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AbstracL The field of knowledge-based software engineering has been undergoing a shift in emphasis from 
automatic programming to human augmentation and empowerment. In our research work. we support this shift with 
an approach that embeds human-computer cooperative problem-solving tools into domain-oriented, knowledge­
based design environments. Domain orientation reduces the large conceptual distance between problem-domain 
semantics and software artifacts. Integrated environments support the coevolution of specification and constroctlon 
while allowing designers to access relevant knowledge at each stage within the software development process. 

This paper argues that domain-oriented deS/lin environments (DODEs) are complementary to the approaches 
pursued with knowledge-based so/rwGn assistant systems (KBSAs). The DODE extends the KBSA framework by 
emphasizing a human-centered and domain-oriented approach facilitating communication about evolving systems 
among all stakeholders. The paper discusses the major challenges for software systems. develops a conceptual 
framework to address these problems. illustrates DODE with two examples. and assesses the contributions of the 
KBSA and DODE approaches toward solving these problems. 

Keywords: automatic programming. cooperative problem solving. co-evolution of specification and constroc­
tion. critiquing. design. domain-oriented design environments. design rationale. end-user modifiability. evolution. 
FRAMER. formal specifications. JANUS. knowledge-based software assistant. languages of doing. software reuse 
and redesign, stakeholders. upstream and downstream activities 

1. Introduction 

Software design is a challenging intellectual activity without a "silver bullet" (Brooks, 1987) 
in sight. In order to make progress, we first have to understand what the most pressing prob­
lems are. The field of knowledge-based software engineering has been undergoing a shift 
in emphasis from automatic programming to human augmentation and empowennent. A 
growing number of research efforts are using knowledge-based systems and new commu­
nication paradigms to empower all stakeholders in software design, not to replace them 
(stakehoiders in a design process are all people who are affected by the design artifact and 
who are involved in creating and evolving the design artifact). The idea of human augmen­
tation, beginning with Engelbart (Engel bart and English, 1968), has been elaborated in the 
last 25 years (e.g., Stefik, 1986; Simon, 1986; Hill, 1989; Fischer, 1990; Nonnan, 1993). 
It has been applied to the domain of software design through projects such as the the Pro­
grammer's Apprentice (Waters, 1985), the Software Designer's Associate (Kishida et al., 
1988), the Knowledge Base Designer's Assistant (Schoen, Smith, and Buchanan, 1988), 
the Knowledge-Based Software Assistant (White, 1991), LASSIE (Devanbu et al., 1991), 
ARIES (Johnson, Feather, and Harris, 1991), and earlier systems described by Barstow, 
Shrobe, and Sandewall (1984). 

Design in the context of this paper refers to the broad endeavor of creating artifacts (as 
exercised by architects, industrial designers, curriculum developers, composers, etc., and 
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as defined and characterized, for example, by Simon (1981), Schoen (1983), Ehn (1988), 
rather than to a specific step in a software engineering life-cycle model (located between 
requirements and implementation (Royce, 1987». 

DODEs are computational environments whose value is not restricted to the design of 
software artifacts. They have been used for the design of software artifacts such as user 
interfaces, voice dialog systems and COBOL programs, and they have served equally well 
for the design of kitchens, lunar habitats, and computer networks. My thesis is that domain­
oriented design environments will become as valuable and as ubiquitous in the future as 
compilers have been in the past, providing the design support most desirable and most 
needed and serving as prototypes for other research efforts moving in the same direction 
(e.g., ARPA's research program in domain-specific software architectures). 

In this paper, I first present a brief description of major problems confronting software 
design (drawn from the literature, from field studies, and from experience). A theoretical and 
conceptual framework relevant to these problems will be developed in the following section. 
This framework will be applied to assess the almost lO-year-old effort to develop knowledge­
based software assistant systems (KBSAs) (Green et aI., 1983). Domain-oriented design 
environments (DODEs) will be presented as an alternative to the KBSA approach and will 
be illustrated by two prototype systems. The paper concludes with an assessment and 
comparison between KBSAs and DODEs. 

2. Framing the Problem 

Historically, software engineering research has been concerned with the transition from 
specification to implementation ("downstream activities") rather than with the problem 
of how faithfully specifications really addressed the problems to be solved ("upstream 
activities") (Belady, 1985). Many methodologies and technologies were developed to 
prevent implementation disasters (Sheil, 1983). The progress made to successfully reduce 
implementation disasters (e.g., structured programming, information hiding, etc.) allowed 
an equally relevant problem to surface: how to prevent design disasters (Sheil, 1983)-­
meaning that a correct implementation with respect to a given specification is of little value 
if the specification does not adequately address the problem (Lee, 1992). 

Upstream and downstream activities complement each other (Fischer et aI., 1991a) and 
they need to be intertwined (Swartout and Balzer, 1982). But at the same time, they involve 
different groups of people, and require different methodologies and support environments 
(see Figure I). Following are major problems of software design that cannot be solved 
without taking upstream activities into account. 

Understanding the Problem Is the Problem 

The predominant activity in designing complex systems is the participants teaching and 
instructing each other (Curtis, Krasner, and Iscoe, 1988; Greenbaum and Kyng, 1991). Be­
cause complex problems require more knowledge than any single person possesses, com­
munication and collaboration among all the involved stakeholders are necessary. Domain 
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experts understand the practice and system designers know the technology. To overcome 
this "symmetry of ignorance" (Rittel, 1984) (i.e., none of these carriers of knowledge can 
guarantee that their knowledge is superior or more complete compared to other people's 
knowledge), as much knowledge from as many stakeholders as possible should be activated 
with the goal of achieving mutual education and shared understanding. 

Integrating Problem Framing and Problem Solving 

Design methodologists (e.g., Rittel, 1984; Schoen, 1983) demonstrate with their work the 
strong interrelationship between problem framing and problem solving. They argue con­
vincingly that (I) one cannot gather information meaningfully unless one has understood 
the problem, but one cannot understand the problem without information about it; and 
(2) professional practice has at least as much to do with defining a problem as with solving 
a problem. New requirements emerge during development because they cannot be iden­
tified until portions of the system have been designed or implemented. The conceptual 
structures underlying complex software systems are too complicated to be specified accu­
rately in advance, and too complex to be built faultlessly (Brooks, 1987). Specification and 
implementation have to co-evolve (Swartout and Balzer, 1982), requiring the owners of the 

problems to be present in the development. 
If these observations and findings describe the state of affairs adequately, one has to wonder 

why waterfall models (Royce, 1987) endure despite the overwhelming evidence that they 
are not suited for most of today 's software problems. Perhaps one reason for their survival is 
that management likes the evaluative checkpoints possible in serial, orderly process models. 
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Boehm (1988) analyses different process models and describes the spiral model providing 
a risk-driven mix of specifying, prototyping and evolutionary development as an attempt 
to overcome some of the shortcomings .of earlier mQdels such as waterfall models_ While 
the spiral model offers general guidelines to take users and domains seriously, it does not 
emphasize dQmain-orientatiQn techniques and methods to integrate problem framing and 
prQblem solving. 

Limitations of Formal Specifications and CASE Tools 

Many research effQrts do not take intQ aCCQunt the grQwing evidence that system require­
ments are not SQ much analytically specified as they are cOllaboratively evolved thrQugh 
an iterative process of consultation between end-users and software develQpers (CSTB, 
1990). For example, CASE tools devise elaborate methods of insuring that software meets 
its specificatiQn but hardly ever question whether there might be sQmething wrong with the 
specifications themselves. They provide support only after the problem has been sQlved. A 
cQnsequence of the thin spread o/application knowledge (Curtis, Krasner, and IscQe, 1988) 
is that specification errors .often occur when designers dQ not have sufficient application do­
main knowledge to interpret the customer's intentiQns from the requirement statements-a 
cQmmunicatiQn breakdQwn based .on a lack .of shared understanding (Resnick, 1991). 

The main objective offormal specifications is that they are "formal," which means that they 
are manipulable by mathematics and logic and interpretable by computers. As such, these 
representatiQns are .often couched in the language of the cQmputatiQnal system. However, 
such representations are typically foreign and unintelligible to end-users and get in the way 
.of trying tQ create a shared understanding between designers and their clients. Ehn (1988) 
notes that languages of doing (such as prototypes, mock-ups, sketches, scenarios, or use 
situatiQns that can be experienced) are essential "objects-tQ-think-with" when creating such 
an understanding. 

The Need for Change 

SQftware systems model parts .of .our world. Our WQrld evolves in numerous dimensions 
as new artifacts appear, new knowledge is discovered, and new ways of doing business 
are develQped. Successful software systems need tQ eVQlve. Maintaining and enhancing 
systems need to become "first class design activities," extending system functionality in 
response to the needs of its users. There are numerous fundamental reaSQns why systems 
cannot be done "right." Designers are peQple, and people's imagination and knowledge are 
limited. 

Understanding People and Their Work 

Nothing can be worse than designers who think everyone else is just like them (Greenbaum 
and Kyng, 1991). In the early days of computing, almost all systems were developed and 
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used by cQmputer professiQnals. Introspection by sQftware designers served as a reasQnable 
source .of knowledge at that time, but it has IQst its PQwer today for the development .of sys­
tems in application domains. Research in sQftware engineering in the past has .operated as an 
overly prescriptive discipline, often postulating a "new human" (Simon, 1981) with interests 
(e.g., detailed knowledge of low-level computer .operation), knowledge (e.g., about wQrk 
procedures of an application domain), and mQtivations (e.g., tQ provide extensive amounts 
of design rationale, or to deal with formal methods), which had little correspondence with 
reality. 

Reinventing the Wheel 

Software design is a new design discipline relative to other more established disciplines. 
I claim that software designers can learn a lot by studying other design disciplines such 
as architectural design, engineering design, organizational design, musical composition, 
and writing. For example, the limitations and failures of design approaches that rely on 
directionality, causality, and a strict separation between analysis and synthesis have been 
recognized in architecture fQr a long time (Rittel, 1984). A careful analysis .of these failures 
could have saved software engineering the effort expended in finding out that waterfall-type 
models can at best be an impoverished and .oversimplified model .of real design activities. 
Assessing the successes and failures .of other design disciplines does not mean that they 
have tQ be taken literally (because software artifacts are different from other artifacts), but 
that they can be used as an initial framework for software design. 

3. A Theoretical and Conceptual Framework 

Beyond Automatic Programming: Cooperative Problem Solving 

Until recently, many researchers believed (and maybe some still do) that the "the ultimate 
goal of artificial intelligence applied to software engineering is automatic programming" 
(Rich and Waters, 1986). Rich and Waters (1988) modified their position when they argued 
that the "cocktail party" description of automatic programming is based on a number of 
faulty assumptions. Rather than "to get the human out .of the 10QP," the direction should be 
"tQ get the computer intQ the loop" (a gQal explicitly articulated fQr KBSA (Green et aI., 
1983». 

