
HUMAN-COMPUTER INTERACTION, 1995, Volume 10, pp. 79-119
Copyright © 1995, Lawrence Erlbaum Associates, Inc.

Beyond Object-Oriented
Technology: Where Current

Approaches Fall Short

Gerhard Fischer
University of Colorado, Boulder

David Redmiles
University of California, Irvine

Lloyd Williams
Software Engineering Research

Gretchen I. Puhr
University of Colorado, Boulder

Atsushi Aoki and Kumiyo Nakakoji
Software Research Associates, Inc.

Gerhard Fischer, a Professor of Computer Science and Member of the Institute
of Cognitive Science at the University of Colorado, has been involved with
object-oriented (00) design approaches for the last 15 years and is concentrating
on the creation and evaluation of domain-oriented design environments based on
an 00 layered architecture. David Redmiles, an Assistant Professor of Computer
Science, focuses his research on improving the software development process
through cognitive studies and innovative technologies. As President of Software
Engineering Research, Lloyd Williams does work that emphasizes methods,
tools, and support environments for the description and analysis of software
designs. Gretchen I. Puhr, a PhD candidate in Information Systems, has been
involved with teaching 00 systems development for 5 years and is interested in
the cognitive aspects of software reuse. Atsushi Aoki, a Software Engineering
Researcher at the Software Engineering Laboratory, Software Research Associ­
ates, has been working in the Smalltalk environment since 1984. Kumiyo
Nakakoji works for Software Research Associates and is interested in cross-cul­
tural considerations in design and systems.

80 FISCHER ET AL.

CONTENTS

1. INTRODUCTION
2. A COGNITIVE MODEL OF OBJECT-ORIENTED DEVELOPMENT
3. EVOLUTION IN 00 SOFrWARE DEVELOPMENT

3.1. Where Current 00 Technology Falls Short
3.2. Beyond Object Orientation
3.3. Reference and Hierarchy Factors: Metrics to Support Evolution

4. REUSE AND REDESIGN
4.1. Where Current 00 Technology Falls Short
4.2. Beyond Object Orientation
4.3. Explainer: A Tool to Support Reuse and Redesign

5. DOMAIN ORIENTATION
5.1. Where Current 00 Technology Falls Short
5.2. Beyond Object Orientation
5.3. Knowing-In-Design: A Tool to Support Domain Orientation

6. CONCLUSIONS

ABSTRACT

Object-oriented (00) technology has been heralded as a solution to the prob­
lems of software engineering. The claims are that 00 technology promotes
understandability, extensibility, evolvability, reusability, and maintainability of
systems and that 00 systems are easy to understand and use. However, this
technology has not been as successful as expected. An analysis of experiences and
empirical studies reveals that the problem is not the technology per se but that the
technology provides no support to software developers in performing the pro­
cesses the technology requires. We present a cognitive model of software develop­
ment that details the challenges software developers face in using 00 technology.
The model focuses on three aspects of software development-evolution, reuse and
redesign, and domain orientation. We motivate this model with a variety of
firsthand experiences and use it to assess current 00 technology. Further, we
present tools and evaluations that substantiate parts of this model. The model and
tools indicate directions for future software development environments, looking
beyond the technological possibilities of 00 languages and beyond the context of
individual developers and projects.

1. INTRODUCTION

Object-oriented (00) technology has been heralded as a way to make
software development easier, faster, and more reliable (ACM, 1990, 1992).
Among the claimed software benefits of 00 technology are understand­
ability, extensibility, evolvability, reusability, and maintainability, all of

OBJECT-ORIENTED TECHNOLOGY 81

which are technically well motivated. The basic 00 principle of encapsu­
lating data and procedures into a single unit, the "object," with a well-de­
fined interface facilitates many of these objectives (Meyer, 1987). Object
libraries can evolve and be made available to designers, allowing design­
ers to build new applications from proven constructs in the library. Lan­
guages such as C++, Smalltalk, and Common Lisp Object System (CLOS)
are at the forefront of such work today. Furthermore, object libraries can
build upon one another to support a layered architecture and thus reduce
the conceptual distance between a problem and its solution (Fischer &
Lemke, 1988). 00 technology allows software developers to choose ob­
jects that directly model problem domain concepts, resulting in systems
the structures of which more nearly correspond to those of problem
domains (Rosson & Alpert, 1990). This has led to what is termed a
"seamless" approach to 00 development: The structures that are identi­
fied during analysis are often carried through into design and implementa­
tion (Henderson-Sellers, 1992).

Despite these claims, our collective experience (as well as that of
others) has revealed that current 00 technology fails in practice to
achieve all its claimed benefits. Central to understanding this shortfall
is Brooks's (1987) well-stated observation that software technologies
have focused too much on the "accidents" (or software artifacts) and not
enough on the "essence" (or human creative resource) of software
engineering. Software technologies support the downstream activities
(e.g., translation of specification and programming languages) but not
the upstream activities (e.g., problem analysis and selection of abstrac­
tions) (Swartout & Balzer, 1982). These introductory observations indi­
cate the need for an analysis of 00 technology that focuses on the
needs of the human software developers (Fischer 1987) more than on
the formal properties of classes, instances, and inheritance (Stefik &
Bobrow 1986). We present such an analysis based on a human-centered
model of software development that has grown out of our diverse
academic and industrial experiences. The specific model we describe
incorporates elements of evolutionary design, reuse and redesign, and
domain orientation. The model is a cognitive theory of software devel­
opment in the sense that it focuses not on the technical accommodation
of software objects but on the accommodation of the human developers
in their interaction with the software objects. This point of view leads
us to address questions such as:

1. What processes of software development are difficult for people?
2. Which processes can be supported by tools-and how?
3. What evidence supports this particular model?
4. How do existing 00 technologies compare?
5. How do prototype tools we have developed perform?

82 FISCHER ET AL.

In developing our model, we relied in part on our varied academic and
industrial experience and case studies that span many years, projects, and
settings. Although such evidence lacks the rigor of highly structured
experiments, it also lacks the artificiality of experiments. The use of
anecdotal evidence, although uncommon in cognitive psychology, is com­
mon in engineering disciplines. An example is the use of critical incidents
for product safety and the use of design failures in civil engineering
(Petroski, 1985). The reader should also bear in mind that some of the
analysis is from areas outside software development, and the model is
more one of general design than one of 00 programming. 00 technol­
ogy presents not simply a new way to program but a new way for people
to think about problem domains. The gravest cognitive challenges are not
in the downstream activities of programming but in the upstream activities
of analysis and abstraction, as already noted. Analogies to other areas in
which objects have long been a medium of problem solving should not be
overlooked (Simon, 1981, pp. 200-203).

The experiential evidence is used to motivate our model. Together with
the model, it provides a framework for assessing the areas in which current
00 technology falls short of its promise. Our assessment of 00 technol­
ogy may seem negative at times, especially considering the subtitle of this
article. This emphasizes our belief that much can be learned by analyzing
failures. We believe that 00 technology is an enabling technology and
have argued so in the past (Aoki, 1993; Fischer, Lemke, & Rathke, 1987;
Ward & Williams, 1990b). Addressing its shortcomings widens the scope
of problem situations in which the technology may be applied.

The remainder of the article is organized as follows. Section 2 presents
a model of 00 development that emphasizes evolution, reuse and rede­
sign, and domain orientation. Sections 3, 4, and 5 explore in detail how
00 technology addresses each of these concepts, respectively. Each sec­
tion presents the rationale behind the claim, summarizes empirical and
experiential evidence bearing on it, and assesses where current 00 tech­
nology is with respect to meeting its promise. Each section concludes with
a description of our approach and a prototype method or tool that moves
us beyond the current technology. Section 6 presents a summary and
draws some general conclusions.

2. A COGNITIVE MODEL OF OBJECT-ORIENTED
DEVELOPMENT

Software development requires a developer to transform a general,
informal understanding of a goal into a formal model using operators and
components interpretable by the computer. fv1any cognitive models focus
on this process from the perspective of the cognitive processes internal to
a developer. For example, they focus on models of how software develop­
ers might retrieve and apply plans and schemas (Adelson & Soloway,

OBJECT-ORIENTED TECHNOLOGY 83

1985; Rist, 1989) or bring to bear other knowledge for software compre­
hension (Pennington, 1987). Although these models make an important
contribution to our understanding of individuals, the process of software
development is a cooperative process among many individuals and differ­
ent kinds of artifacts. With respect to reuse, we have recognized that this
cooperation can span long time intervals as well, raising many issues
related to the evolution of software objects (Fischer, McCall, Ostwald,
Reeves, & Shipman, 1993). This point of view gives rise to a cognitive
model that emphasizes a longer period of time and focuses on the interac­
tion of the human players with the artifacts involved (Hutchins 1993;
Norman 1993).

Design methodologists (Rittel, 1984; Schoen, 1983) have emphasized
the need for integrating problem framing and problem solving. They have
argued convincingly that one cannot gather information meaningfully
unless one has understood a problem, but one cannot understand a prob­
lem without information about it. For instance, Curtis, Krasner, and Iscoe
(1988) observed that the predominant activity in designing complex sys­
tems is the participants' teaching and instructing one another-that under­
standing the problem is the problem. Because complex problems require
more knowledge than anyone person possesses, communication and
collaboration among all the involved stakeholders are necessary (Ehn,
1988; Greenbaum & Kyng, 1991). Professional practice has at least as
much to do with defining a problem as with solving a problem. New
requirements emerge during development because they cannot be identi­
fied until portions of the system have been designed or implemented
(Fischer & Reeves, 1992). The conceptual structures underlying complex
software systems are too complicated to be specified accurately in advance
and too complex to be built faultlessly (Brooks, 1987). Specification and
implementation have to coevolve (Swartout & Balzer, 1982), requiring a
tighter integration of the frequently separated stages of software develop­
ment-analysis, design, speCification, and implementation. Thus, evolution
occurs as feedback from partial solutions improves the developers' under­
standing of the problem.

These considerations on cognitive processes and design theories have
led us to develop a cognitive model of 00 development. The model
focuses on three aspects of 00 development-evolution, reuse and rede­
sign, and domain orientation. Figure 1 is used as a basis to explain this
focus. The diagram includes three types of 00 software components-spe­
cific projects composed of instances of objects; libraries of object classes
from which instances are made; and frameworks that define recurring
patterns of interaction between classes of objects, potentially classes from
different libraries (for descriptions of these terms, see Deutsch, 1989;
Johnson & Foote, 1988).

Figure 1 illustrates that, in our model, evolution is driven by software
developers reusing and redesigning software components in the context of

FISCHER ET AL.

1. An evolutionary model of 00 development. A progression of software
Ipment projects delineate time and provide a long-term context in which the
nental claims of 00 technology, including domain orientation and reuse, may
died. Solid-tip arrows are primarily associated with evolution, driven by
re developers creating new software objects to accommodate new projects.
V'-tip arrows indicate software developers reusing components, although reuse
~s leads to redeSign. Stable structures of class libraries and frameworks emerge
nultiple projects. Domain orientation permeates the model as all of the
In, reuse, and redesign of components is driven by problems arising in the
pment of specific projects.

