among stakeholders. l Applying this model to
human-computer collaborative design has led us to develop
an architecture for a design environment that intertwines
knowledge delivery and elicitation. Knowledge delivery is
the presentation of information by a design environment
relevant to the partially constructed design represented in
the environment. The explicit representation of the partial
design and the delivered design knowledge serve as a
knowledge elicitation mechanism: they may invoke
relevant design knowledge of which designers had been
previously unaware. Designers may then explicitly
represent the elicited knowledge and store it in the system.

In what follows, we illustrate our approach with the KID
(Knowing-In-Design) (Nakakoji, 1993) kitchen design en­
vironment and demonstrate how the system intertwines
knowledge delivery and elicitation in support of designers
in coping with design tasks.

2. A Model for Collaborative Design
Collaboration in design requires not just coordinating
divided design tasks; it is also important that designers
learn and refine their performance in the course of solving a
problem based on the evolving shared understanding.

J Stakeholders of a design task include people with various
roles, such as designers, clients, and end-users. To focus our
discussion on issues of collaboration between people and com­
puters rather than among different people, we use the term
"designers" to refer to stakeholders in general, and do not distin­
guish among the different roles of stakeholders.

Action

Explicit Representation
of Design

Designer

~
~~

J

- -
Reflection

Figure 1: An Action-Reflection Cycle in Design

An action results in the creation and modification of an
external design representation, whereas reflection occurs
in a designer's mind and may not be explicitly
represented. External design representations (such as
paper, mockups, or computational artifacts) are essential
to support designers to recognize unanticipated con­
sequences of their actions and to reflect upon sub­
sequent actions.

In order to model collaboration in design and further apply
it to human-computer collaborative design, we have in­
tegrated design theory with models of human-human col­
laborative problem solving.

2.1. The Action-Reflection Model of Design
According to Schoen's theory, designers work in an alter­
nating cycle of action and reflection (Schoen, 1983). The
designer acts to shape the design situation by creating or
modifying design representations, and the situation "talks
back" to the designer, revealing unanticipated con­
sequences of the design actions. In order to understand the
situation's back-talk, the designer reflects on the actions
and consequences, and plans the next course of action (see
Figure 1).

2.2. An Action-Reflection-Critique Model for
Collaborative Design

In most problem solving situations, people are initially un­
able to articulate complete requirements for problems (Fis­
cher, Reeves, 1992). Through a means of critiquing, which
reminds designers of other points of view (Miyake, 1986),
people identify portions of the problem that have not yet
been understood and refine the solution. In conversation,
shared meanings are accrued incrementally, along with
evidence of what has been understood so far (Brennan, Hul­
teen, 1993). People not only respond to what has been ar­
ticulated immediately before, but also gradually develop a
context to be coherent throughout the conversation (Stein,
Thiel, 1993).
The action-reflection model represented in Figure 1 il­
lustrates the design activity of a single designer. Applying
the action-reflection model to collaborative design requires
that the result of reflection be made explicit to maintain a
shared understanding among the stakeholders. We call this
articulation of the result of reflection a critique, and suggest

2

Designer~
~ C.itiqu.

Reflection -
'----.''-'-----.,,---'

Criticisms
(Results of Reflection)

Action Designer

Critlq:-~
A

- Reflection

Shared
Context

Figure 2: The Action-Reflection-Critique Model in
Collaborative Design

Criticisms include pointing out possible breakdowns in
the partial design and articulated knowledge as relevant
to the shared context.

an action-reflection-critique model for collaborative design.
Figure 2 illustrates the action-reflection-critique model of
the collaborative design task between designers. In the
model, the shared context consists of representations of a
partial design and criticisms including pointing out possible
breakdowns in the partial design and articulated design
knowledge as relevant to the shared context. Through the
cyclic processes, designers both evolve a representation of
their design and gradually construct and accumulate
criticisms as articulated knowledge. This shared under­
standing helps the designers coevolve individual under­
standing of a problem and a solution, and increase the
knowledge about the design domain.

2.3. Intertwining Knowledge Delivery and
Elicitation

Our design environments are human-computer collabora­
tive problem-solving systems based on the extension of the
action-reflection-critique model. Challenges in applying the
model to human-computer collaboration in design tasks
have been support of communication and establishment of a
shared context between a designer and a computer system.
Design representations developed within media of a design
environment, which include specified requirements and a
constructed solution, provide a context to be shared by
designers and the design environment. Monitoring what
designers have been doing with the media allows the design
environment to have a partial understanding about the
design task. A design environment can critique the partial
design, while designers can embed their criticisms within
the partial design. The evolving explicit representations of
the partial design and criticisms serve as a shared under­
standing between designers and a design environment.

Figure 3 illustrates the model and describes how the action­
reflection-critique model is applied to human-computer col­
laboration in design tasks. We characterize critique of a
design environment as knowledge delivery, implying that
the system delivers the information relevant to the desig­
ners' task at hand in a timely manner without explicit re­
quests to the system. The system's critiquing (i.e., delivered
knowledge) invokes designers' reflective thinking, and may
make designers aware of tacit design knowledge and

Desi Environment

Designer.--__ -J.l

.2":. ~licited
Kt«noWledge -Reflection

Design Medium Knowledge
-- Base

Delivered ~
Knowledge ®

" M~nltered~ntelligent
- Agent

Shared
Context

Figure 3: Applying the Action-Reflection-Critique
Model to Human-Computer Collaboration

A design environment plays roles both as a design
medium and as an inteIligent agent that collaborates
with designers. In our approach; because a design en­
vironment does not produce or modify a design
representation automaticaIly, there is no action arrow
from the system. The partial design constructed in the
design medium provides the shared context between the
designer and the design environment. Based on the iden­
tified shared context, the system delivers the infor­
mation related to the context. Designers may become
aware of tacit design knowledge as relevant to the con­
text, and store the elicited knowledge into the system as
criticisms. The results of elicitation are taken into ac­
count by the system to modify its subsequent behavior.

critique back the system. We characterize the system's in­
voking designers to articulate criticisms to the current situa­
tion as knowledge elicitation. The elicited and stored
knowledge is taken into account by the system to change
the subsequent behavior of the system.