AutQmatic programming in its ultimate sense is not .only nQt achievable (because the gQals 
need to be articulated by someone .outside the automatic programming system), but it may 
also be in particular situations not desirable, because humans enjQy "doing" and "deciding." 
Automation is a two-sided sword. At .one extreme, it can be regarded as a servant, relieving 
humans of the tedium of low-level operations (e.g., cQmpiling a program, cQmputing the 
de~ndency graph between functiQn calls, creating an index for a large document, etc.), and 
thereby freeing them for higher cognitive functiQns. At the other extreme it can be viewed 
as reducing the status of humans tQ "button pushers," and stripping work of its meaning 
and satisfaction. In many situatiQns humans enjoy the process, not just the product. They 
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want to take part in something. This is why they build model trains, why they plan their 
vacations, and why they design their own kitchens. 

Cooperative problem-solving approaches (Fischer, 1990) in which computational envi­
ronments empower, augment, and complement human skills and knowledge are a more de­
sirable and promising goal to pursue than is automatic programming. Cooperative problem­
solving systems raise questions such as (a) which part of the responsibility can or should 
be exercised by the human and which part by the computer, and (b) how do the human and 
the intelligent system effectively communicate? Cooperative problem-solving approaches 
do not deny the power of automation (Billings, 1991), but they focus our concerns on the 
"right kind of automation" including interaction mechanisms designed for users rather than 
for programs. 

Communication and Coordination 

Because designing complex systems is an activity involving many stakeholders, commu­
nication and coordination are of crucial importance (Greenbaum and Kyng, 1991; Fischer 
et aI., 1992a). The types of communication and coordination processes that can be differen­
tiated are those between (I) designers and users/clients, (2) members of design teams, and 
(3) designers and their computational knowledge-based design environment. Byemphasiz­
ing design as a collaborative activity, domain-oriented design environments support three 
types of collaboration: (1) collaboration between domain-oriented designers (e.g., profes­
sional kitchen designers) and clients (owners of the kitchen to be built), (2) collaboration 
between domain-oriented designers and design environment builders (software designers), 
and (3) long-term indirect collaboration among designers (creating a virtual collaboration 
between past, present, and future designers). Design environments provide representations 
that serve as languages of doing (Ehn, 1988) and therefore help increase the shared context 
(Resnick, 1991) necessary for collaboration. 

Domain-Orientation 

In a conventional, domain-independent software environment, designers who produce new 
software artifacts typically have to start with general programming constructs and method­
ologies (Shaw, 1989). This forces them to focus on the raw materials necessary to implement 
a solution rather than to try to understand the problem. Design environments need to support 
human problem-domain communication (Fischer and Lemke, 1988) by providing compu­
tational environments that model the basic abstractions of a domain (as pursued in efforts 
in.domain modeling (Prieto-Diaz and Arango, 1991 ». They give designers the feeling that 
they interact with a domain rather than with low-level computer abstractions. Two such 
environments, FRAMER (Lemke and Fischer, 1990) and JANUS (Fischer, McCall, and 
Morch, 1989) are described in later parts of this paper. Domain-orientation allows humans 
to take both the content and context of a problem into account, whereas the strength of for­
mal representations is their independence of specific domains to make domain-independent 
reasoning methods applicable (Norman, 1993). 
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Modem application needs are not satisfied by traditional programming languages, which 
evolved in response to system programming needs (Shaw, 1989; Winograd, 1979). More 
emphasis should be put on the creation of computational environments that fit the needs 
of professionals of other disciplines outside the computer science community. The chief 
risks of using ideas from programming language design and formal specification techniques 
are in succumbing to the temptations of excess generality and in assuming that users and 
domain experts think like software designers. The semantics of DO DEs are tuned to specific 
domains of discourse. This involves support for different kinds of primitive entities, for 
specification of properties other than computational functionality, and for computational 
models that match the users' own models. 

Evolution 

There is growing agreement (and empirical data to support it) that the most critical software 
problem is the cost of maintenance and evolution (CSTB, 1990). Studies of software 
costs indicate that about two-thirds of the costs of a large system occur after the system 
is delivered. Much of this cost is due to the fact that a considerable amount of essential 
information (such as design rationale (Fischer et aI., 1991 a; Fischer et aI., 1992b)) is lost 
during development and must be reconstructed by the designers who maintain and evolve 
the system. 

In order to make maintenance and enhancements "first class" activities in the lifetime of 
an artifact, (1) the reality of change needs to be accepted explicitly and (2) increased up­
front costs have to be acknowledged and dealt with. We learned the first point in our work 
on end-user modifiability (Fischer and Girgensohn, 1990), which demonstrated that there is 
no way to modify a system without detailed programming knowledge unless modifiability 
was an explicit goal in the original design of the system. The second point results from 
the fact that "design for redesign" requires efforts beyond designing for what is desired and 
known at the moment. It requires that changes be anticipated and structures be created that 
will support these changes. 

The evolution of a software system is driven by breakdowns (Petroski, 1985; Fischer and 
Nakakoji, 1992) experienced by the users of a system. In order to support evolutionary 
processes, domain designers need to be able, willing, and rewarded to change systems, 
thereby providing a potential solution to the maintenance and enhancement problems in 
software design. Users of a system are knowledgeable in the application domain and know 
best which enhancements are needed. An end-user modification component supports users 
in adding enhancements to the system without the help of the system developers. End­
user modifiable systems will take away from system developers some of the burden of 
anticipating all potential uses at the original design time (Henderson and Kyng, 1991). 

Language~ of Doing 

The development of complex systems is difficult, not because of the complexity of techni­
cal problems, but because of communication and coordination problems and the need for 
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shared understanding and mutual education about ill-defined problems (Greenbaum and 
Kyng, 1991). Downstream activities are centered around the manipulation and implemen­
tation of given specifications, but they do not help create a shared understanding among 
all stakeholders. Environments must serve as languages of doing (Ehn, 1988) that (1) are 
familiar to all participants, (2) use the practice of the users as a starting point, (3) allow the 
envisioning of work situations supported by the new systems, and (4) enhance incremental 
mutual learning and shared understanding among the participants. 

Communication between clients and designers is difficult because designers and clients 
use different languages. Explicit representations ground collaborative design by providing 
a context for communication. These representations (used as languages of doing) help to 
detect communication breakdowns caused by unfamiliar terminology and tacit background 
assumptions, and turn breakdowns into opportunities for creating a shared understanding 
(Fischer and Nakakoji, 1992). 

An important component of shared understanding is the intent of the collaborators. U n­
derstanding intent enhances mutual intelligibility by serving as a resource for assessing the 
relevance of information within the context of collaboration. In everyday communication 
between people, intent is often implicitly communicated against a rich background of shared 
experience and circumstances. Machines, however, have a limited notion of background, 
and this limits their ability to infer the intent of users (Suchman, 1987). 

4. An Assessment of the "Classical" Model of Knowledge-Based Software Assistant 
Systems 

KBSA (Green et aI., 1983) was originally envisioned to employ Artificial Intelligence tech­
niques to support all phases of the software development process. The scope of this research 
effort was broadened in 1991 as the associated conference was renamed Knowledge-Based 
Software Engineering (KBSE) to recognize the need to broaden the focus and to indicate that 
the community was moving away from the notion of a super-intelligent computer assistant 
toward the idea of a human-computer partnership (Fischer, 1990; Billings, 1991; Norman, 
1993). Rather than to enumerate and discuss the achievements of KBSA efforts here (for 
examples and discussion, see DeBellis, Sasso, and Cabral (1991); Johnson, Feather, and 
Harris (1991); and White (1991), I would like to focus on what I consider shortcomings 
and questionable goals in order to contribute to an agenda for future research themes. 

UnderstandabiUty of Specifications 

Contrary to a basic assumption behind the KBSA effort, I claim that specification-based 
descriptions of aHifacts have a much narrower scope and are more difficult to develop, 
maintain, and mutually understand than artifacts suppoHed by languages of doing. As 
argued before, formal and decontextualized descriptions may serve well for formal manip­
ulations, but they are not well suited for communication between humans (except for the 
verification of complicated algorithms and theorems). This claim is supported by W. Wulf 
(CSTB, 1988): "I am skeptical that classical mathematics is an appropriate tool for our 
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purposes: witness the fact that most formal specifications are as large. as buggy ~s. a.nd 
usually more difficult to understand than the programs they purport to specify· I don t thmk 
the problem is to make programming 'more like mathematics'; it's quite the other way 

around." 

Lack of Domain Orientation 

The lack of domain orientation limits (I) the amount of support that a knowledge-based 
system can provide, and (2) the shared understanding among stake~olders. By necessity, it 
must focus primarily on downstream activities, which require minImal domaIn knowledge 
(e.g., transformations within the formal system rather than correspondence between the 

formal system and the world being modeled). 

Lack of AssesSllU!nt Studies 

Software design in general suffers from a lack of detailed analysis offailures and successes 
of previous systems (Petroski, 1985; Lee, 1992). One of the few assessm.ents of the ~SA 
effort (DeBellis, Sasso, and Cabral, 1991) summarizes some of the CrItical shortcomIngs 
of past KBSA research, namely lack of evidence for scalability, lack of experiments that 
demonstrate its usability, and insufficient attention to reuse and evolution. 

5. Domain-Oriented Design Environments 

In the last several years, numerous DODEs have been developed. Here I use two different 
environments to illustrate the basic ideas and challenges of DO DEs: FRAMER (Lemke and 
Fischer, 1990) for user interface design, and JANUS (Fischer, McCall, and Morch, 1989; 
Fischer and Nakakoji, 1992) for kitchen design. Other examples of DODEs are: decision 
support for water management (Lemke and Gance, 1991), computer network design (Fischer 
et aI., 1992a), voice dialog design (Repenning and Sumner, 1992), COBOL programmIng 
(Atwood et aI., 1991), graphics programming (Fischer et aI., 1992b», and lunar habitat 

design (Stahl, 1993). 

5.1. FRAMER: A DODEfor User Interface Design 

FRAMER (Lemke and Fischer, 1990) is a knowledge-based design environment for program 
frameworks, which are high-level building blocks used for constructing window-based user 
interfaces (Figure 2). Program frameworks consist of (I) a window frame of nonoverlapping 
panes, (2) an eve.nt loop for processing mouse clicks, (3) keyboard input, and (4) other input 
events. The program frameworks also manage the update of information dIsplayed on the 
screen. FRAMER and its architecture is the result of an iterative development process that 
has gone through three major stages: tool kits. construction kits, and knowledge-based 

design environments. 
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Tool Kits 

The first stage, tool kits, simply provides domain-oriented building blocks. FRAMER 
provides designers with components such as windows and menus. Examples of tool kits for 
the domain of user interface design are Xlib, NextStep, and the Macintosh toolbox. Tool 
kits enable designers to work in terms of concepts of their domain of expertise rather than 
at the level of a general-purpose programming language. 

Construction Kits 

Tool kits provide domain-oriented building blocks, but they dQ not support the processes 
of finding and combining the blocks-<iesigners have to know what blocks exist and how 
they should be used. Construction kits address this problem by providing a palette and 
a work area (see Figure 2). The palette displays representations of the building blocks 
and thus shows what they are and makes them easily accessible. The work area is the 
principal medium for design and construction in the FRAMER design environment. This 
is where the designer builds a window layout by assembling building blocks taken from the 
palette. Examples of user interface construction kits are the Symbolics FrameUp system, 
MENULAY (Buxton et a!. , 1983), the NeXt user interface builder, and WIDES and TRIKlT 
(Fischer and Lemke, 1988). 

