
~university of Colorado at Boulder

Center for lifeLong Learning and Design (13D)

Department of Computer Science

ECOT 717 Englfieenng Center
Campus Box 430
lJoulder, Colorado 80309-0430
(303) 492-1592, FAX: (303) 492-2844

Domain-Oriented Design Environments as Models for
the Design of Collaborative Systems

Gerhard Fischer

Center for LifeLong Learning and Design (L3D)
University of Colorado

Campus Box 430
Boulder, CO 80309-0430
gerhard@cs.colorado.edu

Proceedings of the International Workshop on the Design of Cooperative Systems,
Afttibes-Juan-les-Pines France, January 1995, pp. 20-41

DOMAIN· ORIENTED DESIGN ENVIRONMENTS AS
MODELS FOR THE DESIGN OF COLLABORATIVE SYSTEMS

Gerhard Fischer
Center for Lifelong Learning and Design (L3D)

Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Campus Box 430

Boulder, Colorado~0309
phone: 303-492-1592 fa,X: 303-492-2844

e-mail: gerhard@cS.colorado.edu
http://www.cs.colorado.edulhomes/gerhard/public_htmllHome.html

Abstract. Domain-oriented design environments (DODES) support c-ollaboration between (1) all
stakeholders in a design process and (2) between stakeholders and computational environments. They
serve as model for the design of collaborative systems by exploring and supporting different relation­
ships and task responsibilities between humans and computers. Within human-computer collaboration,
they are grounded within the complementary approach rather than the emulation or replacement ap­
proach by exploiting the strengths and the weaknesses of human and computational agents.

By representing models of specific domains, DODES provide a shared context and ground design with
representations supporting mutual education and understanding by all stakeholders.

This paper focuses on the following major themes for collaboration: (1) collaboration between environ­
ment developers and domain designers, (2) collaboration between domain designers and clients, (3)
indirect, long-term collaboration among designers in the development of a domain-oriented design en­
vironment itself as well as individual artifacts within a DODE, and (4) computational support for all of
these collaborative efforts.

Resume. Les environnements de conception orientes domaine (DODES en anglais) foumissent un
moyen pour faciliter la collaboration entre (1) les participants dans Ie processus de conception et (2)
entre les participants et l'environnement informatique. Us servent de modele pour la conception de
systemes collaboratifs en permettant l'exploration et l'aide dans les responsabilites sur les relations et
les taches entre humains et ordinateurs. Dans une collaboration homme-machine, ces environnements
reposent sur une approche exploitant la complementarite plutot qu'une approche basee sur l'emulation
ou la substitution, ces demieres approches exploitant plutot les forces et faiblesses des agents humain et
machine.

En representant les modeles de domaines specifiques, les environnements decrits dans ce papier four­
nissent un contexte partage et les bases d'une conception avec des representations qui favorisent une
education et une comprehension mutuelles des participants.

Ce papier est centre sur les themes majeurs de toute collaboration: (1) la collaboration entre les
developpeurs de l'environnement et les concepteurs du domaine; (2) la collaboration entre les concep­
teurs du domaine et les clients; (3) une collaboration indirecte et a long terme parmi les concepteurs
dans Ie developpement d'un environnement de conception oriente domaine; et (4) une aide com­
putationnelle pour tous ces efforts collaboratifs.

Keywords. symmetry of ignorance among stakeholders; seeding/evolutionary growth/reseeding model;

2

representation for mutual education and understanding; indirect, long-term collaboration; distributed
cognition

1. Introduction
In our work, we' have created collaborative systems named domain- oriented design environments
(DODEs) in support of design. Design in this context refers to the broad endeavor of creating artifacts
(as exercised by architects, industrial designers, curriculum developers, composers, etc., and as defined
and characterized, for example, by [Simon 81; Schoen 83; Ehn 88]), rather than to a specific step in a
software engineering life-cycle model.

A growing number of research efforts are using knowledge-based systems and new communication
paradigms to empower all stakeholders in design, not to replace them (stakeholders in a design process
are all people who are affected by the design artifact and who are involved in creating and evolving the
design artifact). The idea of human augmentation, beginning with Engelbart [Engelbart, English 68],
has been elaborated in the last 25 years (e.g., [Stefik 86; Hill 89; Fischer 90; Norman 93]). This paper
will (1) introduce dimensions for the design of collaborative systems, (2) describe DODES, (3) charac­
terize DODEs as models of collaborative systems, and (4) assess them from different perspectives.

2. Dimensions for the Design of Collaborative Systems
Collaborative Problem Solving. Collaborative problem-solving approaches [Fischer 90] in which
computational environments empower, augment, and complement human skills and knowledge are a
more desirable and promising goal to pursue than is automatic programming. Collaborative problem­
solving systems raise questions such as (a) which part of the responsibility can or should be exercised
by the human and which part by the computer, and (b) how do the human and the intelligent system
effectively communicate? Collaborative problem-solving approaches do not deny the power of
automation [Billings 91], but they focus our concerns on the "right kind of automation" including
interaction mechanisms designed for humans rather than for programs.

Symmetry of Ignorance. Nothing can be worse than designers who think everyone else is just like
them. In the early days of computing, almost all systems were developed and used by computer profes­
sionals. Introspection by software designers served as a reasonable source of knowledge at that time,
but it has lost its power today for the development of systems in application domains. Today, design­
ing complex systems is an activity involving many stakeholders, making collaboration a necessity
[Greenbaum, Kyng 91; Fischer et al. 92]. By emphasizing design as a collaborative activity, DODES

support (1) collaboration between environment developers and domain designers, (2) collaboration be­
tween domain designers and clients, (3) indirect, long-term collaboration among designers in the
development of a DODE itself as well as individual artifacts within a DODE, and (4) computational
support for all of these collaborative efforts.