3. Technical Challenge
As illustrated in Figure 3, a design environment consists of
two major parts: a design medium and an intelligent agent.
The intelligent agent interacts with designers by delivering
knowledge from a knowledge-base; and changes and tunes
its behavior according to the knowledge elicited by the
designers during a design process. In this section, we focus
our discussion on technical challenges of implementing
knowledge delivery and elicitation mechanisms.

3.1. Requirements for Knowledge Delivery
Challenges for effectively implementing knowledge
delivery mechanisms include how to deliver the right
knowledge at the right time.

Whether a piece of knowledge is "right" can be deter­
mined in terms of the relevance of information to the cur­
rent task. If the system provides a medium in which desig­
ners can represent their design, this partial design can be
used to form a model of the task at hand. Using this model,
the delivery mechanisms can retrieve relevant information
from the knowledge-base. Determination of the relevant
portions of knowledge presents a challenge because dif­
ferent design situations may need to view a piece of
knowledge differently; thereby the definition of relevance
changes dynamically. It is impossible to anticipate all pos­
sible design situations a priori (Suchman, 1987); thus a

3

static indexing scheme for design information of the
knowledge-bases is inapplicable.

Delivery mechanisms of a design environment continuously
monitor user actions and intervene with them when a poten­
tial information need is detected. They are especially effec­
tive because delivered information is related to a specific
condition in the current design. Intervention immediately
after a suboptimal or unsatisfactory action has occurred has
the advantage that the problem context is still active in the
designer's mind and the designers still know how they ar­
rived at the problematic situation (Fischer et aI., 1993). At
the same time, such immediate intervention should not dis­
tract designers from concentrating on the task at hand.

3.2. Requirements for Knowledge Elicitation
It is crucial that elicited knowledge is taken into account by
the system to refine its subsequent behavior. In collabora­
tive design, designers adapt their own behavior according
to the evolving shared understanding (Pollack, 1985). Our
experience in building a design rationale system shows that
people are not motivated to articulate knowledge and store
it if they do not see immediate benefit by doing so (Fischer
et aI., 1991).

A challenge for implementing such a knowledge elicitation
mechanism is that the newly created representation must be
able to be manipulated by the system. This requires desig­
ners to represent the knowledge in the system's languages
- often formal and very different from designers' domain
languages. Forcing designers to state their design
knowledge using a knowledge representation language un­
dermines their expressive ability. One approach to address
this problem is to ask knowledge engineers to formulate
their knowledge whenever they want to store elicited
knowledge in the system, but this is not a feasible solution
because there are risks of erroneous interpretation by
knowledge engineers (Bonnardel, 1993), and it cannot be
expected that knowledge engineers will be available
throughout the lifetime of system usage.

Our approach is to support the evolutionary growth of a
knowledge-based system through a seeding, evolutionary­
growth, and reseeding cycle (see Figure 4) (Fischer et aI.,
1994). The system is first "seeded" by knowledge en­
gineers in collaboration with designers, with several
mechanisms that would allow designers to represent their
knowledge during the use of the system. As a second phase
during use, the designers store their elicited knowledge
using the mechanisms, "gradually evolving" the
knowledge-base. Such mechanisms must allow designers
to be able to represent their thoughts, ideas, and arguments
directly and distinctly using their own language. End-user
modifiability (Fischer, Girgensohn, 1990) allows designers
to create computer-interpretable knowledge representations
without a detailed knowledge of the underlying computa­
tional mechanisms. The system is occasionally "reseeded"
by knowledge-engineers in collaboration with the designers
to reorganize knowledge constructed by the designers that
might have introduced inconsistencies or insufficient for­
malisms.

Figure 4: A Seeding, Evolutionary Growth, and Reseeding Cycle of Development Processes

Through the use of a design environment, designers gradually elicit knowledge by designing and responding to the knowledge
delivery. Some part of the added knowledge may be inconsistent or not totally interpretable by the system. During the reseeding
process, knowledge engineers, with the help of designers, can examine the knowledge-base and reconstruct it. Support for
seeding and reseeding is discussed in Fischer et al. [1994].

4. The KID Design Environment
We have developed the KID design environment (Nakakoji,
1993) to instantiate our approach. KID is implemented in
the CLOS programming language on Symbolics Genera
8.1. The design environment consists of four major com­
ponents:

I. KIDSPECIFICA TION, which allows designers to
specify their design requirements and intentions
(Figure 5);

2. KIDCONSTRUCTION, which provides designers with
a palette of domain abstractions and supports them
in constructing design artifacts using direct
manipulation styles (Figure 6);

3. an argumentation-base, which stores design
rationale represented in the IBIS structure (Conklin,
Begeman, 1988) (i.e., a network of nodes, consist­
ing of issues, answers, and arguments) (see
Figure 5); and

4. a catalog-base, which stores completed floor plans
(construction) together with associated specifica­
tions (see Figure 6).