Design Environments 

Knowledge-based design environments address shortcomings that we have found in con­
struction kits . Construction kits support design at a syntactic level only. Our experience 
with this class of systems has shown that although it is easy to create a functioning interface, 
creating a good interface requires a great deal of additional knowledge that is not provided 
by construction kits . Design environments provide additional design knowledge through 
critics, specification sheets, and checklists (see Figure 2). 

Critics 

Critics (Fickas and Nagarajan, 1988; Fischer et aI., 1991 b; Fischer et aI., 1993) are demons 
that evaluate the evolving artifact. When the system detects a suboptimal aspect of the 
artifact, it displays a message that describes the shortcoming in the critic window, which is 
entitled "Things to take care of' (Figure 2). 

Figure 3 shows a typical critic rule. This rule contains knowledge about the relationship 
of the selected interaction mode and the configuration of window panes in the interface. If 
the mouse-and-keyboard interaction mode is selected, then the rule suggests adding a 
dialog pane. A Remedy action is also defined. Invoking the Remedy operation associated 
with this rule causes the system to add a listener pane at the bottom of the window frame. 
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Figure 2. FRAMER: A DOOE for user interface design . In the situ.ation shown in the figure. the designer makes a 
decision about what types of user input shoutd be supponed In the Interface . The system res.ponds to thiS. deCISIon 
by displaying a critic message in the critic window entit},ed "Things to tak~ care of." The cnt:c message Identifies 
a discrepancy between the specification sheet (enlllied What you can dO.) and the work area. The deSigner can 

either modify the window layout in the work area or change the speClfic'lIon sheet. 

Specification Sheets 

The window layout of an interface has a natural graphical representation as shown in the 
work area. However, this is not true of all characteristics of an interface. BehaVIOral 
characteristics, for instance, must be described in a different way. In the FRAMER system, 
these other characteristics are described in a symbolic way as fillers in the fields of a 
specification sh~et (see the "What you can do" window in Figure 2). Through the sheet, 
the system brings design issues and their possible answers to the us.er's attentIOn and allows 
users to articulate a partial specification. Associated text explams the slgmficance and 

consequences of the different design choices. 
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;; A critic rule named need-dialog-pane. The rule applies to program frameworks. 

(define-critic-rule need-dialog-pane program-framework 
;; Applicability condition. This rule is applicable if the interaction mode is 
;; mo~se-a.nd~keyboard. Oialo.g is conducted either with listener or interactor panes. 
:appl~cab~l~ty (equal $~nteraction-mode mouse-and-keyboard) 

;; The rule is violated if there is no pane of type dialog-pane in 
;; the set on inferiors of a program framework. 
:condition (not (exists x (type x dialog-pane») 

;; The Remedy operation adds a listener-pane. 
:remedy (let ((pane (make-instance 'listener-pane :x (+ X 20) 

, :y (+ y 184) :superior self») 
(add-inferior self pane) 
(display-icon pane» 

" Text of the suggestion made to the user if critic is applicable. 
:suggestion "Add a listener or interactor pane, or set the 

interaction mode to mouse-only." 

;; Text for Praise command. 
:praise "There is a listener or interactor pane." 

;; Text for Explain command. 
:explanation 's~nce the in~eraction mode is mouse-and-keyboard, 

a d~alog pane ~s required for typing in commands.") 

Figllre 3. An example of a critic rule. This is a slightly paraphrased FRAMER critic rule that applies 
to program frameworks. The rule suggests adding a listener or interactor pane if the interaction mode 
"mouse-and-keyboard" was specified. 

Checklists 

The checklist in FRAMER provides an explicit problem decomposition for designers who 
are unable to decide what steps to take to create a complete functional program framework 
(thereby supporting the software process (Osterweil, 1987». The checklist indicates to 
designers how to decompose the problem of designing a program framework, and it helps 
to ensure that designers attend to all necessary issues, even if they do not know about 
them in advance. Each item in the checklist is one subproblem within the overall design 
process. By selecting a checklist item, designers inform the system of their current focus of 
attention in the design process. When the designer selects a subproblem in the checklist, the 
system responds by displaying the corresponding options in the specification sheet shown 
in the neighboring "What you can do" window and, thus, provides further details about the 
subproblem. The critics are grouped according to the checklist items. The critic pane always 
displays exactly those critic messages that are related to the currently selected checklist item. 
The set of checklist items displayed depends on the designer's previous design decisions. 
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The system displays only those items that are currently relevant (it is context-sensitive; for 
example, the prompt item is displayed only if command-based interaction is specified; see 

Figure 2). 

Code Generators 

The ultimate goal of user interface design is the generation of an executable program code, 
and the design activity supported by FRAMER can be viewed as creating a specification 
for the code. The code generator component of FRAMER is a formal knowledge source 
that takes care of creating syntactically correct, executable code (the details of the code 
generation process are discussed by Lemke (1989». 

5.2. JANUS: A DODEfor Kitchen Design 

JANUS supports kitchen designers in the development offloor plans. JANUS-CONSTRUC­
TION (see Figure 4) is the construction kit for the system. The palette of the construction kit 
contains domain-oriented building blocks such as sinks, stoves, and refrigerators. Designers 
construct kitchens by selecting design units from the palette and placing them into the work 
area. In addition to design by composition (using the palette for constructing an artifact from 
scratch), JANUS-CONSTRUCTION also supports design by modification (by choosing 
existing designs from the catalog and modifying them in the work area). 

The critics in JANUS-CONSTRUCTION identify potential problems in the artifact being 
designed. Their knowledge about kitchen design includes design principles based on build­
ing codes, safety standards, and functional preferences. When a design principle (such as 
"the length of the work triangle should be no greater than 23 feet") is violated, a critic will 
fire and display a critique in the messages pane (Figure 4) identifying a possibly problematic 
breakdown situation (Fischer and Nakakoji, 1992), and prompting the designer to reflect 

on it. 
Our original assumption was that designers would have no difficulty understanding these 

critic messages. User experiments with FRAMER and early versions of JANUS demon­
strated that the short messages the critics present to designers do not reflect the complex 
reasoning behind the corresponding design issues. To overcome this shortcoming, we ini­
tially developed a static explanation component for the critic messages (Lemke and Fischer, 
1990) based on the assumption that there is a "right" answer to a problem (see Figure 2). 
But the explanation component proved unable to account for the deliberative nature of de­
sign problems (Rittel, 1984). Therefore, argumentation that discusses the pros and cons 
of issues raised by critics must be supported, and argumentation must be integrated into 
the context of construction. JANUS-ARGUMENTATION (see Figure 5) is the argumen­
tation component of JANUS (Fischer et aI., 1991 a). It is an argumentative hypermedia 
system that offers a domain-oriented issue base about how to construct kitchens. With 
JANUS-ARGUMENTATION, designers explore issues, answers, and arguments by navi­
gating through the issue base. The starting point for the navigation is the argumentative 
context triggered by a critic message in JANUS-CONSTRUCTION. By combining con-
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Figure 4. JANUS-CONSTRUCTION: The work triangle critic. JANUS-CONSTRUCTION is the construction 
part of JANUS. Building blocks (design units) are selected from the Palette and moved to desired locations inside 
the Work Area. Designers can reuse and redesign complete floor plans from the Catalog. The Messages pane 
displays critic messages after each design change that triggers a critic. Clicking with the mouse on a message 
activates JANUS-ARGUMENTATION (see Figure 5) and displays the argumentation related to that message. 

struction and argumentation, JANUS was developed into an integrated design environment 
that supports "reflection-in-action" as a fundamental process underlying design activities 
(Schoen, 1983; Fischer and Nakakoji, 1992). 

5.3. A Domain-Independent, Multi-Faceted Architecture for DODEs 

Based on the numerous design efforts creating domain-oriented design environments as well 
as on an analysis of the shortcomings of previous efforts, we have developed the domain­
independent architecture shown in Figure 6 to serve as a starting point and organizing 
framework in the creation of specific DODEs. The individual components as well as the 
integration mechanisms of this architecture are briefly described below and illustrated with 
screen images of the JANUS system. 
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Figure 5. JANUS-ARGUMENTATION: Rationale for the work triangle rule. JANUS-ARGUMENTATION is an 
argumentative hypermedia system. The Viewer pane shows a diagram of the work triangle concept and arguments 
for and against a work triangle answer. The top right pane shows an example illustrating the answer in response 
to the request "Show Example (Refrigerator. Sink. Stove)." 

Components 

The major components are: 

• A construction kit (Figure 4) is the principal medium for modeling a design. It provides 
a palette of domain concepts and supports construction using direct manipulation and 
electronic forms. The primary design activity supported by it is design by composition. 

• An argumentative hypermedia system (Figure 5) contains issues. answers. and argu­
ments about the design domain. 

• A catalog (Figure 4) is a collection of prestored designs that illustrate the space of 
possible designs in the domain and support reuse and case-based reasoning. The primary 
design activity supported by it is design by modification. 

• A specification component (Figure 7) supports the interaction between clients and de­
signers to describe characteristics of the design they have in mind (Nakakoji. 1993). 



192 

Construction I 

Catalog 
Explorer 

Figure 6. A domain-independent multifaceted architecture. 

" Construction Analyzer 

~ 
I Argumentation I 

\ 
t 

Argumentation 
Illustrator 

Catalog --

GERHARD FISCHER 

The specifications are expected to be modified and augmented during the design pro­
cess, rather than fully articulated at the beginning. They are used to retrieve de­
sign objects from the catalog and to filter information in the hypennedia infonnation 
space. 

• A simulation component allows designers to carry out "what-if' games to simulate 
various usage scenarios involving the artifact being designed. 

Integration 

The multi-faceted architecture derives its essential value from the integration of its compo­
nents. Used individually, the components are unable to achieve their full potential. Used 
in combination, each component augments the values of the others, fonning a synergistic 
whole. At each stage in the design process, the partial design embedded in the design 
environment serves as a stimulus to users, and suggests what they should attend to next. 
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Figure 7. JANUS-SPECIFICATION: Articulation of information about a specific design task. Designers can 
select answers presented in the Questions window. The summary of currently selected answers appears in the 
Current Specification window. Each answer is accompanied with a slider (upper right pane) that allows designers 
to assign a weight representing the relative importance of the answer. Weights are used to prioritize and resolve 
conflicts between answers (for details see (Nakakoji. 1993». 

Links among the components of the architecture are supported by various mechanisms (see 
Figure 6): 

• The CONSTRUCTION-ANALYZER is a critiquing system (Fischer et aI., 1991b) that 
provides access to relevant infonnation in the argumentative issue base. The firing of 
a critic signals a breakdown to users and provides them with an entry into the exact 
place in the argumentative hypennedia system where the corresponding argumentation 
is located. 

• The explanation given in argumentation is often highly abstract and very conceptual. 
Concrete design examples that match the explanation help users to understand the 
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Figure 8. Seeds, evolutionary growth, and reseeding: A process model for DODEs. During seeding, environment 
developers and domain designers collaborate to create a design environment seed that captures an application 
domain (e.g., FRAMER or JANUS). During evolutionary growth, domain designers (Le, professional kitchen 
designers) create specific artifacts. Breakdowns (e.g., the lack of support for specific designs, the ongoing 
occurrence of new components and new knowledge) experienced by the domain designers leads to the addition 
of new domain knowledge to the seed. In the reseeding phase, environment developers again collaborate with 
domain designers to organize, formalize, and generalize new knowledge. 

concept. The ARGUMENTATION-ILLUSTRATOR (Fischer et aI., 1991a) helps users 
to understand the information given in the argumentative hypermedia by finding a 
catalog example that illustrates the concept (see upper right pane in Figure 5). 

