
222 PETER G. SELFRIDGE

Selfridge. P. G. 1991. Knowledge representation support for a software information system. In Proceedings of
the 7th IEEE Cfmferena on Al Applications. pp. 134-140. Miami Beach. Florida.

Selfridge. P. G .• Terveen. L. G .• and Long. M. D. 1992. Managing design knowledge to provide assistance to large­
scale software development. In Proceedings of the Seventh Knowledge-Based Software Engineering Conference
(KBSE- 92!. pp. 163-170, Tyson's Comer. Virginia. September 22-25. Available from the IEEE Press.

Terveen. L. G .• Selfridge, P. G .• and Long, M. D. 1993. From "Folklore" to "Living Design Memory". In
Proceedings of INTERCH/-93, pp. 15-22. Amsterdam, The Netherlands. April 24--29. Available from ACM.

Terveen. L. G .• Selfridge, p, G .• and Long. M. D. (in press) Living Design Memory for Software Development:
FrameworK. System. US,"'''S uarned.

Waters. R. c.. and ChikofsKY, E. 1. (cds.) 1993. Working Canfuence on Reverse Engineering. Baltimore.
Maryland. May 21-23. Available from the IEEE Computer Society.

Zave, P. 1993. FeatUre interactions and formal specifications in telecommunications.lEEE Computer. 26:20-31.

Automated Software Engineering. I. 223-229 (1994)
@ 1994 Kluwer Academic Publishers. Boston. ManufactUred in The Netherlands.

Domain-Oriented Design Environments:
Reply to Commentaries

GERHARD FISCHER
Depar1menl afComputer Seilma and Institute "fCnguitiv. Science, Umversiry afColorado.
Boulder. Colorado 80309

A. Sutcliffe, J. Ning, P. Selfridge and D. Setliff have commented on my article "Domain­
Oriented Design Environments" and I would like to thank them for their insightful com­
ments. One should not be surprised that researchers hold different views about an area as
complex and as volatile as Software Engineering. especially because my paper not only de­
scribes some past achievements. but also outlines a research agenda for the future. I would
like to thank the editors of Automated Software Engineering who have granted me the priv­
ilege of replying to the comments by A. Sutcliffe, 1. Ning, P. Selfridge. and D. Setliff. I
have organized my reply around themes, using the names of these individuals as references.
I have chosen often to use "we" instead of "I" to acknowledge the group of collaborators at
CU Boulder and elsewhere, who share with me the same view.

Design

Design is concerned with "how things ought to be in order to attain goals, and to function"
(Simon, 1981). Design understood this way is more than "the act of trans lating requirements
into specifications and constraints" (Setl i fl). Design complements the natural sciences,
whose primary goal is to analyze. Designers not only solve given problems by reasoning
about formal representations. but they (architects, industrial designers, curriculum design­
ers, or software designers) have to get actively involved in framing problems. Designers are
not the sole owners of problems. They have to collaborate with all stakeholders (clients, cus­
tomers, other designers) in a mutual education process to understand problems and construct
the knowledge for solving them. Design methods will be deeply influenced by the artifacts
developed. The design of computational artifacts to empower humans faces different issues
than the design of technical systems, such as VLSI CAD design (Setliff) or compilers.

Problems of Domain-Oriented Design Environments

What is a Domain?

Sutcliffe raises the issue that "there is no sound theory about what a 'domain' is:' I agree
that domains cannot be precisely defined-they are part of the design activity themselves

224 GERHARD FISCHER

(so they change when goals change). We try to define domains in our environments (such as
departments in universities, or professional societies), and they serve as useful constructs.
But at the same time, we call for interdisciplinary research to acknowledge that real world
problems do not fit into our preconceived domains. Domains and their boundaries will
undergo change as our world changes. This is specifically acknowledged in our work by
postulating our model of seeds, evolutionary growth and reseeding.

I disagree with the assertion that "it is difficult to imagine that DODEs can be built for
immature domains" (Ning). Our research has demonstrated that it can be a very fruitful
endeavor to create DODEs for immature domains (and we have done so for lunar habitat
design, for computer networks, etc.). By creating DODEs through intensive collaboration
with domain experts, we have shown that these efforts can make major contributions toward
deepening our understanding of a domain.

What is the Price of Working in a Domain?