The components are integrated with various delivery and
elicitation mechanisms (see Figure 7). Designers can·
coevolve a problem and a solution by creating partial
designs in KIDSPECIFICATION and KIDCONSTRUCTION. We
define the representations given through the two com­
ponents as "a partial design." The partial designs provide

4

KID with a shared understanding about the designers' task
at hand. KID delivers knowledge relevant to the task at
hand by indicating potential breakdowns (Fischer, 1994) in
the partial design and retrieving useful cases from the
catalog-base for their design (Nakakoji, 1994). The
delivery not only helps designers refine the partial design
but also elicits tacit design knowledge from the designers
by use of reminders. (Schank, 1988). Designers may store
this uncovered knowledge by presenting it as argumen­
tation or as new design objects, which results in the evolu­
tion of the system's knowledge-bases. KID dynamically
takes this evolution into account and refines its behavior
while supporting designers.
Through iterating this process, the designers gain an under­
standing of their design task as well as knowledge about the
domain, and they articulate and accumulate design
knowledge into the system. The system tunes its behavior
and delivery according to the gradually evolving shared un­
derstanding and the elicited knowledge.

4.1. Scenario
The following scenario illustrates how a designer interacts
with KID. A kitchen designer, Jeff, designs a kitchen floor
plan. Jeff specifies requirements for his design task using
KIDSPECIFICATION (Figure 5). Jeff starts constructing a
floor plan using KIDCoNSTRUCTION (Figure 6). When he
puts a dishwasher on the right side of a double-bowl sink,

KID Design Environment---:::::::::===:::::::--------------------------,

Delivered Knowledge
Catalog

Base Design Media

Specification-linking Rules

~ singk bowl sink should b<! used. ~

~Which type of sink should be used?
~A single bowl sink.
ArQu:ments; [Pros]

A single bowl sink is enough for
a sin Ie rson house hold.

- atnlY

CrHlc

......... --_.Knowledge Elicitatio,.-_____ .. ___ ..

Ia--------------Knowledge Delive:ryI----------__ 1II

Figure 7: Knowledge Delivery and Construction in KID

A designer perfonns a design task through specification and construction components. The partial specification and construction
provides KID with shared understanding of the task at hand. Using this understanding, a delivery manager of KID derives
specification-linking rules from the argumentation-base. These rules are used by delivery mechanisms (Case Deliverer, Critic,
and Argumentation Deliverer), which deliver corresponding knowledge for the designer. The designer can elicit knowledge by
adding design objects to the catalog-base, by adding arguments to the argumentation-base, and by adding construction-analyzing
rules using MODIFIER.

critic messages appear on the screen, one of which notifies
him that he should put the dishwasher on the left side of the
sink (see the Message window in Figure 6). Wondering
why, he clicks on the critic message.
The corresponding argument is presented, describing that a
kitchen should have a dishwasher on the left side of a sink
because he specified that this kitchen is for a left-handed
cook (see Figure 5). In fact, cafalog examples, each of
which has a dishwasher on the left side of the sink, have
been suggested by the system in the Catalog window
(Figure 6) to be most appropriate for the design require­
ments specified in KIDSPECIFICATION. Jeff reflects on the
argument and thinks about specializing the kitchen for a
left-handed person. Then he remembers that the resale
value of the kitchen is actually a very important concern.
He adds this requirement using KIDSPEClFICATION, and
creates an argument that having a dishwasher on the left
side of a sink may affect the resale value (see the
Argumentation window in Figure 5). The system takes this
argument into account and defines a new interdependence
between the location of a dishwasher with regard to a sink
and the concern for a resale value. In the Catalog window,
the catalog examples are automatically reordered according
to this newly defined interdependence, showing a catalog
example that has a dishwasher on the right side of a sink on
top of the list (not shown in the figures).

4.2. Architecture and Mechanisms of KID
Figure 7 illustrates the architecture and mechanisms of the
KID design environment. KID delivers three types of design
knowledge from its knowledge-bases:

• Catalog examples are ordered according to the ap­
propriateness to the current specification.

5

• Critic messages notify potential conflicts in the floor
plan in terms of the current specification and generic
design rules.

• Argumentation describes alternatives to design deci­
sions, interdependences among design decisions, and
how the critic messages are related to the current
specification.

KID allows designers to store elicited domain knowledge in
the following manner:

I. to add arguments to the argumentation-base;
2. to add, modify, or delete questions and answers in

KIDSPECIFICA TION;

3. to store completed specifications and constructions as a
catalog example;

4. to add, modify, or delete palette items in
KIDCONSTRUCTION; and

5. to define or redefine construction-analyzing rules.

Delivery mechanisms and some elicitation mechanisms
(above 1 and 2) use specification-linking rules. These rules
represent interdependences among design decisions and are
used to infer the relevance between different types of
design representations. The specification-linking rules are
further described below. Other elicitation mechanisms
(above 3, 4 and 5) are supported differently and described
in detail in Nakakoji [1993] and in Girgensohn [1992]. The
Store into Catalog command allows designers to store their
specification and construction into the catalog-base, which
is reconstructed on the fly. This allows designers to store
several versions of their design as catalog examples. The
MODIFIER system (Girgensohn, 1992) allows designers to
create or modify design objects of KIDCONSTRUCTION, in­
cluding palette items and construction-analyzing rules .
MODIFIER provides a property sheet interface to designers

Questions
- Kitchen Specification

- Facts

- Personal Inforl"lation

• Size of fal"lily?
'Seven or More
• .!!ru:
'Two
·Three
·Four to Six

- Do both husband and wife work?
'Husband Only
'Wife Only
'Both
'Neither

- How l"Iany cooks usually use the
kitchen at once?

·two
'one

Current Specifications for:
Type: kitchen Nal"le:

• Size of fal"lily?
3+- One

l"Iat-kitchen

• Is the pril"lary cook right-handed or
left-handed?

'" ---+ Left handed
• Do you need a dishwasher?

7.....-+-t yes

[answer suggested because size-of-f~~~~~~~~~ ______________________________ ~
• three or l"Iore 'Argumentation for

d

• Is the pril"lary cook right-handed or
left-handed?

'Right handed
'Left handed
'Switchable

- Cooking Habits

- How l"Iany l"Ieals are generally prepared
a day?

·Three til"les
'Once

Uhere should a dishwasher be?

