
~ University of Colorado at Boulder

Department of Computer Science

ECOT 7-7 Engineering center
Campus Box 430
Boulder. Colorado 80309-D430
(303)492-7514. FAJ(: (303)492-2844

Programmable Design Environments:
Integrating End-User Programming with Domain-Oreinted

Assistance

Michael Eisenberg and Gerhard Fischer

Department of Computer Science and Institute of Cognitive Science
Campus Box 430, University of Colorado, Boulder, CO 80309

(duck, gerhard)@cs.colorado.edu; (303) 492-8091

In CfU'94 Conference Proceedings, Human Factors in Computing Systems
(Boston, MA, April 1994), ACM, pp. 431-437

ABSTRACT

Programmable design environments (PDEs) are computational environments that integrate the
conceptual frameworks and components of (a) design environments and (b) programmable
applications. The integration of these two approaches provides elements (such as software "critcs"
and "query-able objects") that assist users in learning both the application and its domain; in
addition, an interactive "application-enriched" end-user programming environment stresses the
values of expressiveness and modifiability. By way of illustration, we present a newly-developed
programmable design environment, SchemeChan, for the domain of charting and information
displays.

Acknowledgments

The authors would like to thank the members of the Human-Computer Communication group at
the University of Colorado, who contributed to the conceptual framework and the systems
discussed in this paper. The research was supported the National Science Foundation under
grants No. IRI-9015441 and MDR-9253245. The first author is supported in addition by a
National Science Foundation Young Investigator grant (IRI-9258684).

1 Boston, Massachusetts USA • April 14-28, 1994 H F - C - ~_' uman actors m omputmg Sy~tems ..

Programmable Design Environments:
Integrating End-User Programming with

Domain-Oriented Assistance
Michael Eisenberg and Gerhard Fischer

Department of ComJ:uter Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
(duck, gerhard)@cs.colorado.edu; (303-) 492-8091

ABSTRACT
Programmable design environments (PDEs) are
computational environments that integrate the conceptual
frameworks and components of (a) design environments
and (b) programmable applications. The integration of
these two approaches provides elements (such as software
"critics" and "query-able objects") that assist users in
learning both the application and its domain; in addition,
an interactive "appl ic ation-enriched" end-user
programming environment stresses the values of
expressiveness and modifiability_ By way of illustration,
we present a newly-developed programmable design
environment, SchemeChart, for the domain of charting
and information displays.

KEYWORDS
Programmable design environments, end-user
programming, programmable applications, domain­
oriented design environments, critics.

INTRODUCTION
In recent years. familiarity with software applications has
become a sine qua non for professionals in a variety of
complex domains: architects, electrical engineers,
biochemists, statisticians. and film directors (among
many others) all now depend for their livelihood on the
mastery of various collections of applications_ These
applications. in order to be at all useful, must provide
domain workers with complex. powerful functionality;
but. in doing so, these systems likewise increase the
cognitive cost of mastering the new capabilities and
resources that they offer. Moreover. the users of most of
these applications soon discover that "software is not
soft": i.e., that the behavior of a given application cannot
be changed or meaningfully extended without substantial
reprogramming. The result is that most applications offer

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CHI94-4/94 Boston. Massachusetts USA
e 1994 ACM 0-89791-650-6/94/0431...$3.50

431

only a rather illusory and selective power: new users are
not provided with support in learning and mastering the
features of the application. while experienced users are not
given the expressive range needed to augment,
personalize, and rethink those features.

Over the last few years. we and other researchers have
investigated conceptual frameworks to address this
problem. This paper describes. and illustrates by example.
one such framework: a strategy for the creation of
programmable design environments (PDEs). Briefly.
programmable design environments are computational
systems that integrate elements of two software design
paradigms that we have each propounded separately­
namely. domain-oriented design environments [6. 7. 8.9)
and programmable applications [5). The former paradigm
stresses the utility of "scaffolding" within applications­
techniques (such as software "critics") that assist new
users in gaining expertise with an application and its
domain. The latter paradigm advocates the inclusion of
end-user programming environments within applications
(and emphasizes in particular the combination of
programming with direct manipulation interfaces).