• The CATALOG-EXPLORER helps users to search the catalog space according to the 
task at hand (Fischer and Nakakoji, 1992). It retrieves design examples similar to the 
current construction situation, and orders a set of examples by their appropriateness to 
the current specification. 

5.4. Seeding, Evolutionary Growth, and Reseeding: A Process Modelfor DODEs 

To account for the evolutionary nature of complex environments that model real-world 
systems, we have developed a process model for DODE that relies on three major phases: 
seeding, evolutionary growth, and reseeding (see Figure 8). 

A seed for a domain-oriented design environment is created through a participatory design 
process between software designers and domain experts by incorporating domain-specific 
knowledge into the domain-independent multi-faceted architecture underlying the design 
environment (see Figure 6). Seeding entails embedding as much knowledge as possible 
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into all components of the architecture. But any amount of design knowledge embedded in 
design environments will never be complete because (I) real-world situations are complex, 
unique, uncertain, conflicted, and instable; and (2) knowledge is tacit (i.e., competent prac­
titioners know more than they can say (Polanyi, 1966», implying that additional knowledge 
is triggered and activated only by experiencing breakdowns in the context of specific use 
situations. 

Evolutionary growth takes place as domain experts use the seeded environment to under­
take specific projects for clients. During these design efforts, new requirements may surface 
(e.g., the design of a kitchen for people who are blind or in wheelchairs), new components 
may come into existence (e.g., microwaves) and additional design knowledge not contained 
in the seed may be articulated (e.g., that appliances should be against the wall unless we 
have an island kitchen). During the evolutionary growth phase, the software designers are 
not present. Therefore it is highly desirable that the new design knowledge can be added by 
the domain expert requiring computational mechanisms that support end-user modifiability 
(Fischer and Girgensohn, 1990), and end-user programming (Eisenberg, 1991; Gantt and 
Nardi, 1992). 

Reseeding, a deliberate effort at revision and coordination of information and functional­
ity, brings the software designers back in to collaborate with domain designers to organize, 
formalize, and generalize knowledge added during the evolutionary growth phases. Orga­
nizational concerns (Terveen, Selfridge, and Long, 1993) playa crucial role in this phase. 
For example, decisions have to be made as to which of the extensions created in the context 
of specific design projects should be incorporated in future versions of the generic design 
environment. 

After the initial seeding, the use and reseeding phases alternate continuously. Evidence for 
the adequacy and relevance for this approach can be derived from numerous developments 
oflarge-scale software systems that have evolved over time, such as Symbolic's Genera and 
the X-Window System. In such systems, users develop new techniques and extend the func­
tionality of the system to solve problems that were not anticipated by the system's authors, 
and distribute them through users' groups. New releases of the system will then incorporate 
the ideas and code produced by users and found relevant to the community as a whole. 

6. Assessment of DODEs 

Analogous to the assessment of KBSAs, this section assesses DODEs by comparing and 
contrasting them with related efforts (software synthesis and requirements engineering) and 
by describing some of the current limitations and future implications of DODEs. Figure 9 
presents a high-level comparison between KBSA and DODE and indicates how they com­
plement each other as KBSAs focus on downstream and DODEs on upstream activities. 

Software Synthesis 

Research efforts focused around the goal of automatically synthesizing software from higher 
level specifications and reusable components represent an important idea (compilers rep-
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resenting an early success story of these efforts) to increase software productivity. The 
SINAPSE system (Kant, 1992, 1993) is a system sharing many goals with our systems 
(e.g., domain-orientation, visualization), but it primarily supports downstream activities 
(e.g., code generation, optimization), thereby instantiating a number of the goals of the 
KBSA paradigm and complementing our approach. The different emphasis is mostly due 
to the fact that the mathematical knowledge is relatively well defined, and formally spec­
ified, and the support needed is to empower mathematicians to do their modeling in an 
environment closer to their world than FORTRAN. New knowledge to SINAPSE is added 
by the software designer and not by the domain experts (contrary to the view taken by 
DODEs, as illustrated in Figure 8). 

Requirements Engineering 

Requirements engineering (Proceedings, 1993) shares many research goals with our efforts 
on DODEs. It brings together informal system analysis methods as explored in the CSCW 
community and as used in DODEs in the argumentation component (see Figure 6) with 
formal methods as explored in KBSA efforts. The Requirements Apprentice (Reubenstein 
and Waters, 1991) explores the formalization phases that bridge the gap between an informal 
and formal specification, but provides little support for the incremental construction of the 
informal specifications during the problem-framing process. The Advisor for Intelligent 
Reuse (ARI) (Maiden and Sutcliffe, 1992) assists software designers in identifying and 
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understanding domain abstractions, but it lacks the linkage between a construction situation 
and the catalog as provided by the CATALOG-EXPLORER (see Figure 6). The computer­
based critic embedded in the Kate system (Fickas and Nagarajan, 1988) differs from our 
critiquing systems as used in the CONSTRUCTION-ANALYZER (Fischer et aI., 1991 b) 
in that it analyzes formal specifications rather than construction situations. 

Cu"ent Limitations and Research Issues for DODEs 

The appeal of the DODE approach lies in its compatibility with an emerging methodol­
ogy for design (Cross, 1984; Ehn, 1988; Schoen, 1983; Simon, 1981), with views of the 
future as articulated by practicing software engineering experts (CSTB, 1990), with reflec­
tions about the myth of automatic programming (Rich and Waters, 1988), with findings 
of empirical studies (Curtis, Krasner, and Iscoe, 1988), and with the integration of many 
recent efforts to tackle specific issues in software design (e.g., recording design rationale 
(Fischer et aI., 199Ia), supporting case-based reasoning (Redmiles, 1992), creating artifact 
memories (Terveen, Selfridge, and Long, 1993), and so forth). We are further encouraged 
by the excitement and widespread interest of DODEs and the numerous prototypes being 
constructed, used and evaluated in the last few years. Many of our current systems (such as 
FRAMER and JANUS) rely heavily on a spatial metaphor, but we have also explored other 
domains in which different properties (such as time in the voice dialog design environment 
(Repenning and Sumner, 1992) or programming knowledge in the Cobol (Atwood et aI., 
1991) and graphic design environments (Fischer et aI., I 992b» need to be supported. 

DODEs raise numerous research issues. Creating seeds for a variety of different domains 
will require substantial resources and the willingness of people from different disciplines to 
collaborate. The necessity to invest in long-term benefits must be taken seriously. Designers 
who do the work (e.g., providing design rationale) without directly benefiting from their 
efforts (Fischer et aI., 1992a) must be rewarded. Evolving seeds over time will require 
more involvement of users, a willingness to acquire additional and different qualifications, 
as well as different organizational commitments (Nardi, 1993). 

By being high-functionality systems, DODEs create a tool mastery burden. Our experi­
ence has shown that the costs of learning a programming language are modest compared 
to those of learning a full-fledged design environment. New tools (e.g., support for a 
location/comprehension/modification cycle (Fischer et aI., 1992b), critics (Fischer et aI., 
199Ib), and support mechanisms for learning on demand (Fischer, 1991» are needed to 
address these problems. 

New Classes of Computer Users 

There are numerous reasons that a DODE approach will not be readily accepted. Software 
designers often have difficulties with the idea that they do not create "universal solutions" 
that make everyone happy. They have difficulties in sacrificing generality for increased 
domain-specific support. DODEs replace the clean and controllable waterfall model with 
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Figure 10. Layered architectures in DODEs. In the 1950s. programmers had to map problems directly to 
assembly languages and the assembly programs retained basically no semantics of the problems to be solved. In 
the I 96Os. general purpose high-level programming languages reduced the transformation distance. which allowed 
programs to retain some problem semantics and the programming profession was specialized into compiler writers 
and programmers who developed programs in high-level programming languages. Design environments further 
reduce the gap between problems and their descriptions as computational artifacts by introducing additional. 
increasingly domain-oriented layers . This approach leads to a layered architecture that underlies all complex 
systems (Dawkins. 1987). 

a much more interactive situation in which the search for "correct" solutions is limited to 
downstream activities. 

DO DEs (see Figure 10) will lead to further specialization of computer users into envi­
ronment developers who create (in cooperation with domain experts) the seeds for design 
environments, and of domain experts who solve problems by exploiting the resources of the 
design environments (Gantt and Nardi, 1992). Support for end-user modifiability allows 
domain experts to extend the functionality of the design environment over time (Fischer 
and Girgensohn, 1990). 

7. Conclusions 

In conclusion, I want to briefly summarize the main issues of the "message" derived from 
a DODE perspective. 
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Emphasis on Humans Rather than on Automation 

Rather than "getting the human out of the loop," we should empower designers and users to 
create and evolve artifacts fitting their needs and desires. Human-centered communication 
and collaboration technologies (such as languages of doing) should assist all stakeholders 
to create shared knowledge and support mutual education. 

A Deeper Understanding of Design 

Solving ill-defined problems requires the intertwining of problem framing and problem 
solving. "Understanding the problem is the problem"-which is impossible without an 
understanding of the problem domain. The role of domain knowledge is critical. Designers 
do not reason from first-order principles, but they rely on experience with similar problems. 
Design in use (achieved by end-user modifiability) is inevitable in a changing world. To 
make it feasible, end-users require access to the rationale behind the artifact. 

Increase in Shared Understanding 

Domain-oriented design environments increase shared understanding in three ways: (I) the 
domain orientation allows a default intent to be assumed, namely, the creation of an artifact 
in the given domain; (2) the construction situation is accessible and can be "parsed" by the 
system, providing the system with information about the artifact under construction; and 
(3) the specification component allows one to explicitly communicate high-level design 
intentions to the system. 

Empirical Foundations Through Assessment Studies in Naturalistic Settings 

The times of purely prescriptive design methodologies in software engineering belong to 
the past. "Arm-chair" design and supply-side computing are not sufficient to solve real­
world problems (Thomas and Kellogg, 1989). Software is created in the real world ; deals 
with real tasks; and involves human beings with different interests, skills, and knowledge. 
To make future computing systems succeed requires more than concern for technology-it 
requires concern for human beings, their tasks. and their organizations. 
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Commentary on 'Domain Oriented Design 
Environments' by Gerhard Fischer 

ALISTAIR SUTCLIFFE 

City University 

The basic message of this paper, that software engineering needs to become more people 
centric is one which I am sympathetic to. The paper is written in a crusading style and 
readers unfamiliar with the area may be persuaded that they are witnessing a paradigm 
shift (in the Kuhn's, 1970, sense) in software engineering from automation to cooperative 
support. It is this dichotomy which I shall investigate a little further. 