'left side of a sink
"Left-Of(Jc::Dishwasher,Jc::Sink)"

~(+) If you are left handed, a dishwasher
should be on the left side of a sink.

(-) Having a dishwasher on the left side of a
sink l"Iay affect the resale value.

Ii 'right side of a sink
.; "Right-Of(Jc::Dishwasher,Jc::Sink)"
d (+) if you are right handed, a dishwasher

Figure 5: KIDSPECIFICATION

Designers can select answers pre~ented in the Questions window. The summary of currently selected answers appears in the
Current Specifications for window. Each answer is accompanied by a slider that allows designers to assign a weight representing
the relative importance of the answer (e.g., most importance to the left-handed cook requirement (i.e., 9) and little importance to
the single-person household requirement (i.e., 3)). The Argumentation for window provides further explanation about how a
presented critic message (i.e., a location of a dishwasher with regard to a sink) (see Figure 6) is related to the current specification
(i.e., one of the selected answers - a left-handed cook), as well as alternatives for the location of a dishwasher including the one
just created.

for a design object that is internally represented as a CLOS
object. MODIFIER helps designers to edit the attributes of
the object by making suggestions and providing help mes­
sages.

Representation of Specification-Linking Rules. Each
specification-linking rule is derived from an argument
stored in the argumentation-base. The argumentation-base
consists of a network of nodes of issues, answers and ar­
guments, each of which is implemented as a CLOS object. A
class node, which has subclasses issue, answer, and
argument, provides methods necessary for dealing with
display and maintaining links between nodes. Figure 8
shows definitions of the issue, answer, and argument about
the location of a dishwasher in terms of a sink, which cor­
responds to the presentation in the Argumentation-for win­
dow in Figure 5. Property sheet interfaces are provided for
designers to define each of these objects (see Figure 9).
The underlying formalism of the argumentation-base is a
network structure of nodes, consisting of an issue, optional
answers, and associated pro or con arguments. In order to
form a structural network among the questions, each ques-

6

tion must have at least one super issue. The root issue is
called "Kitchen Specification." Currently, the root has
three subtrees, "Facts," "Preferences" and "Feature
Constraints." "Facts" contains the "Personal Infor­
mation," "Cooking Habits," and "Other Activities" sub­
trees. These structures can be modified on the fly by desig­
ners by editing an issue object definition using a property
sheet interface.

Each question and answer has a unique name as an iden­
tifier. For example, the question "Where should a dish­
washer be?" has a name "where-dishwasher," and the
answer "left side of a sink" has a name
"left-side-of-a-sink." A pair of the identifiers of an issue
and answer is called a domain-distinction, which constitutes
vocabulary over the domain (Winograd, Flores, 1986).

An argument object has the Related Domain Distinction
slot (see Figures 8 and 9) that relates this argument to
another issue-answer pair, and dynamically infers the
dependency among the two issue-answer pairs (i.e.,
specification-linking rules), as described below. When
designers want to relate an argument to another question,

A pliance Palette Work Area
P sinks p

1 ~

ii
Ii
i i
! : ODD

I ~toves
i; DDI DW

if
' !

~ ' I
1 ! •• ! !

b I.·.' , •.• ,
•• ••

•• Catalog i Hill-kitchen

i;

!' -! :

! [
1 '

Elly-K1tchen
Messages

; i
j l

!: I sak-K; tchen I [Spedfic. 2.1]- Single-bowl-sink is not used.
[5p..,ili", 2.1]- Three-element-stove is not used.
[Specifi", 8.1]-Dishwasher-1 Is not left of Double-Bowl-Sink-1.

Figure 6: KIDCONSTRUCTION

Designers construct a kitchen floor plan in the Work Area using a direct manipulation style to select and place design units from
the appliance palette. Designers may copy an example from the Catalog window, where catalog examples are presented in the
order of accordance with the current specification (see Figure 5). The Messages window presents critiquing messages that are
detected by KID. Numbers indicate computed relative importance of each critiquing message in terms of the current specification.

(defobj ect where-dishwahser issue
:name "where-dishwasher"
:superissues '("feature-constraints")
:subissues nil .
: text-description "Where should a dishwasher be?"
:type :single-value
:answers '("left-side-of-a-sink"

"right-side-of-a-sink"
"near-wall-cabinet")

:condition t)
(defobj ect Ieft-side-of-a-sink answer

:name "left-side-of-a-sink"
:issue "where-dishwasher"
: text-description "Left side of a sink"
:critic-rule "Left-Of (Dishwasher, Sink)"
:arguments '(left-side-of-a-sink-arg-l))

(de f obj ec t left-side-of-a-sink-arg-l argumen t
: text-description "If/ou are left handed, a dishwasher should be on the left side of a sink"
:answer "left-side-o -a-sinK"
:polarity :pro
:author "Nakakoji, Kumiyo"
:Time 2938902977
:related-domain-distinction (eq "left-right" "left"))

Figure 8: Issue, Answer, and Argument Objects in the Argumentation-Base

Modify Argument

An~l.Ier or- ::upen .. r9ul"lent: left+~ide~ot·.·sir'lK
Pol~rity: Pro Con Other
Te-xt de!!lcriDt1on: If 'Iou are reft-h:.nded, Ol dishwa~her should be on the left sidf! of a sinlc
Rel~ted DOI"Il!in Di:5tinction: left·nght _ left
Til"'tf!: None 24 ... 'ji3 15:22:51
Author: Hone: H.akakoJf .. J.ulffyo

Figure 9: A Property Sheet Interface for Modifying the Argument Object

A property sheet for modifying or creating an argument.

hitting the HELP key triggers KIDSPECIFICATION to show
all the names of existing issues (Figure 10). Designers can
pick one of them, followed by either "=" or "#;", fol­
lowed by the name of one of the related answers.