The following section of this paper presents (in somewhat
polemical fashion) the motivation behind the development
of PDEs, and argues the potentially ominous nature of
current observable trends in the realm of commercial
software design. The third section describes the
architecture of PDEs. and discusses in greater detail their
evolution from the two component frameworks mentioned
above. The fourth section presents, by way of illustration,
a system named Scheme Chart: this is a PDE for the
creation of charts and information displays. We conclude
in the fifth section with a discussion of ongoing and
related work.

THE MOTIVATION BEHIND PDES
A perusal of the local newsstand-and the inevitable
monthly crop of magazines devoted in large part to
software advertisements and reviews-provides a
compelling picture of burgeoning complexity in the
evolution of software applications. One recent ad for a
popular graphics program. for instance, noted that the
latest release of the program had added over 100 "feature
enhancements"; a subsequent review of the same program

g Human Factors in Computing Systems

noted that it "packs in the features." Other recent reviews
include similar phrases: "dozens of new commands and ...
features"; "packed with page-layout features"; "more­
sophisticated scheduling features"; and so forth.! It is in
fact rare to tind a descriprion of a newly-updated program
that does not report an increase in the number of features,
or that reports such an increase as anything other than a
distinctly positive development.

Depending on one's view, however, it is possible to read
both good and bad news into these reports. On the one
hand, the reviews and advertisements give evidence of an
astonishing pace of development in application software,
and an outpouring of creativity in design. But there is a
disturbing note as well: will the sixth iteration of our
paint program eventually include 500 new features; and if
so, how will users ever accommodate them into their own
work? Moreover, will those 500 new features really
improve our understanding of (e.g.) graphics or design­
or will they simply overwhelm us with choices that we
can never hope to explore?

The culture of software development reflected in these
reports thus places a heavy emphasis on the elaboration of
large, varied, and extensive feature sets. Clearly, some of
these newly-added features will prove useful; but
collectively, they signal a troubling trend in the
development of applications. On the one hand, they
promote a style of use in which the endless exploration of
new features takes on more importance than the patient
creative mastery of an expressive medium lending itself to
abstraction and composition; at the same time, they
distract designers' attention from the more fundamental
task of constructing tools that offer the possibility of
long-term growth and creativity. The impression
ostensibly conveyed by the popular computer press is one
of a plethora of ever-expanding choice; yet the feeling that
often results is one not of freedom but of overload. 2
Moreover, the problems posed by this style of software
design are felt both by beginning users (who are daunted
by the sheer quantity of features provided) and by long­
term users (who. over time, are inevitably frustrated by
the absence of some advanced feature that the software
designers neglected to include).

PROGRAMMABLE DESIGN ENVIRONMENTS
Considerations such as these reflect the motivation behind
the development of PDEs. While the growth of
complexity in software applications may be an
unavoidable (and in some ways beneficial) trend, both

I Sources for these quotes are PC Computing, July 1993;
Byte, September 1993; PC World, May 1993; Mac
Computing, 1993: and MacUser, June 1993, respectively.
2In the terminology of Norman [18], these expanding
feature sets might be said to support a style of use that
stresses "experiential cognition" at the expense of
"reflective cognition."

432

CHI '94 I "Celebrating Interdependence H

advanced and beginning users need techniques with which
to cope with that complexity.

For the benefit of long-term, advanced users, we argue
that PDEs should include application-specific interactive
programming environments, as eloquently advocated by
Nardi [17):

"We have only scratched the surface of what would be
possible if end users could freely program their own
applications ... As has been shown time and again. no
matter how much designers and programmers try to
anticipate and provide for what users will need, the effort
always falls short because it is impossible to know in
advance what may be needed End users should have the
ability to create customizations, extensions, and
applications ... " {po 3}

Pursuing Nardi's argument, the provision of end-user
programming environments may thus be seen as one
means of combatting the explosion of features described
in the previous section: if advanced users are given a
medium in which to build their own extensions as each
task requires, there is no need for the (in any event futile)
attempt to anticipate every possible task by means of an
associated special-purpose interface feature.