Domain-Orientation. In a conventional, domain-independent software environment, designers who
produce new software artifacts typically have to start with general programming constructs and
methodologies. This forces them to focus on the raw materials necessary to implement a solution
rather than to try to understand the problem. Design environments need to support human problem-

3

domain communication [Fischer, Lemke 88] by providing computational environments that model the
basic abstractions of a domain (as pursued in efforts in domain modeling). They give designers the
feeling that they interact with a domain rather than with low-level computer abstractions. Domain­
orientation allows humans to take both the content and context of a problem into account, whereas the
strength of formal representations is their independence of specific domains to make domain­
independent reasoning methods applicable [Norman 93].

Modem application needs are not satisfied by traditional programming languages, which evolved in
response to system programming needs. More emphasis should be put on the creation of computa­
tional environments that fit the needs of professionals of other disciplines outside the computer science
community. The chief risks of using ideas from programming language design and formal specification
techniques are in succumbing to the temptations of excess generality and in assuming that users and
domain experts think like software designers. The semantics of DODES are tuned to specific domains of
discourse. This involves support for different kinds of primitive entities, for specification of properties
other than computational functionality, and for computational models that match the users' own
models.

Evolution. There is growing agreement (and empirical data to support it) that the most critical software
problem is the cost of maintenance and evolution [CSTB 90]. Studies of software costs indicate that
about two-thirds of the costs of a large system occur after the system is delivered. Much of this cost is
due to the fact that a considerable amount of essential information (such as design rationale [Fischer et
al. 91a]) is lost during development and must be reconstructed by the designers who maintain and
evolve the system.

In order to make maintenance and enhancements "first class" activities in the lifetime of an artif::tct,
(1) the reality of change needs to be accepted explicitly and (2) increased up-front costs have to be
acknowledged and dealt with. We learned the first point in our work on end-user modifiability
[Girgensohn 92], which demonstrated that there is no way to modify a system without detailed pro­

gramming knowledge unless modifiability was an explicit goal in the original design of the system.
The second point results from the fact that "design for redesign" requires efforts beyond designing for
what is desired and known at the moment. It requires that changes be anticipated and structures be
created that will support these changes.

The evolution of a software system is driven by breakdowns [Fischer, Nakakoji 92] experienced by the
users of a system. In order to support evolutionary processes, domain designers need to be able, will­
ing, and rewarded to change systems, thereby providing a potential solution to the maintenance and
enhancement problems in software design. Users of a system are knowledgeable in the application
domain and know best which enhancements are needed. An end-user modification component sup­
ports users in adding enhancements to the system without the help of the system developers. End-user
modifiable systems will take away from system developers some of the burden of anticipating all
potential uses at the original design time.

Representations for Mutual Education and Mutual Understanding. To address the symmetry of
ignorance problem, DODEs provide representations for mutual education and mutual understanding
[Ehn 88] that help increase the shared context [Resnick 91] necessary for collaboration. Environments

4

supporting collaboration must be (1) familiar to all participants, (2) use the practice of the users as a
starting point, (3) allow the envisioning of work situations supported by the new systems, and (4) en­
hance incremental mutual learning and shared understanding among the participants.

Communication between stakeholders is difficult because they use different languages. Explicit
representations [Fischer, Nakakoji, Ostwald 93] ground collaborative design by providing a context for
communication. These representations help to detect communication breakdowns caused by unfamiliar
terminology and tacit background assumptions, and tum breakdowns into opportunities for creating a
shared understanding [Fischer, Nakakoji 92].

An important component of shared understanding is the intent of the collaborators. Understanding in­
tent enhances mutual intelligibility by serving as a resource for assessing the relevance of information
within the context of collaboration. In everyday communication between people, intent is often im­
plicitly communicated against a rich background of shared experience and circumstances. Machines,
however, have a limited notion of background, and this limits their ability to infer the intent of users
[Suchman 87].

3. Domain-Oriented Design Environments
Domain-oriented design environments (DODES) [Fischer 94] have emerged in our research work as
computational environments in support of collaboration. They are semi-formal systems, integrating
object-oriented hierarchies of domain objects, rule based critiquing systems, case-based catalog com­
ponents, simulation components, checklists, and argumentative hypermedia systems. They are
representational media supporting communications and negotiations between all involved stakeholders
and between the designers and their work in progress. They do limited reasoning and interpretations,
trigger breakdowns, deliver information, and support the exploration of the rationale behind the ar­
tifact.

The goals associated with DODEs are: (1) bring task to the forefront by supporting human problem­
domain interaction, (2) create a shared context between designers and computational environments, (3)
create an artifact-centered information repository facilitating collaboration between all stakeholders, (4)
support learning on demand and information delivery, and (5) have human designers in control. The
theories underlying DODES are: (1) make objects and ideas ready-to-hand [Stahl 93], (2) support
reflection-in-action [Schoen 83], (3) integrate problem framing and problem solving [Rittel 84], (4) al­
low design-in-use [Henderson, Kyng 91], (5) increase the back-talk of the situations [Fischer et al.
91b], and (6) make argumentation serve design [Fischer et al. 91a]. The users of DODEs are skilled
domain workers belonging to the community of practice which a specific DODE supports.

A Process Model for DODEs. Our process model for continual development of design environments
from an initial seed through iterations of growth and reseeding is illustrated in Figure 1:

• The seeding process, in which domain designers and environment developers work together to
instantiate a domain-oriented design environment seeded with domain knowledge .