7

Derivation of a Specification-Linking Rule.
Specification-linking rules are a subset of "serve relation­
ships" (Fischer et aI., 1991) that can be defined over the
argumentation base. The serve relationships represent

Help for Modify Argument

You are being asked to enter an Issue condftlon.
These are the possible Issues:

both-work FACTS
childrens-hangout FEATURE -CONSTRAINTS
cooking-habits how-many-cooks
eating-space how-many-meals
effie ient-ki tchen Kitchen-Speci f !cation
entertainment-requirement light-kitchen

methods-of-cooking
need-dishwasher
other-activltl~s
personal-Info
PREFERENCE
right-left

safety
shape-of-kltchen
slze-of-fam; Iy
size-of-meals
type-oF-kitchen
type-oF-refrigerator

type-of-sink
type~of-5tove

use-of-mlcrowave
where-dIshwasher
where-refrigerator
where-sInk

where-stove

These afe the possible special tokens:
False
True

Figure 10: Existing Issue Names

A list of names of currently existing issues. When designers create a new issue using a property sheet, the defined name is
automatically added to this list.

which issue resolution affects the resolution of other issues.
For example, if you answer that the size of the household is
one, then the meal size suggested is small. Specification­
linking rules represent this dependency, namely, a certain
issue resolution detennines how to answer other issues.
Some answers are related to features in the representation
of constructions. In short, those rules fonn a decision­
making network, and some of the decisions are related to
surface features in the partial construction.
KID automatically derives such a serve relationship be­
tween two issue-answer pairs from an argument of the
argumentation-base. Often, an argument to an issue-answer
pair X is related to another issue-answer pair Y, and this
association is made by designers filling in the
related-domain-distinction field using the property sheet
(Figure 9). If the argument is a pro argument, the relation­
ship is an implication: Y impl ies X. If the argument is a
con argument, the relationship is an implication of the
negation of the issue-answer pair: Y implies not X.
For example, the argument "If you are left-handed, a dish­
washer should be on the left side of a sink" is related to the
issue-answer pair "left-right=left" and because the ar­
gument is a pro argument for the answer "Where should a
dishwasher be?: Left side of a sink," the specification­
linking rule "left-right= left " ~

"where-dishwasher=left-side-of-a-sink" is derived.
The system dynamically identifies this interdependence be­
tween two issue-answer pairs and derives a specification­
linking rule. Each time designers select an answer to an
issue (Y), the system scans all the arguments to identify
issue-answer pairs X that have arguments that are as­
sociated with the selected issue-answer pair, Y. Then, ac­
cording to its polarity, pro or con, the system defines a
PROLOG term "require (X Y)" or "require (X
(not Y))." For example, from the example above, the
following tenn is defined:
require((EQ left-right left)

(EQ where-dishwasher
left-side-of-a-sink))

The system uses the PROLOG engine to perfonn inference,
and the maximum number of steps of inference can be
detennined by designers (the default is 3). This way, a
newly added argument is immediately reflected in the
derivation of the specification-linking rules.
Knowledge Delivery in KID. The Delivery Manager of
KID monitors KIDCONSTRUCTION and KmSPECIFICATION
and refonnulates the interdependence network represented
by specification-linking rules each time a modification is

8

made in the two components. Because KIDSPECIFICA TION
has been built as a hypertext interface to the argumentation­
base, selecting answers in KIDSPECIFICATION is reflected in
reorganizing the specification-linking rules. In order to
reflect the current construction to the fonnation of the
specification-linking rules, the delivery manager consults
with the construction-analyzing rules that can parse the
Work Area of KIDCONSTRUCTION and identify notable
characteristics, such as whether a dishwasher is on the left
side of a sink.
The interdependence network fonnulated from
specification-linking rules is used by three mechanisms to
deliver three types of design knowledge. The Case
Deliverer mechanism applies the rules to each catalog ex­
ample, computes an appropriateness value for each ex­
ample, and orders the examples in the Catalog window by
the computed values. The Critic mechanism applies the
rules to the current construction, detects conflicts in the
construction in tenns of the rules, computes the importance
of each conflict in tenns of the current weighted specifica­
tion, and presents critiquing messages with a number in­
dicating the importance in the Message window. Finally,
the Argumentation Deliverer mechanism maintains the
derivation of specification-linking rules from the
argumentation-base, and presents related arguments in the
Argumentation window when designers request further ex­
planation for the presented critiquing messages. The
mechanisms are described in detail in Nakakoji [1993].

5. User Study
KID has been evaluated by observing ten subjects, including
both domain-experts and novices, using the system. The
constructive interaction method (Miyake, 1986) was used
to analyze the interaction between the subjects and the sys­
tem. The method uses two subjects in each group and ob­
serves them talking to each other. The subjects were asked
to design a kitchen floor plan, given the infonnal require­
ment description shown in Figure 11. Test sessions were
videotaped, and the protocols were partially transcribed.
Figure 12 summarizes types of reactions made by the sub­
jects when KID presented critics. The classification in the
figure is simplified for the sake of clarity. When design
knowledge was delivered, subjects responded in one of the
following ways: (1) they applied the delivered knowledge
to refine the partial design, (2) they explored the related
infonnation space to the delivered knowledge, or (3) they
articulated new design knowledge by arguing against the

Initially Given Specifications:
o Both the wife and husband have jobs.
o During weekdays, the wife mostly cooks.
0 During weekends, the couple cooks meals together.
• The wife is left-handed.

Hidden Requirements:
o The couple lives with five children.
• They come home for lunch. Therefore, they prepare
meals three times a day in the kitchen. · They often entertain. · They do not need an eating space.
o They need a dishwasher.
o They need a double-bowl sink.
0 Safety and efficiency are important factors for them.

