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1. Introduction 

Design (Simon, 1981) is one of the most promising areas in which to study creativity, 
because of the following features of design problems: 

designers tackling the same problem are likely to come up with different 
solutions (Jacob, 1977); 
good designers break rules all the time; 
design deals with ill-defined (Simon, 1981) and wicked problems (Rittel, 
1984) (i.e. problems that are intrinsically open-ended, situation specific and 
controversial); and 
in design there are no optimal solutions, but only trade-offs. 

The research discussed in this paper is based on the assumption that design problems 
are best solved by fostering co-operative problem-solving between humans and in­
tegrated, domain-oriented, knowledge-based design environments (Fischer, 1990). 
Combining knowledge-based systems and innovative human-computer communi­
cation techniques empowers designers to produce 'better' products by amplifying 
their creative skills (Fischer, 1989). 

Our approach is not to build another expert system. Expert systems require 
an adequate understanding of a problem to begin with. The relevant factors and 
background knowledge need to be identified. In design domains this information 
cannot be fully articulated. What has been made explicit always sets a limit, and 
there is always the possibility that breakdowns will require us to go beyond this 
limit (Winograd and Flores, 1986). 

In this paper we use the domain of the architectural design of kitchen floor 
plans as an 'object-to-think-with', for the purposes of illustration (Fischer, McCall 
et al., 1989). The familiarity and simplicity of this domain helps us to concentrate 
on the essential issues of our approach without being distracted by understanding 
the semantics of the particular domain. We first discuss general issues of design 
environments, and emphasize the importance of domain orientation and the in­
tegration of tools that support different aspects of design. We then describe the 
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multifaceted architecture that underlies these environments. This gives us a con­
ceptual framework for our research. The environments support four design themes 
that are important for supporting creative design: 

co-evolution of problem specification and solution construction; 
reflection in action; 
evolution of design environments; 
making relevant information available. 

CatalogueExplorer, an innovative systems component, illustrates how integrated 
environments can amplify human creativity in terms of the fourth theme. It inte­
grates specifications, constructions, and a catalogue of pre-stored design objects. 
The synergy of this integration enables the system to retrieve design objects that 
are relevant to the task at hand, as identified by a partial specification and a partial 
construction, thereby notifying designers of the existence of potentially relevant in­
formation. By presenting information to designers that they may never have thought 
of, the mechanism amplifies their creativity by ~bringing existing design concepts 
into unseen and even unthought, yet valuable ways of usageM (McLaughlin and 
Gero, 1989). It is up to the designers whether or not to relate this new information 
to the task at hand. This emphasizes the basic assumption that creativity is not just 
a mental capacity (Boden, 1990), but is greatly enhanced by interacting-in the 
right way-with knowledge in the world (Norman, 1993). 

2. Problems 

This section outlines some of the problems our research addresses in creating 
environments that amplify human creativity. 

2.1. INTEGRATING PROBLEM SETTING AND PROBLEM SOLVING 

The integration of problem setting and problem solving is indispensable in dealing 
with ill-defined design problems (SchOn, 1983). Complex designs are implemented 
over a long period of time and are modified throughout the design process (Si­
mon, 1981). Simon states that they have much in common with painting in oil, 
where current goals lead to new applications of paint, and where the gradually 
changing pattern suggests new goals. We cannot gather information unless we have 
understood the problem, and we cannot understand the problem without having 
information about it. Professional practitioners have at least as much to do with 
defining the problem as they do with solving it (Rittel, 1984). 

An empirical study by our research group, which analysed human-human co­
operative problem solving between customers and sales agents in a large hardware 
store (Fischer and Reeves, 1992), provided ample evidence that in many cases peo­
ple are initially unable to specify complete requirements for ill-defined problems. 
They start with a partial specification and refine it incrementally, in terms of the 
feedback they get from their environment. 
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In design, this feedback is provided by "the back talk of the situation~ (SchOn, 
1983). While engaging in a conversation with the design material, designers become 
aware of an occurrence of a breakdown. This awareness is triggered by an evaluation 
of the current design stage in terms of the task at hand. The evaluation is carried out 
either by the designers themselves, or by outside agents, such as design teachers or 
specialists in computer-supported design environments (Fischer, Lemke, Mastaglio 
et aI., 1991). Reflection upon the situation results in determining the next move in 
problem setting and/or problem solving. 

2.2. DOMAIN ORIENTATION 

To turn computers into a design medium for domain-oriented professionals, we 
have to reduce the gap between a computational design substrate and an appli­
cation domain (Hutchins, Hollan, and Norman, 86). Designers should perceive 
design as communication with an application domain, rather than as manipulating 
symbols on a computer display. The computer should become invisible by sup­
porting human problem-domain communication, not just human-computer com­
munication (Fischer and Lemke, 1988). Human problem-domain communication 
provides a new level of quality in human-computer communication by building the 
important abstract operations and objects in a given area directly into a computer­
supported environment. Such an environment allows users to design artifacts from 
applications-oriented building blocks of various levels of abstraction. 