• The evolutionary growth process, in which domain designers add information to the seed as they
use it to create design artifacts.

5

• The reseeding process, in which environment developers help domain designers to reorganize
and reformulate information so it can be reused to support future design tasks.

EnW~~nt D~n

Cleve/DpflTO 0..19"""
Environment DolTWln
Cleve/DpflTO Cleo/_TO

~-~
Seeding Evolutionary Growth Reseeding

of o.elgn Envfronment

~

--.. T~.

Figure 1: Seeding, Evolutionary Growth, and Reseeding: A Process Model
for Domain-Oriented Design Environments

During seeding, environment developers and domain designers collaborate to create a design environment
seed. During evolutionary growth, domain designers create artifacts that add new domain knowledge to the
seed. In the reseeding phase, environment developers again collaborate with domain designers to organize,
formalize, and generalize new knowledge.

The top half shows how DODEs are created through a collaboration between the environment developers and
domain designers. The bottom half shows the use of a DODE in the creation of an individual artifact through a
collaboration between domain designers and clients. The use of a DODE contributes to its evolution; i.e., new
knowledge, developed in the context of an individual project, is incorporated into the evolving design environ­
ment.

The Seeding Process. A seed is built by customizing the domain- independent design environment ar­

chitecture to a particular domain through a process of knowledge construction. Although the goal is to

construct as much knowledge as possible during seed-building, for complex and changing domains

complete coverage is not possible. Therefore, the seed is explicitly designed to capture design

knowledge during use [Girgensohn 92].

Domain designers must participate in the seeding process because they have the expertise to determine

when a seed can support their work practice. Rather than expecting designers to articulate precise and

complete system requirements prior to seed building, we view seed building as knowledge construction
(in which knowledge structures and access methods are collaboratively designed and built) rather than

as knowledge acquisition (in which knowledge is transferred from an expert to a knowledge engineer

and finally expressed in formal rules and procedures). New seed requirements are elicited by con­

structing and evaluating domain-oriented knowledge structures.

6

Evolutionary Growth Through Use. During the use phase, each design task has the potential to add to
the knowledge contained in the system. New construction kit parts and rules are required to support
design in rapidly changing domains. Issue-based information in the seed can also be augmented by
each design task as alternative approaches to problems are discovered and recorded. The information
accumulated in the information space during this phase is mostly informal because designers either
cannot formalize new knowledge or they do not want to be distracted from their design task.

Reseeding. Acquiring design knowledge is of little benefit unless it can be delivered to designers when
it is relevant. Periodically, the growing information space must be structured, generalized, and formal­
ized in a reseeding process, which increases the computational support the system is able to provide to
designers [Shipman 93].

The task of reseeding involves environment developers working with domain designers. After a period
of use, the information space can be a jumble of annotations, partial designs, and discussions mixed in
with the original seed and any modifications performed by the domain designers. To make this infor­
mation useful, the environment developers work with the domain designers in a process of organizing,
generalizing, and formalizing the new information and updating the initial seed.

An Example. NETWORK (see Figure 2), a Do DE for computer network design [Fischer et al. 92;
Reeves 93; Shipman 93] will be used as an example to illustrate our approach. The seeding process for
NETWORK was driven by observations of network design sessions, prototypes of proposed system
functionality, and discussions centered on the prototypes. In design sessions, a logical map of the
network being designed served to ground design meetings, discussions, what-if scenarios, and disagree­
ments. The logical map was chosen as the central representation of the artifact in network design, and
a prototype construction kit was implemented based on the logical map [Fischer et al. 92]. Evaluation
of the NETWORK seed indicated that designers need support for communication in the form of
critiques, reminders, and general comments [Reeves, Shipman 92]. Pointer, annotation, and sketching
tools were integrated into the environment so talking about the artifact could take place within the
artifact (see Figure 6).

An important lesson we learned during the seeding of NETWORK was to base our design discussions
and prototyping efforts on existing artifacts. Discussing the existing computer science network at CU
Boulder was an effective way to elicit domain knowledge because it provided a concrete context that
triggered domain designers' knowledge. We found high-level discussions of general domain concepts
to be much less effective than discussions focused on existing domain artifacts.

Information to seed NETWORK was acquired from existing databases containing information about net­
work devices, users, and the architectural layout of our building. The NETWORK seed contains formal
representations of approximately 300 network devices and 60 users. Autocad™ databases created by
facilities maintenance personnel provide architectural details of about 1 00 rooms. This information is
represented in NETWORK's construction kit and in the underlying knowledge representation for­
malisms. The informal part of the NETWORK seed includes notes from the systems administration
class, knowledge about the various research groups, and electronic mail of the network designers.

Our work with NETWORK showed the shortcomings of electronic mail in the context of a collaborative

7

1= ~ 1- om ==
Com "-,o..u- Prln_

[] [] 1~l 9
= = Ef:

E ~ .-.-----~~ ~

OJ o
= =

OJ OJ = =

'4

Figure 2: An Environment Supporting Computer Network Design

A screen image of the NETWORK seed. Shown are a palette of network objects (upper right), the construction
area where logical networks are configured (upper left), an overview pane to provide designers with a global
picture (lower left), and a pane for critiquing messages (lower right).

design effort. By communicating asynchronously via electronic mail using textual annotations, net­
work designers separated the notes and the artifact in ways that made interpretation and understanding
difficult. The necessity for integration was observed in two ways. First, in design sessions videotaped
for analysis, deictic references (referring to items by the use of "these," "those," "here," etc.) were
frequent. A long-term study of network designers showed that users took advantage of embedded an­
notations and made frequent use of deictic references [Reeves 93]. Second, discussion about the ar­
tifact guided the incremental design process. Designers took every opportunity to illustrate critiques.
Only rarely was a detailed comment made and not accompanied by changing the artifact.

