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ABSTRACT 

Object-oriented (00) technology has been heralded as a solution to the prob­
lems of software engineering. The claims are that 00 technology promotes 
understandability, extensibility, evolvability, reusability, and maintainability of 
systems and that 00 systems are easy to understand and use. However, this 
technology has not been as successful as expected. An analysis of experiences and 
empirical studies reveals that the problem is not the technology per se but that the 
technology provides no support to software developers in performing the pro­
cesses the technology requires. We present a cognitive model of software develop­
ment that details the challenges software developers face in using 00 technology. 
The model focuses on three aspects of software development-evolution, reuse and 
redesign, and domain orientation. We motivate this model with a variety of 
firsthand experiences and use it to assess current 00 technology. Further, we 
present tools and evaluations that substantiate parts of this model. The model and 
tools indicate directions for future software development environments, looking 
beyond the technological possibilities of 00 languages and beyond the context of 
individual developers and projects. 

1. INTRODUCTION 

Object-oriented (00) technology has been heralded as a way to make 
software development easier, faster, and more reliable (ACM, 1990, 1992). 
Among the claimed software benefits of 00 technology are understand­
ability, extensibility, evolvability, reusability, and maintainability, all of 
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which are technically well motivated. The basic 00 principle of encapsu­
lating data and procedures into a single unit, the "object," with a well-de­
fined interface facilitates many of these objectives (Meyer, 1987). Object 
libraries can evolve and be made available to designers, allowing design­
ers to build new applications from proven constructs in the library. Lan­
guages such as C++, Smalltalk, and Common Lisp Object System (CLOS) 
are at the forefront of such work today. Furthermore, object libraries can 
build upon one another to support a layered architecture and thus reduce 
the conceptual distance between a problem and its solution (Fischer & 
Lemke, 1988). 00 technology allows software developers to choose ob­
jects that directly model problem domain concepts, resulting in systems 
the structures of which more nearly correspond to those of problem 
domains (Rosson & Alpert, 1990). This has led to what is termed a 
"seamless" approach to 00 development: The structures that are identi­
fied during analysis are often carried through into design and implementa­
tion (Henderson-Sellers, 1992). 

Despite these claims, our collective experience (as well as that of 
others) has revealed that current 00 technology fails in practice to 
achieve all its claimed benefits. Central to understanding this shortfall 
is Brooks's (1987) well-stated observation that software technologies 
have focused too much on the "accidents" (or software artifacts) and not 
enough on the "essence" (or human creative resource) of software 
engineering. Software technologies support the downstream activities 
(e.g., translation of specification and programming languages) but not 
the upstream activities (e.g., problem analysis and selection of abstrac­
tions) (Swartout & Balzer, 1982). These introductory observations indi­
cate the need for an analysis of 00 technology that focuses on the 
needs of the human software developers (Fischer 1987) more than on 
the formal properties of classes, instances, and inheritance (Stefik & 
Bobrow 1986). We present such an analysis based on a human-centered 
model of software development that has grown out of our diverse 
academic and industrial experiences. The specific model we describe 
incorporates elements of evolutionary design, reuse and redesign, and 
domain orientation. The model is a cognitive theory of software devel­
opment in the sense that it focuses not on the technical accommodation 
of software objects but on the accommodation of the human developers 
in their interaction with the software objects. This point of view leads 
us to address questions such as: 

1. What processes of software development are difficult for people? 
2. Which processes can be supported by tools-and how? 
3. What evidence supports this particular model? 
4. How do existing 00 technologies compare? 
5. How do prototype tools we have developed perform? 
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In developing our model, we relied in part on our varied academic and 
industrial experience and case studies that span many years, projects, and 
settings. Although such evidence lacks the rigor of highly structured 
experiments, it also lacks the artificiality of experiments. The use of 
anecdotal evidence, although uncommon in cognitive psychology, is com­
mon in engineering disciplines. An example is the use of critical incidents 
for product safety and the use of design failures in civil engineering 
(Petroski, 1985). The reader should also bear in mind that some of the 
analysis is from areas outside software development, and the model is 
more one of general design than one of 00 programming. 00 technol­
ogy presents not simply a new way to program but a new way for people 
to think about problem domains. The gravest cognitive challenges are not 
in the downstream activities of programming but in the upstream activities 
of analysis and abstraction, as already noted. Analogies to other areas in 
which objects have long been a medium of problem solving should not be 
overlooked (Simon, 1981, pp. 200-203). 

The experiential evidence is used to motivate our model. Together with 
the model, it provides a framework for assessing the areas in which current 
00 technology falls short of its promise. Our assessment of 00 technol­
ogy may seem negative at times, especially considering the subtitle of this 
article. This emphasizes our belief that much can be learned by analyzing 
failures. We believe that 00 technology is an enabling technology and 
have argued so in the past (Aoki, 1993; Fischer, Lemke, & Rathke, 1987; 
Ward & Williams, 1990b). Addressing its shortcomings widens the scope 
of problem situations in which the technology may be applied. 

The remainder of the article is organized as follows. Section 2 presents 
a model of 00 development that emphasizes evolution, reuse and rede­
sign, and domain orientation. Sections 3, 4, and 5 explore in detail how 
00 technology addresses each of these concepts, respectively. Each sec­
tion presents the rationale behind the claim, summarizes empirical and 
experiential evidence bearing on it, and assesses where current 00 tech­
nology is with respect to meeting its promise. Each section concludes with 
a description of our approach and a prototype method or tool that moves 
us beyond the current technology. Section 6 presents a summary and 
draws some general conclusions. 

2. A COGNITIVE MODEL OF OBJECT-ORIENTED 
DEVELOPMENT 

Software development requires a developer to transform a general, 
informal understanding of a goal into a formal model using operators and 
components interpretable by the computer. fv1any cognitive models focus 
on this process from the perspective of the cognitive processes internal to 
a developer. For example, they focus on models of how software develop­
ers might retrieve and apply plans and schemas (Adelson & Soloway, 
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1985; Rist, 1989) or bring to bear other knowledge for software compre­
hension (Pennington, 1987). Although these models make an important 
contribution to our understanding of individuals, the process of software 
development is a cooperative process among many individuals and differ­
ent kinds of artifacts. With respect to reuse, we have recognized that this 
cooperation can span long time intervals as well, raising many issues 
related to the evolution of software objects (Fischer, McCall, Ostwald, 
Reeves, & Shipman, 1993). This point of view gives rise to a cognitive 
model that emphasizes a longer period of time and focuses on the interac­
tion of the human players with the artifacts involved (Hutchins 1993; 
Norman 1993). 

Design methodologists (Rittel, 1984; Schoen, 1983) have emphasized 
the need for integrating problem framing and problem solving. They have 
argued convincingly that one cannot gather information meaningfully 
unless one has understood a problem, but one cannot understand a prob­
lem without information about it. For instance, Curtis, Krasner, and Iscoe 
(1988) observed that the predominant activity in designing complex sys­
tems is the participants' teaching and instructing one another-that under­
standing the problem is the problem. Because complex problems require 
more knowledge than anyone person possesses, communication and 
collaboration among all the involved stakeholders are necessary (Ehn, 
1988; Greenbaum & Kyng, 1991). Professional practice has at least as 
much to do with defining a problem as with solving a problem. New 
requirements emerge during development because they cannot be identi­
fied until portions of the system have been designed or implemented 
(Fischer & Reeves, 1992). The conceptual structures underlying complex 
software systems are too complicated to be specified accurately in advance 
and too complex to be built faultlessly (Brooks, 1987). Specification and 
implementation have to coevolve (Swartout & Balzer, 1982), requiring a 
tighter integration of the frequently separated stages of software develop­
ment-analysis, design, speCification, and implementation. Thus, evolution 
occurs as feedback from partial solutions improves the developers' under­
standing of the problem. 

These considerations on cognitive processes and design theories have 
led us to develop a cognitive model of 00 development. The model 
focuses on three aspects of 00 development-evolution, reuse and rede­
sign, and domain orientation. Figure 1 is used as a basis to explain this 
focus. The diagram includes three types of 00 software components-spe­
cific projects composed of instances of objects; libraries of object classes 
from which instances are made; and frameworks that define recurring 
patterns of interaction between classes of objects, potentially classes from 
different libraries (for descriptions of these terms, see Deutsch, 1989; 
Johnson & Foote, 1988). 