Sutcliffe asserts that "DODE's domain-specific nature will limit application to a small set
of related problems, leaving only an outline architecture as a more general result." This is
an adequate characterization and it is supported by the results of our work. We are aware
of the tension and the design trade-off between the Turing Tar-Pit (as articulated by Alan
Perl is) "The Turing Tar Pit: everything is possible but nothing of interest is easy" and the
inverse of it "The over-specialized system: everything is easy, but nothing of interest is
possible." Referring back to human organizations and domain expertise again: our society
educates its members in domains, and switching from one domain to another is a non­
trivial undertaking. So why should we expect that we will get DODEs for free? There
is growing wide spread recognition and a growing number of computational artifacts that
demonstrate that domain orientation will allow us to develop new generations of human­
centered computational artifacts (e.g., Mathematica for mathematicians, spreadsheets for
planning and decision making, drawing and painting software for artists, etc.) by supporting
human problem-domain communication with the goal of narrowing the gap between subject
domain and computational substrate.

We are working on substrates and layered architectures to increase the sharing of com­
ponents between DODEs in related domains. But without paying the price of working in
a domain, our computational environments will be severely limited in the amount (1) of
support they can provide (e.g., there would be no work-triangle critic without domain
knowledge), and (2) of end-user control and interest (e.g., end-users are not interested in
the computer per se, but in their tasks).

Knowledge Acquisition

Ning observes that "an effective DODE will require a large amount and a variety of domain­
oriented knowledge." Our process model, based on seeds, evolutionary growth, and reseed­
ing (Fischer et aI., 1994), is an important alternative to the conventional approaches of

DOMAIN-ORIENTED DESIGN ENVIRONMENTS 225

knowledge acquisition as well as the futuristic approaches of machine learning pursued in
AI-oriented research efforts. Our model explicitly acknowledges the fact that (I) human
knowledge is tacit (Polanyi, 1966) (so the best we can hope for is a seed), (2) knowledge
changes over time (requiring support for evolutionary growth), (3) the breakdowns based on
lack of knowledge will be experienced by the domain designers and not by the environmenl
developer (making end-user modifiability a necessity rather than a luxury), and (4) social
incentives and rewards for providing and documenting this knowledge (e.g., in the form
of design rationale) may be more important than the particular formalism chosen for its
representation.

How, Not Why

Ning states "that the real question today is how to develop, rather than why we should
or should not develop DODEs." Our research prototypes (see references in my paper)
demonstrate that we have some understanding of "how" one goes about building DODEs.
Beyond that, we assisted others in developing DODEs and demonstrated the practical value
of some of our DODEs in industrial research environments (e.g., the voice dialog design
environment in use at USWest Advanced Technologies (Repenning and Sumner, 1992), the
service-provisioning environment in use at NYNEX (Ostwald, Burns, and Morch, 1992),
and the lunar habitat environment in use by a NASA contractor (Stahl, 1993».

An important aspect of DODEs is the possibility to construct them incrementally (e.g ..
the voice dialog design environment existed and was used by domain workers for more than
a year before a critiquing component was added), and to emphasize different components
for different domains (e.g., the simulation component is of great importance in the voice

dialog design environment).

Scaling Up

Scaling up is a critical issue for DODEs as it is for any other computational environment
Our work so far demonstrated (I) that the "seeds--evolutionary growth-reseeding" model
provides a good foundation for scaling up, and (2) that many of the integration component,
assist users in dealing with information spaces that are too large to be explored by browsing
only. DODEs acquire a partial understanding of the task at hand by analyzing the partial
construction and the partial specification. The CONSTRUCTION-ANALYZER and CATALOG·

EXPLORER exploit this partial understanding to locate relevant argumentation and catalo~
examples for the user. Following Sutcliffe's observation that for large information space,
"intelligent retrieval engines will be necessary," we have explored such mechanisms for sev­
eral years (Fischer, Henninger, and Redmiles, 1991) and incorporated them in our DODE!
(Nakakoji, 1993).

226 GERHARD FISCHER

The Proper Role of Automation

Understanding the Proper Role of Humans and Computers in Joint Human-Computer
Systems