Frameworks B Frameworks C, B'

Classes A'

Classes A Classes B

I
Classes B I, A"

Classes C

ct A Project B Project C Project Y

!. Framework for a temperature sensing system. This example illustrates parts
cognitive model proposed in Figure 1. A temperature sensor measures the
'ature of a number of furnaces and reports those measurements to a host
ter. The temperature of each furnace is obtained by periodically reading a
thermometer. The temperature sensor system is likely to be part of a larger
for which monitoring (and, most likely, control) of the temperatures of a set

.lces is important This application might be, for example, process control in a
ill.

queries reads I I
:omputer I ~ .. Temperature Sensor ~ • Digital Thermometer

sive software development efforts. The arrows are transformations
~d by software developers. Solid-tip arrows represent the creation of
oftware components, and hollow-tip arrows represent reuse and
gu. It is in examining the software developers' involvement in these
;ses that the model becomes a cognitive model.
purposes of illustration, we use an adaptation of the problem of

>ping a temperature sensing system. This example was introduced
lUng (1982) and was further developed by Ward and Williams
l). The problem situation is that a temperature sensor measures the
rature of a number of furnaces and reports those measurements to a
omputer. The temperature of each furnace is obtained by periodi­
reading a digital thermometer. A framework of the example is
med in Figure 2.

I

OBJECT-ORIENTED TECHNOLOGY 85

In our model, illustrated in Figure 1, evolution implies that software
components are expected to change over time; that is, class definitions
may be refined with respect to the.ir attributes and methods, and libraries
may be repartitioned to contain different classes. Our model stresses that
these changes are driven by successive software development projects; the
evolutionary scale in Figure 1 is measured by a progression of projects (see
also Berard, 1993). A successive project could be a revision of an earlier
one or a new development in the same domain. For instance, in Figure 1,
Project A might be the development of a system for the temperature
sensor problem illustrated in Figure 2. The Digital Thermometer and
Temperature Sensor classes would be developed; Digital Thermometer
would have instance methods for reporting temperature, and Temperature
Sensor would have instance methods for requesting and interpreting tem­
perature readings from thermometers. With this one project, all the classes
might be placed in a single class library, such as Classes A in Figure 1. A
new project might be to adapt the sensing system to work with analog
thermometers. (Strictly speaking, the digital thermometer device would
also have an analog component. However, we use the digital-analog
distinction for simplicity in denoting two thermometer device types re­
quiring different software interfaces.) The software developers might
choose to generalize the framework to have a Thermometer class with
Digital Thermometer and Analog Thermometer subclasses; the two ther­
mometers might have, for instance, different communications require­
ments and hence need different attributes for buffers and methods for
reading. Although a single project is not always sufficient for generalizing
patterns of class interaction, together Projects A and B yield a common
framework illustrated in Figure 2 and corresponding to Framework B in
Figure 1.

Reuse means that existing software components can be incorporated into
the solutions of new problems, and redesign means that some existing
components might be adapted to fit new problems (Fischer et al., 1987). In
Figure 1, the arrow pointing downward to Project B is used to illustrate that
some classes from the previous project may be reused. In our example, the
Temperature Sensor class was reused and did not change. The arrow
leading upward from Project B is used to illustrate a synthesis of new
classes such as Analog Thermometer and Thermometer and the redesign
of the former class, Digital Thermometer, to be a subclass of the new class,
Thermometer. A further redesign might be that all the Thermometer
classes are partitioned into their own class library, Classes B, leaving the
modified class library, Classes A'. Reuse and redesign go hand in hand
with evolution: Components evolve so that they may be reused in other
contexts, and the reuse and redesign of those components lead to further
evolutionary changes, which in turn support continued reuse.

Finally, domain orientation means that all the software components­
frameworks, classes, and instances in projects-are grounded in spe-

86 FISCHER ET AL.

cific problem areas. In our model, completed projects yield a conceptual­
ization of a domain; they provide the basic abstractions of a domain in
terms of classes and frameworks. As more projects are implemented and
the coverage of a domain increases, software developers have the sense
that they are interacting with the domain itself rather than with low-level
computer abstractions. An ideal is that problem experts can manipulate
software components directly, brpassing computer software developers
who heretofore have acted as middlemen; systems become end-user
modifiable (Fischer & Girgensohn, 1990). In the example, managers in a
steel mill would be able to configure the complete monitoring systems
themselves, selecting among concepts (classes) such as Analog Thermom­
eter and Digital Thermometer. This kind of human-computer interaction
is termed human problem-domain communication (Fischer & Lemke, 1988).
A perspective of domain orientation also clarifies the relation among
software components: There may be project- or problem-independent
components, but there are no domain-independent components; classes
and frameworks exist to serve different designs.

This general model of software development using 00 technology
provides a context for the discussion that follows, and it lets us explore
human cognitive requirements with respect to evolution, reuse and rede­
sign, and domain orientation. Current 00 development technologies
have made claims related to these three concepts, including:

1. 00 systems support software evolution, extension, and/or modifi­
cation.

2. 00 systems are reusable and easily constructed from existing com­
ponents.

3. 00 systems are understandable to domain experts (users) and
developers.

The following three sections explore each of these concepts and claims in
turn. Figure 3 provides an overview of these sections.

The model aspects and corresponding prototypes are not related in a
simple orthogonal relation. Instead, we see that evolution subsumes reuse
and redesign in the sense that the latter two processes make sense only
over the development of several projects, and, at the same time, reuse and
redesign drive evolution. Finally, domain orientation permeates all activi­
ties because software components cannot be understood or developed
independent of the problem they are designed to solve.

3. EVOLUTION IN 00 SOFTWARE DEVELOPMENT

The first claim in Fi·gure 3 concerns the extensibility and evolvability
of 00 systems. Several points indicate that 00 systems can evolve to

1
,

OBJECT-ORIENTED TECHNOLOGY 87

Figure 3. Overview of Sections 3 through 5: Moving beyond current 00 technology
in aspects of evolution.

00
Development Claim of Firsthand Prototype Beyond
Model 00 Approach Observations Current Technology

Evolution 00 designs and 00 In development of Two metrics are used
systems are easy to 00 computer-aided to suggest to devel-
change; they support software engineering opers when to ab-
system evolution tool product, devel- stract classes into

opers had trouble library components
identifying abstrac- or to factor classes
tions and appro- into application
priate times at components
which to apply
00 operators to
support evolution

Reuse and 00 components are In study of large hard- Tool supports develop-
redesign reusable; 00 sys- ware store, custo- ers' reuse and rede-

terns support and/ mers needed expert sign of components
or encourage support for finding through explanations
reusability "right" objects for of examples using

their tasks the components
Domain 00 approach is "nat- In project to develop Tool supports develop-

orientation ural," making iden- gourmet food store ers' refinement of
tification of key ab- shopping system, specifications through
stractions in system students had diffi- argumentation and

easy, promoting culty identifying selection of abstrac-
better communica- abstractions tions through a
tion between devel- palette
opers and users, and
reducing gap between
problem and solution

support changes in requirements and business environments. First, class
definitions can be easilyextendedthroughinheritance (specialization).For
instance, in the temperature sensor example, suppose the abstract class,
Thermometer, existed with one subclass, Digital Thermometer. A subse­
quent project that needed an Analog Thermometer class could easily be
accommodated by adding it as another subclass of the Thermometer class.
Second, 00 systems are easy to extend or modify due to their understand­
ability. The more understandable 00 components are, the easier to
change such components for both users and developers. Third, changes
can (theoretically) be localized in an 00 system without dramatically
affecting other parts of the system because objects are loosely coupled
encapsulations of data and beha ViOL

88 FISCHER ET AL.

3.1. Where Current 00 Technology Falls Short

A case study of the development of an 00 computer-aided software
engineering (CASE) tool illustrates the natural evolution of 00 compo­
nents and the lack of support for this evolution. The study was described
in more detail elsewhere (Aoki, 1992, 1993). The project involved the
development of Mei, a CASE tool in Smalltalk-80 (Goldberg & Robson,
1983). Mei supports various 00 analysis and design methods and nota­
tions. It also includes object repositories and three-dimensional graphical
libraries. The project was undertaken by a large Japanese software com­
pany over a 2-year period. The project team included 10 members with
00 experience ranging from 1 to 10 years. The completed program
contained 700 classes and 14,000 methods.

Over the course of the development effort, four kinds of changes were
identified-refining existing classes, abstracting from existing classes, com­
posing classes from existing components, and decomposing classes into
new components. The evolution of components proceeded in a bottom-up
fashion. Initially, the development group identified low-level classes. As
the number of low-level classes grew, the usual practice was to examine
them for common patterns of structure and behavior and then to create
abstract superclasses that captured the commonalties and reduced redun­
dancies in the subclasses. In addition, as classes became larger and more
complex, the developers would often decompose them into smaller
classes. These decomposed classes then became candidates for further
refinement and abstraction. Of the four modification processes identified
in this project, only refinement and, to a lesser extent, composition were
directly and easily supported in Small talk. Abstraction and decomposition
were not. Furthermore, in discussing problems with developing classes, it
became apparent that many developers were proceeding.in a bottom-up
fashion because they had difficulty thinking abstractly. Additional devel­
opers who had extensive theoretical mathematics backgrounds were
brought in. They were able to help identify classes that should be ab­
stracted for more general library usage.

Other researchers have made similar observations about the evolvabil­
ity of 00 systems and the extent to which current 00 environments
support evolution. Lubars, Meredith, Potts, and Richter (1992) reported a
case study aimed at assessing evolution in an 00 system. They developed
an 00 requirements specification for an automated teller machine and
then examined the effects of various types of changes on the specification.
Their conclusion was that extensibility is not free. Changes must be
anticipated and objects structured accordingly. The simple guidelines
provided by current 00 methods do not adequately support the task of
identifying and building objects that are extensible. Lubars et al. pointed
out that "reliance on simple guidelines and strategies from methods text-

,

OBJECT-ORIENTED TECHNOLOGY 89

Figure 4. Evolving components. Development of software components involves an
evolutionary cycle of subprocesses.

Abstraction

Factorizatio
Composition

Refinement

books may ... cause the analyst to miss reuse opportunities and make the
model more difficult to change" (p. 184, italics added).

Opdyke and Johnson (1989) discussed many evolutionary changes that
are common in the development of 00 application frameworks. Opdyke
and Johnson noted that "object-oriented software is harder to change than
it should be" because many of the changes involve "changing the abstrac­
tions embodied in existing object classes and the relationships among those
classes" (p. 146). Some of these common changes, which are tedious,
difficult, and/or error prone in 00 environments, include creating an
abstract class for one or more existing classes; changing an existing rela­
tion between objects from an inheritance (generalization/specialization) to
an aggregation (component); and moving a class from one inheritance
hierarchy to another.

As these observations illustrate, current 00 environments support evo­
lution through refinement but fall short in their support for many other
evolutionary processes. There is a need for a better understanding of the
processes involved in evolution and tools to better support these processes.