Figure 1 illustrates that, in our model, evolution is driven by software 
developers reusing and redesigning software components in the context of 



FISCHER ET AL. 

1. An evolutionary model of 00 development. A progression of software 
Ipment projects delineate time and provide a long-term context in which the 
nental claims of 00 technology, including domain orientation and reuse, may 
died. Solid-tip arrows are primarily associated with evolution, driven by 
re developers creating new software objects to accommodate new projects. 
V'-tip arrows indicate software developers reusing components, although reuse 
~s leads to redeSign. Stable structures of class libraries and frameworks emerge 
nultiple projects. Domain orientation permeates the model as all of the 
In, reuse, and redesign of components is driven by problems arising in the 
pment of specific projects. 
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!. Framework for a temperature sensing system. This example illustrates parts 
cognitive model proposed in Figure 1. A temperature sensor measures the 
'ature of a number of furnaces and reports those measurements to a host 
ter. The temperature of each furnace is obtained by periodically reading a 
thermometer. The temperature sensor system is likely to be part of a larger 
for which monitoring (and, most likely, control) of the temperatures of a set 

.lces is important This application might be, for example, process control in a 
ill. 

queries reads I I 
:omputer I ~ .. Temperature Sensor ~ • Digital Thermometer 

sive software development efforts. The arrows are transformations 
~d by software developers. Solid-tip arrows represent the creation of 
oftware components, and hollow-tip arrows represent reuse and 
gu. It is in examining the software developers' involvement in these 
;ses that the model becomes a cognitive model. 
purposes of illustration, we use an adaptation of the problem of 

>ping a temperature sensing system. This example was introduced 
lUng (1982) and was further developed by Ward and Williams 
l). The problem situation is that a temperature sensor measures the 
rature of a number of furnaces and reports those measurements to a 
omputer. The temperature of each furnace is obtained by periodi­
reading a digital thermometer. A framework of the example is 
med in Figure 2. 

I 
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In our model, illustrated in Figure 1, evolution implies that software 
components are expected to change over time; that is, class definitions 
may be refined with respect to the.ir attributes and methods, and libraries 
may be repartitioned to contain different classes. Our model stresses that 
these changes are driven by successive software development projects; the 
evolutionary scale in Figure 1 is measured by a progression of projects (see 
also Berard, 1993). A successive project could be a revision of an earlier 
one or a new development in the same domain. For instance, in Figure 1, 
Project A might be the development of a system for the temperature 
sensor problem illustrated in Figure 2. The Digital Thermometer and 
Temperature Sensor classes would be developed; Digital Thermometer 
would have instance methods for reporting temperature, and Temperature 
Sensor would have instance methods for requesting and interpreting tem­
perature readings from thermometers. With this one project, all the classes 
might be placed in a single class library, such as Classes A in Figure 1. A 
new project might be to adapt the sensing system to work with analog 
thermometers. (Strictly speaking, the digital thermometer device would 
also have an analog component. However, we use the digital-analog 
distinction for simplicity in denoting two thermometer device types re­
quiring different software interfaces.) The software developers might 
choose to generalize the framework to have a Thermometer class with 
Digital Thermometer and Analog Thermometer subclasses; the two ther­
mometers might have, for instance, different communications require­
ments and hence need different attributes for buffers and methods for 
reading. Although a single project is not always sufficient for generalizing 
patterns of class interaction, together Projects A and B yield a common 
framework illustrated in Figure 2 and corresponding to Framework B in 
Figure 1. 

Reuse means that existing software components can be incorporated into 
the solutions of new problems, and redesign means that some existing 
components might be adapted to fit new problems (Fischer et al., 1987). In 
Figure 1, the arrow pointing downward to Project B is used to illustrate that 
some classes from the previous project may be reused. In our example, the 
Temperature Sensor class was reused and did not change. The arrow 
leading upward from Project B is used to illustrate a synthesis of new 
classes such as Analog Thermometer and Thermometer and the redesign 
of the former class, Digital Thermometer, to be a subclass of the new class, 
Thermometer. A further redesign might be that all the Thermometer 
classes are partitioned into their own class library, Classes B, leaving the 
modified class library, Classes A'. Reuse and redesign go hand in hand 
with evolution: Components evolve so that they may be reused in other 
contexts, and the reuse and redesign of those components lead to further 
evolutionary changes, which in turn support continued reuse. 

Finally, domain orientation means that all the software components­
frameworks, classes, and instances in projects-are grounded in spe-
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cific problem areas. In our model, completed projects yield a conceptual­
ization of a domain; they provide the basic abstractions of a domain in 
terms of classes and frameworks. As more projects are implemented and 
the coverage of a domain increases, software developers have the sense 
that they are interacting with the domain itself rather than with low-level 
computer abstractions. An ideal is that problem experts can manipulate 
software components directly, brpassing computer software developers 
who heretofore have acted as middlemen; systems become end-user 
modifiable (Fischer & Girgensohn, 1990). In the example, managers in a 
steel mill would be able to configure the complete monitoring systems 
themselves, selecting among concepts (classes) such as Analog Thermom­
eter and Digital Thermometer. This kind of human-computer interaction 
is termed human problem-domain communication (Fischer & Lemke, 1988). 
A perspective of domain orientation also clarifies the relation among 
software components: There may be project- or problem-independent 
components, but there are no domain-independent components; classes 
and frameworks exist to serve different designs. 

This general model of software development using 00 technology 
provides a context for the discussion that follows, and it lets us explore 
human cognitive requirements with respect to evolution, reuse and rede­
sign, and domain orientation. Current 00 development technologies 
have made claims related to these three concepts, including: 

1. 00 systems support software evolution, extension, and/or modifi­
cation. 

2. 00 systems are reusable and easily constructed from existing com­
ponents. 

3. 00 systems are understandable to domain experts (users) and 
developers. 

The following three sections explore each of these concepts and claims in 
turn. Figure 3 provides an overview of these sections. 

The model aspects and corresponding prototypes are not related in a 
simple orthogonal relation. Instead, we see that evolution subsumes reuse 
and redesign in the sense that the latter two processes make sense only 
over the development of several projects, and, at the same time, reuse and 
redesign drive evolution. Finally, domain orientation permeates all activi­
ties because software components cannot be understood or developed 
independent of the problem they are designed to solve. 

3. EVOLUTION IN 00 SOFTWARE DEVELOPMENT 

The first claim in Fi·gure 3 concerns the extensibility and evolvability 
of 00 systems. Several points indicate that 00 systems can evolve to 

1 
, 
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Figure 3. Overview of Sections 3 through 5: Moving beyond current 00 technology 
in aspects of evolution. 

00 
Development Claim of Firsthand Prototype Beyond 
Model 00 Approach Observations Current Technology 

Evolution 00 designs and 00 In development of Two metrics are used 
systems are easy to 00 computer-aided to suggest to devel-
change; they support software engineering opers when to ab-
system evolution tool product, devel- stract classes into 

opers had trouble library components 
identifying abstrac- or to factor classes 
tions and appro- into application 
priate times at components 
which to apply 
00 operators to 
support evolution 

Reuse and 00 components are In study of large hard- Tool supports develop-
redesign reusable; 00 sys- ware store, custo- ers' reuse and rede-

terns support and/ mers needed expert sign of components 
or encourage support for finding through explanations 
reusability "right" objects for of examples using 

their tasks the components 
Domain 00 approach is "nat- In project to develop Tool supports develop-

orientation ural," making iden- gourmet food store ers' refinement of 
tification of key ab- shopping system, specifications through 
stractions in system students had diffi- argumentation and 

easy, promoting culty identifying selection of abstrac-
better communica- abstractions tions through a 
tion between devel- palette 
opers and users, and 
reducing gap between 
problem and solution 

support changes in requirements and business environments. First, class 
definitions can be easilyextendedthroughinheritance (specialization).For 
instance, in the temperature sensor example, suppose the abstract class, 
Thermometer, existed with one subclass, Digital Thermometer. A subse­
quent project that needed an Analog Thermometer class could easily be 
accommodated by adding it as another subclass of the Thermometer class. 
Second, 00 systems are easy to extend or modify due to their understand­
ability. The more understandable 00 components are, the easier to 
change such components for both users and developers. Third, changes 
can (theoretically) be localized in an 00 system without dramatically 
affecting other parts of the system because objects are loosely coupled 
encapsulations of data and beha ViOL 
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3.1. Where Current 00 Technology Falls Short 

A case study of the development of an 00 computer-aided software 
engineering (CASE) tool illustrates the natural evolution of 00 compo­
nents and the lack of support for this evolution. The study was described 
in more detail elsewhere (Aoki, 1992, 1993). The project involved the 
development of Mei, a CASE tool in Smalltalk-80 (Goldberg & Robson, 
1983). Mei supports various 00 analysis and design methods and nota­
tions. It also includes object repositories and three-dimensional graphical 
libraries. The project was undertaken by a large Japanese software com­
pany over a 2-year period. The project team included 10 members with 
00 experience ranging from 1 to 10 years. The completed program 
contained 700 classes and 14,000 methods. 