Very little attention has been paid to the early stages of software engineering and Fis­
cher quite correctly draws our attention to the fact that the subject, now becoming titled 
'requirements engineering', involves complex activities of problem framing, analysis and 
problem solving. These activities have been familiar to cognitive scientists for many years 
and several studies have explored problem solving in programming (see Pennington, 1987; 
Gilmore and Green, 1988), and less frequently in system analysis (Sutcliffe and Maiden, 
1991; Guidon and Curtis, 1988). The surprising fact is that little or none of this work 
has had an impact on the design of CASE tools. The explanation is that technology has 
outpaced science and only now is the industry waking up to the manifest delkiencies in 
computer support for software engineering. It is a message which the automated software 
engineering community would be wise to heed, and Fischer makes this point with reference 
to CASE and in comparison with support tools for other design domains. 

One of the tensions between the automatic programming and nascent design environment 
tradition is in the nature of the problem. Automatic programming research invariably fo­
cuses on small, well-structured problems in engineering and real time type domains. For 
such problems, formal specification, automatable transformations, and development by re­
finement may well lead to success. Indeed for safety critical domains formal approaches 
and automatic programming is not only desirable but essential. However, Fischer reminds 
us that many problems do not fall into this class. Only too often applications start out as ill 
defined, requirements are vague, change over time, and are a matter of negotiation. Commu­
nication, cooperation and iterative development become more important than formalism. 
The changing nature of software is not new, (see Lehman, 1971) and forth generation 
languages can be seen as a partial answer to Fischer's assertion that 'modern application 
needs' are not served by 'traditional programming languages', So is domain orientation the 
answer? 

The problem with domain centred design is twofold. First there is no sound theory, or even 
a partial rationale, about what a 'domain' is. Hence domain oriented design environments 
(DO DEs) are build on ad hoc intuition about how large a particular problem is perceived 
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to be. Note the perceived, problems will change in size and nature as they are explored, 
a point already made in Fischer's paper. Secondly there is the generic trap. If a DODE 
is constructed for a particular domain then can it be any use in another domain? If not, 
then this approach leads to a pessimistic conclusion about enhancing software engineering 
productivity. Every domain will have to have its own purpose-built environment. 

Generalisation, and inter alia abstraction, is one of the core concerns of software engi­
neering. This problem has surfaced in reuse research where templates or generic models 
have been proposed in an attempt to reuse domain knowledge (Reubenstein, 1990; Maiden 
and Sutcliffe, 1991). However the commercial reality of software reuse is that success has 
only been found in modest domain specific libraries (Arango et aI., 1993). This argues that 
domain oriented approached may be the way forward but it still leaves open the question 
of how large or small, general or specific, a domain should be. DODEs may be able to 
deliver modest evolutionaryl within domain reuse but nothing more. However we should 
also judge them on other criteria in which they claim strength namely requirements analysis 
and validation and ones in which they are somewhat silent; the reliability and quality of the 
designed product. 

Fischer advocates 'languages for doing' for design, however, it is not entirely clear what 
constitutes such as language. Some of the examples appear to be close to visual program­
ming (e.g. FRAMER) while others are constraint based graphical editors (e.g. JANUS) in 
the Thinglab and ARK tradition (Smith, 1987). Exploration of design ideas could be either 
restricted by a system which does not allow freedom of action by the designer; alterna­
tively, an overpermissive system could just encourage poor design. The problem here is 
the lack of any theoretical basis for cooperation. Models of cooperation are still in their 
infancy in Human Computer Interaction and Knowledge Based Systems, yet such models 
are necessary to decide what support should be automated in a DODE and furthermore how 
the dynamic process of cooperation should be managed in a dialogue. At present it appears 
that cooperation in Fischer's systems takes a safe line of leaving initiative with the user, 
although we have no way of know how optimal, or sub optimal, this strategy is. 

Critique is a key component of DODEs, so design proceeds more by human creation 
and machine review rather than machine automation and guidance as in the intelligent 
CASE assistant tradition (e.g. Punchello et aI., 1988; Johnson et aI., 1991). Unfortunately 
the penalty of domain specific knowledge means that the value of the critiquer tool is a 
function of the knowledge acquisition effort in the domain, to say nothing of the knowledge 
representation and dialogue design. As knowledge acquisition is an acknowledged bottle 
neck in KBS development, the outlook for intelligent critiquers is pessimistic. Every 
domain will have to have an exhaustive analysis to find all the principles, rules, guidelines 
etc for good design and then worse still, collection of 'buggy rules' to detect poor practice. 
Domain analysis has had a poor track record of price performance payback in reuse (see 
the DRACO project, Neighbours, 1989), moreover buggy rules have proved hard to collect 
in Intelligent Tutoring Systems. This raises a further question, how far does a DODE go 
in its intelligence? Clearly there is a stopping problem as a critiquers could soon become a 
complete ITS with pedagogical and diagnostic modules. 

One riposte which Fischer can make to the domain specific limitation, is that his work 
produces domain independent architecture. While this is true, the question becomes one 
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of payback in increased design quality for effort in customising and configuring a generic 
architecture. To go through the components listed in section 5.3: 

• The construction kit; considerable effort will be necessary to turn a 'palette of domain 
concepts' into support for construction by direct manipulation. A graphical composition 
grammar will have to be designed and mapped to the underlying semantics of the objects, 
relationships, etc., in the domain. Work by Sommerville et at. (1987) on generic CASE 
environments may be helpful here. The construction kit should provide customisable 
languages for design support. 

• An argumentation hypermedia system; this is a good idea but why not use well known 
systems such as gIBIS? 

• A catalogue of prestored designs; another fine idea but what happens when the library 
scales up? This encounters the retrieval for reuse problem. Experience suggests that 
beyond 1-2000 designed components, people have problems using libraries without re­
trieval support, be that by faceted classification schemes or intelligent retrieval engines. 

• A specification component; this is probably the most difficult part, models of coopera­
tion are necessary, and the domain knowledge bottleneck makes the critiquer expensive 
to build. Further problems are how to link argumentation structures to evolving de­
signs, to say nothing of supporting other facets of design known from cognitive studies, 
such as maintenance of multiple hypotheses (alternative workspaces), and support for 
working memory (designer's note pads). 

• Simulation component; it is essential to be able to animate and run various designs, 
although can different views be incorporated, how can scripts and scenarios be run 
against a design? Can scripts of people moving and cooking in kitchens be run in 
JANUS simulations? 

While the concept looks attractive, considerable customisation will be necessary to build 
a DODE from such a toolkit. Furthermore there appear to be several fairly fundamental 
research questions that have to be answered on the way. 

DODEs are envisaged as evolving environments (section 5.4) with gradual acquisition 
of domain and design knowledge. Unfortunately this brings with it the danger of integrity 
maintenance. Updating knowledge bases is a hazardous business even with good controls. 
One designer's rule may well clash with another's, and constructing an environment which 
can rigorously check for rule inconsistencies is difficult especially as the size of the domain 
knowledge base grows. 

If DODEs can be delivered within the bounds of reasonable effort, there is good reason 
to expect that designed products may have a better quality. Requirements capture and 
validation should be improved. However, there is little in Fischer's paper about improvement 
in reliability of software products. Surely DODEs should attempt to ensure that the resulting 
designs are specified so that the resulting code is reliable and even maintainable? This 
implies that DODEs need to have specification formalisms and code generation by automatic 
programming built into them, a synthesis indicated in the paper. The link that is not made 
by Fischer is that formalism itself enables reasoning about specifications and hence can feed 
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into design critiques. Formal software engineering tools and design environments may have 
a symbiotic relationship rather than the more separate 'upper and lower' CASE model. 

Finally to return to the crusade. Are DODEs are paradigm shift from formal software 
engineering tools and indeed pragmatic structured methods? I will not venture a verdict, 
but I do suggest that the conception of cooperation, designer/user centricity and domain 
orientation is growing in a number of research communities including automatic program­
ming and formal methods. Design environments may synthesise research on simulation, 
cooperative assistants, domain analysis and reuse into a new coherent direction for CASE; 
although the benefits of formal software engineering need to be integrated into the vision. 
Gerhard Fischer has made a good case for this vision, although some of the problems in­
herent in realising design environments have been finessed. Considerable theoretical and 
applied research is necessary to turn DODEs from application specific demonstrators into 
a general engineering technology. 
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Birds of a Feather: The DODE and Domain-Specific 
Software Synthesis Systems 

OORarHY E. SETLIFF 
University of Pittsburgh 

1. Introduction 

Fischer, in his paper "Domain-Oriented Design Environments", introduces DODEs as a 
new design process. The fundamental characteristics of the DODE are the incorporation of 
domain-specific knowledge, the separation into synthesis, analysis, and simulation design 
components, and an emphasis on stakeholder and synthesis cooperation. Fischer contrasts 
the DODE against current knowledge based software engineering techniques, which he 
claims emphasizes the replacement of humans in design [Section I]. Fischer claims that 
the ultimate goal of these techniques is automatic programming [Section I]. Fischer char­
acterizes automatic programming as being 'unachievable' [Section 3] and the antithesis of 
the DODE design process. 

This author disagrees with Fischer's characterization of automatic programming, and 
believes that Fischer's DODE design process is virtually identical to that seen in current 
automatic programming/software synthesis design systems. While Fischer does not provide 
much in the way of algorithm or technique suggestions to implement the DO DE design 
process, this author believes that current software synthesis techniques can be used to 
instantiate much of the DODE design process. The remainder of this paper presents a more 
current definition of automatic programming and software synthesis and investigates the 
similarity between current software synthesis systems and Fischer's DODE design process. 
Given this similarity, this author believes that the crusade to empower, rather than replace, 
humans is already a point in fact and that the DODE design process is not a totally new 
idea. The organization of ideas presented in Fischer's paper does cover in one place the 
major areas of research needed to fully implement the DODE. Current software synthesis 
systems represent steps in that direction. 

2. Automatic Programming Today 

Automatic programming, more currently called software synthesis, focuses on the tools 
and techniques needed to synthesize a specific type of design object, namely, software. 
Software has proven to be quite difficult to design automatically. This is because software 
as a design object is so easily modifiable and quite often the 'glue' tying together a multitude 
of different design objects (e.g., hardware) (Royce, 1993), Early automatic programming 
efforts centered on generic (i.e., domain-independent) techniques and on the software coding 
process (Biermann, 1976; Schonberg et aI., 1981), rather than on the software design 
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process. Several efforts included domain-specific knowledge (Barstow, 1979), but these 
resulted in application-specific code generators, and were without a good abstraction of 
the design architecture. Unfortunately, the limitations of these early efforts soured many 
researchers on the applicability and likely success of software synthesis. It is the limitations 
of these early efforts that drives Fischer's characterization of automatic programming. 

Fortunately, software synthesis has progressed past these first beginnings. The realization 
that design, defined by Dym as "the act of translating requirements into specifications and 
constraints" (Dym, 1993), is the real problem, not implementation. Thus, software synthe­
sis turned its focus to software design issues (Setliff et aI., 1993). The recognition that the 
domain affects design and vice versa is one that Fischer specifically incorporates in his DO­
DEs and can be seen in current software synthesis and engineering systems (Lowry, 1991). 

One design field that has shown startling synthesis success is VLSI CAD design. The 
combination of domain-independent synthesis algorithms and domain-specific knowledge 
successfully synthesizes VLSI CAD designs. Three characteristics serve to make VLSI 
CAD highly synthesizable: the specification of a specific target solution architecture, the 
restriction to a set of known design components, and high reusability. Current software syn­
thesis approaches seek to mirror the success of VLSI CAD design synthesis by making the 
same set of design style restrictions and using the same combination of domain-independent 
synthesis algorithms and domain-specific knowledge (Setliff and Rutenbar, 1992; Smith 
and Setliff, 1993; Keller and Rimon, 1992). 