3.2. Beyond Object Orientation

Our model of 00 development (Figure 1) emphasizes the importance
of component evolution across multiple projects. In our experience, com­
ponents evolve through four key processes: refinement, composition, ab­
straction, and factorization. These are illustrated as an ongoing cycle in
Figure 4 and are explained next.

90 FISCHER ET AL.

Software developers can refine an existing class by sub classing it and
adding to its properties and behaviors, its slots and methods. In our
example, the notion of a thermometer was refined by creating a class,
Thermometer, with subclasses, Digital Thermometer and Analog Ther­
mometer.

Developers can compose a new class from existing classes by referencing
other classes. For example, both analog and digital thermometers would
contain an analog component but could have different buffering and
communications components. In object-oriented languages that support
composition, the Analog Thermometer class could be composed of the
Analog Component and Analog Type Buffer classes; the Digital Ther­
mometer class could be composed of the Analog Component and Digital
Type Buffer classes.

Software developers can abstract classes when they identify commonal­
ties in behaviors and properties among existing classes. For instance, had
the two classes of thermometers developed independently, a software
developer might create the Thermometer class to contain common prop­
erties, such as the Analog Component, and pass this property to the Digital
Thermometer and Analog Thermometer classes through inheritance. Ab­
straction aims at reducing redundant coding and improving comprehensi­
bility, reusability, and maintainability.

Finally, developers can factor classes by partitioning the properties and
methods of an object into simpler, more cohesive (and presumably more
reusable) components. The original class behavior and structure are main­
tained; composition recombines the capabilities. However, the newly
derived classes now may be shared among other classes. Proposing the
Analog Component and Analog Type Buffer classes as components of
thermometers is an illustration of factoring. A class for representing a
pressure monitoring device could, for example, reuse the Analog Type
Buffer class.

We see the support for evolution through the four operations as a
critical aspect of 00 development that is not adequately supported with
current 00 programming environments or existing 00 analysis and
design methods. The following section describes a measurement model
developed to help support 00 class evolution.

3.3. Reference and Hierarchy Factors: Metrics to Support
Evolution

Over the course of a single, long-term project or several projects,
software developers can redesign class libraries and frameworks using the
four evolution operations just described. A key issue is how developers
know when to apply or whether they have appropriately applied these
operations. To support software developers with issues of component
evolution, we developed two metrics, the reference factor (RF) and the

,
;

OBJECT-ORIENTED TECHNOLOGY 91

hierarchy factor (HF), described in the next paragraph. Roughly, these
metrics can classify object classes according to their appropriateness as
library or application components. Library components correspond to
supporting domains (discussed in Section 5.2). A class library is a reposi­
tory for abstract classes that provides high reusability across multiple
application domains. Application components correspond to dominant
domains (discussed in Section 5.2). Applications consist largely of con­
crete, instance-level objects and can form a basis for reuse by being placed
in a catalog of examples.

To support software developers in producing and evolving the two
types of object repositories-class library and application catalog-we de­
veloped two metrics and constructed a tool that analyzes objects under
development. RF measures the degree of composition and decomposition,
and HF measures the degree of refinement and abstraction. Figure 5
presents definitions and examples of RF and HF. The values of RF and HF
range from 0 to 1. Low RF and HF values indicate that the classes have
library-like characteristics with high reusability and should be stored in a
class library; high RF and HF values indicate that the classes have applica­
tion-specific characteristics and should be stored in a catalog as specific
examples.

RF is defined in terms of the total number of classes in reference paths
and the rank order of a class in the partially ordered reference sequence
(see Figure 5a). Composition and decomposition are interdependent; if a
class is better modularized, more classes will use it. Also, better decompo­
sition can be achieved when similar structures or behaviors are found in a
large number of classes. Both composition and decomposition deal with
"has-a" or "part-of' relations, which represent the reference structure. The
metrics for composition and decomposition are quantified from this class
reference structure. The value of RF is between 0 and 1 and becomes
smaller when the class is referenced by many classes but does not refer­
ence other classes.

HF is a metric for the refinement and abstraction of a class and is
defined in terms of the number of its superclasses and subclasses (see
Figure 5b). Refinement and abstraction are interdependent; the better a
class is abstracted, the easier it is to refine to a concrete class. Both
refinement and abstraction deal with "is-a" and "is-kind-of" relations,
which represent the class hierarchy. The metrics for refinement and ab­
straction are quantified from this class hierarchy. The value of HF is
between 0 and 1 and becomes smaller as the class becomes more abstract.

A tool was built that graphically presents the results of applying the
metrics to Smalltalk-80 classes (Goldberg, 1984). The metrics were also
applied to the project for developing a CASE tool (Mei) in the Smalltalk-
80 environment, discussed earlier (Aoki, 1992). Figure 6 shows the results
of applying the metrics to the principal classes of Smalltalk-80-HFs, RFs,
rank orders of topological sort, and names of classes that refer each class.

92 FISCHER ET AL.

Figure 5. Definitions of RF and HF.

RFA

HFA

ranking number of class A in topological sort
=

total number of classes (total number of elements in topological sort)

Example:
A refers to (B,C)

=

B refers to (D,F)
C refers to (D, E,F)
D refers to ()

E refers to ()

F refers to (D)

Ranking Topological Sort: D, F, B. E, C. A

RF=6/6= 1

(a) Reference factor

number of superclasses of class A

number of superclasses of class A + I + number of subclasses of class A

Example:

HF = 3 / (3 + 1+ 13) = 0.176

(b) Hierarchy factor

Figure 7 illustrates the correlation between HF and RF; the horizontal axis
represents HF, and the vertical axis represents RF. Figure 7a shows the
distribution of the standard Smalltalk-80 classes plotted according to their
HF and RF values. Figure 7b shows the distribution of classes in the Mei
project plotted according to their HF and RF values. Average RF and HF
values for both situations are also shown.

In the graphs of Figure 7, dots that appear in the top left corner
represent classes that have high abstraction with high reusability, and dots
that appear in the bottom right corner represent classes that are relatively
concrete and application specific. As Figure 7 clearly illustrates, the stan­
dard Smalltalk-80 classes (Fif,'llre 7a) have stronger characteristics as a

OBJECT-ORIENTED TECHNOLOGY 93

Figure 6. HF and RF values of principal classes provided in Smalltalk-80.

Class Name HF RF Sequence Referred to by

Array 0.571 0.000 0
BitBit 0.100 0.649 218 _ Form, Pen
ByteString 0.833 0.003 I Character
CodeController 0.700 0.631 212 Character, Cursor, Explainer, ReadStream, String
CodeView 0.600 0.634 213 CodeControlled
Collection 0.027 0.312 105 Bag, OrderedCollection, Set, Sorted Collection
Dictionary 0.300 0.152 51 Association, Bag, Cursor, OrderedColiection
Object 0.000 0.997 335 Array, Association, Browser, Context
Point 0.750 0.045 15 Array, Cursor, Form, OrderedColiection
Rectangle 0.250 0.042 14 Array, Cursor, Form, OrderedColiection
SystemDictionary 0.800 0.860 229 Array, Association, Browser, BrowserView
View 0.038 0.994 334 Controller, DisplayScreen, Form, Inspector

Figure 7. Comparison between the results of applying metrics.

j
RF

j

• Abstraction
HF Refinement ..

0

': ., " . ,

Average HF = 0.552
Average RF = 0.288

(a) Classes in Smalltalk-80 Library

• Abstraction HF Refinement ..
o

Average HF = 0.699
Average RF = 0.653

(b) Classes Created in Mei Project

library, whereas classes created during the Mei project have stronger
characteristics as an application (Figure 7b). Classes plotted outside the
shadowed area in Figure 7b are those that have been created during the
Mei project and will be stored in a class library in the future because they
have high-level abstraction.

Two general findings from an analysis of the Mei project data are that
there are several types of object evolution paths and there are two general
types of programmers. Figure 8 illustrates six types of class evolution paths
that were identified. The metric values for example classes are provided in
Figure G.

94 FISCHER ET AL.

Figure 8. Evolution of objects during the lifetime of the project.

Abstraction
HF

Refinement

RF

c:
.g
Vl o

1. A (initial stage): Newly created classes usually belong to area A in
Figure 8 because they have no subclasses.

2. A to B: Classes such as Array, ByteString, and Point have become
equipped with basic behaviors or structures and thereby are not divided
into subclasses but are used by other classes. Their HFs have remained
large, and their RFs have become smaller, shifting them toward area B in
Figure 8. Classes in this area are basic library classes, containing well-re­
fined concrete classes.

3. A to D: The Collection class has become equipped with abstract
behaviors and a large number of subclasses created through refinement.
Because the abstract class does not have its own instance variables, it does
not use other classes as components, and other classes do not use it as a
component. Thus, both its HF and RF have become smaller, shifting it
toward area D in Figure 8.

4. A to F, D to F: The BitBlt class references other classes as components
by deeply nesting them and has a high degree of abstraction. It has many
subclasses, such as Pen, and reference components, such as Form and
Path, which in turn further reference other objects. Thus, its HF has
become smaller, and its RF has stayed relatively large. The class is re­
garded as an abstract application library class.

OBJECT-ORIENTED TECHNOLOGY 95

PiguTe 9. Comparison of metrics applied to programmer types.

or·----------~~----------~ HF

0 01:100 00 0 0
0 o 00 0

'/Ii~
0 0 0 RF 0

0 8 Rf 0
00 0

0 0° o! t1I odi 0
8 8 0 0

8 100 of 0 0 0 0 0
0 0 0 0 000 0

o 0 8 ~' 0

0 P 8 0
0 o g 8 8 0 0

0 0000
0 o 0 8 00 0 ',0 0 0 <0 0 0 0 0 o 0 I 0

0 .t o~ B 9 o 0 0

8 0
0

0 g 10
0

0 I §
0

00

8 0 00
~

(a) Class-Library-Developers (b) Catalog-Developers

.ri. D to E: The Object class initially had no instance variables and was
a Iypical abstract class with a quite small HF and a relatively small RF,
:-illch as Collection contained in D. Through the development processes,
(llc abstraction of its behaviors has progressed, it has started to reference
IIlany other classes as components, and its RF has become larger.

(). A to C: Classes such as SystemDictionary, Code Controller, and
Code View were application-specific complex objects with a high degree
or rdinement and composition. Their HFs have stayed very large, and
Ilwir RFs have gotten larger, shifting to area C.

I n addition to plotting these evolution paths, we plotted the classes in
Figure 7b using different colors (not shown) for the different project
1I}(~rnbers authoring the classes. This analysis identified that each project
Illcmber has typical patterns in creating and evolving classes. Project
IIwrnbers were divided into two main types-class-library developers and
c;tI alog developers. Figure 9 illustrates the two types.

(~lasses created by class-library developers include many abstract
cLt:-i:-iCS (Figure gal. The project members in this group were interested in
Ill()dcls, paradigms, methodologies, and theories and were good at creat­
illg highly abstract meta-level systems. They were more interested in
(J(~aling classes for a general library than in creating classes specific to a
p;1l1 icular problem domain. Classes developed by catalog developers (Fig­
III (. ()b), in contrast, were mainly concrete classes. The members in this
gll)1I P were interested in styles, modes, and look-and-feel paradigms. They
\Vnc interested in creating several application examples using class librar­
It'\ ;IfJd in improving and expanding basic classes created by others.