Over the course of the development effort, four kinds of changes were 
identified-refining existing classes, abstracting from existing classes, com­
posing classes from existing components, and decomposing classes into 
new components. The evolution of components proceeded in a bottom-up 
fashion. Initially, the development group identified low-level classes. As 
the number of low-level classes grew, the usual practice was to examine 
them for common patterns of structure and behavior and then to create 
abstract superclasses that captured the commonalties and reduced redun­
dancies in the subclasses. In addition, as classes became larger and more 
complex, the developers would often decompose them into smaller 
classes. These decomposed classes then became candidates for further 
refinement and abstraction. Of the four modification processes identified 
in this project, only refinement and, to a lesser extent, composition were 
directly and easily supported in Small talk. Abstraction and decomposition 
were not. Furthermore, in discussing problems with developing classes, it 
became apparent that many developers were proceeding.in a bottom-up 
fashion because they had difficulty thinking abstractly. Additional devel­
opers who had extensive theoretical mathematics backgrounds were 
brought in. They were able to help identify classes that should be ab­
stracted for more general library usage. 

Other researchers have made similar observations about the evolvabil­
ity of 00 systems and the extent to which current 00 environments 
support evolution. Lubars, Meredith, Potts, and Richter (1992) reported a 
case study aimed at assessing evolution in an 00 system. They developed 
an 00 requirements specification for an automated teller machine and 
then examined the effects of various types of changes on the specification. 
Their conclusion was that extensibility is not free. Changes must be 
anticipated and objects structured accordingly. The simple guidelines 
provided by current 00 methods do not adequately support the task of 
identifying and building objects that are extensible. Lubars et al. pointed 
out that "reliance on simple guidelines and strategies from methods text-

, 
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Figure 4. Evolving components. Development of software components involves an 
evolutionary cycle of subprocesses. 

Abstraction 

Factorizatio 
Composition 

Refinement 

books may ... cause the analyst to miss reuse opportunities and make the 
model more difficult to change" (p. 184, italics added). 

Opdyke and Johnson (1989) discussed many evolutionary changes that 
are common in the development of 00 application frameworks. Opdyke 
and Johnson noted that "object-oriented software is harder to change than 
it should be" because many of the changes involve "changing the abstrac­
tions embodied in existing object classes and the relationships among those 
classes" (p. 146). Some of these common changes, which are tedious, 
difficult, and/or error prone in 00 environments, include creating an 
abstract class for one or more existing classes; changing an existing rela­
tion between objects from an inheritance (generalization/specialization) to 
an aggregation (component); and moving a class from one inheritance 
hierarchy to another. 

As these observations illustrate, current 00 environments support evo­
lution through refinement but fall short in their support for many other 
evolutionary processes. There is a need for a better understanding of the 
processes involved in evolution and tools to better support these processes. 

3.2. Beyond Object Orientation 

Our model of 00 development (Figure 1) emphasizes the importance 
of component evolution across multiple projects. In our experience, com­
ponents evolve through four key processes: refinement, composition, ab­
straction, and factorization. These are illustrated as an ongoing cycle in 
Figure 4 and are explained next. 
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Software developers can refine an existing class by sub classing it and 
adding to its properties and behaviors, its slots and methods. In our 
example, the notion of a thermometer was refined by creating a class, 
Thermometer, with subclasses, Digital Thermometer and Analog Ther­
mometer. 

Developers can compose a new class from existing classes by referencing 
other classes. For example, both analog and digital thermometers would 
contain an analog component but could have different buffering and 
communications components. In object-oriented languages that support 
composition, the Analog Thermometer class could be composed of the 
Analog Component and Analog Type Buffer classes; the Digital Ther­
mometer class could be composed of the Analog Component and Digital 
Type Buffer classes. 

Software developers can abstract classes when they identify commonal­
ties in behaviors and properties among existing classes. For instance, had 
the two classes of thermometers developed independently, a software 
developer might create the Thermometer class to contain common prop­
erties, such as the Analog Component, and pass this property to the Digital 
Thermometer and Analog Thermometer classes through inheritance. Ab­
straction aims at reducing redundant coding and improving comprehensi­
bility, reusability, and maintainability. 

Finally, developers can factor classes by partitioning the properties and 
methods of an object into simpler, more cohesive (and presumably more 
reusable) components. The original class behavior and structure are main­
tained; composition recombines the capabilities. However, the newly 
derived classes now may be shared among other classes. Proposing the 
Analog Component and Analog Type Buffer classes as components of 
thermometers is an illustration of factoring. A class for representing a 
pressure monitoring device could, for example, reuse the Analog Type 
Buffer class. 

We see the support for evolution through the four operations as a 
critical aspect of 00 development that is not adequately supported with 
current 00 programming environments or existing 00 analysis and 
design methods. The following section describes a measurement model 
developed to help support 00 class evolution. 

3.3. Reference and Hierarchy Factors: Metrics to Support 
Evolution 

Over the course of a single, long-term project or several projects, 
software developers can redesign class libraries and frameworks using the 
four evolution operations just described. A key issue is how developers 
know when to apply or whether they have appropriately applied these 
operations. To support software developers with issues of component 
evolution, we developed two metrics, the reference factor (RF) and the 

, 
; 
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hierarchy factor (HF), described in the next paragraph. Roughly, these 
metrics can classify object classes according to their appropriateness as 
library or application components. Library components correspond to 
supporting domains (discussed in Section 5.2). A class library is a reposi­
tory for abstract classes that provides high reusability across multiple 
application domains. Application components correspond to dominant 
domains (discussed in Section 5.2). Applications consist largely of con­
crete, instance-level objects and can form a basis for reuse by being placed 
in a catalog of examples. 

To support software developers in producing and evolving the two 
types of object repositories-class library and application catalog-we de­
veloped two metrics and constructed a tool that analyzes objects under 
development. RF measures the degree of composition and decomposition, 
and HF measures the degree of refinement and abstraction. Figure 5 
presents definitions and examples of RF and HF. The values of RF and HF 
range from 0 to 1. Low RF and HF values indicate that the classes have 
library-like characteristics with high reusability and should be stored in a 
class library; high RF and HF values indicate that the classes have applica­
tion-specific characteristics and should be stored in a catalog as specific 
examples. 

RF is defined in terms of the total number of classes in reference paths 
and the rank order of a class in the partially ordered reference sequence 
(see Figure 5a). Composition and decomposition are interdependent; if a 
class is better modularized, more classes will use it. Also, better decompo­
sition can be achieved when similar structures or behaviors are found in a 
large number of classes. Both composition and decomposition deal with 
"has-a" or "part-of' relations, which represent the reference structure. The 
metrics for composition and decomposition are quantified from this class 
reference structure. The value of RF is between 0 and 1 and becomes 
smaller when the class is referenced by many classes but does not refer­
ence other classes. 

HF is a metric for the refinement and abstraction of a class and is 
defined in terms of the number of its superclasses and subclasses (see 
Figure 5b). Refinement and abstraction are interdependent; the better a 
class is abstracted, the easier it is to refine to a concrete class. Both 
refinement and abstraction deal with "is-a" and "is-kind-of" relations, 
which represent the class hierarchy. The metrics for refinement and ab­
straction are quantified from this class hierarchy. The value of HF is 
between 0 and 1 and becomes smaller as the class becomes more abstract. 