The logical map mentioned above served not only to represent the real network, but also as a medium
through which changes were considered and argued (Figure 3). It focused as well as facilitated discus­
sion. Frequently, in arguing over design artifacts, specific issues led to discussions of larger issues.
Collaborating designers preferred to ground discussions in design representations. The logical maps
served to (1) point out inconsistencies between an appealing idea and its difficulty of implementation,
(2) remind participants of important constraints, and (3) describe network states before and after
changes.

8

,

i Looks like there is .. break in the connection between xx (in the CAPP lab) f3CCr 1-16

•.•. 1.: •. 1 and the concentralnr in the machine room. XX refuses In reboot (unable to
: obtain internet address) and the concentrator shows no carrier on that

line.
-markm

o 0
,-----------1

xx chimay

Figure 3: Logical Map with Embedded Discussion

The logical map serves to abstract away low-level details while allowing discussions about the artifact to be
embedded in the design.

4. DODEs as Models of Collaborative Systems
Seeding: Mutual Education and Mutual Understanding between Environment Developers and
Domain Designers. The predominant activity in designing complex systems is the participants teach­
ing and instructing each other [Curtis, Krasner, Iscoe 88; Greenbaum, Kyng 91]. As argued with the
existence of the' 'symmetry of ignorance" , complex problems require more knowledge than any single
person possesses, making communication and collaboration among all the involved stakeholders a
necessity. Domain designers understand the practice and environment developers know the technol­
ogy. None of these carriers of knowledge can guarantee that their knowledge is superior or more com­
plete compared to other people's knowledge. The goal of the seeding process is to activate as much
knowledge from as many stakeholders as possible taking into account that system requirements are not
so much analytically specified as they are collaboratively evolved through an iterative process of con­
sultation between all stakeholders [CSTB 90]. This iterative process of consultation requires represen­
tations (such as prototypes, mock-ups, sketches, scenarios, or use situations that can be experienced)
which are intelligible and can serve as "objects-to-think-with" for all involved stakeholders.

This iterative process is important to support the interrelationship between problem framing and
problem solving documented by many design methodologists (e.g., [Rittel 84; Schoen 83]). They argue
convincingly that (1) one cannot gather information meaningfully unless one has understood the
problem, but one cannot understand the problem without information about it; and (2) professional
practice has at least as much to do with defining a problem as with solving a problem. New require­
ments emerge during development because they cannot be identified until portions of the system have
been designed or implemented. The conceptual structures underlying complex software systems are
too complicated to be specified accurately in advance, and too complex to be built faultlessly.
Specification and implementation have to co-evolve, requiring the owners of the problems to be present
in the development.

9

Evolutionary Growth through Design-in-Use. Software systems model parts of our world. Our
world evolves in numerous dimensions as new artifacts appear (e.g., new gadgets in computer network
design), new knowledge is discovered, and new ways of doing business are developed. Successful
software systems need to evolve. Maintaining and enhancing systems need to become "first class

design activities," extending system functionality in response to the needs of its users. There are
numerous fundamental reasons why systems cannot be done "right." Designers are people, and
people's imagination and knowledge are limited. The evolution is driven by using an existing generic
design environment for the development of a new specific artifact. Figure 4 illustrates the intertwining
between a designer learning from the existing environment, and at the same time contributing herlhis
knowledge and ideas to the environment.

End-User Modifiablity,
End-User Programming

Learning on Demand

~
\
\ ,

Figure 4: The Role of Learning on Demand and End-User Modifiability
in the Evolution of Collaborative Systems

DODEs provide learning on demand opportunities for a designer through critiquing, simulation and access to
contextualized argumentation and cases. But the information flow is not only one-directional. Using DODES,
designers will transcend the existing knowledge and contribute new knowledge themselves. Because these
designers are domain designers and not software designers, end-user modifiability support is required.

Reseeding: Formalizing and Reorganizing. Acquiring design knowledge is of little benefit unless it

can be delivered to designers when it is relevant. Periodically, the growing information space must be
structured, generalized, and formalized in a reseeding process, which increases the computational sup­

port the system is able to provide to designers [Shipman 93].

The task of reseeding involves environment developers working with domain designers. After a period
of use, the information space can be a jumble of annotations, partial designs, and discussions mixed in
with the original seed and any modifications performed by the domain designers. To make this infor­
mation useful, the environment developers work with the domain designers in a process of organizing,
generalizing, and formalizing the new information and updating the initial seed.

Indirect, Long-Term Collaboration. Realistic design projects are increasingly large, complex, and

10

long in duration. The design process can extend over many years, only to be followed by extended
periods of maintenance and redesign. Specialists from many different domains must coordinate their
efforts despite large separations of distance and time. In such projects, constructive collaboration is
crucial for success yet difficult to achieve. This difficulty is due in large part to ignorance by in­
dividual designers of how the decisions they make interact with decisions made by other designers. A
large part of this, in tum, consists of simply not knowing what has been decided and why.

Meetings and other types of direct communication are the commonly used means for coordination and
collaboration in design projects, but in many situations - especially ones involving long-term col­
laboration - these are not feasible. Design projects that extend over many years can involve a high
turnover in personnel. Much of the design work on systems is done as enhancements and redesign, and
the people doing this work are often not members of the original design team. But to be able to do this
work well or at all requires "collaboration" with the original designers of the system. In general,
people who are not in the project group at the same time need to coordinate and collaborate in long­
term collaborative design.