Figure 11: The Requirement Description of the Task

In order to observe how subjects understand new aspects
of the design problem, some of the conditions were
initially hidden. These conditions were revealed to the
subjects as requested. Anything asked that was not
stated in the conditions was answered as unknown.

delivery.
Active knowledge delivery was often found to trigger the
subjects to reflect on their partial design. Subjects often
discovered breakdowns or important considerations about
which they had not previously been aware, and they often
reacted to delivered knowledge and argued against it in
terms of their task at hand.
An unexpected benefit of knowledge delivery was that it
encouraged the subjects to explore the system's information
space. There is evidence that people search longer for
answers to questions when they believe they know the
answer (Reder, Ritter, 1992). High feelings of knowing
correlate with longer search times. When KID delivered
information that was relevant to the task at hand but not
quite right, the subjects then gained this "feeling of know­
ing," which made their information search longer.
When presented with a critic message, the initial reaction of
the subjects was often to ask for further explanations of
why the message was significant and how it was related to
their specification. For example, when KIDCONSTRUCTION
displayed the critic message "the dishwasher should not be
used, " subjects did not discuss this initial critic message,
but instead they examined the underlying argumentation of
the message, which was displayed in the Argumentation
window, by clicking on the initial critic message. When the
subjects disagreed with the argument, they often articulated
counterargument,>. When the subjects attended to a catalog
example that was on top of the ordered list in the Catalog
window in KIDCONSTRUCTION, they responded either by
discovering favorable or problematic features in the ex­
ample, or by wanting to know why and how the example
was relevant to their current specification.
In what follows, we focus on the three types of user reac­
tions and effects of knowledge delivery, and illustrate each
with transcripts collected through the user studies.

Reframing a Problem Specification. Often the subjects
found a design concept of which they had not been aware
by being reminded by a delivered catalog example. For
example, in the following transcript, the subject was given

9

Reactioas

Figure 12: Subjects' Reactions to the Critics

The subjects' reactions to the system's knowledge
delivery are classified. When they were presented with
the associated argument through a critic message, the
subjects either agreed or disagreed with the argument,
and different reactions were made accordingly. When
ordered catalog examples were presented, the subjects
either liked or disliked one of the examples, depending
on whether they discovered a good or unknown feature
or an unfavorable feature in the example. When they
accessed arguments explaining how and why the catalog
examples are related to their current task, the reaction
was the same as that of the critic messages discussed
above.

the requirement description (Figure 11), and he had not
been aware of the concept of ''family size" until he read
the specification of Dreyer-Kitchen, a delivered catalog ex­
ample. Then, he realized that the concept is important for
the design task and developed the specification after asking
the question.

[1]: [Dreyer-Kitchen was presented on top of the catalog
example list. The subject was reading the specification of
the example.] .. both work, seven family ... umm ... We do
not know how many family she [the hypothesized client]
has ... we just don't have enough infonnation about the
size of family, and the size might grow, so.... Can I ask
you the size offamily now?

Reframing a Solution Construction. The system's
delivered knowledge sometimes helped the subjects to
refine their partial solution. The below transcripts illustrate
one of many examples that were observed during the study.

[2]: [The system presented a critic "a double-door
refrigerator is not used. "]

Why so ... ?

[The subject asked for the explanation. and found the
argumentation "if you often use a microwave, you prob­
ably need to store a lot of frozen food, therefore you need
a big refrigerator. "]

Oh, because I answered I need a microwave [in
KIDSPECIFICATION]. OK, then probably you need to
change that [in KIDCONSTRUCTION]. That's a good point.
Actually ..

In this transcript, the subject agreed with the critic about the
type of refrigerator in terms of the specification of the use
of a microwave oven. Then, he replaced the single-door
refrigerator of his floor plan with a double-door
refrigerator.

Articulating a New Argument. The subjects not only
learned delivered domain knowledge but also articulated
counter opinions against the delivered knowledge. The fol­
lowing three portions of scripts illustrate how they articu­
lated previously tacit knowledge. Some of the elicited
knowledge was incorporated into the system using the
property sheet interfaces.

[3]: [when the system suggested having an L-shaped
kitchen for two cooks and the subject read an argument for
the L-shaped kitchen] I see ... Let's check out the ar­
gument for an island kitchen and what it said about two
cooks kitchen ... No ... ? Umm .. well, could I create another
argument? [the partner invoked the property sheet to
create a new argument] OK. An island kitchen is good for
two cooks because it provides additional counter space ...
well .. Two or more (cooks) actually

In the transcript, the subject did not disagree with the L­
shaped critic, but was motivated by the argument to explore
the related argumentation space by'looking for alternatives.
Consequently, she remembered a more interesting ar­
gument for the island kitchen, and added the argument into
the system.

[4]: [a critic fired "a refrigerator should be close to a
door" so that "incoming cold food can quickly be stored
in the refrigerator"] No, because a garage is not next to a
kitchen, right? You have to carry groceries anyway.

[5]: [the same critic fired] all right ... but this way
[pointing to their current construction], you can come in
and put them on the counter, and put it in the refrigerator.
So let's add an argument to this ...

This type of reaction was most often found. When the sub­
jects disagreed with a presented argument, the subjects of­
ten articulated arguments against the argument. The
refrigerator-door critic rule was disputed by many subjects.
The subjects came up with many arguments against the
incoming food argument. Some of such counterarguments
were generally discussed (i.e., transcript [4]), and others
were discussed in terms of their current construction (i.e.,
transcript [5]).

6. Discussion
The results of the user studies have demonstrated that col­
laboration between designers and the design environment
was supported through a series of delivery and elicitation of
design knowledge. At the same time, the studies have un­
covered many future research issues including:
• support for providing perspectives: The subjects some­

times wanted to apply totally different design knowledge
without changing the underlying knowledge-base; for ex­
ample, one wanted to apply specific design knowledge
for a Japanese style kitchen. The knowledge-base of the
system should be partitioned according to mUltiple
perspectives that designers can choose for individual
design tasks (Nakakoji, Sumner, Harstad, 1994).