I \vcn strong uuvocutcs of automatcu systcms such as cxpert systems' researchers acknowl­
edge that "most knowledge-based systems are intended to be of assistance to human en­
deavor; they are almost never intended to be automatic agents. A human-machine interac­
tion subsystem is therefore a necessity" (Feigenbaum and McCorduck, 1983). The proper
role of humans and computers has been explored in numerous areas (to name just a few
examples: in machine translation (Kay, 1980), in cockpit design (Billings, 1991), and in
the general foundations for tool and system design (llIich, 1973; Fischer, 1990». The
question of the proper role of automation is raised succinctly by Billings (1991): "During
the 1970's and early 1980's ... the concept of automating as much as possible was consid­
ered appropriate. The expected benefits were a reduction in pilot workload and increased
safety. Although many of these benefits have been realized, serious questions have arisen
and incidents/accidents have occurred which question the underlying assumption that the
maximum available automation is always appropriate or that we understand how to design
automated systems so that they are fully compatible with the capabilities and limitations
of the humans in the system" (p. 4). Contrary to Sutcliffe's claim that "every domain will
have to have an exhaustive analysis to find all the principles, rules, guidelines etc., for good
design," critiquing components embedded in DODEs do not require any kind of complete­
ness. While it is highly desirable that a substantial amount of critiquing knowledge gets
accumulated over time, a system with a just a few critiquing rules can greatly increase the
usability of a DODE.

Lack of any Theoretical Basis for Cooperation

Sutcliffe observes that "unless design of software tools is based on a sound analysis of how
the user and machine cooperate to achieve designs we run the risk of providing inappro­
priate functionality which may either over-automate or under-support the designer's job."
Understanding cooperation is a critical challenge not only for KBSAs and DODEs, but
for all intellectual teamwork (Galegher, Kraut, and Egido, 1990). Our work on DODEs
should not and cannot wait until the theoretical basis for cooperation will exist, but we
attempt with our efforts to contribute to the creation of this basis. Our work is guided
by principles for collaboration, such as (I) all stakeholders must be involved (to account
for the "symmetry of ignorance" (Ritte\, 1984», (2) to be involved, the stakeholders must
be informed in an understandable way (requiring that representations are developed that
can serve as "languages of doing" (Ehn, 1988», and (3) there must be shared knowledge
(including knowledge of each other's intent (Resnick, Levine, and Teasley, 1991».

DOMAIN-ORIENTED DESIGN ENVIRONMENTS

Integrating KBSAs and DODEs

In Setliff's view, "current software synthesis architectures are well on their way toward
stantiating Fischer's DODE design process"-indicating that many recent research eft
emerging from the instantiation of the original KBSA effort moved toward some 01
goals of DODEs. I see a natural symbiosis between the two research directions: KB
emphasize downstream activities and DODEs emphasize upstream activities. This vie
shared by Selfridge when he observes about our work: "The most important distinctic
the focus on the 'upstream' activities of problem understanding, as opposed to prot
solving." Obviously, either approach cannot ignore the other phase (e.g., we have built
eral computational substrates serving as lower layers in DODEs (Repenning and Sum
1992), and the KBSA efforts have pursued upstream activities in the context of reql
ments engineering (Proceedings, 1993). But the different emphasis has led to a nun
of differences: KBSAs and DODEs investigated different classes of problems, looked
different disciplines for help and ideas, and approached the human role and assessn
studies from different angles.

Problems are Different

Sutcliffe observes that "for safety critical domains, formal approaches and automatic I
gramming is not only desirable but essential. However, Fischer reminds us that m
problems do not fall into this class." There is no doubt that we need correct and effic
programs Gust as \',Ie need buildings that do not collapse), but what is the value of tt
programs if they are not relevant, suitable, adequate, or enjoyable to users in their
situation Gust as houses are judged by more criteria than that they do not fall down
also claim that the scientific community needs a better understanding of the limitation
formal methods in safety critical systems (e.g., the accident in the Persian Gulf in wi
an airliner relying on the AEGIS system was shot down represents a design disaster
formal methods would not have prevented (Lee, 1992».

Where Do We Look for Ideas and Help?

Historically, computer science has looked to mathematics and logic to create a four:
tion (and these disciplines served well for improving "downstream" activities). But a
the foundations have been established, other disciplines may be more important, sucl
cognitive psychology (to better understand the human part), social sciences (to underst
collaboration), evolution (to understand the nature of complex systems), and architect
(to understand design as an activity that needs to define and create contexts and not 0

operate in given contexts). In the long run, I think that "Software Engineering" may
the wrong term because it focuses on the medium rather than on the characterizatior
domains (in mature design domains, we do not speak of "steel" or "concrete" engineeri
but of "civil" or "electrical" engineering).