In long-term collaborative design tasks, communication between designers is often indirect in the sense
that the senders and receivers of information are not known a priori. Instead, the time and place in
which communication happens are both unpredictable (see Figure 5).

Time-

Place
Same

!
Different
Predictable

Same meeting rooms work shifts

Different desktop email
Predictable conferencing

Different
Unpredictabl

Different
Unpredictable

Figure 5: A Classification of Different CSCW Perspectives

This classification scheme extends the usual CSCW 2x2 matrix of same/different times and places. By focus­
ing on indirect, long-term collaboration, we are specifically exploring group technologies that support and
represent the intentions and actions of others who cannot be seen and contacted personally. Because com­
munication and collaboration are indirect, knowledge must be represented within the system and activities are
shared and grounded around evolving artifacts.

Long-term, indirect communication is of particular importance in situations where (1) direct com­
munication is impossible, impractical or undesirable, (2) communication is shared around artifacts and
information space evolution, (3) designed artifacts continue to evolve over long periods of time (e.g,
over months or years), and (4) designers need to be informed within the context of their work on real-

11

world design problems.

Support for indirect coordination and collaboration must go beyond what electronic mail and most
proposed cscw software could provide, even in principle. This support should allow team members to
work separately - across substantial distances in space and time - but alert them to the existence of
potential interactions between their work and the work of others. Where such interactions exist, sup­
port should be provided for collaboration and conflict resolution. Designers must be able to interact
with design artifacts created by previous designers. Technology enabling this could effectively create
virtual cooperation between all designers who ever worked on the project.

Expectation Agents. Expectation agents [Girgensohn, Redmiles, Shipman 94] provide support for
collaboration between developers and users in DaDE. At the level of the development of the DaDE
itself, the collaboration takes place between the environment developers and the domain designers, and
(2) at the level of the development of an individual artifact within a DaDE, the collaboration takes
place between the domain designers and the clients (see Figure 1). Expectation agents monitor users
working with prototype systems and report mistaches between developers' expectations and a system's
actual usage. At the same time, the agents provide users with an opportunity to communicate with
developers (either synchronously or asynchronously). The agent-based interaction complements tradi­
tional participatory design in which users participate in the development process with face-to-face
meetings. The agent-based approach enables the usability of a prototype to be observed unobtrusively
while users perform their normal tasks. The evolution of a system from this perspective occurs as a
feedback mechanism by responding to discrepancies between a system's actual and desired states. Cru­
cial to an understanding of the need for evolving prototypes is that the "desired state" cannot be
clearly articulated. Irrespective of training or task analyses, many design concepts remain tacit. The
presence of an actual prototype forces design decisions and their full implications to become explicit.

Expectation agents can help in observing "actual use" in contrast to "expected use". Such agents
know about a family of tasks the system is intended to support and the sequence of user interactions the
developers envisioned for performing these tasks. In the case of a mismatch, agent may perform the
following actions: (1) notify developers of the discrepancy, (2) provide users with an explanation based
on developers' rationale, and (3) solicit a response to or comment about the expectation. What action is
appropriate depends on the type of discrepancy and whether the situation allows for immediate com­
munication between users and developers. In sum, this type of agent initiates a dialog between users
and developers in which the developers communicate their intent to the users and users have the oppor­
tunity to respond. Additional follow-up discussions can take place outside of the agent-based software
development environment.

The notion of agents introduced with this work is that of a mechanism to facilitate communication. The
communication enables a mutual understanding to evolve between developers and end users. The em­
phasis is on accurately matching a system to the needs of its intended users and less on enforcement of
requirements that, in actuality, may be inappropriate for a problem situation. In this role, agents provide
several advantages.

12

5. Assessment of DODEs
Empirical Foundations Through Assessment Studies in Naturalistic Settings. The times of purely
prescriptive design methodologies in software design belong to the past. "Arm-chair" design and
supply-side computing are not sufficient to solve real-world problems [Thomas, Kellogg 89]. Software
is created in the real world, deals with real tasks, and involves human beings with different interests,
skills, and knowledge. To make future computing systems succeed requires more than concern for
technology - it requires concern for human beings, their tasks, and their organizations. A specific
challenge for DODES which support communities of practice is to create seeds which offer sufficient
functionality that domain designers can use the systems in their day-today work without doing ad­
ditional work or sacrificing their productivity.

We have conducted numerous user studies to assess the value and importance of the domain­
orientation [Fischer 94], the critiquing component [Fischer et al. 9lb], the specification component
[Nakakoji 93], the end-user modifiability component [Girgensohn 92], the annotation component
[Reeves 93], the formalization component [Shipman 93], and the proactivity approach [Sullivan 94].

These evaluation have demonstrated that all of these components are supportive of collaboration in the
design of complex artifacts. Specific studies often uncovered surprising results, e.g., [Bonnardel, Sum­
ner 94] found that the critiquing component had little influence on the design product; but, by just

knowing the critiquing system was active stimulated designers to deeply analyze why they were break­
ing design guidelines and to formally record their design rationale in the system's knowledge base.

Exploring Different Collaboration Paradigms. Human-computer collaboration can be conceptual­
ized and operationalized from two different perspectives [Terveen 95]:

• the human emulation approach where the basic assumption is to endow computers with human­
like abilities (such as natural language, speech, etc.), and

• the human complementary approach which exploits the asymmetric abilities of humans and com­
puters and tries to identify the most desirable and most adequate role distributions between
humans and computational environments [Billings 91].