96 FISCHER ET AL.

This early analysis of the metrics tool suggests that the metrics can be
used to distinguish library from application-specific classes, to plot the
evolution of classes over time, and to distinguish library-component devel­
opers from application-component developers.

4. REUSE AND REDESIGN

One of the biggest claims of 00 proponents is that 00 components
and systems are highly reusable (see Figure 3). The promise of rellse is that
we can achieve "plug-compatible" systems, reduced development time,
and improved quality. Current 00 programming languages, such as
Smalltalk, provide a library of reusable classes that can drastically reduce
programming time. In addition, off-the-shelf 00 frameworks can be
purchased that support 00 design and programming in particular prob­
lem domains. Specific features of 00 languages also promote reusability,
albeit at a lower level of detail {Stefik & Bobrow, 1986}. Inheritance makes
it possible for a subclass to share, or reuse, methods and variables defined
in its superclass. Polymorphism makes it possible for objects of different
classes to respond to the same message. Being able to send the same
message to objects of different classes means that a given class will be
usable in several different contexts. Meyer (1987) argued that 00 design
promotes reuse because the categories of objects with which the system
deals are relatively stable, even though the functionality required may
change over time. Thus, in a system whose organization is based on
objects, a change in functionality will not necessitate a major reorganiza­
tion of the software, as it might in a system based on functional decompo­
sition. Typically, any changes will be localized to a few classes.

4.1. Where Current 00 Technology Falls Short

An analogy can be made between software-component reuse in a
high-functionality programming environment and hardware-component
reuse in a large hardware store. One study investigated a large hardware
store with more than 300,000 "components" (Fischer & Reeves, 1992). The
store provides customer assistance for locating items in the following
manner. As customers enter the store, they are helped by floor managers,
who direct them to specialty aisles; once in a particular area, the customers
are aided by specialty assistants. For example, plumbing supplies are
attended by assistants experienced as plumbers. Managers and assistants,
through background knowledge and experience, are able to anticipate and
support customers in defining problems and working out solutions. The
components themselves are part of the problem-solving effort, with cus­
tomers and assistants using them in positive and negative deictic refer­
ences. Problems are solved through cooperative refinement by the
application of problem- and domain-specific knowledge and plans and

OBJECT-ORIENTED TECHNOLOGY 97

through the media of the components involved. Potentially, this coopera­
tion can be established between a problem solver and a computer system.

The strategy of employing specialized-domain experts (e.g., in plumb­
ing or lighting in the hardware store) is successful for several reasons: The
experts provide location support and are able to help customers find the
right item{s); the experts provide comprehension support and allow the
customers to focus on describing their problems, and then the experts
provide and explain the solution; and this focus on the problem and
communication with the assistants reduces the likelihood that a customer
will be overwhelmed by the abundance of available items. This is a very
different strategy than that employed by other high-volume stores, in
which there is an abundance of "components" and only limited support for
locating and understanding which components are needed for the task at
hand.

Other researchers have studied reuse in high-functionality systems.
Smalltalk-80, for example, has 670 classes and more than 6,000 methods.
Empirical studies (Draper, 1984; Fischer, 1987; Nielsen & Richards, 1989)
have shown that developers do not exploit the power of such high­
functionality systems. Lange and Moher (1989) performed an intensive
I-week field study of a professional software engineer with considerable
experience in 00 development. Lange and Moher found that the
engineer's dominant reuse strategies were to reuse by inheritance and to
reuse by copying source code from a sibling class as a template. The
engineer was very familiar with the class library and consequently was
often able to recall the name of a particular class a priori and locate it in
the hierarchy easily. However, even when the engineer could name a class
a priori, she did not often remember method names, leading to a more ad
hoc search within classes for reusable methods. The researchers also
observed "comprehension avoidance" strategies in which the engineer
tried to avoid getting into the details of methods and instead tried to
modify and test methods to assess their reusability for her task.

Despite the promise of reuse in 00 development, systematic reuse on
a large scale is not being realized (Krueger, 1992). Part of the problem is
that the existence of high functionality (i.e., reusable components) does
not guarantee the use of that high functionality. This may be because
developers do not know what reusable components exist, how to access
them, how to understand them, and/or how to combine, adapt, and
modify them to meet current needs (Fischer, 1987). Current 00 program­
ming languages provide only simple tools, such as Smalltalk's Class Hier­
archy Browser (Goldberg & Robson, 1983), for locating reusable classes
and methods. As Nierstrasz, Gibbs, and Tsichritzis (1992) noted, "effective
reuse of software presupposes the existence of tools to support the organi­
zation and retrieval of components according to application requirements,
and the interactive construction of running applications from compo­
nents" (p. 160).

98 FISCHER ET AL.

Another problem is that current 00 analysis and design methods do
not adequately support reuse within the software development process.
The reuse process involves two steps-composing new systems from exist­
ing components and developing components that can be reused in future
systems. However, the current 00 methods often assume that new sys­
tems are developed from scratch (Nierstrasz et al., 1992), and reuse hap­
pens sometime during implementation. Although some 00 researchers
(e.g., Johnson & Foote, 1988) have emphasized that classes must be de­
signed for reuse and offer guidelines to promote reusability, none of the
popular 00 methods has emphasized this point. Reuse is not something
"tacked on" at the end of software development; it must be integrated
throughout the evolutionary development process (Fischer & Girgensohn,
1990).

4.2. Beyond Object Orientation

Reuse and redesign are key aspects of our model of 00 development
(Figure 1). The observations of the preceding section illustrate several
difficulties with respect to reuse. First, locating reusable components in a
high-functionality environment (computer based or not) can be challeng­
ing, even when the user is familiar with much of the existing functionality.
Retrieval mechanisms that demand that the name of the component
and/or its place in the class hierarchy be known a priori are insufficient for
the location task. Second, users are reluctant to invest the time to thor­
oughly understand components after they are located. In the hardware
example, the store assistants provided a buffer for the customer. Custom­
ers could talk about the desired functionality (in problem-oriented terms)'
and assistants would provide a component or alternative components that
could meet the need. In Lange and Moher's (1989) study, the engineer did
not attempt to understand everything that the component did and how it
accomplished tasks. Instead, she ran various tests on the component to see
if it would perform the needed functionality. Third, as components are
reused, they are often modified (redesigned), which leads to further com­
ponent evolution. But, as described earlier, many types of modification are
not eaSily supported in existing 00 environments. These three aspects of
reuse and redesign-location, comprehension, and modification-are
illustrated in Figure 10 (Biggerstaff & Richter, 1987; Fischer, Henninger, &
Redmiles, 1991).

The reuse-and-redesign model in Figure 10 applies to various kinds of
software components or artifacts, such as subroutines in a structured
programming environment, classes in an 00 environment, and/or exist­
ing design examples. In some of our studies, we explored the reuse of
examples of previous design solutions (Fischer et al., 1991). After finding
a potentially useful example, a software developer is expected to explore

OBJECT-ORIENTED TECHNOLOGY 99

Figure 10. Reuse and redesign of components. Reuse and redesign require a software
developer to locate components relevant to a tasl4 comprehend them with respect to
relevance and modifiability, and, in some cases, modify the located components.
These stages are intertwined, each providing feedback to the others: Comprehension
may lead directly to further retrieval, and modification may require further compre­
hension or additional retrieval.

(deSigner/~
problem solver)

I I fo~ul_ initial design goals
\.. and InItiates component search

(software components ,,~ Location
retrieved or redesigned)

reformulates design
goals and
component
needs

Modification

explores components
through explanation

reformulates design
goals and
component
needs

~re..:..v.;..;ir-ew __ sl:;;,..c;...;.o:.;;.n;.;;:ti __ nu;.;;:e..:..s_---l. Comprehension
exp oratIOn,
study, tutoring

extracts/applies/augments
components

it more carefully to build an analogy between the example task and the
current task or design goals. The location-com prehension-modification
cycle would be applied to a catalog of completed projects and not just to
the classes implemented on one project. For instance, a software developer
might study the temperature sensing system as an example to develop a
system to monitor pressure. A hypothesis is that the designer learns by
analogy (from the example) how to develop a system for the current task.
The model of Figure 10 helps identify where in the reuse-and-redesign
process tools can add support to software developers.

Current 00 environments provide little support for these reuse pro­
cesses. What is needed is an approach analogous to that of the high­
functionality hardware store described earlier-tools more explicitly
support the problems of location, comprehension, and modification
(Neighbors, 1984; Prieto-Diaz, 1991; Rosson, Carroll, & Sweeney, 1991).
The next section discusses Explainer, a tool that speCifically supports the
comprehension of reusable objects.

100 FISCHER ET AL.

4.3. Explainer: A Tool to Support Reuse and Redesign

Reuse and redesign require software developers to locate, comprehend,
and sometimes modify software components, as illustrated in Figure 1 L
Comprehension is central in this cycle, as it provides a basis for judging
the relevance of components during the location step and, later, for
modifying a retrieved component In studying reuse and redesign, we
developed the Explainer tool for helping software developers understand
software components through examples (see Figure 11).

The domain of Explainer is a Lisp library of graphics functions. Al­
though the Lisp example code is not object oriented, it does rely heavily
on modules imported from the graphics library. What can be learned from
the evaluation of Explainer is how software developers can be helped in
understanding software components through the use of examples. In
principle, this is the same problem software developers face when attempt­
ing to understand classes and frameworks developed by others. Although
previous work has evaluated the usefulness of examples generally in
helping people learn programming concepts (Kessler & Anderson, 1986;
Pirolli & Anderson, 1985), Explainer focuses on specific principles of
explanation using multiple perspectives and programming plans.

A programmer would engage the Explainer tool after a relevant exam­
ple is identified. Tool support for locating and modifying examples has
been explored in previous work (Fischer et aI., 1991; Fischer, McCall, et
aI., 1993). The Explainer interface is implemented as a hypermedia tool
(see Figure 11). This implementation allows minimal information about an
example to be initially presented (Black, Carroll, & McGuigan, 1987;
Fischer, Mastaglio, Reeves, & Rieman, 1990). The programmers can then
decide which specific features of the example they want to explore,
presumably choosing those most relevant to their current task. Informa­
tion is accessed and expanded through the command menu (middle of
Figure 11).

The interface presents multiple presentation views of the information
comprising an example-code listing, sample execution, component dia­
grams, and text. These views are initially selected for Explainer due to
their popularity in existing CASE tools (Sodhi, 1991). Unique to Explainer
is the characteristic that the same information is presentable in different
views. Within each view, the programmer can access information from
different representation perspectives. For instance, text has been pre­
sented from Lisp, program features, and cyclic operations perspectives
(lower right of Figure 11).

The Explainer interface allows programmers to access information
about the programming plans (Pennington, 1987; Soloway, Pinto,
Letovsky, Littman, & Lampert, 1988) behind the example through differ­
ent views and from different perspectives. Highlighting and textual de-

Figure 17. Comprehension of software components. The screen shows the actual state of the Explainer mterface at the end of one programmer's
test session. The interface is based on the principle of making examples accessible through multiple presentation views (e.g., code, sample output,
text, and diagram) and multiple representation perspectives (e.g., Lisp, program features, and, in this example, cyclic group operations). The
hypertext interface allows information to be accessed through selection and use of the command menu (bottom left of screen).