A tool was built that graphically presents the results of applying the 
metrics to Smalltalk-80 classes (Goldberg, 1984). The metrics were also 
applied to the project for developing a CASE tool (Mei) in the Smalltalk-
80 environment, discussed earlier (Aoki, 1992). Figure 6 shows the results 
of applying the metrics to the principal classes of Smalltalk-80-HFs, RFs, 
rank orders of topological sort, and names of classes that refer each class. 
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Figure 5. Definitions of RF and HF. 

RFA 

HFA 

ranking number of class A in topological sort 
= 

total number of classes (total number of elements in topological sort) 

Example: 
A refers to (B,C) 

= 

B refers to (D,F) 
C refers to (D, E,F) 
D refers to () 

E refers to () 

F refers to (D) 

Ranking Topological Sort: D, F, B. E, C. A 

RF=6/6= 1 

(a) Reference factor 

number of superclasses of class A 

number of superclasses of class A + I + number of subclasses of class A 

Example: 

HF = 3 / (3 + 1+ 13) = 0.176 

(b) Hierarchy factor 

Figure 7 illustrates the correlation between HF and RF; the horizontal axis 
represents HF, and the vertical axis represents RF. Figure 7a shows the 
distribution of the standard Smalltalk-80 classes plotted according to their 
HF and RF values. Figure 7b shows the distribution of classes in the Mei 
project plotted according to their HF and RF values. Average RF and HF 
values for both situations are also shown. 

In the graphs of Figure 7, dots that appear in the top left corner 
represent classes that have high abstraction with high reusability, and dots 
that appear in the bottom right corner represent classes that are relatively 
concrete and application specific. As Figure 7 clearly illustrates, the stan­
dard Smalltalk-80 classes (Fif,'llre 7a) have stronger characteristics as a 
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Figure 6. HF and RF values of principal classes provided in Smalltalk-80. 

Class Name HF RF Sequence Referred to by 

Array 0.571 0.000 0 
BitBit 0.100 0.649 218 _ Form, Pen 
ByteString 0.833 0.003 I Character 
CodeController 0.700 0.631 212 Character, Cursor, Explainer, ReadStream, String 
CodeView 0.600 0.634 213 CodeControlled 
Collection 0.027 0.312 105 Bag, OrderedCollection, Set, Sorted Collection 
Dictionary 0.300 0.152 51 Association, Bag, Cursor, OrderedColiection 
Object 0.000 0.997 335 Array, Association, Browser, Context 
Point 0.750 0.045 15 Array, Cursor, Form, OrderedColiection 
Rectangle 0.250 0.042 14 Array, Cursor, Form, OrderedColiection 
SystemDictionary 0.800 0.860 229 Array, Association, Browser, BrowserView 
View 0.038 0.994 334 Controller, DisplayScreen, Form, Inspector 

Figure 7. Comparison between the results of applying metrics. 
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Average HF = 0.552 
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(a) Classes in Smalltalk-80 Library 
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o 

Average HF = 0.699 
Average RF = 0.653 

(b) Classes Created in Mei Project 

library, whereas classes created during the Mei project have stronger 
characteristics as an application (Figure 7b). Classes plotted outside the 
shadowed area in Figure 7b are those that have been created during the 
Mei project and will be stored in a class library in the future because they 
have high-level abstraction. 

Two general findings from an analysis of the Mei project data are that 
there are several types of object evolution paths and there are two general 
types of programmers. Figure 8 illustrates six types of class evolution paths 
that were identified. The metric values for example classes are provided in 
Figure G. 
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Figure 8. Evolution of objects during the lifetime of the project. 

Abstraction 
HF 

Refinement 

RF 

c: 
.g 
Vl o 

1. A (initial stage): Newly created classes usually belong to area A in 
Figure 8 because they have no subclasses. 

2. A to B: Classes such as Array, ByteString, and Point have become 
equipped with basic behaviors or structures and thereby are not divided 
into subclasses but are used by other classes. Their HFs have remained 
large, and their RFs have become smaller, shifting them toward area B in 
Figure 8. Classes in this area are basic library classes, containing well-re­
fined concrete classes. 

3. A to D: The Collection class has become equipped with abstract 
behaviors and a large number of subclasses created through refinement. 
Because the abstract class does not have its own instance variables, it does 
not use other classes as components, and other classes do not use it as a 
component. Thus, both its HF and RF have become smaller, shifting it 
toward area D in Figure 8. 

4. A to F, D to F: The BitBlt class references other classes as components 
by deeply nesting them and has a high degree of abstraction. It has many 
subclasses, such as Pen, and reference components, such as Form and 
Path, which in turn further reference other objects. Thus, its HF has 
become smaller, and its RF has stayed relatively large. The class is re­
garded as an abstract application library class. 
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PiguTe 9. Comparison of metrics applied to programmer types. 
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(a) Class-Library-Developers (b) Catalog-Developers 

.ri. D to E: The Object class initially had no instance variables and was 
a Iypical abstract class with a quite small HF and a relatively small RF, 
:-illch as Collection contained in D. Through the development processes, 
(llc abstraction of its behaviors has progressed, it has started to reference 
IIlany other classes as components, and its RF has become larger. 

(). A to C: Classes such as SystemDictionary, Code Controller, and 
Code View were application-specific complex objects with a high degree 
or rdinement and composition. Their HFs have stayed very large, and 
Ilwir RFs have gotten larger, shifting to area C. 

I n addition to plotting these evolution paths, we plotted the classes in 
Figure 7b using different colors (not shown) for the different project 
1I}(~rnbers authoring the classes. This analysis identified that each project 
Illcmber has typical patterns in creating and evolving classes. Project 
IIwrnbers were divided into two main types-class-library developers and 
c;tI alog developers. Figure 9 illustrates the two types. 

(~lasses created by class-library developers include many abstract 
cLt:-i:-iCS (Figure gal. The project members in this group were interested in 
Ill()dcls, paradigms, methodologies, and theories and were good at creat­
illg highly abstract meta-level systems. They were more interested in 
(J(~aling classes for a general library than in creating classes specific to a 
p;1l1 icular problem domain. Classes developed by catalog developers (Fig­
III (. ()b), in contrast, were mainly concrete classes. The members in this 
gll)1I P were interested in styles, modes, and look-and-feel paradigms. They 
\Vnc interested in creating several application examples using class librar­
It'\ ;IfJd in improving and expanding basic classes created by others. 
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This early analysis of the metrics tool suggests that the metrics can be 
used to distinguish library from application-specific classes, to plot the 
evolution of classes over time, and to distinguish library-component devel­
opers from application-component developers. 

4. REUSE AND REDESIGN 

One of the biggest claims of 00 proponents is that 00 components 
and systems are highly reusable (see Figure 3). The promise of rellse is that 
we can achieve "plug-compatible" systems, reduced development time, 
and improved quality. Current 00 programming languages, such as 
Smalltalk, provide a library of reusable classes that can drastically reduce 
programming time. In addition, off-the-shelf 00 frameworks can be 
purchased that support 00 design and programming in particular prob­
lem domains. Specific features of 00 languages also promote reusability, 
albeit at a lower level of detail {Stefik & Bobrow, 1986}. Inheritance makes 
it possible for a subclass to share, or reuse, methods and variables defined 
in its superclass. Polymorphism makes it possible for objects of different 
classes to respond to the same message. Being able to send the same 
message to objects of different classes means that a given class will be 
usable in several different contexts. Meyer (1987) argued that 00 design 
promotes reuse because the categories of objects with which the system 
deals are relatively stable, even though the functionality required may 
change over time. Thus, in a system whose organization is based on 
objects, a change in functionality will not necessitate a major reorganiza­
tion of the software, as it might in a system based on functional decompo­
sition. Typically, any changes will be localized to a few classes. 