• support for designers to find appropriate domain distinc­
tions: currently, a list of existing names for issues is
provided in an alphabetical order, but the subjects had
trouble finding it.

• support for annotating design: some of the subjects

10

wanted to directly annotate their partial design rather
than recording arguments in a separate interface.

• support for using the complex design environment: al­
though the effectiveness of KID comes from the integra­
tion, the system currently is so complex that the subjects
often got lost. Mechanisms such as intelligent agents are
necessary to guide designers in using KID .

• support for consistency checking: currently, KID allows
designers to make any modification to the system's
knowledge-base, assuming that possible inconsistencies
could be checked during the reseeding phase. In order to
prevent unnecessary iterations, the system should help
designers when making modifications regarding obvious
inconsistencies of knowledge-bases.

Despite these findings, the results of the studies have as­
sured us that our architecture will provide an effective
framework for supporting human-computer collaboration in
design tasks. In what follows, we briefly discuss how our
design environment approaches address other research chal­
lenges.

Information Overload Problems. The large and growing
discrepancy between the amount of potentially relevant in­
formation and the amount anyone designer can know and
remember limits the ability of designers to take advantage
of high-functionality knowledge-based design environ­
ments (Fischer, Henninger, Nakakoji, 1992). Designers
may not know what information they need, how to ask for
that information, or that potentially useful information ex­
ists in the system. The knowledge delivery mechanisms of
KID address this problem. The system uses the partial
design represented in the system to identify the designer's
information needs and to deliver information relevant to the
task at hand. The partially identified current task through
KIDSPECIFICATION and KmCONSTRUCTION can be used as
queries submitted to information retrieval mechanisms,
providing the background context for an information search
(Fischer, Nakakoji, 1991).

Knowledge Acquisition Problems. People are good at
responding to a given situation, but it is difficult for domain
experts to start articulating domain knowledge given no
context. Delivering knowledge by a design environment
stimulates designers to elicit tacit knowledge (Brown,
Duguid, 1992). In the user study, we have observed that
the subjects successfully articulated their criticisms to what
the system had done. They often disagreed with the
rationale behind KID's delivery, and started to articulate
argumentation. They often wanted to store the arguments
into the system and to define a new interdependence be­
tween design concepts "to see what would happen."

Long-term Indirect Collaboration Among Designers.
An argumentation-base and catalog-base of a design en­
vironment facilitate long-term indirect communication
among designers (Fischer et aI., 1992). Designers com­
municate through accrued design representations in a
design environment. A portion of argumentation articu­
lated and stored by a designer can be used to produce a
specification-linking rule, which helps other designers at

other times to solve other design problems. Designers store
a design into a catalog-base, which helps other designers to
produce ideas for a solution. Thus, a design environment
that intertwines knowledge delivery and elicitation supports
designers to naturally carry out design as an argumentative
process (Rittel, Webber, 1984) among designers over a long
period of time.

Thought-provoking Mechanisms. It is noteworthy that
delivering not-quite-right knowledge may also help desig­
ners. We observed during the user study that even when
designers found the delivered infonnation to be of little
relevance, they often were willing to attend to the delivered
knowledge and modify the knowledge-base by adding new
design principles or concepts in response to it, leading to
knowledge elicitation. A computational agent does not al­
ways have to provide the right answer to the problem at
hand; it can be thought provoking, as a novice's critiquing
enhanced an expert's perfonnance in Miyake's study
(Miyake, 1986). The system's delivery of both "right"
and "not-quite-right" knowledge reminds designers of
potentially important design infonnation, and invokes them
to uncover their tacit knowledge.

7. Conclusion
The specification and construction components embedded
in KID provide the shared understanding between designers
and the system. In our work, shared understanding is used
to identify the designers' infonnation needs, to locate
relevant information to support the designers' task at hand,
and to deliver the information to the designers. By having
shared understanding, knowledge delivery mechanisms are
more tuned toward delivering the right knowledge at the
right time. The delivered knowledge helps designers un­
cover breakdowns in a partially represented design,
provokes designers in their reflective thinking, and helps
them to become aware of tacit design knowledge and to
articulate it. The elicited knowledge from designers con­
tributes to the evolution of a knowledge-base, and the sys­
tem tunes their subsequent behavior based on the evolving
shared understanding.
We have presented a model for supporting human­
computer collaborative design and discussed an architecture
for the model. The study of KID, which has been built based
on the architecture, has demonstrated that intertwining
knowledge delivery and elicitation is critical for supporting
human-computer collaboration.

Acknowledgments
We thank the HCC group at the University of Colorado, who contributed
to the conceptual framework and the systems discussed in this paper. We

also thank Barbara Gibbons of Kitchen Connection at Boulder, Colorado,

for her valuable time and her comments on our work. We thank Loren

Terveen of AT&T Bell Labs, for his comments and suggestions on an

earlier version of the paper. The research was supported by the National
Science Foundation under grants No. IRI- 9015441 and MDR-9253425;

Software Research Associates, Inc. (Tokyo); the Colorado Advanced

Software Institute; US WEST Advanced Technologies; and NYNEX

Science and Technology Center.

11

References
N. Bonnardel 1993. Expertise Transfer, Knowledge Elicita­
tion, and Delayed Recall in a Design Context, Behaviour
and Information Technology, 12(5):304-314.

S.E. Brennan, E.A. Hulteen 1993. Interaction and Feedback
in a Spoken Language System, in Working Notes of the
AAAI Fall Symposium Workshop on Human-Computer
Collaboration: Reconciling Theory, Synthesizing Practice,
AAAI, 1-5, Raleigh, NC.