Explainer

III

(x -at.t.ochnent))
« n u ll t het o!t -ll!lt> nil)
(~eto ~ (t rad i u s {cos (- theta pi / 2»)

y (* radiu~ (~ i n (- thet~ p ;~2»)
(9roph;cs : dro~-~tr 'n9 · x ·

ot.tachnent-x
center
attachnent-v
center)

atWi"';'Wi·IWliiWliMIWW.,ml

I

I

I

ecord1ng

15USJEcl: a circle
A. Highlight
D. Diagram
E. Text How
F. Text Why
G. Text Swry

~ ••• (""0".)

~ •• • (I ...)

f •• , (Mr.)

(I ... s)

v isualization of addition nodulo 199 ... ,

•

102 FISCHER ET AL.

Figure 12. Clock task as described to programmer subjects.

Write a program to draw a clock face (without the hands) that shows the
hour numerals. 1 - 12. Your solution should look like the picture below.

scriptions allow programmers to understand the relations between ele­
ments of programming plans and system components. This specific infor­
mation enabled the test programmer to identify the Lisp function called to
draw the label, the assignment function that calculated the position, and
the variables on which the position calculation depended. The program­
mer could then apply the same functions in a solution to a new task.

The empirical evaluation of Explainer tested three conditions under
which subjects solved the programming task of drawing a clock face (see
Figure 12). In all three conditions, programmers were given the same
example-a program illustrating operations in a cyclic group (see Figure
11). The conditions varied the programming tool that the three groups of
subjects worked with to help them understand the example. In the first
condition, subjects worked with the Explainer tool as described earlier. In
the second condition, subjects also worked with the Explainer tool, but the
interactive menu was deactivated (the example information was fully
expanded when subjects began the test). In the third condition, subjects
worked with a commercially available, searchable on-line manual that
contained descriptions of all the functions used in the example. The
purpose of the second, intermediary condition was to determine if only the
difference in information content between Explainer and the on-line man­
ual affected the results.

The evaluation measured the performance of programmers with
respect to variability in two senses. First, the notion of "directness" was
defined as the number of different variations programmers would try in
solving a task. The rationale was that the more support the program­
mers had from the example and tool in solving the task, the lower the
number of trial-and-error variations. The observed measures are de­
fined shortly, and these are compared across groups. Second, within
each group, the variance in the observed measures is calculated and is
then compared across groups. The rationale with this test was that the
more support the example-and-tool combination provided, the more
uniform (smaller variance) the programmers' behavior as measured
would be within a condition.

L
f:

OBJECT-ORIENTED TECHNOLOGY 103

Eight subjects were tested for each condition and were randomly as­
signed to conditions. The subjects all had roughly the same background
knowledge in Lisp programming (being recruited from master's-level arti­
ficial intelligence courses in computer science) and little familiarity with
the graphics functions required by the task.

Detailed values and comparisons of the results are available elsewhere
(Redmiles, 1992). We present a brief summary of the results here. As a
group, the subjects using Explainer performed the programming task
more directly and with less intersubject variability than the subjects using
the on-line documentation tool. The latter group proceeded in a trial-and­
error fashion and, not surprisingly, exhibited great intersubject variability.
It is important to note that the reduction in variance was not at the cost of
performance. The "better" values for the various measures were similar
across conditions-good performers were about the same in all conditions.
The reduction in variance derives from the "worse" values coming closer
to the "better" in the condition that used the Explainer tool-otherwise,
poor performers were helped by Explainer.

The variability of the programmers' performance in the on-line docu­
mentation group is consistent with other studies of programmers (see the
survey by Egan, 1991). Furthermore, the provision of an example by itself
was insufficient to prevent this variability, also observed by Kessler and
Anderson (1986) and noted earlier here. However, the provision of an
example-supplemented by information constituting a representation of a
programming plan and with a means of exploring the relation of the
programming plan to a specific example solution-did stem the variability.
Programmers who needed to compensate for variation in background
knowledge, skill, or other predispositions were supported by the Explainer
tool and approach.

The kind of support that the Explainer tool provides is critical to
supporting software reuse and redesign. Increasingly, software developers
are called upon to apply software components they did not author. Com­
prehension tools support collaboration between developers who never
meet.

5. DOMAIN ORIENTATION

The third claim of 00 technology that we examine in this article is that
00 systems are understandable (see Figure 3). This claim is well moti­
vated on the surface. The metaphor of communicating objects is a power­
ful one (Rosson & Alpert, 1990) that exploits our "natural" tendency to
anthropomorphize (Wirfs-Brock, Wilkerson, & Wiener, 1990) and to cate­
gorize things into generalization structures. The understandability claim
assumes that it is "natural" for developers and users (who are experts in the
problem domain) to thi~k in 00 terms (at least as compared to more
traditional structured languages). In other words, it should be natural for

104 FISCHER ET AL.

developers and users to map their "worlds" into autonomous, communi­
cating objects with data and behavior and into generalization or inheri­
tance structures. This implies a clearer relation between the problem and
the solution and improved communication between users and developers.

The first implication is realized if the computational structures in the
solution directly model problem domain concepts, so that the resulting
system structures· more closely correspond to those of the problem do­
main. This correspondence between the structure of the problem and that
of the solution reduces the conceptual distance between a developer's
mental model of the problem and his or her mental model of the solution
(Rosson & Alpert, 1990). This has been referred to as the "seamless"
integration of analysis, design, and implementation (Henderson-Sellers,
1992), which supports human problem-domain communication (Fischer &
Lemke, 1988).

The second implication results from the first. A closer mapping for the
designer between problem and solution should also reduce the conceptual
distance between the users' and the developers' mental models of the
problem. Objects in the problem domain will have computational coun­
terparts in the solution (Fischer, 1987). This correspondence should im­
prove the communication between users and developers and presumably
promote the development of systems that meet the users' needs.

5.1. Where Current 00 Technology Falls Short

Some of the authors of this article have been involved in teaching the
00 approach for many years. In one graduate-level course on 00 devel­
opment, students are required to analyze, design, and implement a small
system in Small talk/V Windows (Digitalk, Inc., 1991). One semester, the
project was a shopping system for a gourmet food shop. None of the
students had any previous experience with 00 methods or programming
languages, although most had some previous analysis, design, and/or pro­
gramming experience (primarily COBOL). The students were given a textual
deSCription of the problem and requirements of the system to be developed.
ReqUirements included (among other things) that customers be able to
browse items in the store and make purchases based on previous purchases,
pre specified recipes and/or menus, and personalized shopping lists.

Several techniques were used to gain insights into the students' progress
during the semester:

1. Anonymous journals were turned in biweekly, so that students
could ask questions, make comments and suggestions, and vent
frustrations without fear of reprisal.

2. Students were able (but not forced) to present/discuss their prog­
ress-to-date, which often led to intense class discussions of various
design issues and implications.

OBJECT-ORIENTED TECHNOLOGY 105

3. Lab sessions were provided in which students worked through a
tutorial and were able to explore the Smalltalk systems with assis­
tance from classmates and teaching assistants.

4. In their final project reports, the students were required to reflect on
their learning experience.

From these sources and an examination of their design diagrams and code,
several observations were made.

The students varied considerably in terms of which abstractions they
viewed as "essential." The only classes agreed on by all students were
Customer, Item, and Menu. There was a great deal of variability in the
number and labels for other classes (although there were many other
"things" described in the requirements specification). In addition, the
generalization (inheritance) structures that were identified varied con­
siderably. Some students did not specialize or generalize the Item class
at all; others created two subclasses, Food and Nonfood; others had
several layers of subclasses below Item; and still others conceptualized
Item and Service (e.g., recycling, cooking classes/tips) as subclasses of
an abstract class, Product. There was some confusion over whether a
shopping cart should be included as a class (to model the purchase-in­
progress) and, if so, if this was separate from the abstraction of a
purchase. In general, even though the domain was familiar to all stu­
dents, it was difficult in many cases for them to identify what abstrac­
tions were relevant to the problem and whether or to what extent they
should be generalized or specialized. This implies two problems-a
vocabulary problem in naming concepts and a conceptualization prob­
lem whereby different analyses of the problem led to different solution
frameworks.

Other researchers have investigated and commented on these vocabu­
lary and conceptualization problems (e.g., Furnas, Landauer, Gomez, &
Dumais, 1987). These problems reflect difficulties in modeling and com­
munication, which are not resolved simply by adopting an 00 approach.
There are many 00 analysis and design methods that mention the prob­
lem of finding the objects in a domain (Monarchi & Puhr, 1992). Some
methods provide weak, overly simplistic guidelines such as "Pick the
nouns" in the problem description (e.g., Booch, 1991; Rumbaugh, Blaha,
Premerlani, Eddy, & Lorensen, 1991; Wirfs-Brock et al., 1990). Other
methods provide slightly more help by suggesting a look at devices, things,
events, roles, sites, organizational units, and so forth (e.g., eoad &
Yourdon, 1991; Shlaer & Mellor, 1988). More recently, techniques such as
use cases Oacobson, Christerson, Johnsson, & Overgaard, 1992} and
scripts (Rubin & Goldberg, 1992) have been suggested to help structure
the developer/analyst's thinking about the problem, which in turn should
facilitate identification of objects, but further research in this area is still
necessary.

106 FISCHER ET AL.

These observations highlight several problems underlying the claim:
that 00 is understandable or natural. First, the mapping from problem to
solution is not yet seamless. Although the mapping from problem to
solution is smoother in 00 development than in structured development,
not all 00 structures identified in the problem have a one-to-one corre­
spondence in the solution (Henderson-Sellers, 1992). For example, gener­
alization relations, such as the fact that a car is a kind of automobile, can
be directly mapped into a Car subclass. which inherits structure and
behavior from its superclass, Automobile. However, aggregation (part­
whole or composition) relations, such as the fact that an engine is a part of
a car, are not as directly implementable. The semantics of part-whole
relations (e.g., the fact that, if the car moves, its parts move also) must be
implemented by the developer, whereas the semantics of generalization
relations are built in though inheritance. Thus, although 00 development
does improve the smoothness of transitioning from analysis to design to
implementation, there is not always a one-to-one relation between prob­
lem and solution.

This leads to a second limitation of the understandability claim-users
and developers might both be thinking in terms of objects but not in terms
of the same objects. Not all objects that the users conceptualize in the
problem domain will necessarily be objects in the solution, and there will
likely be other objects added to the solution that users do not see as
relevant to their problem. Even if we assume that the users and developers
can agree on the key abstractions or objects in the users' domain (in other
words, we reduce the gap between their mental models of the problem
domain to an "acceptable" level), there still needs to be a transition from
the problem domain model to the solution.