4.1. Where Current 00 Technology Falls Short 

An analogy can be made between software-component reuse in a 
high-functionality programming environment and hardware-component 
reuse in a large hardware store. One study investigated a large hardware 
store with more than 300,000 "components" (Fischer & Reeves, 1992). The 
store provides customer assistance for locating items in the following 
manner. As customers enter the store, they are helped by floor managers, 
who direct them to specialty aisles; once in a particular area, the customers 
are aided by specialty assistants. For example, plumbing supplies are 
attended by assistants experienced as plumbers. Managers and assistants, 
through background knowledge and experience, are able to anticipate and 
support customers in defining problems and working out solutions. The 
components themselves are part of the problem-solving effort, with cus­
tomers and assistants using them in positive and negative deictic refer­
ences. Problems are solved through cooperative refinement by the 
application of problem- and domain-specific knowledge and plans and 
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through the media of the components involved. Potentially, this coopera­
tion can be established between a problem solver and a computer system. 

The strategy of employing specialized-domain experts (e.g., in plumb­
ing or lighting in the hardware store) is successful for several reasons: The 
experts provide location support and are able to help customers find the 
right item{s); the experts provide comprehension support and allow the 
customers to focus on describing their problems, and then the experts 
provide and explain the solution; and this focus on the problem and 
communication with the assistants reduces the likelihood that a customer 
will be overwhelmed by the abundance of available items. This is a very 
different strategy than that employed by other high-volume stores, in 
which there is an abundance of "components" and only limited support for 
locating and understanding which components are needed for the task at 
hand. 

Other researchers have studied reuse in high-functionality systems. 
Smalltalk-80, for example, has 670 classes and more than 6,000 methods. 
Empirical studies (Draper, 1984; Fischer, 1987; Nielsen & Richards, 1989) 
have shown that developers do not exploit the power of such high­
functionality systems. Lange and Moher (1989) performed an intensive 
I-week field study of a professional software engineer with considerable 
experience in 00 development. Lange and Moher found that the 
engineer's dominant reuse strategies were to reuse by inheritance and to 
reuse by copying source code from a sibling class as a template. The 
engineer was very familiar with the class library and consequently was 
often able to recall the name of a particular class a priori and locate it in 
the hierarchy easily. However, even when the engineer could name a class 
a priori, she did not often remember method names, leading to a more ad 
hoc search within classes for reusable methods. The researchers also 
observed "comprehension avoidance" strategies in which the engineer 
tried to avoid getting into the details of methods and instead tried to 
modify and test methods to assess their reusability for her task. 

Despite the promise of reuse in 00 development, systematic reuse on 
a large scale is not being realized (Krueger, 1992). Part of the problem is 
that the existence of high functionality (i.e., reusable components) does 
not guarantee the use of that high functionality. This may be because 
developers do not know what reusable components exist, how to access 
them, how to understand them, and/or how to combine, adapt, and 
modify them to meet current needs (Fischer, 1987). Current 00 program­
ming languages provide only simple tools, such as Smalltalk's Class Hier­
archy Browser (Goldberg & Robson, 1983), for locating reusable classes 
and methods. As Nierstrasz, Gibbs, and Tsichritzis (1992) noted, "effective 
reuse of software presupposes the existence of tools to support the organi­
zation and retrieval of components according to application requirements, 
and the interactive construction of running applications from compo­
nents" (p. 160). 
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Another problem is that current 00 analysis and design methods do 
not adequately support reuse within the software development process. 
The reuse process involves two steps-composing new systems from exist­
ing components and developing components that can be reused in future 
systems. However, the current 00 methods often assume that new sys­
tems are developed from scratch (Nierstrasz et al., 1992), and reuse hap­
pens sometime during implementation. Although some 00 researchers 
(e.g., Johnson & Foote, 1988) have emphasized that classes must be de­
signed for reuse and offer guidelines to promote reusability, none of the 
popular 00 methods has emphasized this point. Reuse is not something 
"tacked on" at the end of software development; it must be integrated 
throughout the evolutionary development process (Fischer & Girgensohn, 
1990). 

4.2. Beyond Object Orientation 

Reuse and redesign are key aspects of our model of 00 development 
(Figure 1). The observations of the preceding section illustrate several 
difficulties with respect to reuse. First, locating reusable components in a 
high-functionality environment (computer based or not) can be challeng­
ing, even when the user is familiar with much of the existing functionality. 
Retrieval mechanisms that demand that the name of the component 
and/or its place in the class hierarchy be known a priori are insufficient for 
the location task. Second, users are reluctant to invest the time to thor­
oughly understand components after they are located. In the hardware 
example, the store assistants provided a buffer for the customer. Custom­
ers could talk about the desired functionality (in problem-oriented terms)' 
and assistants would provide a component or alternative components that 
could meet the need. In Lange and Moher's (1989) study, the engineer did 
not attempt to understand everything that the component did and how it 
accomplished tasks. Instead, she ran various tests on the component to see 
if it would perform the needed functionality. Third, as components are 
reused, they are often modified (redesigned), which leads to further com­
ponent evolution. But, as described earlier, many types of modification are 
not eaSily supported in existing 00 environments. These three aspects of 
reuse and redesign-location, comprehension, and modification-are 
illustrated in Figure 10 (Biggerstaff & Richter, 1987; Fischer, Henninger, & 
Redmiles, 1991). 

The reuse-and-redesign model in Figure 10 applies to various kinds of 
software components or artifacts, such as subroutines in a structured 
programming environment, classes in an 00 environment, and/or exist­
ing design examples. In some of our studies, we explored the reuse of 
examples of previous design solutions (Fischer et al., 1991). After finding 
a potentially useful example, a software developer is expected to explore 
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Figure 10. Reuse and redesign of components. Reuse and redesign require a software 
developer to locate components relevant to a tasl4 comprehend them with respect to 
relevance and modifiability, and, in some cases, modify the located components. 
These stages are intertwined, each providing feedback to the others: Comprehension 
may lead directly to further retrieval, and modification may require further compre­
hension or additional retrieval. 
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it more carefully to build an analogy between the example task and the 
current task or design goals. The location-com prehension-modification 
cycle would be applied to a catalog of completed projects and not just to 
the classes implemented on one project. For instance, a software developer 
might study the temperature sensing system as an example to develop a 
system to monitor pressure. A hypothesis is that the designer learns by 
analogy (from the example) how to develop a system for the current task. 
The model of Figure 10 helps identify where in the reuse-and-redesign 
process tools can add support to software developers. 

Current 00 environments provide little support for these reuse pro­
cesses. What is needed is an approach analogous to that of the high­
functionality hardware store described earlier-tools more explicitly 
support the problems of location, comprehension, and modification 
(Neighbors, 1984; Prieto-Diaz, 1991; Rosson, Carroll, & Sweeney, 1991). 
The next section discusses Explainer, a tool that speCifically supports the 
comprehension of reusable objects. 
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4.3. Explainer: A Tool to Support Reuse and Redesign 

Reuse and redesign require software developers to locate, comprehend, 
and sometimes modify software components, as illustrated in Figure 1 L 
Comprehension is central in this cycle, as it provides a basis for judging 
the relevance of components during the location step and, later, for 
modifying a retrieved component In studying reuse and redesign, we 
developed the Explainer tool for helping software developers understand 
software components through examples (see Figure 11). 

The domain of Explainer is a Lisp library of graphics functions. Al­
though the Lisp example code is not object oriented, it does rely heavily 
on modules imported from the graphics library. What can be learned from 
the evaluation of Explainer is how software developers can be helped in 
understanding software components through the use of examples. In 
principle, this is the same problem software developers face when attempt­
ing to understand classes and frameworks developed by others. Although 
previous work has evaluated the usefulness of examples generally in 
helping people learn programming concepts (Kessler & Anderson, 1986; 
Pirolli & Anderson, 1985), Explainer focuses on specific principles of 
explanation using multiple perspectives and programming plans. 

A programmer would engage the Explainer tool after a relevant exam­
ple is identified. Tool support for locating and modifying examples has 
been explored in previous work (Fischer et aI., 1991; Fischer, McCall, et 
aI., 1993). The Explainer interface is implemented as a hypermedia tool 
(see Figure 11). This implementation allows minimal information about an 
example to be initially presented (Black, Carroll, & McGuigan, 1987; 
Fischer, Mastaglio, Reeves, & Rieman, 1990). The programmers can then 
decide which specific features of the example they want to explore, 
presumably choosing those most relevant to their current task. Informa­
tion is accessed and expanded through the command menu (middle of 
Figure 11). 