228 GERHARD FISCHER

Do Not Postulate a New Humqn

Simon (1981) acclaims the framers of the U .5_ Constitution by noting that "they did not
postulate a new man to be produced by the new institutions but accepted as one of their
design constraints the psychological characteristics of men and women as they knew them,
their selfishness as well as their common sense" (p. 163). It may be that what is wrong
with the logical and mathematical design methods is that they are the product of a mode of
reasoning alien to design (Rittel, 1984). A human-centered view toward design should take
into account that "logic is most definitely not a good model of human cognition. Humans
take into account both the content and the context of the problem, whereas the strength
of logic and formal symbolic representations is that the content and context are irrelevant.
Taking content into account means interpreting the problem in concrete terms, mapping it
back onto the known world of real actions and interactions" (Norman, 1993) (p. 228). This
and other observations such as (1) humans enjoy doing and deciding, (2) humans act until
breakdowns occur, (3) humans operate by using information in the world as an important
resource, and (4) domain-orientation preserves content and context, have served as guiding
principles for our work on.DODEs to complement the more formal approaches pursued in
the KBSA c0mmunities.

References

Billings. C. E. 1991. Human-Centered Aircraft Automation: A Concepl and Guidelines. NASA Technical
Memorandum 103885. NASA Ames Research Center. Moffett Field. CA. August.

Ehn. P. 1988. Work-OrieT/ted Desi!(n o[Computer Artifacts. Stockholm. Sweden: Almquist & Wiksell [ntema­
tional.

Feigenbaum. E. A .. and McCorduck. P. 1983. The Fifth Generation. Artijiciallntelligence and Japan's Compllfer
Challen!(e to the World. Reading. MA: Addison-Wesley Publishing Company.

Fischer, G. 1990. Communications requirements for cooperative problem solving systems. The International
Journal of Infilrmation Sy."ems (Special Issue on Knowledge Engineering), 15(1):21-36.

Fischer. G .. McCall, R .. Ostwald, J .• Reeves. B .• and Shipman. F. (in press). Seeding. evolutionary growth and
reseeding: Supporting incremental development of design environments. [n Human Factors in Computing
Systems. CHJ'94 Conference Proc"dings (Boston. MAJ.

Fischer. G .. Henninger. S. R .. and Redmiles. D. F. 1991. Cognitive tools for locating and comprehending software
objects for reuse. In Thin"nth International Conference on Software Engineering (Austin. TXJ. IEEE Computer
Society Press. ACM. IEEE, Los Alamitos. CA. pp. 318-328.

Galegher. P .• Kraut, R., and Egido. C. (eds.) 1990. Intef/,clUal Teamwork. Hillsdale. NJ: Lawrence Erlbaum
Associates.

IIlich.1. 1973. Toolsfor Conviviality. New York: Harper and Row.
Kay. M. 1980. The Proper Place of Men and Mach;!!es in wnguage Translation. Technical Report CSL-80-11.

Xerox Palo Alto Research Center. October.
Lee. L. 1992. The Day The Phones Stopped. New York: Donald I. Fine. Inc.
Nakakoji. K. 1993. Increasing Shared Under.vtanding of a Design Task Between Designers and Design Envi­

ronments: The Rol, of a Specification Component. Unpublished Ph.D. Dissertation. Department of Computer
Science. University of Colorado. Also available as Technical Report CU-CS-651-93.

Norman, D. A. 1993. Things That Make Us Smart. Reading. MA: Addison-Wesley Publishing Company.
Ostwald. J .. Bums. B .. and March. A. 1992. The E"olving Artifact Approach to System Building. Working Notes

a/the AAAlI992 Workshop on Design Rationale Capture and Use. AAAI. San Jose. CA. July. pp. 207-214.
Polanyi, M. 1966. The Tacit Dimension. Garden City. NY: Doubleday.
Proceedillgs off~EE Intemational Symposium on Requirements Engineering. 1993. IEEE Computer Society.

IEEE Computer Society Press. Los Alamitos. CA. January.

DOMAIN-ORIENTED DESIGN ENVIRONMENTS 2

Repenning. A .. and Sumner. T 1992. Using Agentsheets to create a voice dialog design environment.
Proceedings of the 1992 ACMISIGAPP Symposium on Applied Computing. ACM Press. pp. 1199-1207.

Resnick. L. B .. Levine. J. M .. and Teasley. S. D. (eds.) 1991 Perspectives 011 Socially Shared Cognil
Washington. DC: American Psychological Association.

Rittel. H. W. J. 1984. Second-generation design methods. In Developments ill De.fign Methodology. edite(
N. Cross. pp. 317-327. New York: John Wiley & Sons.

Simon. H. A. 1981 The Sciences of the Artificial. Cambridge. MA: The MIT Press
Stahl. G. 1993. Interpretation in Desi!(n: The Problem o!Tacit and Explicit Understanding in Computer Sup,

of Cooperative Design. Ph.D. Dissertation. Department of Computer Science. UmverSIty of Co lorn do. Boul
CO.