Basing an application-design strategy solely on the
inclusion of end-user programming environments,
however, is insufficient; arguably. programming
environments might be seen not as an antidote to
complexity, but rather as an additional source of
complexity in applications. For beginning users, then, it
is important for PDEs to include "scaffolding" elements
that assist the user both in learning the application itself
and in learning the (potentially complex) domain around
which the application is built.

In summary, then, PDEs are designed to cope with
complexity from a variety of different angles by
integrating a number of distinct elements: (a) an
"application-enriched" programming environment, (b) a
"critiquing component" that monitors the user's work and
occasionally offers suggestions for changes or tutorial
assistance, (c) a "catalog" of illustrative or exemplary
work that the user can employ as a starting point for his
or her own work, and (d) embedded tutorial components
that the user can access for learning about the application
or domain. The first of these elements is primarily aimed
at alleviating the problems of complexity faced by the
advanced user; while collectively, the last three of these
elements might be viewed as alleviating complexity for
the beginner.

The Evolution of Programmable Design
Environments
Programmable design environments represent not only the
integration of various software-based elements; more
broadly, they represent a combination of two strategies for
application design that we have propounded separately-

•

Boston. ~1assachuseus USA • April 24-28. 1994

programmable applications and domain-oriented design
environments. These two "ancestor paradigms" merit
some discussion here. since the development of our
current interest in PDEs was motivated in large part by
considering the respective strengths and weaknesses of
these two individual approaches.

Programmable applications are systems that combine
direct manipulation interfaces with interactive
programming environments. SchemePaint [5] is a
working prototype and illustration of a programmable
application: it is a graphics application that combines a
"Macintosh-style" direct manipulation interface with a
graphics-enriched Scheme programming environment. The
direct manipulation portion [12] of the application is
designed to help users explore the basic functionality of
the system and employ their "extra-linguistic" skills of
hand-eye coordination. The programming environment is
designed to provide users with extensibility and expressive
range. This portion of the application is constructed
around a collection of embedded graphics "sub-languages"
(e.g., a "turtle language", a "dynamical systems
language", a "tiling-patterns language", and so forth) that
allow users to express graphical ideas by writing short,
simple programs. The use of SchemePaint by artists has
shown that they can create works that would be near­
impossible to achieve either by "pure" direct manipulation
or by "pure" programming alone.

While programmable applications do, then, overcome
some of the limitations of stand-alone direct manipulation
systems and end-user programming environments (for a
more detailed analysis see [5]), they have their own
characteristic shortcomings. First, programmable
applications provide insufficient support and feedback to
help the user achieve quality artifacts (that is, the use of
SchemePaint has shown that while gifted artists can do
interesting things with it, this is far from true for less
experienced and talented users). Second, these applications
provide little support in learning the programming
language (in the current case, Scheme), or in assimilating
useful programming patterns ("cliches") related to the
particular domain-specific sub-languages provided with the
system. Finally, programmable applications such as
SchemePaint do not support case-based "memories" of
good designs (thereby limiting support for design by
modification).

Domain-oriented design environments are systems that
integrate construction and argumentation (in Schoen's
terminology. they support "reflection-in-action" [22]).
This integration is made possible by the presence of
software critics [7] that analyze an artifact under
construction, signal breakdown situations, and provide
entry points to the space of relevant argumentation
directly relevant to construction situations. The
interweaving of construction and argumentation is critical:
stand-alone argumentation systems (without the presence
of an artifact as the focus of argumentation) [2] are unable
to contextualize discussion to the design task at hand,

433

Human Factors in Computing Systems g
while stand-alone construction systems provide no
computational support for analyzing. commenting upon,
and critiquing designs.

While design environments have proven to be a powerful
concept in a large number of domains [6], they
themselves are not free of characteristic problems. Their
main shortcomings reside in the problems alluded to in
the quote from Nardi [17] earlier: namely. they provide
inadequate support for design tasks not foreseen by the
creator of the design environment, and thus fall short in
transcending the limits of envisioned activities.