A third limitation is that it is not necessarily easy to find the "right"
abstractions or object in a given domain. Reading various 00 analysis
and design methodology texts tends to lead one to assume that recognizing
or identifying the appropriate objects in a domain is straightforward-that
the objects are "just there for the picking" (Meyer, 1989). In our experi­
ence, identifying the "right" abstractions for a domain can be the most
difficult part of development.

5.2. Beyond Object Orientation

In a conventional (domain-independent) software environment, devel­
opers starting a new project typically have to work with low-level pro­
gramming constructs and methodologies. This forces them to focus on the
raw material to implement a solution rather than to try to understand the
problem. This contrast has been characterized as a mismatch between the
system model provided by the software environment and the situation
model of the software developer (Fischer, 1987; Pennington, 1987; van
Dijk & Kintsch, 1983). We have studied domain orientation in a software

'I

OBJECT-ORIENTED TECHNOLOGY 107

environment to bridge this gap by allowing domain-oriented concepts to
evolve and thus allow developers to focus on abstractions in their problem
domain and not on programming language concepts. We call the class of
software environments that support problem-domain communication do­
main-oriented design environments, and we have studied the application of
these environments in several domains (Fischer, 1994; Fischer et al., 1991;
Lemke & Fischer, 1990). Each of these environments relies on a domain
model.

A domain model is generally recognized in software engineering as the
end product of a domain analysis' process that is either "synthetic" or
"evidentiary" (Prieto-Diaz, 1987). In synthetic domain analysis, a software
developer starts with an informal description of one or more systems
within an application domain, identifies aspects common across the sys­
tems, and models these with object classes and frameworks. In evidentiary
domain analysis, a software developer starts with existing systems and
attempts to identify common components through reverse engineering or
"design recovery" (Biggerstaff, 1989). Our model portrays domain analysis
as a combination of these two processes by emphasizing the aspect of
evolution. In our model, evolution corresponds to the belief that domains
are open-ended; future needs cannot be completely anticipated, and some
problems are by nature ill-structured and require trial-and-error explora­
tion (Rittel, 1984; Simon, 1981). In the example, some classes and methods
were postulated based on Project A in Figure 1. The new requirement in
Project B to accommodate a different kind of thermometer resulted in a
redesign of the domain model, and a Thermometer superclass was intro­
duced to capture the commonalties between the Digital Thermometer and
Analog Thermometer classes.

In a software development project, developers may separate compo­
nents into different domains; any single project may involve components
from several domains. Some of the components are project specific; they
belong to the primary or dominant domain. Others are project independent;
they belong to supporting domains. Supporting domains can be valid appli­
cation (dominant) domains in their own right. The distinction is that they
can also be used in constructing systems from different dominant domains.
These domains form a hierarchy in which components from higher do­
mains can be implemented using components from lower domains. The
basic concepts behind domain separation have been expressed as domain
networks (Arango, 1988) and horizontal versus vertical domains. Figure 13
illustrates a separation of dominant and supporting domains for the tem­
perature sensing example. In this project, all the classes and frameworks
could be classified as dealing with this temperature sensing. However, as
related projects are implemented, classes begin to develop to support
different kinds of thermometers, potentially different sensor interfaces,
and communications among the thermometers, sensors, and host devices.

108 FISCHER ET AL.

Figure 13. Dominant and supporting domains in projects. Any single software devel­
opment project may involve several domains. As they develop domain models,
software developers must separate components. This separation leads to dOminant
domains that are identified with the statement of a project (e.g., temperature sensing)
and supporting domains that are reusable in multiple projects. For example, some
installations have a command in Unix that samples an outside thermometer; the basic
framework is the same as for sensing temperatures in furnaces.

Supporting
(Horizontal)

Domains

Dominant (Vertical) Domains

Remote UNIX
Temperature Weather

Sensing Command

Remote
Pressure
Sensing

Thermometer

Sensor

Communications

The creation of a domain-oriented software environment is, of course,
also a software development project. We have developed such environ­
ments for several dominant domains, including graphics software design,
kitchen floor plan design, and local area network design. In so doing, we
identified frameworks and classes in supporting domains, including mech­
anisms for locating, comprehending, and modifying design components
and knowledge.

This adds another dimension to the concept of dominant and support­
ing domains (see Figure 14). Namely, once separated, these supporting
domains are available to assist end users. For example, a tool for modify­
ing object classes in a software design environment may be incorporated
into the system for temperature sensing. End users of the system could use
the capability to further modify the thermometer classes. The distinction
between development environment and application project begins to fade
along with the gap between system and situation models.

These observations have motivated the evolutionary model of 00
development (Figure 1) in several ways. We do not claim to know how to

OBJECT-ORIENTED TECHNOLOGY 109

Figure 11. Supporting domains in domain-oriented design environments. The devel­
opment of domain-oriented design environments explored dominant domains of
graphics software design (Fischer, Henninger, &. Redmiles, 1991), kitchen floor plan
design, and local area network (LAN) design (Fischer et al., 1992). Domain-indepen­
dent process support for location, comprehension, and modification of designs
evolved as supporting domains.

Domain­
Independent
Components

Domain-Oriented Design Environments

Graphics Kitchen
Software Design
Design

LAN
Design

Location

Comprehension

Modification

find the appropriate abstractions, but we recognize that it is a difficult
process and encourage the analysis of both dominant and supporting
domains (see Figure 13). Domain orientation combined with evolution
support across multiple applications will help to flush out the key abstrac­
tions in a domain. Current 00 programming environments are domain
independent and include mostly low-level components (e.g., sets, arrays,
strings, characters, integers) and supporting domain components (e.g.,
graphical user interface objects) that are still far removed from the prob­
lem domain. Domain-oriented design environments can further help to
reduce the gap between users and developers by providing both with an
environment whose elements are domain-oriented abstractions (thus forc­
ing a somewhat restricted vocabulary and not providing low-level abstrac­
tions for the developer to "drop down into"). Domain-oriented
environments also hide the lower levels of detail from the developer, so
that the mapping between problem and solution should be smoother.
Section 5.3 describes the Knowing-In-Design (KID) design environment,
which instantiates this approach.

110 FISCHER ET AL.

5.3. Knowing-In-Design: A Tool to Support Domain Orientation

During the past 5 years, we have developed and evaluated various
prototype systems of domain-oriented design environments to study issues
of problem-domain communication and the integration of problem fram­
ing and problem solving (Fischer et al., 1991; Fischer, McCall, & Morch,
1989; Lemke & Fischer, 1990). Design environments support users in
applying domain knowledge and provide them with various feedback
mechanisms. The KID design environment supports kitchen designers in
the development of floor plans (Nakakoji, 1993; Nakakoji & Fischer, in
press). KID consists of several subsystems. KID-Construction, shown in
Figure 15, supports construction of a kitchen floor plan. The palette of
KID-Construction contains domain-oriented building blocks such as
sinks, stoves, and refrigerators. The designer can create a design by
applying parts from this palette, which supports design by composition.
The palette elements are instances of classes, and users can apply compo­
nents stored in a class library without worrying about the underlying
programming substrate. Another way users can create designs is through
design by modification or redesign of existing catalog examples.

KID-Specification is another KID subsystem; it allows kitchen design­
ers to specify their abstract design requirements and design intentions (see
Figure 16). Designers can select answers presented in the Questions win­
dow. Such questions, answers, and associated arguments are structured
based on issue-based information systems (IBIS; Conklin & Begeman,
1988) and are gradually accumulated by users through actual design tasks.
The summary of currently selected answers appears in the Current SpeCi­
fication window. Each answer is accompanied by a slider that allows
designers to assign a weight representing the relative importance of the
answer (scale ranges from 1 to 10, with 10 indicating most importance).
Further descriptions of the mechanisms can be found in Nakakoji (1993).

A unique feature of KID is its ability to deliver information relevant to
users' current tasks in terms of the domain semantics. Critics (see Messages
pane in Figure 15) identify potential problems in a design (Fischer,
Nakakoji, Ostwald, Stahl, & Sumner, 1993). Critics' knowledge about
kitchen design includes design principles based on building codes, safety
standards, and functional preferences specified through KID-Specifica­
tion. If a design principle or heuristic (e.g., "If you are a single-person
household, you may need a simple, single-bowl sink") is violated, a critic
will fire and display a critique in the Messages pane, identify a pOSSibly
problematic situation, and prompt the user to reflect on it.

Another rule-based information delivery mechanism suggests catalog
examples for the user to consider. KID automatically orders catalog exam­
ples according to the specified requirements in KID-Specification and
presents them to users for reuse and redesign (see the Catalog window in

Figure 75. Domain orientation in KID. Building blocks (design units) are selected from the Palette and are moved to desired locations inside the Work
Area. Designers can reuse and redesign complete floor plans from the Catalog. The Messages pane displays critic messages, which are triggered by
design changes that violate hard or soft constraints, Users may click on critic messages or catalog entries to access additional explanations (see Figure
16). Catalog examples in the Catalog pane are automatically ordered according to the requirements of the current coristruction. These requirements
are determined either by the elements in the current Work Area or issues selected in a Specification window {Figure 16).