Our work is grounded in the complementary approach. We have explored (depending on the task, the
interest and the people involved) different styles of collaboration. In most of our work related to
critiquing, humans design and computers critique [Fischer et al. 91 b]. But critiquing in specific situa­

tions (i.e., where computers know the task, e.g., the size of a file directory tree or an inheritance struc­
ture in object-oriented design) can be done by humans, after the computer displayed a first approxima­
tion of the information structure. Another paradigm is proactivity [Sullivan 94] which allows designers
to delegate certain tasks to the system - and in performing these tasks the system uses knowledge that
may be unknown, and yet be of interest to the designer. In this context, work-centered events are the

triggers of learning episodes for designers; the system provides them with contextualized information
in the process of solving a problem today, which might be relevant for future problem solutions.

DODEs and Artificial Intelligence. DODEs put an emphasis on humans rather instead on automation.
Rather than "getting the human out of the loop," DODEs empower designers and users to create and
evolve artifacts fitting their needs and desires. The major difference between classical expert systems
and DO DEs is that the human is much more an active agent and participant in the latter ones. Tradi­

tional expert systems asked the user many questions and then returned an answer. In a collaborative

13

problem solving system the user and the system share the problem solving and decision making and
requiring much richer communication facilities than the ones which were offered by expert systems. It
raises two important questions: (1) what part of the responsibility still has to be exercised by human
beings? and (2) how do we organize things so that the intelligent part of the automatic system can
communicate effectively with the human part of the intelligent system?

Collaborative problem solving systems can deal better than expert systems with the following issues
(for details see [Fischer 90]):

1. partial understanding and knowledge of complex task domains is less detrimental,

2. two agents can achieve more than one - especially by exploiting the asymmetry between
agents,

3. breakdowns are not as detrimental, especially if the system provides resources for dealing with
the unexpected,

4. background assumptions do not need to be fully articulated beforehand, but can be incremen­
tally articulated,

5. semi-formal system architectures are appropriate, and

6. humans can enjoy "doing" and "deciding" by being involved in the process.

Increasing the Shared Understanding. Design is a well-suited activity to explore concepts in col­
laboration because the design activity takes place within the computational environment. The "situa­
tion awareness" of a DaDE is increased through the following mechanisms [Nakakoji 93] : (1) the
domain orientation allows a default intent to be assumed, namely, the creation of a artifact in the given
domain; (2) the construction situation is accessible and can be "parsed" by the system, providing the
system with information about the artifact under construction; and (3) the specification component al­
lows one to explicitly communicate high-level design intentions to the system. The embedding of
annotations (see Figure 3) increases the situation awareness of a DaDE even further [Reeves 93].
Figure 6 illustrates the implication of embedding communication within the environment.

Who is the Beneficiary and Who has to Do the Work. Research in software design in the past has
operated as an overly prescriptive discipline, often postulating a "new human" [Simon 81] with inter­
ests (e.g., detailed knowledge of low- level computer operation), knowledge (e.g., about work
procedures of an application domain), and motivations (e.g., to provide extensive amounts of design
rationale, or to deal with formal methods). This idealized human had little correspondence with reality.
Most issue of collaboration transcend narrow technical issues and succeed or fail based on social and
organizational issues. For a designer enhancing an existing artifact, the existence of a rich design
rationale and of mechanisms for end-user modifiability are highly desirable. But the original
developers of the system need to do substantially more work to make this all available (e.g., in the case
of expectation agents, end-users must care enough about the flaws in the system and the developers
must care enough about the needs and complaints of the end-users). The necessity to invest in long­
term benefits must be taken seriously. Unless there are organizational recognition and awards for these
activities, designers will not be motivated to create these information structures, because they have to
do the work without being the beneficiaries [Grudin 89].

Computer stores
the Artifact

14

Designing
Communicating

Computer mediates
design and communication

Figure 6: Embedding Artifact and Communication
in Computational Environments

The left part of the figure shows communication (e.g., via e-mail) being outside of the "situation awareness"
of the system. By talking about the artifact within the artifact (e.g., using annotation, see Figure 3), the shared
understanding can be increased and the system can act more collaboratively by delivering information in a
more contextualized way.

Current Limitations and Research Issues for DODEs. The appeal of the Do DE approach lies in its
compatibility

• with an emerging methodology for design [Cross 84; Ehn 88; Schoen 83; Simon 81],

• with views of the future as articulated by practicing software engineers [CSTB 90],

• with findings of empirical studies [Curtis, Krasner, Iscoe 88], and

• with the integration of many recent efforts to tackle specific issues in collaboration (e.g.,
representation of context and intent [Fischer, Nakakoji, Ostwald 93], recording design rationale
[Fischer et al. 91a], supporting case-based reasoning, creating artifact memories [Terveen,

Selfridge, Long 93], and so forth).

We are further encouraged by the excitement and widespread interest of DODEs and the numerous
prototypes being constructed, used and evaluated in the last few years [Fischer 94].

DODES raise numerous research issues. Creating seeds for a variety of different domains will require
substantial resources and the willingness of people from different disciplines to collaborate. By being
high- functionality systems, DODEs create a tool mastery burden. Our experience has shown that the
costs of learning a programming language are modest compared to those of learning a full-fledged
design environment. New tools (e.g., critics [Fischer et al. 91b], expectation agents [Girgensohn, Red­
miles, Shipman 94], etc.), and support mechanisms for learning on demand [Fischer 91]) are needed to
address these problems.