The success of domain-specific software synthesis has not been noted in many circles. 
Software synthesis has successfully produced systems targeting a specific design architec­
ture in a given domain (Smith and Setliff, 1993; Jullig and Pressburger, 1993; Eriksson and 
Musen, 1993; Kant, 1993; Abbott et aI., 1993). This allows for greater domain breadth and 
insights into how to transfer this success into other related domains. Work is continuing 
on design style abstractions so that synthesis can evaluate the relative merits of different 
design architecture styles. 

Fischer is incorrect in believing that software synthesis seeks to replace the human in de­
sign [Section 3]. Rather, software synthesis seeks to tailor the design process (consisting of 
synthesis, analysis, and simulation activities) according to what the designer believes is an 
essential human design activity in accordance with the maturity of the target domain. This 
is identical to the design needs that Fischer claims are met by DODEs. It is when the human 
performs repetitive actions that the human becomes a 'button-pusher' [Section 3], not when 
automation is provided. Synthesis focuses on activities that the human has no real desire 
to participate in because they are repetitive, even when those activities are software design 
activities. The most likely repetitive design activities are in well-known domains. While 
most domains are not well-known at this point, allowing synthesis to perform design activ­
ities allows the designer to quickly evaluate the repercussions of different options. Humans 
prefer to evaluate the effectiveness of decisions. It is this facility that synthesis provides. 

3. A Comparison of Software Synthesis Systems and the DODE 

It is this author's contention that both Fischer's DODE and current software synthesis sys­
tems seek to empower the human, incorporate domain knowledge where necessary, and 
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separate the design process into synthesis, analysis and simulation components. Fischer 
lists five main components in the generic DODE architecture. Iteration is made explicit 
through an integration of these components. Each of these five main components has a cor­
responding component in most software synthesis systems. The following list summarizes 
Fischer's DODE component description, describes the corresponding software synthesis 
system component, and highlights their similarities and differences. 

• Construction kit: 

Fischer describes this component as a 'palette of domain concepts' that supports 'design 
by composition.' This component supports synthesis activities. A number of software 
synthesis architectures duplicate the functionality of this component by incorporating 
templates of various abstraction levels (Graves et aI., 1992; Kant, 1993; Keller and 
Rimon, \992). These templates act as design knowledge supporting synthesis oper­
ations. Keller and Rimon (1992) use templates of mathematical behaviors to derive 
complex mathematical design functions. Setliff and Rutenbar (1992) use design tem­
plates much as does Janus [Section 5.1] to modify initial designs to meet the evolving 
routing specification. Software synthesis architectures demonstrate the utility of 'de­
sign by composition', especially in rapidly changing domains (Setliff and Rutenbar, 

1992). 

• Argumentative hypermedia system: 

Fischer expounds the use of visual techniques to provide analysis functions. This com­
ponent acts as an enabling user interface for database technologies. The goal of this 
component is provide a domain-specific user interface while supporting explanation­
based design (i.e., human/computer cooperation). While no software synthesis system 
has explicitly detailed the need for this type of visual interaction, Kant (1993) has ex­
plored the use of history keeping to explain design decisions. Jullig (1993) supports 
combined explanation and simulation activities. Abbott et al. (1993) provides a visual 
domain-specific specification user interface. Thus, current software synthesis architec­
tures support parts of this component. Fischer makes a good point that user interactions 
should be in terms of the domain. Successful software synthesis architectures have 

domain-specific user interfaces. 

• Catalog: 

Fischer describes the catalog as 'a collection of pre-stored designs that illustrate the 
space of possible designs' and as a support for 'design for modification' [Section 5]. 
This component is primarily a database supporting the activities in the construction kit. 
Indeed, in most software synthesis architectures, this component is contained within 
the construction kit (using Fischer's terminology) (Setliff and Rutenbar, 1992; Smith 
and Setliff, 1993; Kant, 1993; Keller and Rimon, 1992). Thus, the combination of the 
catalog and construction kit (and in part the specification component below) perform 
synthesis and analysis activities in software synthesis architectures. 
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• Specification: 

Fischer argues for domain-specific specification interfaces and languages (languages for 
doing). The specification is expected to be modified as a function of performing design. 
Domain-specific software architectures have embraced domain-specific specifications, 
Keller and Rimon (\ 992) use visual data flow graphs to succinctly capture physical 
to mathematical relationships. Smith and Setliff (1993) use simple tables common in 
use by systems analysts, Abbot et aL (1993) use graphical editors to capture synthesis 
for parallel process, Software synthesis architectures embrace the use of domain­
specific user interfaces and typically incorporate Fischer's specification component 
into Fischer's argumentative hypermedia system component. 

• Simulation: 

Fischer specifically incorporates the necessity of simulation to play 'what if' games dur­
ing the design process. Simulation is supported by Jullig (1993), Abbott et al. (1993), 
and Keller and Rimon (1992). Simulation is provided at different abstraction levels: 
design, functionality, and implementation. Effective simulation requires efficient anal­
ysis of the end-result, software. Software synthesis techniques are uniquely suited for 
effective simulation and can be used in DODEs to provide analysis of the design space. 

Current software synthesis architectures, '.vhile not split precisely into Fischer's five 
components, generally support the 'gist' of Fischer's design process, Software synthesis 
does have an emphasis on abstraction levels (due to a philosophical difference on what is 
automatable) not present in Fischer's discussion of DODEs. 

4. Conclusions 

Software synthesis techniques provide most, but not all, of the functionality in Fischer's 
DODE. Software synthesis is achievable and is best at the automation of repetitive activities, 
even when these activities are design. Software synthesis performs analysis and synthesis 
activities automatically in well-known domains, while in less well-known domains, soft­
ware synthesis supports simulation activities for human cooperation, Software synthesis 
techniques support human cooperation by effectively evaluating different options within 
the design space, Current software synthesis architectures are well on their way towards 
instantiating Fischer's DODE design process. 
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Developing Domain-Oriented Design 
Environments-The Question is How, not Why 

JIM Q. NING 
Center for Strategic Technology Reuarch (CSTaR), Andersen Consulting, 100 South Wacker Drive, 
Chicago, Illinois 60606 

I share many of the claims and ideas expressed in the paper, "Domain-Oriented Design 
Environments" (DODEs) by Gerhard Fischer. Especially. I strongly agree with the following 
two points: 

I. Human-Centered Design Paradigm. According to the author, this means the "em­
powering and augmenting of all stakeholders in design processes to create more ade­
quate. more understandable. and more enjoyable systems." The state of commercial 
acceptance of the Computer-Aided Software Engineering (CASE) tools, let alone the 
Knowledge-Based Software Engineering (KBSE) tools, has been disappointing. A 
primary reason, as pointed out by Fischer. is that the existing tools and approaches 
fail to emphasize active user involvement and cooperation in the software design and 
development process. 

2. Domain Orientation. The existing tools may contain generic knowledge concerning 
computing and programming domains. Some commercial CASE tools. for example. 
may automatically verify structural and dataflow design constraints. More advanced 
tools or prototypes may use programming knowledge to automate the generation of 
executable and/or efficient code from high level specifications (Johnson and Feather. 
1990; Kant, 1993). But typically, they do not provide problem solving support specific 
to the application domains for which the systems are developed. 

It should be pointed out, however, that the problems raised by Fischer have long been 
recognized in the software engineering community. There has been on-going work in the 
general areas of Domain Modeling andAnalysis (Arango, 1989; Devanbu et aI., 1991; Iscoe, 
Williams, and Arango, 1989; Prieto-Diaz, 1990), Software Architectures (Garlan and Shaw, 
1993). Application Generators (Neighbors, 1984; Batory, 1988). Frameworks (Johnson and 
Russo, 1991), Megaprogramming (Beohm and Scherlis, 1992; Wiederhold, Wegner, and 
Ceri. 1992). Domain Specific Environments (Griss. 1993; Ning, Miriyala. and Kozaczynski. 
1994). etc. The ARPA Domain-Specific Software Architecture (DSSA) program (Mettala 
and Graham. 1992; Proceedings. 1990), in particular, exemplifies a coordinated effort 
towards developing domain-specific software tools. Despite the active research. the DODEs 
developed so far have not been able to scale up to demonstrate practical utility. 

A large portion of Fischer's paper was contributed to argue why we should develop 
DODEs, which I do not consider to be a significant question any more. The real question 
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today is how to develop. There are many constraints and difficulties involved in developing 
DO DEs, including: 

I. Knowledge Engineering. Knowledge engineering or knowledge acquisition has long 
been recognized as a bottleneck in the application of AI and knowledge-based tech­
niques. An effective DODE would require a large amount and a wide variety of domain­
specific knowledge possibly including architectures, design frameworks, interface and. 
interconnection standards, principles, constraints, heuristics, critics, reusable compo­
nents, etc. Where does this knowledge come from? Obviously, the DODE developers 
cannot do it alone who typically do not possess sufficient domain knowledge. They 
will have to cooperate with the target users of the DODEs to conduct domain analysis. 
Domain analysis is known to be a hard, tedious, and time-consuming activity. What are 
the incentives that could potentially justify the high investment involved in the DODE 
knowledge engineering activities long before the developers could benefit from selling 
them and the users could benefit from using them? 

2. Domain Maturity. Even with high commitment, it is difficult to imagine that DO DEs can 
be built for those domains in which we have not developed many application systems and 
thus do not have good understanding. DODEs encapsulate domain-specific application 
development experiencelknowledge accumulated in the past. The form and content of 
this development knowledge will keep evolving for a long period of time as a large num­
ber of applications are developed in a particular domain. A good DODE must be based 
on a relatively stable understanding of a domain. It should also be pointed out that even 
for mature domains, it would still be very hard to construct DODEs because of the lack 
of sound domain theories and systematic methods for domain analysis and modeling. 

3. Domain Specificity. So far, DODEs have only been successfully developed for a lim­
ited number of "low-level", generic domains, such as graphical user interface (GUI) 
building and database generation. It may not even make sense attempting to construct 
DODEs for arbitrary domains. DODEs are expensive to construct. It would not justify 
the effort for narrow domains in which very few applications will ever need to be built. 
Besides, certain domains may not fit the cooperative, user-oriented, graphics-based 
design style suggested by Fischer's paper. For example, it would not be intuitive, if 
not totally impossible, to present domain problems visually that involve mainly com­
plex computation but have little to do with interfaces and interconnections. For such 
problems, a formal, automatic programming approach could be superior. 

It does not seem to me that Gerhard Fischer's paper provides a satisfactory answer to the 
how question, i.e., how to construct DODEs given the above difficulties. Section 3 of the 
paper, "A Theoretical and Conceptual Framework," only lists some guidelines or principles 
of what a DODE should look like. Section 5, "Domain-Oriented Design Environments 
(DO DEs):' is a main section and was obviously intended to exemplify the basic ideas of 
the paper. This section provides two examples. The first one (FRAMER) supports the 
user interface design domain. But this domain is relatively mature and well-known. Many 
commercialized tools (GUI builders) are already widely used today. It is not necessary any 
more to justify the utility of DODEs in this particular domain. On the other hand, it is 
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not sufficient using this example alone to show that a DO DE approach would be equally 
effective in other, more business-oriented domains. 