The interface presents multiple presentation views of the information 
comprising an example-code listing, sample execution, component dia­
grams, and text. These views are initially selected for Explainer due to 
their popularity in existing CASE tools (Sodhi, 1991). Unique to Explainer 
is the characteristic that the same information is presentable in different 
views. Within each view, the programmer can access information from 
different representation perspectives. For instance, text has been pre­
sented from Lisp, program features, and cyclic operations perspectives 
(lower right of Figure 11). 

The Explainer interface allows programmers to access information 
about the programming plans (Pennington, 1987; Soloway, Pinto, 
Letovsky, Littman, & Lampert, 1988) behind the example through differ­
ent views and from different perspectives. Highlighting and textual de-



Figure 17. Comprehension of software components. The screen shows the actual state of the Explainer mterface at the end of one programmer's 
test session. The interface is based on the principle of making examples accessible through multiple presentation views (e.g., code, sample output, 
text, and diagram) and multiple representation perspectives (e.g., Lisp, program features, and, in this example, cyclic group operations). The 
hypertext interface allows information to be accessed through selection and use of the command menu (bottom left of screen). 
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Figure 12. Clock task as described to programmer subjects. 

Write a program to draw a clock face (without the hands) that shows the 
hour numerals. 1 - 12. Your solution should look like the picture below. 

scriptions allow programmers to understand the relations between ele­
ments of programming plans and system components. This specific infor­
mation enabled the test programmer to identify the Lisp function called to 
draw the label, the assignment function that calculated the position, and 
the variables on which the position calculation depended. The program­
mer could then apply the same functions in a solution to a new task. 

The empirical evaluation of Explainer tested three conditions under 
which subjects solved the programming task of drawing a clock face (see 
Figure 12). In all three conditions, programmers were given the same 
example-a program illustrating operations in a cyclic group (see Figure 
11). The conditions varied the programming tool that the three groups of 
subjects worked with to help them understand the example. In the first 
condition, subjects worked with the Explainer tool as described earlier. In 
the second condition, subjects also worked with the Explainer tool, but the 
interactive menu was deactivated (the example information was fully 
expanded when subjects began the test). In the third condition, subjects 
worked with a commercially available, searchable on-line manual that 
contained descriptions of all the functions used in the example. The 
purpose of the second, intermediary condition was to determine if only the 
difference in information content between Explainer and the on-line man­
ual affected the results. 

The evaluation measured the performance of programmers with 
respect to variability in two senses. First, the notion of "directness" was 
defined as the number of different variations programmers would try in 
solving a task. The rationale was that the more support the program­
mers had from the example and tool in solving the task, the lower the 
number of trial-and-error variations. The observed measures are de­
fined shortly, and these are compared across groups. Second, within 
each group, the variance in the observed measures is calculated and is 
then compared across groups. The rationale with this test was that the 
more support the example-and-tool combination provided, the more 
uniform (smaller variance) the programmers' behavior as measured 
would be within a condition. 

L 
f: 
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Eight subjects were tested for each condition and were randomly as­
signed to conditions. The subjects all had roughly the same background 
knowledge in Lisp programming (being recruited from master's-level arti­
ficial intelligence courses in computer science) and little familiarity with 
the graphics functions required by the task. 

Detailed values and comparisons of the results are available elsewhere 
(Redmiles, 1992). We present a brief summary of the results here. As a 
group, the subjects using Explainer performed the programming task 
more directly and with less intersubject variability than the subjects using 
the on-line documentation tool. The latter group proceeded in a trial-and­
error fashion and, not surprisingly, exhibited great intersubject variability. 
It is important to note that the reduction in variance was not at the cost of 
performance. The "better" values for the various measures were similar 
across conditions-good performers were about the same in all conditions. 
The reduction in variance derives from the "worse" values coming closer 
to the "better" in the condition that used the Explainer tool-otherwise, 
poor performers were helped by Explainer. 

The variability of the programmers' performance in the on-line docu­
mentation group is consistent with other studies of programmers (see the 
survey by Egan, 1991). Furthermore, the provision of an example by itself 
was insufficient to prevent this variability, also observed by Kessler and 
Anderson (1986) and noted earlier here. However, the provision of an 
example-supplemented by information constituting a representation of a 
programming plan and with a means of exploring the relation of the 
programming plan to a specific example solution-did stem the variability. 
Programmers who needed to compensate for variation in background 
knowledge, skill, or other predispositions were supported by the Explainer 
tool and approach. 

The kind of support that the Explainer tool provides is critical to 
supporting software reuse and redesign. Increasingly, software developers 
are called upon to apply software components they did not author. Com­
prehension tools support collaboration between developers who never 
meet. 

5. DOMAIN ORIENTATION 

The third claim of 00 technology that we examine in this article is that 
00 systems are understandable (see Figure 3). This claim is well moti­
vated on the surface. The metaphor of communicating objects is a power­
ful one (Rosson & Alpert, 1990) that exploits our "natural" tendency to 
anthropomorphize (Wirfs-Brock, Wilkerson, & Wiener, 1990) and to cate­
gorize things into generalization structures. The understandability claim 
assumes that it is "natural" for developers and users (who are experts in the 
problem domain) to thi~k in 00 terms (at least as compared to more 
traditional structured languages). In other words, it should be natural for 
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developers and users to map their "worlds" into autonomous, communi­
cating objects with data and behavior and into generalization or inheri­
tance structures. This implies a clearer relation between the problem and 
the solution and improved communication between users and developers. 

The first implication is realized if the computational structures in the 
solution directly model problem domain concepts, so that the resulting 
system structures· more closely correspond to those of the problem do­
main. This correspondence between the structure of the problem and that 
of the solution reduces the conceptual distance between a developer's 
mental model of the problem and his or her mental model of the solution 
(Rosson & Alpert, 1990). This has been referred to as the "seamless" 
integration of analysis, design, and implementation (Henderson-Sellers, 
1992), which supports human problem-domain communication (Fischer & 
Lemke, 1988). 

The second implication results from the first. A closer mapping for the 
designer between problem and solution should also reduce the conceptual 
distance between the users' and the developers' mental models of the 
problem. Objects in the problem domain will have computational coun­
terparts in the solution (Fischer, 1987). This correspondence should im­
prove the communication between users and developers and presumably 
promote the development of systems that meet the users' needs. 

5.1. Where Current 00 Technology Falls Short 

Some of the authors of this article have been involved in teaching the 
00 approach for many years. In one graduate-level course on 00 devel­
opment, students are required to analyze, design, and implement a small 
system in Small talk/V Windows (Digitalk, Inc., 1991). One semester, the 
project was a shopping system for a gourmet food shop. None of the 
students had any previous experience with 00 methods or programming 
languages, although most had some previous analysis, design, and/or pro­
gramming experience (primarily COBOL). The students were given a textual 
deSCription of the problem and requirements of the system to be developed. 
ReqUirements included (among other things) that customers be able to 
browse items in the store and make purchases based on previous purchases, 
pre specified recipes and/or menus, and personalized shopping lists. 

Several techniques were used to gain insights into the students' progress 
during the semester: 

1. Anonymous journals were turned in biweekly, so that students 
could ask questions, make comments and suggestions, and vent 
frustrations without fear of reprisal. 

2. Students were able (but not forced) to present/discuss their prog­
ress-to-date, which often led to intense class discussions of various 
design issues and implications. 
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3. Lab sessions were provided in which students worked through a 
tutorial and were able to explore the Smalltalk systems with assis­
tance from classmates and teaching assistants. 

4. In their final project reports, the students were required to reflect on 
their learning experience. 

From these sources and an examination of their design diagrams and code, 
several observations were made. 

The students varied considerably in terms of which abstractions they 
viewed as "essential." The only classes agreed on by all students were 
Customer, Item, and Menu. There was a great deal of variability in the 
number and labels for other classes (although there were many other 
"things" described in the requirements specification). In addition, the 
generalization (inheritance) structures that were identified varied con­
siderably. Some students did not specialize or generalize the Item class 
at all; others created two subclasses, Food and Nonfood; others had 
several layers of subclasses below Item; and still others conceptualized 
Item and Service (e.g., recycling, cooking classes/tips) as subclasses of 
an abstract class, Product. There was some confusion over whether a 
shopping cart should be included as a class (to model the purchase-in­
progress) and, if so, if this was separate from the abstraction of a 
purchase. In general, even though the domain was familiar to all stu­
dents, it was difficult in many cases for them to identify what abstrac­
tions were relevant to the problem and whether or to what extent they 
should be generalized or specialized. This implies two problems-a 
vocabulary problem in naming concepts and a conceptualization prob­
lem whereby different analyses of the problem led to different solution 
frameworks. 