Construction

'tltte

w411,

do on

DC]
window,

,ink.,

ODD
Ho ve ,

~Ielre--.l
~~~ 

w ! ! 
i i M. rk - k i tch.n 

, M __ ! i 

: i 
~ J 
, I , , , , 
! i ail ly-Kitch." 

Ii 
! I 8 Elly-Ki tch.n 111 .. m UJ 

Clear Work AreA Critique All 
Un Oo).c " Pral,. All 
New Objtct C&U.log Explorer 

Messagea 

I [Sp .. "I., 4·'l' Sin 
rS.uittc, 4. '1- Sin 

Critique from Spec 
Pra.lse from Spec 

Resume Sptcif1ca tlon 

R ~ Cr.«t. D.3i9" Unit Doubl .. -8o"I-SinJc 
' i ~ Ifovo 00$;9" U,,;e Ooublo-8o"l-$;"k-/ 
I , ~ 

El ~ • 
r'loliso-l: :"how A"YUlnontat Ion :"lnyl,,-Uowl-:'lnk-l., s 
To Deo othc!!" cOlnlnBncl9. IlrOIl !l Shirt. Control, !loti! 

Edit QIOb41 Descriptions 
Sa.ve: In Ca.U.log 



Figure 76. Specification and explanation to support information delivery. KID provides an explanation about interdependency between a design 
requirement and a critic (e.g., the critic triggered in Figure 15). Argumentation and issues related to the current design can be reviewed and can 
be used to further specify design goals. 

Specificat;ion 

HILL-KITCHEN 
MARK-KITCHEN 
BILLY-KITCHEN 
ELL Y -KI T CHEN 
I SAK -KIT CHEN 
JONES-K! T CHEN 
OSCAR - Kl T CHE N 
ANDI-Kl TCHEN 
BARB-KITCHEN 
BOB-KITCHEN 
CAT HY -Kl T CHEN 
COLE-KITCHEN 
COUGER-KITCHEN 
D014S0N-KITCHEN 
DREYER-KITCHEN 
GEORGE-KITCHEN 
GONZALES-KITCHEN 

1 Entert.inrlent 
reQuirel"lent? 

Savt Current Spetl"cat lon 
Start New Speclf'katlon 
Show Suggestions 
Qulc~ Question 

Entcctafnncnt rcgutrcncnt7 
'Yu 
'Occasionally 
'S"ldon 
'Not at all 

M"thods of Cookin9 

Do you usually use a rlicrowave? 
·ye!5 
'no 

Other Kitchen Activities 

Children'. Han90ut? 
'ye~ 

'no 

Do you need e eating space? 
'yes 
'no 

2 14hich type of sink 
do you need? 

Prt!ferences 

3 I s the pr 1 nery cook 
right-handed or 
left-handed? 

4 How I"'l.eny cooks 
usually use the kitcnen 
at once? 

6 Si.e of fonny? 
8 K 1 tchen 

Specif1cet1on 

Type of kitchen? 
·contenporory 
'Traditional 
-Country 

Shape of kitchen? 
·L-shape 
·U-shape 
(an~uer suggested because hov-~any-coo 
·Corr;dor 
• Isllmd 
(~n~uer sU9gested because enterteinnen 
·One-\Jal1 

Load Specific a tlons 
Copy SpeclnCAtlon 
So, Option, 
Quick Answer 

Type: kitchen 

Size of fanny? 
t~One 

Store eaSt Issues 
Catalog Explorer 
Resume Constrvctlori 
Qulc .. Argument 

Nane: joe-kitchen 

Ho~ "any cooks usually use the kitchen at 
once? 

2';--- one 
Is the prinary cook right-handed or 
left-handed? 

''''-+- Left handed 
Entcrt,'nncnt rcgutrc"cntt 
I~Yes 

Uhlch type of sink do you need? 

·doublc boul sink 
·Double-Boul-S1nk-Exi.ts(Jc::~hole-D"si9n)· 
(.) If you often entertain, a doubl" boul sink 

18 preferable. (l'1ak~oJ'; I(~tyo, 
18.-'12,...,1 18126148] 

·single boul sink 
·Sin91e-Boul-Sink-Exi.t.(Jc : :~hol.-Desi9n)· 

~(.) If you have 0 .n011 fani1y. you nOy need 
just a single-boul .ink. [Hekek0J', f("""YOJ 

ar\1Iy, you 
le-boul sink. 

~ Sho ... Uhy SU99ut.d sln9l 
.-bo ... l-sln/( 
~ Sho ... Rr91U'1.nts typ.-of-II 

ink 
~ S.l.ct 111"u. Fro.. Rr9U1'1. 

nt if-you-oft.n-.nt 
~ T099l. Rns .... r yu 
~ . 

1"';'-' 



OBJECT-ORIENTED TECHNOLOGY 113 

Figure 15). KID uses critiquing rules to compute the appropriateness of 
each catalog example and provides mechansims to describe why a partic­
ular catalog example is inferred to be appropriate to the requirements 
(Nakakoji, 1994). 

In one study (Nakakoji, 1993), eight novices and one expert in kitchen 
design used KID to develop a design for a kitchen to fit the following task 
situation: Both husband and wife have jobs; during weekdays, the wife 
does most of the cooking; and, during weekends, the couple cooks meals 
together. Subjects were encouraged to think aloud (Ericsson & Simon, 
1980) by making statements to the experimenter, and, in three trials, 
subjects were observed through constructive interaction (Miyake, 1986) in 
which they were paired to encourage verbalization. A postexperiment 
interview collected additional comments, and the protocols and comments 
were analyzed to evaluate the benefit of KID. 

Overall, the study indicated that KID augmented the users' design 
process. The novices unanimously acknowledged that KID provided them 
with useful information about kitchen design, and, although the expert 
responded that her final design was not affected by using KID, she noted 
that KID made her reflect on information she might not otherwise have 
considered (Nakakoji & Fischer, in press). More specifically, KID sup­
ported the integration of problem framing and problem solving and the 
incremental understanding of a task. The unexpected appearance of cri­
tiques caused subjects to reflect on their task and to attend to the associated 
explanation (Figure 16). Moreover, subjects often argued against a design 
principle that was used to deliver information, and they modified the 
associated rules (arguments). Not only the delivered knowledge itself, 
but also the inferred relevance by the system, which provided informa­
tion about dependencies between the specification and construction, 
helped give subjects direction in reframing their partial construction 
and specification. 

KID demonstrates many of the goals for domain orientation presented 
in our model-namely, the analysis of dominant and supporting domains 
into abstractions that users can access in developing a new project. The 
classes in this domain are represented by the elements of the palette. 
Completed designs captured as catalog entries represent instantiations of 
a kitchen floor plan framework. The less obvious, supporting domains 
include components that can be useful across a spectrum of design do­
mains-for example, mechanisms for supporting rule-based critics, catalog 
suggestion, explanation, and end user modification. 

6. CONCLUSIONS 

The problems software developers face in applying 00 technology can 
be understood only by looking beyond the technological possibilities and 
beyond the context of individual developers and projects. 00 technology 



114 FISCHERETAL. 

makes possible software e"-olution, reuse and redesign, and dom""n . 
• . • <U onen-

tatIOn. However, the...'€ goals cannot always be achIeved in practice. S ft-
~a~e. development is . a . cooper.ative d~sign process among m:ny 
mdividuais and many ~as of artifacts. WIth respect to reuse and rede­
sign, the cooperation otten spans multiple projects and individuals who 
never meet. 

We have presented a detailed model of software development that 
focuses on the three aspects of evolution, reuse and redesign, and domain 
orientation. In its detaiL the model is based on 00 technology, but more 
generally it has elements of a model of long-term cooperative design. The 
model represents a cognitiye model by being developed from the perspec­
tive of software developers and the problems they face. We have exam. 
ined firsthand obseryations that have motivated the model as well as 
studies by other researchers. 

The scale and scope of the model and the number of hypotheses in it 
make it difficult to e .... aluare in a conventional empirical study. In particu­
lar, no single software de...-elopment environment exists that embodies all 
the technical and orgarnz3.rional aspects of the model. However, evidence 
observed in unstructured settings and an assessment of the current state of 
software engineering i::1d.icate not only the heed for but a movement 
toward environments r1:3.t support this model. 

The varied experience and prototype tools contributed by the different 
authors of this article ha .... e proved helpful in corroborating the model. 
Many specific hypotheses have been verified in prototype systems. Met­
rics help less theoretical developers identify good abstractions. Design 
examples with perspectiye explanations reduce variability of performance 
in sample groups. Techniques of domain orientation make software acces· 
sible to noncomputer professionals and make a class of problems accessi· 
ble to novices. 

00 technology is not a "silver bullet" (Brooks, 1987) that will eliminate 
the "software crisis." It is an enabling technology that provides a fotlllda 
tion for the next generation of paradigms in support of complex computa· 
tion. Successes toda\' come from the talents and dedication of people 
practicing good desi"gn \\-ith the tools at their disposal. The model and 
tools we have presented push the technology in a direction that is more 
inclusive of people as \,'ell as of problem domains. 

NOTES 

Acknowledgments. \\'c thank the members of the Human-Computcr COl1ll11ll 
nication group at the C l1l\crsity of Colorado for their substantial contributloll" (I) 

the conceptual framp\\llrk and the systems discussed in this articlc. 
Support. Research \\.lS supported by Colorado Advanced So(lw<tll' !1l\[1,(llk 

Software Rcsrarch _-\Sslllutes, Inc. (Tokyo); National Science FOllnda(IOll (,Llll( 



OBJECT-ORIENTED TECHNOLOGY 115 

MDR-9253245; US West Advanced Technology (Boulder); and NYNEX Science 
and Technology Center. 

Authors' Present Addresses. Gerhard Fischer and Kumiyo Nakakoji, Depart­
ment of Computer Science, University of Colorado, Boulder, CO 80309-0430. 
E-mail: gerhard@sigi. cs . colorado. edu and kLnniyo@sigi. cs . colorado. edu; 
David Redmiles, Department of Information and Computer Science, University of 
California, Irvine, CA 92717-3425. E-mail: redmiles@ics. uci. edu; Lloyd 
Williams, Software Engineering Research, 264 Ridgeview Lane, Boulder, CO 
80302. E-mail: sracol!lloyd@uunet.uu.net; Gretchen I. Puhr, Accounting 
and Information Systems, School of Business, University of Colorado, Boulder, 
CO 80309-0419. E-mail: puhr@ucsu. colorado. edu; Atsushi Aoki, Software 
Engineering Laboratory, Software Research Associates, Inc., Suite 502, 1113 
Spruce Street, Boulder, CO 80302. E-mail: sracollaoki@uunet.uu.net . 

He] Editorial Record. First manuscript received January 25, 1993. Revision 
received November 8, 1993. Accepted by Robert Rist and Thomas P. Moran. 
Final manuscript received August 31, 1994. - Editor 

REFERENCES 

ACM. (1990). Special issue on object-oriented deSign. Communications of the ACM, 
33(9). 

ACM. (1992). Special issue on analysiS and modeling in software development. 
Communications of the ACM, 35(9). 

Adelson, B., & Soloway, E. (1985). The role of domain experience in software 
design. IEEE Transactions on Software Engineering, 11, 1351-1360. 

Aoki, A. (1992). The integration process in an object oriented programming environment 
{Technical Report SEL-Boulder-92-l}. Tokyo: Software Research Associates, 
Inc. 

Aoki, A. (1993). Objecto shikou shisutemo bunseki sekkei nyuumon [Introduction to 
object-oriented analyses and design]. Tokyo: Software Research Associates, Inc. 

Arango, G. F. (1988). Domain engineeringfor software reuse (Technical Report 88-27). 
Irvine: University of California, Department of Information and Computer 
Science. 

Berard, E. V. (1993). Essays on object-oriented software engineering. Englewood Cliffs, 
NJ: Prentice-Hall. 

Biggerstaff, T. j. (1989). Design recovery for maintenance and reuse. IEEE Com­
puter, 22(7), 36-49. 

Biggerstaff, T. j., & Richter, C. (1987). Reusability framework, assessment, and 
directions, IEEE Software, 4(2),41-49. 

Black, j. B., Carroll, j. M., & McGuigan, S. M. (1987). What kind of minimal 