The second example (JANUS) is about kitchen design. This example is not only over 
simplifying but also misleading because it does not address software design. DODEs 
are supposed to be environments for designing and generating software systems, which 
in turn will be used to solve domain-specific problems. It is totally irrelevant whether 
the domain problems are design problems (e.g., the kitchen design problem) or any other 
problems. JANUS is just a particular software system for developing kitchen designs. A 
more convincing example should be a DODE for room configuration domain applications, 
from which a kitchen design tool such as JANUS can be generated. Otherwise, what are 
called Computer-Aided Design (CAD) tools that support, for a few examples, hardware 
board/chip design, mechanical component design, scheduling, etc., would all be classified 
as DODEs. 

To establish some relevance of this kitchen design example with the main topic of the 
paper, I have to assume that the author was using it as an analogy to illustrate the ideas of 
what a real DODE should look like. But this analogy is weak because software systems can 
be fundamentally different from hardware! physical systems. For example, it may not be as 
meaningful to show software components, which do not have any physical "look" or "shape" 
(except possibly GUI-type components), graphically. In addition, interfaces of software 
systems are typically loosely defined. Plugging two systems together is far more complex 
than, for example, putting a refrigerator next to a stove. Furthermore, many physical 
principles (e.g., no refrigerators on the ceiling) do not apply to software components. A 
simple adaptation of design frameworks successfully used in other engineering domains 
may not work in software engineering. 

I also find some conflicting arguments in the paper. On one hand, this paper indicates that 
the described DODE work is complementary to the approaches pursued by KBSA research 
(Green et aI., 1983). This is quite understandable because the existing KBSA work has 
mainly focused on downstream activities along the software Iifecycle, as pointed out by 
Fischer. The DODE work obviously covers more upstream activities. If this is the case, then 
it is unfair to blame the KBSA work later on in Fischer's paper for its lack of emphasis on 
human involvement and domain orientation, which are by nature characteristics of upstream 
activities. The author also failed to point out that the KBSA community has been making 
conscious efforts recently to address issues related to collaboration support and domain 
orientation. Its Advanced Development Model (ADM, Andersen Consulting, 1992) project 
is a good example. 

In general, I found the DODE paper very interesting to read. It identified some funda­
mental problems with the existing software engineering research and argued why a more 
human-centered and domain-oriented approach would be desirable. But the paper came up 
short explaining how the DODEs should be constructed. 
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Commentary on "Domain-Oriented Design 
Environments" by Gerhard Fischer 

PETER G. SELFRIDGE 
AT&T Bell Laboratories. Room 2B-425. Murray Hill. NJ 07974 

Introduction 

"Domain-Oriented Design Environments", by Gerhard Fischer, makes a number of in­
sightful points about the process of software design, advocates a particular style of research 
described as embedding "human-computer cooperative problem-solving tools into domain­
oriented, knowledge-based design environments", and contrasts this approach with that 
emphasized by the Rome Laboratory Knowledge-Based Software Assistant (KBSA) pro­
gram. The most important distinction is the focus on the "upstream" activities of problem 
understanding, as opposed to problem solving. This distinction leads relatively naturally to 
an approach of providing the "problem understanders" with a domain-oriented tool or set of 
tools, where underlying constraints, interactions, and domain knowledge can be represented 
explicitly. It also leads naturally to an emphasis on supporting the understanding process 
among a group of individuals, in the CSCW sense. 

The points made in this paper are illustrated with two examples drawn from the large 
amount of excellent work coming from Fischer's group at the University of Colorado at 
Boulder. The first system, FRAMER, is a domain-oriented design environment (DOD E) 
for user interface design. This general domain, the subject of numerous reports on GUrs, 
UIMS's, etc., is clearly a natural one for Fischer's general approach. The components of 
the underlying domain, graphical user interfaces, can be directly represented in a computer­
based tool and a variety of supporting aids can be investigated. Fischer has examined the 
notion of a domain-oriented "tool kit", what he calls a "construction kit" which adds the 
idea of a graphical workspace, and finally, a "design environment" where additional design 
knowledge is provided through critics, specification sheets, and checklists. The second 
example system is JANUS, a DODE for kitchen design. Again, this domain is a good fit 
for Fischer's ideas because it maps so well onto a 2D display and the design components 
interact with each other primarily spatially. Still, the domain is rich in constraints that are 
derived from how the components will be used in the real-world, and JANUS provides 
various techniques for identifying and resolving design issues. 

As a researcher at AT&T Bell Laboratories, I have been involved with several collabora­
tions with a very large (> 2000 people) software organization, and my remarks are derived 
from this experience. In general, I am extremely sympathetic with Fischer's general ap­
proach, and agree with many of his specifics. However, I offer the following observations, 
and discuss the implications of these observations for Fischer's remarks and possible future 
areas of research. 
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Four Observations 

Observation #1: Software Developers Spend Little Time Understanding Requirements or 
Writing Code. This observation has a number of implications for supporting software 
development. First of all, the need for improved coding tools and environments, while 
real, is just not a bottleneck in the organization I'm familiar with. Second, one has to ask 
how software developers do spend their time. In this organization software design takes 
place after a specification document is approved. This document describes in great detail 
the operation of a telecommunications feature from a customer perspective. Understanding 
this document is usually straightforward, although perhaps tedious. The software developer 
then begins to construct a design, embodied in a design document, which may undergo an 
interactive process of review and refinement. After the design document is approved, the 
coding process begins and is usually relatively straightforward. 

So, what can we say about the actual design process? What is hard about it? In our 
experience, effective software design involves becoming aware of the appropriate body of 
"folklore" knowledge-informal knowledge in the organization about switching hardware, 
real-time constraints, local programming conventions, different people's areas of expertise, 
etc. Typically, the software designer spends a great deal of time becoming aware of this 
information and the most effective developers are those with the most extensive network 
of information sources, i.e., other people. Our work on the Designer Assistant (Selfridge, 
Terveen, and Long, 1992; Terveen, Selfridge, and Long, \993, in press) has emphasized 
capturing and maintaining this kind of information in a computer-based tool and integrating 
this tool with the organizational process. 

Observation #2: Software Design Doesn't Match the Visual Metaphor Very Well. While 
one can imagine a DODE for software design of telecommunications features, it is not clear 
what such a DODE would look like and exactly what benefit it might provide. Again, in my 
experience, designing telecommunications software is not particularly visual. Some visual 
notations are used, such as finite-state diagrams to represent message handling and other 
state-based computation, and tools are used to validate such representations. However, the 
majority of design work doesn't seem to require a graphical workspace approach. 

There are two responses to this line of thinking. First, it could be argued that if we un­
derstood the notion of a telecommunications feature and were more rigorous with formally 
describing such (Zave, \993), the idea of a DODE for designing telecommunications fea­
tures would be much natural. I have little to say about this possibility beyond its plausibility. 
Second, it could be that a DODE for this purpose could provide more generic CSCW benefit 
by facilitating issue generation and resolution among groups of designers. This could be 
a very valuable line of inquiry; however, it doesn't really match the idea of a DODE as 
described by Fischer. 

Observation #3: Legacy Systems Dominate Large Software Design and Impose Special 
Challenges. In the organization l' m familiar with, design activity is dominated by two things. 
The first is folklore knowledge, discussed above, and the second is the current software sys­
tem. The design activity is essentially to modify and add to the existing software structure to 
implement the requirements while not breaking anything else. In addition, the modifications 
should be as parsimonious as possible (however, time pressures usually negate this goal). 
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The existence of very large legacy systems in the form of code (other information is rarely, if 
ever, preserved) is a serious challenge to the DODE concept for this area, How exactly might 
information in these large systems get acquired and integrated into a design environment? 
While various research in reverse engineering (Waters and Chikofsky, 1993) (including our 
own work (Devanbu et aI., 1991; Selfridge, 1991) has illustrated the ability to derive some 
information from old code, this information rarely captures meaningful semantics, 

Observation #4: Organizational Process Maturity is Absolutely Critical to Providing 
Effective Computer Support, This is an observation that I think Gerhard Fischer would 
agree with completely, In our experience, understanding of organizational process and 
ownership and measurement of such processes are critical in improving them with or without 
computer support. This has been observed by others as well (Royce, 1992), In our work on 
the Designer Assistant, integrating the tool with t, integrating the tool with current practice 
as prescribed by a process description was important in three ways, First, it allowed 
us to understand where and how such a tool could be useful. Second, it coerced, in an 
acceptable way, users into actually using the tool at certain appropriate times, maximizing 
the possibility that it would be useful. Finally, it allowed us to address the knowledge 
maintenance problem is a disciplined way, by capturing disagreements with and desired 

additions to the knowledge, 
However, the issue of process maturity and technology transfer does raise serious issues 

on how research into software design should take place. One extreme view is that academic 
research in this area is destined to be irrelevant, since such research is not embedded in a 
real "customer" organization. Of course, there is a spectrum of degrees to which academic 
research can be coupled to real-world concerns, and Fischer's work often is done in various 
sorts of collaboration with outside companies, and he always takes his inspiration from the 
real world. He is also an outspoken advocate of empirical testing and user experimentation, 
However, how effective his approach will be when tested in a real software development 

organization is an open question. 

Conclusions 

Gerhard's vision of domain-oriented design environments, initially "seeded" by a special 
startup effort but from then on "living and growing" through interaction in a work environ­
ment is a compelling one. His positioning of this idea as complementary to more traditional 
approaches like KBSA (which, by the way, are beginning to embrace many of the ideas he 
espouses) is correct. Furthermore, I agree with this vision and with much of his work in 
supporting human-centered design. However, as he himself admits, it remains to be tested 
in the real world and such tests will force the vision, the technology, and the way people 
work to evolve in mutually supportive way. 
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Domain-Oriented Design Environments: 
Reply to Commentaries 

GERHARD FISCHER 
Department afComputer Scimce and Institute OfCOKllitive Science, University of Colorado, 
Boulder, Colorado 80309 

A. Sutcliffe, J. Ning, P. Selfridge and D. Setliff have commented on my article "Domain­
Oriented Design Environments" and I would like to thank them for their insightful com­
ments. One should not be surprised that researchers hold different views about an area as 
complex and as volatile as Software Engineering, especially because my paper not only de­
scribes some past achievements, but also outlines a research agenda for the future. I would 
like to thank the editors of Automated Software Engineering who have granted me the priv­
ilege of replying to the comments by A. Sutcliffe, J. Ning, P. Selfridge, and D. Setliff. I 
have organized my reply around themes, using the names of these individuals as references. 
I have chosen often to use "we" instead of "I" to acknowledge the group of collaborators at 
CU Boulder and elsewhere, who share with me the same view. 

Design 

Design is concerned with "how things ought to be in order to attain goals, and to function" 
(Simon, 1981). Design understood this way is more than "the act of translating requirements 
into specifications and constraints" (Setliff). Design complements the natural sciences, 
whose primary goal is to analyze. Designers not only solve given problems by reasoning 
about formal representations, but they (architects, industrial designers, curriculum design­
ers, or software designers) have to get actively involved in framing problems. Designers are 
not the sole owners of problems. They have to collaborate with all stakeholders (clients, cus­
tomers, other designers) in a mutual education process to understand problems and construct 
the knowledge for solving them. Design methods will be deeply influenced by the artifacts 
developed. The design of computational artifacts to empower humans faces different issues 
than the design of technical systems, such as VLSI CAD design (Setliff) or compilers. 