Other researchers have investigated and commented on these vocabu­
lary and conceptualization problems (e.g., Furnas, Landauer, Gomez, & 
Dumais, 1987). These problems reflect difficulties in modeling and com­
munication, which are not resolved simply by adopting an 00 approach. 
There are many 00 analysis and design methods that mention the prob­
lem of finding the objects in a domain (Monarchi & Puhr, 1992). Some 
methods provide weak, overly simplistic guidelines such as "Pick the 
nouns" in the problem description (e.g., Booch, 1991; Rumbaugh, Blaha, 
Premerlani, Eddy, & Lorensen, 1991; Wirfs-Brock et al., 1990). Other 
methods provide slightly more help by suggesting a look at devices, things, 
events, roles, sites, organizational units, and so forth (e.g., eoad & 
Yourdon, 1991; Shlaer & Mellor, 1988). More recently, techniques such as 
use cases Oacobson, Christerson, Johnsson, & Overgaard, 1992} and 
scripts (Rubin & Goldberg, 1992) have been suggested to help structure 
the developer/analyst's thinking about the problem, which in turn should 
facilitate identification of objects, but further research in this area is still 
necessary. 
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These observations highlight several problems underlying the claim: 
that 00 is understandable or natural. First, the mapping from problem to 
solution is not yet seamless. Although the mapping from problem to 
solution is smoother in 00 development than in structured development, 
not all 00 structures identified in the problem have a one-to-one corre­
spondence in the solution (Henderson-Sellers, 1992). For example, gener­
alization relations, such as the fact that a car is a kind of automobile, can 
be directly mapped into a Car subclass. which inherits structure and 
behavior from its superclass, Automobile. However, aggregation (part­
whole or composition) relations, such as the fact that an engine is a part of 
a car, are not as directly implementable. The semantics of part-whole 
relations (e.g., the fact that, if the car moves, its parts move also) must be 
implemented by the developer, whereas the semantics of generalization 
relations are built in though inheritance. Thus, although 00 development 
does improve the smoothness of transitioning from analysis to design to 
implementation, there is not always a one-to-one relation between prob­
lem and solution. 

This leads to a second limitation of the understandability claim-users 
and developers might both be thinking in terms of objects but not in terms 
of the same objects. Not all objects that the users conceptualize in the 
problem domain will necessarily be objects in the solution, and there will 
likely be other objects added to the solution that users do not see as 
relevant to their problem. Even if we assume that the users and developers 
can agree on the key abstractions or objects in the users' domain (in other 
words, we reduce the gap between their mental models of the problem 
domain to an "acceptable" level), there still needs to be a transition from 
the problem domain model to the solution. 

A third limitation is that it is not necessarily easy to find the "right" 
abstractions or object in a given domain. Reading various 00 analysis 
and design methodology texts tends to lead one to assume that recognizing 
or identifying the appropriate objects in a domain is straightforward-that 
the objects are "just there for the picking" (Meyer, 1989). In our experi­
ence, identifying the "right" abstractions for a domain can be the most 
difficult part of development. 

5.2. Beyond Object Orientation 

In a conventional (domain-independent) software environment, devel­
opers starting a new project typically have to work with low-level pro­
gramming constructs and methodologies. This forces them to focus on the 
raw material to implement a solution rather than to try to understand the 
problem. This contrast has been characterized as a mismatch between the 
system model provided by the software environment and the situation 
model of the software developer (Fischer, 1987; Pennington, 1987; van 
Dijk & Kintsch, 1983). We have studied domain orientation in a software 
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environment to bridge this gap by allowing domain-oriented concepts to 
evolve and thus allow developers to focus on abstractions in their problem 
domain and not on programming language concepts. We call the class of 
software environments that support problem-domain communication do­
main-oriented design environments, and we have studied the application of 
these environments in several domains (Fischer, 1994; Fischer et al., 1991; 
Lemke & Fischer, 1990). Each of these environments relies on a domain 
model. 

A domain model is generally recognized in software engineering as the 
end product of a domain analysis' process that is either "synthetic" or 
"evidentiary" (Prieto-Diaz, 1987). In synthetic domain analysis, a software 
developer starts with an informal description of one or more systems 
within an application domain, identifies aspects common across the sys­
tems, and models these with object classes and frameworks. In evidentiary 
domain analysis, a software developer starts with existing systems and 
attempts to identify common components through reverse engineering or 
"design recovery" (Biggerstaff, 1989). Our model portrays domain analysis 
as a combination of these two processes by emphasizing the aspect of 
evolution. In our model, evolution corresponds to the belief that domains 
are open-ended; future needs cannot be completely anticipated, and some 
problems are by nature ill-structured and require trial-and-error explora­
tion (Rittel, 1984; Simon, 1981). In the example, some classes and methods 
were postulated based on Project A in Figure 1. The new requirement in 
Project B to accommodate a different kind of thermometer resulted in a 
redesign of the domain model, and a Thermometer superclass was intro­
duced to capture the commonalties between the Digital Thermometer and 
Analog Thermometer classes. 

In a software development project, developers may separate compo­
nents into different domains; any single project may involve components 
from several domains. Some of the components are project specific; they 
belong to the primary or dominant domain. Others are project independent; 
they belong to supporting domains. Supporting domains can be valid appli­
cation (dominant) domains in their own right. The distinction is that they 
can also be used in constructing systems from different dominant domains. 
These domains form a hierarchy in which components from higher do­
mains can be implemented using components from lower domains. The 
basic concepts behind domain separation have been expressed as domain 
networks (Arango, 1988) and horizontal versus vertical domains. Figure 13 
illustrates a separation of dominant and supporting domains for the tem­
perature sensing example. In this project, all the classes and frameworks 
could be classified as dealing with this temperature sensing. However, as 
related projects are implemented, classes begin to develop to support 
different kinds of thermometers, potentially different sensor interfaces, 
and communications among the thermometers, sensors, and host devices. 
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Figure 13. Dominant and supporting domains in projects. Any single software devel­
opment project may involve several domains. As they develop domain models, 
software developers must separate components. This separation leads to dOminant 
domains that are identified with the statement of a project (e.g., temperature sensing) 
and supporting domains that are reusable in multiple projects. For example, some 
installations have a command in Unix that samples an outside thermometer; the basic 
framework is the same as for sensing temperatures in furnaces. 
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The creation of a domain-oriented software environment is, of course, 
also a software development project. We have developed such environ­
ments for several dominant domains, including graphics software design, 
kitchen floor plan design, and local area network design. In so doing, we 
identified frameworks and classes in supporting domains, including mech­
anisms for locating, comprehending, and modifying design components 
and knowledge. 

This adds another dimension to the concept of dominant and support­
ing domains (see Figure 14). Namely, once separated, these supporting 
domains are available to assist end users. For example, a tool for modify­
ing object classes in a software design environment may be incorporated 
into the system for temperature sensing. End users of the system could use 
the capability to further modify the thermometer classes. The distinction 
between development environment and application project begins to fade 
along with the gap between system and situation models. 