There are numerous other reasons that a DODE approach may not be readily accepted. Software desig­
ners often have difficulties with the idea that they do not create "universal solutions" that make
everyone happy. They have difficulties in sacrificing generality for increased domain-specific support.
DODEs replace the clean and controllable waterfall model with a much more interactive situation in

15

which the search for "correct" solutions is limited to downstream activities. DODEs will lead to fur­
ther specialization of computer users into environment developers who create (in collaboration with
domain designers) the seeds for design environments, and of domain designers who solve problems by
exploiting the resources of the design environments

6. Conclusions
Ideas from many disciplines have contributed and are integrated in DODEs. Design research provided
concepts such as reflection-in-action, symmetry of ignorance and the need for integrating problem
framing and problem solving. Human computer interaction research contributed interaction paradigms,
information presentation techniques, and a general framework for reflecting on the shared respon­
sibilities and role distributions of humans and computers in collaborative systems. Artificial Intel­
ligence provided ideas and techniques for knowledge representation and formal computational model­
ing. Social science research contributed ideas and background knowledge about work practices, design,
role of artifacts in human activity, organizational learning, group memories, and motivation.

While being grounded in some aspects of the traditions of these disciplines, DODEs also transcend
some of the existing frameworks. They are in sharp contrast to the isolation assumption of Artificial
Intelligence which assumes that a human agent formulates the problem in a previously defined lan­
guage understandable to the computational agent and that the problem statement will include back­
ground knowledge, a description of the the state of some world, operators to use in that world and a
description of a desired state [Bobrow 91]. They transcend the design perspectives by increasing the
back-talk of artifacts with computational agents [Fischer, Nakakoji 92]. They extend the CSCW
perspective by embedding many computational mechanisms (such as critiquing, simulations, shared
intent, artifact centered communication) thereby providing additional support for humans. They
transcend a disembodied intelligence approach [Norman 93] by allowing cognition and knowledge be
distributed among humans and computers and bringing all resources together through collaboration.

Acknowledgments
The author would like to thank the members of the Center for Lifelong Learning and Design at the
University of Colorado who have made major contributions to the conceptual framework and systems
described in this paper. The research was supported by (1) the National Science Foundation, Grant
RED-9253425, (2) the ARPA HCI program, Grant N66001-94-C-6038, (3) Nynex, Science and Tech­
nology Center, (4) Software Research Associates (SRA), and (5) PFU. During the academic year
1994/95, the author is supported by the "SEL-Stiftungsprofessur" of the Technical U ni versity
Darmstadt.

References
[B illings 91]

C.E. Billings, Human-Centered Aircraft Automation: A Concept and Guidelines, NASA Technical
Memorandum 103885, NASA Ames Research Center, Moffett Field, CA, August 1991.

16

[Bobrow 91]
D.G. Bobrow, Dimensions of Interaction, AI Magazine, Vol. 12, No.3, Fall 1991, pp. 64-80.

[Bonnarde1, Sumner 94]
N. Bonnardel, T. Sumner, From System Development to System Assessment: Exploratory STudy of the Ac­
tivity of Professional Designers, Proceedings of the 7th European Conference on Cognitive Ergonmics
(Bonn, Germany), September 1994, pp. 23-36.

[Cross 84]
N. Cross, Developments in Design Methodology, John Wiley & Sons, New York, 1984.

[CSTB 90]
Computer Science and Technology Board, Scaling Up: A Research Agenda for Software Engineering, Com­
munications of the ACM, Vol. 33, No.3, March 1990, pp. 281-293.

[Curtis, Krasner, Iscoe 88]
B. Curtis, H. Krasner, N. Iscoe, A Field Study of the Software Design Process for Large Systems, Com­
munications of the ACM, Vol. 31, No. 11, November 1988, pp. 1268-1287.

[Ehn 88]
P. Ehn, Work-Oriented Design of Computer Artifacts, Almquist & Wiksell International, Stockholm,
Sweden, 1988.

[Engelbart, English 68]
D.C. Engelbart, W.K. English, A Research Center for Augmenting Human Intellect, Proceedings of the
AFIPS Fall Joint Computer Conference, The Thompson Book Company, Washington, D.C., 1968, pp.
395-410.

[Fischer 90]
G. Fischer, Communications Requirements for Cooperative Problem Solving Systems, The International
Journal ofInformation Systems (Special Issue on Knowledge Engineering), Vol. 15, No.1, 1990, pp. 21-36.

[Fischer 91]
G. Fischer, Supporting Learning on Demand with Design Environments, Proceedings of the International
Conference on the Learning Sciences 1991 (Evanston, IL), Lawrence Birnbaum (ed.), Association for the
Advancement of Computing in Education, Charlottesville, VA, August 1991, pp. 165-172.

[Fischer 94]
G. Fischer, Domain-Oriented Design Environments, Automated Software Engineering, Vol. 1, 1994, pp.
177-203.

[Fischer et al. 91a]
G. Fischer, AC. Lemke, R. McCall, A Morch, Making Argumentation Serve Design, Human Computer
Interaction, Vol. 6, No. 3-4,1991, pp. 393-419.

[Fischer et al. 91b]
G. Fischer, A.C. Lemke, T. Mastaglio, A Morch, The Role of Critiquing in Cooperative Problem Solving,
ACM Transactions on Information Systems, Vol. 9, No.2, 1991, pp. 123-151.

[Fischer et al. 92]
G. Fischer, J. Grudin, AC. Lemke, R. McCall, J. Ostwald, B.N. Reeves, F. Shipman, Supporting Indirect,
Collaborative Design with Integrated Knowledge-Based Design Environments, Human Computer Inter­
action, Special Issue on Computer Supported Cooperative Work, Vol. 7, No.3, 1992, pp. 281-314.