Problems of Domain-Oriented Design Environments 

What is a Domain? 

Sutcliffe raises the issue that "there is no sound theory about what a 'domain' is." I agree 
that domains cannot be precisely defined-they are part of the design activity themselves 
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(so they change when goals change). We try to define domains in our environments (such as 
departments in universities, or professional societies), and they serve as useful constructs. 
But at the same time, we call for interdisciplinary research to acknowledge that real world 
problems do not fit into our preconceived domains. Domains and their boundaries will 
undergo change as our world changes. This is specifically acknowledged in our work by 
postulating our model of seeds, evolutionary growth and reseeding. 

I disagree with the assertion that "it is difficult to imagine that DODEs can be built for 
immature domains" (Ning). Our research has demonstrated that it can be a very fruitful 
endeavor to create DODEs for immature domains (and we have done so for lunar habitat 
design, for computer networks, etc.). By creating DO DEs through intensive collaboration 
with domain experts, we have shown that these efforts can make major contributions toward 
deepening our understanding of a domain. 

What is the Price of Working in a Domain? 

Sutcliffe asserts that "DODE's domain-specific nature will limit application to a small set 
of related problems, leaving only an outline architecture as a more general result." This is 
an adequate characterization and it is supported by the results of our work. We are aware 
of the tension and the design trade-off between the Turing Tar-Pit (as articulated by Alan 
Perlis) "The Turing Tar Pit: everything is possible but nothing of interest is easy" and the 
inverse of it "The over-specialized system: everything is easy, but nothing of interest is 
possible." Referring back to human organizations and domain expertise again: our society 
educates its members in domains, and switching from one domain to another is a non­
trivial undertaking. So why should we expect that we will get DODEs for free? There 
is growing wide spread recognition and a growing number of computational artifacts that 
demonstrate that domain orientation will allow us to develop new generations of human­
centered computational artifacts (e.g., Mathematica for mathematicians, spreadsheets for 
planning and decision making, drawing and painting software for artists, etc.) by supporting 
human problem-domain communication with the goal of narrowing the gap between subject 
domain and computational substrate. 

We are working on substrates and layered architectures to increase the sharing of com­
ponents between DODEs in related domains. But without paying the price of working in 
a domain, our computational environments will be severely limited in the amount (1) of 
support they can provide (e.g., there would be nO work-triangle critic without domain 
knowledge), and (2) of end-user control and interest (e.g., end-users are not interested in 
the computer per se, but in their tasks). 

Knowledge Acquisition 

Ning observes that "an effective DODE will require a large amount and a variety of domain­
oriented knowledge." Our process model, based on seeds, evolutionary growth, and reseed­
ing (Fischer et aI., 1994), is an important alternative to the conventional approaches of 
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knowledge acquisition as well as the futuristic approaches of machine learning pursued in 
AI-oriented research efforts. Our model explicitly acknowledges the fact that (I) human 
knowledge is tacit (Polanyi, 1966) (so the best we can hope for is a seed), (2) knowledge 
changes over time (requiring support for evolutionary growth), (3) the breakdowns based on 
lack of knowledge will be experienced by the domain designers and not by the environment 
developer (making end-user modifiability a necessity rather than a luxury), and (4) social 
incentives and rewards for providing and documenting this knowledge (e.g., in the form 
of design rationale) may be more important than the particular formalism chosen for its 
representation. 

How, Not Why 

Ning states "that the real question today is how to develop, rather than why we should 
or should not develop DODEs." Our research prototypes (see references in my paper) 
demonstrate that we have some understanding of "how" one goes about building DODEs. 
Beyond that, we assisted others in developing DO DEs and demonstrated the practical value 
of some of our DODEs in industrial research environments (e.g., the voice dialog design 
environment in use at USWest Advanced Technologies (Repenning and Sumner, 1992), the 
service-provisioning environment in use at NYNEX (Ostwald, Burns, and Morch, 1992), 
and the lunar habitat environment in use by a NASA contractor (Stahl, 1993». 

An important aspect of DODEs is the possibility to construct them incrementally (e.g .. 
the voice dialog design environment existed and was used by domain workers for more than 
a year before a critiquing component was added), and to emphasize different components 
for different domains (e.g., the simulation component is of great importance in the voice 
dialog design environment). 

Scaling Up 

Scaling up is a critical issue for DO DEs as it is for any other computational environment 
Our work so far demonstrated (I) that the "seeds-evolutionary growth-reseeding" model 
provides a good foundation for scaling up, and (2) that many of the integration component, 
assist users in dealing with information spaces that are too large to be explored by browsing 
only. DO DEs acquire a partial understanding of the task at hand by analyzing the partial 
construction and the partial specification. The CONSTRUCTION-ANALYZER and CATALOG· 

EXPLORER exploit this partial understanding to locate relevant argumentation and catalo~ 
examples for the user. Following Sutcliffe's observation that for large information spacef 
"intelligent retrieval engines will be necessary," we have explored such mechanisms for sev­
eral years (Fischer, Henninger, and Redmiles, 1991) and incorporated them in our DOD& 
(Nakakoji, 1993). 
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The Proper Role of Automation 

Understanding the Proper Role of Humans and Computers in Joint Human-Computer 
Systems 

Even strong auvocates of automateu systems such as expert systems' researchers acknowl­
edge that "most knowledge-based systems are intended to be of assistance to human en­
deavor; they are almost never intended to be automatic agents. A human-machine interac­
tion subsystem is therefore a necessity" (Feigenbaum and McCorduck, 1983). The proper 
role of humans and computers has been explored in numerous areas (to name just a few 
examples: in machine translation (Kay, 1980), in cockpit design (Billings, 1991), and in 
the general foundations for tool and system design (Illich, 1973; Fischer, 1990». The 
question of the proper role of automation is raised succinctly by Billings (1991): "During 
the 1970's and early 1980's ... the concept of automating as much as possible was consid­
ered appropriate. The expected benefits were a reduction in pilot workload and increased 
safety. Although many of these benefits have been realized, serious questions have arisen 
and incidents/accidents have occurred which question the underlying assumption that the 
maximum available automation is always appropriate or that we understand how to design 
automated systems so that they are fully compatible with the capabilities and limitations 
of the humans in the system" (p. 4). Contrary to Sutcliffe's claim that "every domain will 
have to have an exhaustive analysis to find all the principles, rules, guidelines etc., for good 
design," critiquing components embedded in DODEs do not require any kind of complete­
ness. While it is highly desirable that a substantial amount of critiquing knowledge gets 
accumulated over time, a system with ajust a few critiquing rules can greatly increase the 
usability of a DODE. 

Lack of any Theoretical Basis for Cooperation 

Sutcliffe observes that "unless design of software tools is based on a sound analysis of how 
the user and machine cooperate to achieve designs we run the risk of providing inappro­
priate functionality which may either over-automate or under-support the designer's job." 
Understanding cooperation is a critical challenge not only for KBSAs and DODEs, but 
for all intellectual teamwork (Galegher, Kraut, and Egido, 1990). Our work on DO DEs 
should not and cannot wait until the theoretical basis for cooperation will exist, but we 
attempt with our efforts to contribute to the creation of this basis. Our work is guided 
by principles for collaboration, such as (I) all stakeholders must be involved (to account 
for the "symmetry of ignorance" (Rittel, 1984», (2) to be involved, the stakeholders must 
be informed in an understandable way (requiring that representations are developed that 
can serve as "languages of doing" (Bhn, 1988», and (3) there must be shared knowledge 
(including knowledge of each other's intent (Resnick, Levine, and Teasley, 1991). 
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Integrating KBSAs and DODEs 

In Setliff's view, "current software synthesis architectures are well on their way toward 
stantiating Fischer's DODE design process"-indicating that many recent research eft 
emerging from the instantiation of the original KBSA effort moved toward some 01 
goals of DODEs. I see a natural symbiosis between the two research directions: KB 
emphasize downstream activities and DODEs emphasize upstream activities. This vie 
shared by Selfridge when he observes about our work: "The most important distincti( 
the focus on the 'upstream' activities of problem understanding, as opposed to prot 
solving." Obviously, either approach cannot ignore the other phase (e.g., we have built 
eral computational substrates serving as lower layers in DODEs (Repenning and Sum 
1992), and the KBSA efforts have pursued upstream activities in the context of reqt 
ments engineering (Proceedings, 1993). But the different emphasis has led to a nun 
of differences: KBSAs and DODEs investigated different classes of problems, looked 
different disciplines for help and ideas, and approached the human role and assessn 
studies from different angles. 

Problems are Different 

Sutcliffe observes that "for safety critical domains, formal approaches and automatic I 
gramming is not only desirable but essential. However, Fischer reminds us that m 
problems do not fall into this class." There is no doubt that we need correct and effic 
programs (just as we need buildings that do not collapse), but what is the value of It 
programs if they are not relevant, suitable, adequate, or enjoyable to users in their 
situation (just as houses are judged by more criteria than that they do not fall down 
also claim that the scientific community needs a better understanding of the limitation 
formal methods in safety critical systems (e.g., the accident in the Persian Gulf in wi 
an airliner relying on the AEGIS system was shot down represents a design disaster 
formal methods would not have prevented (Lee, 1992». 

Where Do We Lookfor Ideas and Help? 

Historically, computer science has looked to mathematics and logic to create a foun 
tion (and these disciplines served well for improving "downstream" activities). But a 
the foundations have been established, other disciplines may be more important, sucl 
cognitive psychology (to better understand the human part), social sciences (to underst 
collaboration), evolution (to understand the nature of complex systems), and architect 
(to understand design as an activity that needs to define and create contexts and not 0 

operate in given contexts). In the long run, I think that "Software Engineering" may 
the wrong term because it focuses on the medium rather than on the characterizatior 
domains (in mature design domains, we do not speak of "steel" or "concrete" engineeri 
but of "civil" or "electrical" engineering). 
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Do Not Postulate a New Humqn 

Simon (1981) acclaims the framers of the U.S_ Constitution by noting that "they did not 
postulate a new man to be produced by the new institutions but accepted as one of their 
design constraints the psychological characteristics of men and women as they knew them, 
their selfishness as well as their common sense" (p. 163). It may be that what is wrong 
with the logical and mathematical design methods is that they are the product of a mode of 
reasoning alien to design (Rittel, 1984). A human-centered view toward design should take 
into account that "logic is most definitely not a good model of human cognition. Humans 
take into account both the content and the context of the problem, whereas the strength 
of logic and formal symbolic representations is that the content and context are irrelevant. 
Taking content into account means interpreting the problem in concrete terms, mapping it 
back onto the known world ofreal actions and interactions" (Norman, 1993) (p. 228). This 
and other observations such as (1) humans enjoy doing and deciding, (2) humans act until 
breakdowns occur, (3) humans operate by using information in the world as an important 
resource, and (4) domain-orientation preserves content and context, have served as guiding 
principles for our work on DODEs to complement the more formal approaches pursued in 
the KBSA communities. 
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