These observations have motivated the evolutionary model of 00 
development (Figure 1) in several ways. We do not claim to know how to 
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Figure 11. Supporting domains in domain-oriented design environments. The devel­
opment of domain-oriented design environments explored dominant domains of 
graphics software design (Fischer, Henninger, &. Redmiles, 1991), kitchen floor plan 
design, and local area network (LAN) design (Fischer et al., 1992). Domain-indepen­
dent process support for location, comprehension, and modification of designs 
evolved as supporting domains. 
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find the appropriate abstractions, but we recognize that it is a difficult 
process and encourage the analysis of both dominant and supporting 
domains (see Figure 13). Domain orientation combined with evolution 
support across multiple applications will help to flush out the key abstrac­
tions in a domain. Current 00 programming environments are domain 
independent and include mostly low-level components (e.g., sets, arrays, 
strings, characters, integers) and supporting domain components (e.g., 
graphical user interface objects) that are still far removed from the prob­
lem domain. Domain-oriented design environments can further help to 
reduce the gap between users and developers by providing both with an 
environment whose elements are domain-oriented abstractions (thus forc­
ing a somewhat restricted vocabulary and not providing low-level abstrac­
tions for the developer to "drop down into"). Domain-oriented 
environments also hide the lower levels of detail from the developer, so 
that the mapping between problem and solution should be smoother. 
Section 5.3 describes the Knowing-In-Design (KID) design environment, 
which instantiates this approach. 
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5.3. Knowing-In-Design: A Tool to Support Domain Orientation 

During the past 5 years, we have developed and evaluated various 
prototype systems of domain-oriented design environments to study issues 
of problem-domain communication and the integration of problem fram­
ing and problem solving (Fischer et al., 1991; Fischer, McCall, & Morch, 
1989; Lemke & Fischer, 1990). Design environments support users in 
applying domain knowledge and provide them with various feedback 
mechanisms. The KID design environment supports kitchen designers in 
the development of floor plans (Nakakoji, 1993; Nakakoji & Fischer, in 
press). KID consists of several subsystems. KID-Construction, shown in 
Figure 15, supports construction of a kitchen floor plan. The palette of 
KID-Construction contains domain-oriented building blocks such as 
sinks, stoves, and refrigerators. The designer can create a design by 
applying parts from this palette, which supports design by composition. 
The palette elements are instances of classes, and users can apply compo­
nents stored in a class library without worrying about the underlying 
programming substrate. Another way users can create designs is through 
design by modification or redesign of existing catalog examples. 

KID-Specification is another KID subsystem; it allows kitchen design­
ers to specify their abstract design requirements and design intentions (see 
Figure 16). Designers can select answers presented in the Questions win­
dow. Such questions, answers, and associated arguments are structured 
based on issue-based information systems (IBIS; Conklin & Begeman, 
1988) and are gradually accumulated by users through actual design tasks. 
The summary of currently selected answers appears in the Current SpeCi­
fication window. Each answer is accompanied by a slider that allows 
designers to assign a weight representing the relative importance of the 
answer (scale ranges from 1 to 10, with 10 indicating most importance). 
Further descriptions of the mechanisms can be found in Nakakoji (1993). 

A unique feature of KID is its ability to deliver information relevant to 
users' current tasks in terms of the domain semantics. Critics (see Messages 
pane in Figure 15) identify potential problems in a design (Fischer, 
Nakakoji, Ostwald, Stahl, & Sumner, 1993). Critics' knowledge about 
kitchen design includes design principles based on building codes, safety 
standards, and functional preferences specified through KID-Specifica­
tion. If a design principle or heuristic (e.g., "If you are a single-person 
household, you may need a simple, single-bowl sink") is violated, a critic 
will fire and display a critique in the Messages pane, identify a pOSSibly 
problematic situation, and prompt the user to reflect on it. 

Another rule-based information delivery mechanism suggests catalog 
examples for the user to consider. KID automatically orders catalog exam­
ples according to the specified requirements in KID-Specification and 
presents them to users for reuse and redesign (see the Catalog window in 



Figure 75. Domain orientation in KID. Building blocks (design units) are selected from the Palette and are moved to desired locations inside the Work 
Area. Designers can reuse and redesign complete floor plans from the Catalog. The Messages pane displays critic messages, which are triggered by 
design changes that violate hard or soft constraints, Users may click on critic messages or catalog entries to access additional explanations (see Figure 
16). Catalog examples in the Catalog pane are automatically ordered according to the requirements of the current coristruction. These requirements 
are determined either by the elements in the current Work Area or issues selected in a Specification window {Figure 16). 
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Figure 76. Specification and explanation to support information delivery. KID provides an explanation about interdependency between a design 
requirement and a critic (e.g., the critic triggered in Figure 15). Argumentation and issues related to the current design can be reviewed and can 
be used to further specify design goals. 
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Figure 15). KID uses critiquing rules to compute the appropriateness of 
each catalog example and provides mechansims to describe why a partic­
ular catalog example is inferred to be appropriate to the requirements 
(Nakakoji, 1994). 

In one study (Nakakoji, 1993), eight novices and one expert in kitchen 
design used KID to develop a design for a kitchen to fit the following task 
situation: Both husband and wife have jobs; during weekdays, the wife 
does most of the cooking; and, during weekends, the couple cooks meals 
together. Subjects were encouraged to think aloud (Ericsson & Simon, 
1980) by making statements to the experimenter, and, in three trials, 
subjects were observed through constructive interaction (Miyake, 1986) in 
which they were paired to encourage verbalization. A postexperiment 
interview collected additional comments, and the protocols and comments 
were analyzed to evaluate the benefit of KID. 

Overall, the study indicated that KID augmented the users' design 
process. The novices unanimously acknowledged that KID provided them 
with useful information about kitchen design, and, although the expert 
responded that her final design was not affected by using KID, she noted 
that KID made her reflect on information she might not otherwise have 
considered (Nakakoji & Fischer, in press). More specifically, KID sup­
ported the integration of problem framing and problem solving and the 
incremental understanding of a task. The unexpected appearance of cri­
tiques caused subjects to reflect on their task and to attend to the associated 
explanation (Figure 16). Moreover, subjects often argued against a design 
principle that was used to deliver information, and they modified the 
associated rules (arguments). Not only the delivered knowledge itself, 
but also the inferred relevance by the system, which provided informa­
tion about dependencies between the specification and construction, 
helped give subjects direction in reframing their partial construction 
and specification. 

KID demonstrates many of the goals for domain orientation presented 
in our model-namely, the analysis of dominant and supporting domains 
into abstractions that users can access in developing a new project. The 
classes in this domain are represented by the elements of the palette. 
Completed designs captured as catalog entries represent instantiations of 
a kitchen floor plan framework. The less obvious, supporting domains 
include components that can be useful across a spectrum of design do­
mains-for example, mechanisms for supporting rule-based critics, catalog 
suggestion, explanation, and end user modification. 

6. CONCLUSIONS 

The problems software developers face in applying 00 technology can 
be understood only by looking beyond the technological possibilities and 
beyond the context of individual developers and projects. 00 technology 



114 FISCHERETAL. 

makes possible software e"-olution, reuse and redesign, and dom""n . 
• . • <U onen-

tatIOn. However, the...'€ goals cannot always be achIeved in practice. S ft-
~a~e. development is . a . cooper.ative d~sign process among m:ny 
mdividuais and many ~as of artifacts. WIth respect to reuse and rede­
sign, the cooperation otten spans multiple projects and individuals who 
never meet. 

We have presented a detailed model of software development that 
focuses on the three aspects of evolution, reuse and redesign, and domain 
orientation. In its detaiL the model is based on 00 technology, but more 
generally it has elements of a model of long-term cooperative design. The 
model represents a cognitiye model by being developed from the perspec­
tive of software developers and the problems they face. We have exam. 
ined firsthand obseryations that have motivated the model as well as 
studies by other researchers. 

The scale and scope of the model and the number of hypotheses in it 
make it difficult to e .... aluare in a conventional empirical study. In particu­
lar, no single software de...-elopment environment exists that embodies all 
the technical and orgarnz3.rional aspects of the model. However, evidence 
observed in unstructured settings and an assessment of the current state of 
software engineering i::1d.icate not only the heed for but a movement 
toward environments r1:3.t support this model. 

The varied experience and prototype tools contributed by the different 
authors of this article ha .... e proved helpful in corroborating the model. 
Many specific hypotheses have been verified in prototype systems. Met­
rics help less theoretical developers identify good abstractions. Design 
examples with perspectiye explanations reduce variability of performance 
in sample groups. Techniques of domain orientation make software acces· 
sible to noncomputer professionals and make a class of problems accessi· 
ble to novices. 

00 technology is not a "silver bullet" (Brooks, 1987) that will eliminate 
the "software crisis." It is an enabling technology that provides a fotlllda 
tion for the next generation of paradigms in support of complex computa· 
tion. Successes toda\' come from the talents and dedication of people 
practicing good desi"gn \\-ith the tools at their disposal. The model and 
tools we have presented push the technology in a direction that is more 
inclusive of people as \,'ell as of problem domains. 
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