J.S. Brown, P. Duguid 1992. Enacting Design for the
Workplace, in P.S. Adler, T.A. Winograd (eds.), Usability:
Turning Technologies into Tools, Oxford University Press,
New York, NY, 164-197.

J. Conklin, M. Begeman 1988. gIBIS: A Hypertext Tool for
Exploratory Policy Discussion, Transactions of Office In­
formation Systems, 6(4), October:303-331.

G. Fischer 1994. Turning Breakdowns into Opportunities
for Creativity, in E. Edmonds (ed.), Creativity and
Cognition, Penrose Press, (in press).

G. Fischer, A.c. Lemke, R. McCall, A. Morch 1991.
Making Argumentation Serve Design, Human Computer
Interaction, 6(3-4):393-419.

G. Fischer, J. Grudin, A.c. Lemke, R. McCall, J. Ostwald,
B.N. Reeves, F. Shipman 1992. Supporting Indirect, Col­
laborative Design with Integrated Knowledge-Based
Design Environments, Human Computer Interaction, Spe­
cial Issue on Computer Supported Cooperative Work,
7(3):281-314.

G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl, T. Sumner
1993. Embedding Critics in Design Environments, The
Knowledge Engineering Review Journal, 8(4),
December:285-307.

G. Fischer, R. McCall, J. Ostwald, B. Reeves, F. Shipman
1994. Seeding, Evolutionary Growth and Reseeding: Sup­
porting Incremental Development of Design Environments,
in Human Factors in Computing Systems, CHI'94 Con­
ference Proceedings (Boston, MA), 292-298, ACM.

G. Fischer, A. Girgensohn 1990. End-User Modifiability in
Design Environments, in Human Factors in Computing
Systems, CHI'90 Conference Proceedings (Seattle, WA),
183-191, ACM, New York.

G. Fischer, S. Henninger, K. Nakakoji 1992. DART: In­
tegrating Information Delivery and Access Mechanisms,
Unpublished Manuscript.

G. Fischer, K. Nakakoji 1991. Making Design Objects
Relevant to the Task at Hand, in Proceedings of AAAI-91,
Ninth National Conference on Artificial Intelligence, AAAI
PressfThe MIT Press, 67-73, Cambridge, MA.

G. Fischer, K. Nakakoji 1992. Beyond the Macho Ap­
proach of Artificial Intelligence: Empower Human Desig­
ners - Do Not Replace Them, Knowledge-Based Systems
Journal, 5(1): 15-30.

G. Fischer, B.N. Reeves 1992. Beyond Intelligent Inter­
faces: Exploring, Analyzing and Creating Success Models
of Cooperative Problem Solving, Applied Intelligence, Spe­
ciallssue Intelligent Interfaces, 1 :311-332.

J.S. Gero (editor) 1989. Artificial Intelligence in Design,
Springer-Verlag, Berlin, Gennany.

A. Girgensohn 1992. End-User Modifiability in
Knowledge-Based Design Environments, Ph.D. Disser­
tation, Department of Computer Science, University of
Colorado, Boulder, CO, Also available as TechReport CU­
CS-595-92.

N. Miyake 1986. Constructive Interaction and the Iterative
Process of Understanding, Cognitive Science, 10: I 5 I - I 77.

K. Nakakoji 1993. Increasing Shared Understanding of a
Design Task Between Designers and Design Environments:
The Role of a Specification Component, Unpublished Ph.D.
Dissertation, Department of Computer Science, University
of Colorado, Also available as TechReport CU-CS-65 I -93.
K. Nakakoji 1994. Case-Deliverer: Retrieving Cases
Relevant to the Task at Hand, in Lectures Notes in AI:
EWCBR-93, Springer-Verlag, Kaiserslautern, Germany, (in
press).

K. Nakakoji, T. R. Sumner, B. Harstad 1994. Perspective­
Based Critiquing: Helping Designers Cope with Conflicts
Among Design Intentions, in J. Gero (ed.), in Artificial In­
telligence in Design'94, Butterworth-Heinemann Ltd,
Lausanne, Switzerland, (forthcoming).

M. Polanyi 1966. The Tacit Dimension, Doubleday, Garden
City, NY.

M.E. Pollack 1985. Information Sought and Information
Provided: An Empirical Study of UserlExpert Dialogues, in
Human Factors in Computing Systems, CHI'85 Conference
Proceedings (San Francisco, CA), 155-159, ACM, New
York.

12

L.M. Reder, F.E. Ritter 1992. What Determines Initial Feel­
ing of Knowing? Familiarity With Question Terms, Not
With the Answer, Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18(3).

H.W.J. Rittel, M.M. Webber 1984. Planning Problems are
Wicked Problems, in N. Cross (ed.), Developments in
Design Methodology, John Wiley & Sons, New York,
135-144.

R.C. Schank 1988. Remindings and Memory: Dynamic
Memory: A Theory of Reminding and Learning in Com­
puters and People (Chap 2), in J. Kolodner (ed.), in
Proceedings: Case-Based Reasoning Workshop, Morgan
Kaufmann Publishers, 1-16, Clearwater Beach, FL.

D.A. Schoen 1983. The Reflective Practitioner: How
Professionals Think in Action, Basic Books, New York.

H.A. Simon 1981. The Sciences of the Artificial, The MIT
Press, Cambridge, MA.

A. Stein, U. Thiel 1993. A Conversational Model of Mul­
timodal Interaction in Information Systems, in Proceedings
of AAAI-93 , Eleventh National Conference on Artificial
Intelligence, AAAI PresslThe MIT Press, 283-288,
Washington, DC.

L.A. Suchman 1987. Plans and Situated Actions,
Cambridge University Press, Cambridge, UK.

T. Winograd, F. Flores 1986. Understanding Computers
and Cognition: A New Foundation for Design, Ablex
Publishing Corporation, Norwood, NJ.