These two approaches, then, appear to lend themselves
well to an additional step of conceptual integration.
PDEs, by combining elements of both design strategies,
are intended to overcome their respective limitations.
Unlike programmable applications, PDEs include
critiquing, catalog, and tutorial elements; unlike design
environments. PDEs include an end-user programming
language. The following section describes a working
prototype of this concept.

A PROGRAMMABLE DESIGN ENVIRONMENT
FOR CHART CREATION
Scheme Chart is an application for the creation of charts,
graphs, and information displays.3 The program includes
a direct manipulation interface for selecting the type of
chart that the user wishes to create, for editing newly­
created charts by hand, and for performing a variety of
standard graphics functions (such as filling and drawing
lines); an interpreter for an extended Scheme language
suited for the construction of a wide variety of chart types;
and a number of critiquing, sample-selection, and tutorial
elements (to be described shortly).

Figure 1 depicts a screen view of SchemeChart in the
course of a typical chart-design task. Briefly, the
SchemeChart window is the area in which new charts
are constructed and edited; the Paint Tools window
presents a palette of standard toolS for choosing color, pen
width. and so forth; the Charts window provides an
initial "coarse-grained" selection of chart types from
which to choose (e.g., bar charts, scatter plots. pie charts,
etc.); the Samples window presents more specific
varieties of the charts selected in the Charts window; and
the transcript window provides an interpreter for the
enriched Scheme system. These windows are always
displayed and thus comprise the "standard set" for the
application; the figure also shows a window labelled
Trapezoidal Bar Chart Examples which appears in
the course of the specific scenario to be discussed below.

In the Figure I scenario, the user has decided that she
wishes to construct a bar chart; she selects the bar chart
icon from the window labeled Charts in the figure. Once

3The application is written in MacScheme (Lightship
Software, Mountain View, CA) and runs on all Apple
Macintosh Computers.

I

,
I r

:1

g Human Factors in Computing Systems

this basic type is selected, a variety of specific bar chart
variations is iconically depicted in the Samples window.
(These include charts with multicolored bars, bars going
above and below the horizontal axis, bars accompanied by
"y-axis tick marks" to facilitate the reading of height
values, and so forth.) The user selects a particular bar
chart icon from the set presented-this one depicting
"trapezoidal" bar charts with non-horizontal uppermost
lines.

Once the selection of trapezoidal bar charts has been
performed, the user can access, vIa menu selection, a
scrollable text window containing an explanation of the
icon's meaning (along with some tutorial description of
the rationale behind using this particular type of chart-in
this instance, trapezoidal bar charts are useful for depicting
maximum and minimum range values as opposed to the
single data values denoted by standard bar chart levels).
The user can similarly request a text window in which
sample SchemeChart procedures and expressions are
shown for the creation of bar charts of this type. This is
the scenario shown in Figure I : here, the user has
examined the sample language expression in the window

CHI '94 • "C elebraling IlIlerdependence"

labelled Trapezoidal Bar Chart Examples . The
sample code in this window can be edited (if so desired)
and evaluated; the user has in fact evaluated the original
(unchanged) sample expression and plotted the resulting
chart just to get a sense of the sample procedure's
meaning. This technique of programming via example
modification is similar to that advocated by Lewis and
Olson [13], and illustrated by Maclean et at. in their
work on editable "interface buttons" [15]. The use of a
browsable application-specific iconic "catalog" to locate
examples is designed to address the problems of example­
location raised by Nardi [17J.

Figure 2 shows a continuation of this scenario. The user
has first edited the original trapezoidal bar chart example
to include new data values; she then reevaluates the
newly-edited expression. When this action is performed,
the user receives an "alert signal": the exclamation point
in the Charts window flashes several times to indicate
that a system critic has detected a potential problem in the
graph under construction. (In this case, the critic IS

associated with the particular procedure being invoked.)