instruction manual is the most effective? Proceedings of the CHI+GI '87 Conference 
on Human Factors in Computer Systems and Graphics Interface, 159-162. New York: 
ACM. 

Booch, G. (1991). Object-oriented design with applications. Redwood City, CA: Ben­
jamin/Cummings. 



116 FISCHER ET AL. 

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineer~ 
ing. IEEE Computer, 20(4), 10-19. 

Coad, P., & Yourdon, E. (1991). Object-oriented analysis (2nd ed.). Englewood Cliffs, 
NJ: Prentice-Hall. 

Conklin,]., & Begeman, M. (1988). gIBIS: A hypertext tool for exploratory policy 
discussion. Transactions of Office Information Systems, 6, 303-331. 

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design 
process for large systems. Communications of the ACM, 31, 1268-1287. 

Deutsch, L. P. (1989). Design reuse and frameworks in the Smalltalk-80 system. In 
T.]. Biggerstaff & A]. Perlis (Eds.), Software reusability: Applications and experience 
(Vol. 2, pp. 57-72). New York: ACM. 

Digitalk, Inc. (1991). SmalltalklV Windows tutorial and programming handbook. Los 
Angeles: Author. 

Draper, S. W. (1984). The nature of expertise in UNIX. Proceedings of the INTER­
ACT '84 IFIP Conference on Human-Computer Interaction, 182-186. Amsterdam: 
Elsevier. 

Egan, D. E. (1991). Individual differences in human-computer interaction. In M. 
Helander (Ed.), Handbook of human-computer interaction {pp. 543-568}. Amster­
dam: North-Holland. 

Ehn, P. (1988). Work-oriented design of computer artifacts. Stockholm: Almquist & 
Wiksell. 

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 
87, 215-25l. 

Fischer, G. (1987). Cognitive view of reuse and redeSign. IEEE Software, 4(4),60-72. 
Fischer, G. (1994). Domain-oriented design environments. In L. Johnson & A. 

Finkelstein (Eds.), Automated software engineering (Vol. 1, pp. 177-203). Boston: 
Kluwer. 

Fischer, G., & Girgensohn, A. (1990). End-user modifiability in design environ­
ments. Proceedings of the CHI '85 Conference on Human Factors in Computer Systems, 
183-191. New York: ACM. 

Fischer, G., Grudin,]., Lemke, A C., McCall, R., Ostwald, J., Reeves, B. N., & 
Shipman, F. (1992). Supporting indirect, collaborative design with integrated 
knowledge-based design environments. Human-Computer Interaction, 7,281-314. 

Fischer, G., Henninger, S. R., & Redmiles, D. F. (1991). Cognitive tools for 
locating and comprehending software objects for reuse. Proceedings of the 73th 
International Conference on Software Engineering, 318-328. Los Alamitos, CA: IEEE 
Computer Society Press. 

Fischer, G., & Lemke, A C. (1988). Construction kits and design environments: 
Steps toward human problem-domain communication. Human-Computer Interac­
tion, 3, 179-222. 

Fischer, G., Lemke, A. C., & Rathke, C. (1987). From design to redesign. Proceed­
ings of the 9th International Conference on Software Engineering, 369-376. Los Al­
amitos, CA: IEEE Computer Society Press. 

Fischer, G., Mastaglio, T., Reeves, B. N., & Rieman,J. (1990). Minimalist explana­
tions in knowledge-based systems. Proceedings of the 23rd Hawaii International 
Conference on System Sciences: Vol III. Decision suj)port and knowledge based systems 
track, 309-'317. Los Alamitos, CA: IEEE Computer Society Press. 

Fischer, G., McCall, R., & Morch, A. (1989). Design environments for constructive 
and argumentative design. Proceedings of the CHI '89 Conference on Human Factors 



OBJECT-ORIENTED TECHNOLOGY 117 

in Computer Systems, 269-275. New York: ACM. 
Fischer, G., McCall, R., Ostwald,j., Reeves, B., & Shipman, F. (1993). Seeding, 

evolutionary growth and reseeding: Supporting incremental development of 
design environments. Proceedings of the CHI '94 Conference on Human Factors in 
Computer Systems, 292-298. New York: ACM. 

Fischer, G., Nakakoji, K, Ostwald,]., Stahl, G., & Sumner, T. (1993). Embedding 
critics in design environments. Knowledge Engineering ReviewJourna~ 8,285-307. 

Fischer, G., & Reeves, B. N. {1992}. Beyond intelligent interfaces: Exploring, 
analyzing and creating success models of cooperative problem solVing. Applied 
Intelligence, 1, 311-332. 

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The 
vocabulary problem in human-system communication. Communications of the 
ACM, 30,964-971. 

Goldberg, A. (1984). Smalltalk-80, the interactive programming environment. Reading, 
MA: Addison-Wesley. 

Goldberg, A,. & Robson, D. (1983). Smalltalk-80: The language and its implementa­
tion. Reading, MA: Addison-Wesley. 

Greenbaum,]., & Kyng, M. (Eds.). (1991). Design at work: Cooperative design of 
computer systems. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Henderson-Sellers, B. (1992). A book of object-oriented knowledge. Englewood Cliffs, 
Nj: Prentice-Hall. 

Hutchins, E. (1993). Distributed cognition: A cognitive ethnography of ship navigation. 
San Diego: University of California, Department of Cognitive Science. 

jacobson, 1., Christerson, M.,johnsson, P., & Overgaard, G. (1992). Object-oriented 
software engineering: A use case driven approach. Reading, MA: Addison-Wesley. 

Johnson, R. E., & Foote, B. (1988). Designing reusable classes.]ournal ofObject-Ori­
ented Programming, 1(2}, 22-35. 

Kessler, C. M., & Anderson,]. R. (1986). Learning flow of control: Recursive and 
iterative procedures. Human-Computer Interaction, 2, 135-166. 

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys, 24, 131-184. 
Lange, B. M., & Moher, T. G. (1989}.Some strategies of reuse in an object-oriented 

programming environment. Proceedings of the CHI '89 Conference on Human Factors 
in Computer Systems, 69-73. New York: ACM. 

Lemke, A. C., & Fischer, G. (1990). A cooperative problem solving system for user 
interface design. Proceedings of the AAAI-90 National Conference on Artificial Intel­
ligence, 479-484. Cambridge, MA: AAAI Press/MIT Press. 

Lubars, M., Meredith, G., Potts, C., & Richter, C. (1992). Object-oriented analysis 
for evolving systems. Proceedings of the 74th International Conference on Software 
Engineering, 173-185. Melbourne: ACM 

Meyer, B. (1987). Reusability: The case for object-oriented design. IEEE Software, 
4(2),50-64. 

Meyer, B. (1989). Object-oriented software construction. Englewood Cliffs, NJ: Pren­
tice-Hall. 

Miyake, N. (1986). Constructive interaction and the iterative process of under­
standing. Cognitive Science, 70, 151-177. 

Monarchi, D. E., & Puhr, G. 1. (1992). A research typology for object-oriented 
analysis and design. Communications of the ACM, 35(9), 35-47. 

Nakakoji, K. (1993). Increasing shared understanding of a des(gn task between designers 



118 FISCHER ET AL. 

and d.aigTi nwiTonments: The TOle of a specification component (Technical Re 
CU-CS-6S1-93). Unpublished PhD dissertation, University of Colorado, De p~~ 
ment of Computer Science, Boulder. p 

Nakakoji, K {I994}. Case-deliverer: Retrieving cases relevant to the task at hand. 
In S. \'less, KAlthoff, & M. M. Richter (Eds.), Lecture notes in artificial intelligence 
(pp. 446-470). Kaiserslautem, Germany: Springer-Verlag. 

Nakakoji, K, & Fischer, G. (in press). Intertwining knowledge delivery and elici­
tation: A process model for human-computer collaboration in design. Knowl­
edge-Based Systems Journal. 

Neighbors,]. {1984}. The Draco approach to constructing software reusable com­
ponents. IEEE Transactions on Software Engineering, 10, 564-574. 

Nielsen, ]., & Richards, J. T. {1989}. The experience of learning and using 
Smalltalk. IEEE Software, 6{5}, 73-77. 

Nierstrasz, 0., Gibbs, S., & Tsichritzis, S. (1992). Component-oriented software 
development Communications of the ACM, 35(9}, 160-165. 

Norman, D. A. (1993). Things that make us smart. Reading, MA: Addison-Wesley. 
Opdyke, W., & Johnson, R. (1989). Refactoring: An aid in designing application 

frameworks. Proceedings of the Symposium on Object-Oriented Programming Empha­
sizing Practical Application, 145-160. New York: ACM. 

Pennington, N. {1987}. Stimulus structures and mental representations in expert 
comprehension of computer programs. Cognitive Psychology, 19,295-341. 

Petroski, H. (1985). To engineer is human: The role offailure in successfol deSign. New 
York: St. Martin's Press. 

Pirolli, P., & Anderson, J. R. (1985). The role of learning from examples in the 
acquisition of recursive programming skills. Canadian Journal of Psychology, 39, 
240-272. 

Prieto-Diaz, R. (1987). Domain analysis for reusability. Proceedings of the Interna­
tionalComputer Software and Applications (COMPSAC-87) Conference, 23-29. Los 
Alamitos, CA: IEEE Computer SOCiety Press. 

Prieto-Diaz, R. (1991). Implementing faceted classification for software reuse. 
Communications of the ACM, 34(5), 88-97. 

Redmiles, D. F. (1992). From programming tasks to solutions: Bridging the gap through 
the explanation of examples. Unpublished PhD dissertation, University of Colo­
rado, Department of Computer Science, Boulder. 

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13,389-414. 
Rittel, H. W. J. (1984). Second-generation design methods. In N. Cross (Ed.), 

Developments in design methodology (pp. 317-327). New York: Wiley. 
Rosson, M. B., & Alpert, S. (1990). The cognitive consequences of object-oriented 

design. Human-Computer Interaction, 5,345-379. 
Rosson, M. B., Carroll,J. M., & Sweeney, C. (1991). A view matcher for reusing 

Smalltalk classes. Proceedings of the CHI '97 Conference on Human Factors in Com­
puter Systems, 277-283. New York: ACM. 

Rubin, K. S., & Goldberg, A. (1992). Object behavior analysiS. Communications 0/ 
the A CM, 35(9),48-62. 

Rumbaugh, j., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, yv. (1991). 
Object-oriented modeling and deSign. Englewood Cliffs, NJ: Prentice-Hall. 

Schoen, D. A. (1983). The reflective practitioner: How profeSSionals think in action. N cw 
York: Basic. 



OBJECT-ORIENTED TECHNOLOGY 119 

Shlaer, S., & Mellor, S. (1988). Object-oriented systems analysis: Modeling the world in 
data. Englewood Cliffs, NJ: Prentice-Hall. 

Simon, H. A. {1981}. The sciences of the artificial. Cambridge, MA: MIT Press. 
Sodhi, j. (1991). Software engineering methods, management, and CASE tools. BIue 

Ridge Summit, PA: TAB. 

Soloway, E., ~into,j., Letovsky, S., Littman.' D., & Lampert, R .. ( 1988). Designing 
documentation to compensate for delocahzed plans. Communtcations of the A CM 
37, 1259-1267. I 

Stefik, M.j., & Bobrow, D. G. (1986). Object-oriented programming: Themes and 
variations. AI Magazine, 6(4}, 40-62. . 

Swartout, W. R., & Balzer, R. {1982}. On the inevitable intertwining of specifica­
tion and implementation. Communications of the ACM, 25, 4:~8-439. 

van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New 
York: Academic. 

Ward, P. T., & Williams, L. G. (l990a). Domain analysis: An example (Technical 
Report SERM-013-90). Boulder: Software Engineering Research. 

Ward, P. T., & Williams, L. G. (1990b). Domain modeling (Technical Report 
SERM-012-90). Boulder: Software Engineering Research. 

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-oriented soft­
ware. Englewood Cliffs, l\U: Prentice-Hall. 

Young, S. J. (1982). Real time languages: DeSign and development. Chichester, En­
gland: Ellis Horwood. 