[Fischer, Lemke 88]
G. Fischer, AC. Lemke, Construction Kits and Design Environments: Steps Toward Human Problem­
Domain Communication, Human-Computer Interaction, Vol. 3, No.3, 1988, pp. 179-222.

[Fischer, Nakakoji 92]
G. Fischer, K. Nakakoji, Beyond the Macho Approach of Artificial Intelligence: Empower Human Designers
- Do Not Replace Them, Knowledge-Based Systems Journal, Vol. 5, No.1, 1992, pp. 15-30.

17

[Fischer, Nakakoji, Ostwald 93]
G. Fischer, K. Nakakoji, J. Ostwald, Facilitating Collaborative Design through Representations of Context
and Intent, Proceedings of AAAI-93 Workshop, AI in Collaborative Design (Washington DC), 1993, pp.
293-312.

[Girgensohn 92]
A. Girgensohn, End-User Modifrability in Knowledge-Based Design Environments, Ph.D. Dissertation,
Department of Computer Science, University of Colorado, Boulder, CO, 1992, Also available as TechReport
CU-CS-595-92.

[Girgensohn, Redmiles, Shipman 94]
A. Girgensohn, D. Redmiles, F. Shipman, Agent-Based Support for Communication between Developers and
Users in Software Design, Proceedings of the 9th Annual Knowledge-Based Software Engineering
(KBSE-94) Conference (Monterey, CA), IEEE Computer Society Press, Los Alamitos, CA, September 1994,
pp.22-29.

[Greenbaum, Kyng 91]
J. Greenbaum, M. Kyng (eds.), Design at Work: Cooperative Design of Computer Systems, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991.

[Grudin 89]
J. Grudin, Why groupware applications fail: Problems in design and evaluation, Office Technology and
People, Vol. 4, No.3, 1989, pp. 245-264.

[Henderson, Kyng 91]
A. Henderson, M. Kyng, There's No Place Like Home: Continuing Design in Use, in J. Greenbaum,
M. Kyng (eds.), Design at Work: Cooperative Design of Computer Systems, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1991, pp. 219-240, ch. 11.

[Hill 89]
W.C. Hill, The Mind at AI: Horseless Carriage to Clock, AI Magazine, Vol. 10, No.2, Summer 1989, pp.
29-41.

[Nakakoji 93]
K. Nakakoji, Increasing Shared Understanding of a Design Task Between Designers and Design Environ­
ments: The Role of a Specification Component, Unpublished Ph.D. Dissertation, Department of Computer
Science, University of Colorado, 1993, Also available as TechReport CU-CS-651-93.

[Norman 93]
D.A. Norman, Things That Make Us Smart, Addison-Wesley Publishing Company, Reading, MA, 1993.

[Reeves 93]
B.N. Reeves, Supporting Collaborative Design by Embedding Communication and History in Design
Artifacts, Ph.D. Dissertation CU-CS-694-93, Department of Computer Science, University of Colorado,
Boulder, CO, 1993.

[Reeves, Shipman 92J
B.N. Reeves, F. Shipman, Supporting Communication between Designers with Artifact-Centered Evolving
Information Spaces, Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW'92),
ACM, New York, November 1992, pp. 394-401.

[Resnick 91]
L.B. Resnick, Shared Cognition: Thinking as Social Practice, in L.B. Resnick, J.M. Levine, S.D. Teasley
(eds.), Perspectives on Socially Shared Cognition, American Psychological Association, Washington, D.C.,
1991, pp. 1-20, ch. 1.

[Ritte184]
H.W.J. Rittel, Second-Generation Design Methods, in N. Cross (ed.), Developments in Design Methodology,
John Wiley & Sons, New York, 1984, pp. 317-327.

18

[Schoen 83]
D.A. Schoen, The Reflective Practitioner: How Professionals Think in Action, Basic Books, New York,
1983.

[Shipman 93]
F. Shipman, Supporting Knowledge-Base Evolution with Incremental Formalization, Ph.D. Dissertation,
Department of Computer Science, University of Colorado, Boulder, CO, 1993, Also available as TechReport
CU-CS-658-93.

[Simon 81]
H.A. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981.

[Stahl 93]
G. Stahl, Interpretation in Design: The Problem of Tacit and Explicit Understanding in Computer Support
of Cooperative Design, Ph.D. Dissertation, Department of Computer Science, University of Colorado,
Boulder, CO, 1993.

[Stefik 86]
MJ. Stefik, The Next Knowledge Medium, AI Magazine, Vol. 7, No.1, Spring 1986, pp. 34-46.

[Suchman 87]
L.A. Suchman, Plans and Situated Actions, Cambridge University Press, Cambridge, UK, 1987.

[Sullivan 94]
J. Sullivan, A Proactive Computational Approach for Learning While Working, Unpublished Ph.D. Disser­
tation, Department of Computer Science, University of Colorado, 1994.

[Terveen 95]
L.G. Terveen, An Overview of Human-Computer Collaboration, Knowledge-Based Systems Journal, Vol. 8,
No. 2-3, April-June 1995, pp. 67-81.

[Terveen, Selfridge, Long 93]
L.G. Terveen, P.G. Selfridge, M.D. Long, From Folklore to Living Design Memory, Human Factors in
Computing Systems, INTERCHI'93 Conference Proceedings, ACM, April 1993, pp. 15-22.

[Thomas, Kellogg 89]
J.e. Thomas, W.A. Kellogg, Minimizing Ecological Gaps in Inteiface Design, IEEE Software, Vol. 6,
January 1989, pp. 78-86.