C File Edit Commllnd Window Generlll Turtle Help

Jt~~;n~$~Crl~t[i~§;~~iiii~§i~§iii~~ii~~---
)- » (s tar t -schemechOr t)
done
»> <plot-chcrt trop-b<rchartl)
done
>))

Trapezoidlll Bar Chart EHamples
• MAKE -SIMPLE - TRAPEZOID-BAR-CHART

category-nllme velue-nome
categories value-set-itst colors

Used for making II trepezoldel ber chert.
Each element of value-set-list consists
of the set of numbers determining the
the top edge of the trapezoid,
.fExemple:
(define TRAP-BARCHART I
(MAKE -SIMPLE - TRAPEZOI D-BAR-CHART

"Events" "PoInts"
'("swimming" -raCing")

SfhemeChllrt

Figure 1. A screen view of the SchemeChart application. Charts are created in the SchemeChart window at
bottom right; the Paint Tools window provides standard paint functionality; the Charts window provides an
overview of standard chart types from which to choose; and, for a given graph choice, a catalog of specific
examples is provided in the Samples window. Finally, the transcript window at top provides an 'application­
enriched" Scheme interpreter. In this figure , the user has selected a particular (trapezoidal) type of bar chart
from the Samples window, and has used a menu option to access relevant programming examples for this type
of chart; the examples are shown in the window labelled Trapezoidal Bar Chart Examples. The user has
evaluated the sample expression to produce the trapezoidal bar chart shown.

434

Boston, \lassJchusens USA • :\pril 2+.28, 1994

The user now has the option of ignoring the critic's
intrusion or requesting (again via menu selection) to view
the text associated with the newly-invoked critic. In
Figure 2, the user has in fact elected to request the critic's
response; the Large Bar Chart Value Differences
window thus invoked presents the system's critique of the
newly-evaluated expression. In this case, the discrepancy
between the two bars to be plotted (more accurately. the
discrepancy between the average values of the smaller bar
and larger bar) is too large to warrant presentation in a
bar chart, which typically is used to display more
moderate distinctions between values. The critic goes on
to suggest that an alternate (e.g. logarithmic) vertical
scale might be preferable for displaying these values , In
Figure 2. the user has responded by redoing Che original
language expression so that it plots the natural logs of the
given numeric values; when this rewritten expression is
now evaluated, the flashing critic alert does not appear.
thus indicating that the system has found no reason to
suggest changes in the user's construction.

HUn1:m htors in Computing Systems g
In Figure 3, the user has continued her work by using the
system's "query mode" (denoted by the question-mark icon
in the Charts window). Here, the trapezoidal bar chart
has been plotted; by selecting the query mode option. the
user can now select (via mouse) portions of the newly­
drawn chart. In Figure 3, the user has dragged the mouse
over the y-axis of the graph; the system highlights the
axis to show that it is a "query-able" object. When the
mouse button is released at this point the user is presented
with a text window listing a variety of SchemeChart
procedures that can be used to change axes (e.g .• by
changing their length. color, or starting and ending
points ; selecting the given procedure name yields further
description), Similar procedure-description windows may
be viewed for (among other elements) axis labels and tick­
marks; thus. by invoicing the query mode the user is able
to work "backward" from a newly-created artifact to the
relevant portions of the application'S language vocabulary,
This technique is similar to that developed by Redmiles
[20) in the context of examining programming examples
for software reuse.

Trflpezoidfll 8f1r Chflrt EKomples
Used for milking a trapezoidal bar chart.
Each element of vlllue-set-list conSists
of the set of numbers determining the
the top edge of the trllpeZQld .
.fExllmple:
(define TRAP-BARCHART 1
(MAKE -SIMPLE - TRAPEZOID-BAR-CHART

"Events" "POints"
'(-swimmlng" "reel ng")
'«2 3) (300 360))))

Figure 2a, The user edits the sample expression in the window at left to create a new trapezoidal bar chart; when this new
expression is evaluated, the "critic alert signal" (the exclamation point in the Charts window) flashes several times to
indicate that a potential problem has been spotted with this newly"created chart.

large Bar Chart Ualue Differences SchemeChart

You might went to try a logorithmlc value
scale for these value sets. The average set
values are relatively distent to be
aistinguisheo within a oar chart :
«2 3) (300 360»

Trapezoidal Bar Chart EH8mpies
Eech element of value-set-list consists
of the set of numoers determining t he
the top eoge of the trepezold,
,(Exomple
(define TRAP-BARCHART I
(MAKE -SIMPLE - TRAPEZOID-BAR-CHART

"E vents" "Log Pts"
'("swimming" "racing')
(list (mop l og '(2 3» (mop log '(300360»»)

Figure 2b. The user requests the critic message (at top left), which indicates that the differences between plotted bar chart
values is extremely large in this case; the critic suggests a logarithmic value scale. The user rewrites the expression (using
the Scheme log function to alter the plotted numeriC values) and plots the new chart at right.

435

iI' ;
, i
:, ,

.! ; f

r
I

g Human FJc[ors in Computing Systt'ms

RHis-Related Procedures
change-axis-length
expand-axis
shrink-axis
change-axis-color
chenge-exis-start-pt
change-axis-end-pt

CHI '9~ • "e c/ebruring Interdependence"

SchemeChlut

Figure 3. Here, the user selects "query mode" (the question mark icon in the Charts window). By dragging the mouse over a
particular element of the newly-created graph (in this case, the y-axis), the user can access a list of language procedures
relevant to the manipulation of this element.

In summary, then, the programming environment within
SchemeChart-containing as it does an enriched Scheme
dialect for the representation and display of chart objects­
provides a medium in which advanced users can create a
wide variety of designs4; while the system's critics, iconic
catalogs, menu-accessible tutorial material, and "query­
able objects" provide means for learning both about the
language and about appropriate techniques (or at least
techniques comprising a form of conventional wisdom
[21,23]) for designing charts and graphs.

ONGOING AND RELATED WORK
As a software-design strategy, the notion of PDEs reflects
(and represents a response to) a variety of influences from
related work. In providing user-accessible programming
languages. PDEs reflect an outlook similar to those of the
Logo (19] and Boxer (4] language-design efforts (though
with a greater emphasis on application construction and
domain orientation) . In this same spirit, the decision to
employ Scheme as the base language for our PDE-as
opposed to some application-specific ad hoc language-is
admittedly controversial, though the arguments
surrounding this issue are far from clear-cut [5]; the choice
of Scheme inevitably reflects the style and influence of
Abelson and Sussman (I]. and their argument for creating

4In fact. the language has been used to generate a variety
of advanced special-purpose graphs including 3d bar and
surface charts. bar charts with "fading colors" to indicate
uncertainty. triangular charts, and many others.

436

interactive "embedded languages" (domain-enriched
dialects) that exploit an underlying general-purpose
language environment. Again, many of the specific
decisions in SchemeChart diverge from those, e.g., of the
"programming-by-example" community [3] (in that
SchemeChart provides an explicit programming
language); but the ideals of providing users with
techniques 'for modifying and extending applications are
shared in both approaches. Mackay [14] and Gantt and
Nardi [101 respectively provide cautionary and encouraging
empirical case studies of how user-modifiable systems are
employed and appropriated within organizations. Finally ,
in their focus on integrating critiquing, argumentation.
and design activities, PDEs reflect most strongly the
theoretical framework of Schoen [22], who portrays
design activity as productive interplay between both a
tacit and formalized (or verbalized) understanding of
designs under construction.

PDEs. as complex applications in their own right, raise
many issues involving usability and learning (e.g., how
users learn programming languages and application
domains) which we have begun to investigate; as in our
earlier efforts, we expect user studies to prove invaluable
both in rethinking our ideas and exposing our mistakes .
Our hope is that PDEs can eventually suggest means for
mitigating (if not, in a perfect world, resolving) the
apparent tension between expressiveness and learnability
in application design .

Boston, Massachusetts USA April 24-28, 1994

ACKNOWLEDGMENTS
The authors would like to thank the members of the
Human-Computer Communication group at the
University of Colorado who contributed to the
conceptual frameworks and systems discussed in this
article. The research was supported by the National
Science Foundation under grants IRl-9015441 and
MDR-9253425. The first author is supported in addition
by a National Science Foundation Young Investigator
grant (IRI-9258684).

REFERENCES
1. Abelson, H. and Sussman, G.J., with Sussman, J.
Structure and Interpretation of Computer Programs. MIT
Press, Cambridge, MA 1980.

2. Conklin, 1. and Begeman, M. gIBIS: A Hypertext Tool
for Exploratory Policy Discussion. ACM Transactions
on Office Information Systems, Vol. 6, No.4, October
1988, pp. 303-331.

3. Cypher, A. ed. Watch What I Do. MIT Press,
Cambridge, MA 1993.

4. diSessa, A. and Abelson, H. Boxer: A Reconstructible
Computational Medium. Communications of the ACM,
Vol. 29, No.9, September 1986, pp. 859-868.

5. Eisenberg, M. Programmable Applications: Interpreter
Meets Interface. Artificial Intelligence Laboratory
Technical Report 1325, MIT, 1991.

6. Fischer, G., Grudin. J., Lemke, A.C., McCall, R.,
Ostwald, J. , Reeves, B. and Shipman, F. Supporting
Indirect, Collaborative Design with Integrated Knowledge­
Based Design Environments Human Computer
Interaction, Vol. 7, No.3, 1992, (in press).

7. Fischer. G., Lemke, A.C., Mastaglio, T. and Morch,
A The Role of Critiquing in Cooperative Problem
Solving. ACM Transactions on Information Systems,
Vol. 9. No.2, 1991, pp. 123-151.

8. Fischer, G., Lemke, AC., McCall, R. and Morch, A.
Making Argumentation Serve Design. Human Computer
Interaction, Vol. 6, No. 3-4, 1991, pp. 393-419.

9. Fischer, G., Lemke, AC. Construction Kits and
Design Environments: Steps Toward Human Problem­
Domain Communication. Human-Computer Interaction,
Vol. 3, No.3, 1988, pp. 179-222.

10. Gantt, M. and Nardi, B. A. Gardeners and Gurus:
Patterns of Cooperation Among CAD Users. CHI '92
Conference Proceedings. pp. 107-117.

11. Girgensohn. A. End-User Modifiability in
Knowledge-Based Design Environments. Technical

437

Human Factors in Computing Systems g
Repon, Department of Computer Science. University of
Colorado CU-CS-595-92. 1992.

12. Hutchins, E.L.. Hollan, J. D. and Norman. D. A.
Direct Manipulation Interfaces. In D.A. Norman. S.W.
Draper (eds.), User Centered System Design, New
Perspectives on Human-Computer Interaction. Lawrence
ErIbaum Associates. Hillsdale. NJ, 1986, pp. 87-124.

13. Lewis, C. and Olson, G. Can Principles of
Cognition Lower the Barrier to Programming? In
Empirical Studies of Programmers, Second Workshop.
Olson, G.; Sheppard, S.; and Soloway, E. eds. Ablex, NJ
1987

14. Mackay, W.E. Triggers and Barriers to Customizing
Software. CHI '91 Conference Proceedings, pp. 153-160.

15. MacLean, A.; Carter, K.; Lovstrand, L.; and Moran,
T. User-Tailorable Systems: Pressing the Issues with
Buttons. CHI '90 Conference Proceedings, pp. 175-182.

16. McCall, R. PHI: A Conceptual Foundation for
Design Hypermedia. Design Studies, Vol. 12, No.1,
1991, pp. 30-41.

17. Nardi, B. A Small Matter of Programming. MIT
Press, Cambridge, MA 1993.

18. Norman, D. A. Things That Make Us Smart.
Addison-Wesley Publishing Company, Reading, MA
1993.

19. Papert, S. Mindstorms. Basic Books, New York,
1980.

20. Redmiles, D. F. Reducing the Variability of
Programmers' Performance Through Explained Examples,
INTERCHI '93 Conference Proceedings, pp. 67-73.

21. Robertson, Bruce. How to Draw Charts and
Diagrams. North Light Books, Cincinnati, OH 1988.

22. Schoen, D. A. The Reflective Practitioner: How
Professionals Think in Action. Basic Books, New York,
1983.

23. Tufte, E. The Visual Display of Quantitative
Information. Graphics Press, Cheshire CT 1983.

.[

J
1
I

d

II
1\
Ii
I.

I

'i
~ :