2.3. ARTICULATING THE TASK AT HAND 

To support the integration of problem setting and problem solving in design envi­
ronments, it is crucial to identify information that is relevant to the task at hand 
(Fischer and Nakakoji, 1991). Every step made by a designer towards a solution de­
termines a new space of related information, which cannot be determined a priori, 
by its very nature. Integrated design environments are based on high-functionality 
systems (Lemke, 1989) that contain a large number of design objects. Such sys­
tems increase the likelihood of an object existing that is close to what is needed, 
but, without adequate systems support, it is difficult to locate and understand such 
objects (Nielsen and Richards, 1989; Fischer, Henninger et aI., 1992). Suppose 
that a designer wants to design a floor plan for a safe kitchen that is suitable for a 
left-handed person with a small child. Given hundreds of fancy pictures of kitchen 
floor plans in a catalogue, it is difficult for the designer to access the information 
that is relevant to the present task (see Figure 1). Conventional information access 
techniques, such as queries and browsing, often support a decontextualized infor­
mation need. Although the context can, in principle, be explicitly stated in queries 
or dealt with by browsing techniques, this greatly complicates the information re­
trieval process in design environments. Query-based access mechanisms require 
users to articulate exactly what they are looking for by formulating highly specific 
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queries. The navigational access provided by browsing mechanisms places most 
of the burden of traversing the information space on users, who tend to get lost in 
large, complex spaces (Halasz, 1988). 

Information needs in design environments arise against a background of con­
cerns about the larger context of the problem that needs to be solved (Fischer, 
Henninger et aI., 1992). The task at hand is articulated both by the partially con­
structed artifact, and by an evolving requirement specification that represents the 
high-level design concerns of the artifact . 

o 

~ 
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? 
• 

Catalog ExamPlos 

Fig. 1. Location of information relevant to the task at hand. 
Conventional query-based and navigational searches do not help designers to access infor­
mation in the catalogue that is relevant to the task at hand. 

3. A multifaceted architecture for integrated design environments 

Design is a conversation with the materials of a design situation. This principle 
has been operationalized by creating domain-oriented design environments that 
support human problem-domain communication (Fischer and Lemke, 1988). The 
'materials' of the design situation are not low-level computer abstractions but 
objects with which the designer is familiar. The domain-oriented nature of the 
environments acknowledges the fact that knowledge does not exist by itself in the 
form of context-free information, but is part of the practice of specific professional 
communities (Ehn, 1988). 

Over the last five years, we have developed and evaluated several prototype 
domain-oriented design environments (Fischer, McCall et aI., 1989; Lemke and 
Fischer, 1990; Fischer, Grudin et aI., 1992). Figure 2 shows the domain-independent 
components of the multifaceted architecture that are instantiated with domain­
specific information when a domain-oriented design environment is created. We will 
describe these components in the context of the Janus system, which supports the 
design of kitchen floors (Fischer, McCall et aI., 1989). The system is implemented 
in Common Lisp, and runs on Symbolic Lisp machines, 
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Fig. 2. The components of the multifaceted architecture for an integrated design environ­
ment. The links between the components are crucial for the synergy of integration. 

3.1. COMPONENTS OF THE MULTIFACETED ARCHITECfURE 

Integrated design environments that are based on the multifaceted architecture are 
composed of the following interface components (Figure 2): 

A construction kit (see Figure 3) is the principal medium for the implementa­
tion of the design. It provides a palette of domain abstractions, and supports 
the construction of artifacts by direct manipulation and other interaction styles. 
A specific construction (as seen in the Work Area pane) represents a concrete 
implementation of a design, and reflects the user 's current problem situation. 
A specification component (see Figure 4) allows designers to describe some 
of the required characteristics of the design at a high level of abstraction. 
It assigns weights of importance to each specified item. The specifications 
are expected to be modified and augmented during the design process, rather 
than being fully articulated at the beginning. They are used to prioritize the 
information spaces in the system with respect to the emerging task at hand. 
An issue-based argumentative hypermedia system (see Figure 5) captures 
the design rationale. Information fragments in the hypermedia issue base are 
based on an issue-based information system (McCall, 1986) and are linked 
according to whatever information resolves an issue that is relevant to a partial 
construction (Fischer, Lemke, McCall et aI., 1991). The issues, answers and 
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Fig. 3. Screen image of Janus Construction. 
Building blocks (design units) are selected from the Palette and moved to desired locations 
inside the Work Area. Designers can reuse and redesign complete floor plans from the 
Catalog. The Messages pane automatically displays critiques after each design change 
that triggers a critic message. Clicking on a message activates Janus Argumentation and 
displays the argumentation underlying the message (see Figure 5). 

arguments held in Janus Argumentation (see Figure 5) can be accessed via 
links from the domain knowledge in other components. 
A catalogue (see Figures 3 and 7) provides a collection of prestored design 
objects that illustrates the space of possible designs in the domain. Catalogue 
examples amplify a designer's creativity by providing new ideas and perspec­
tives for the design. 
A simulation component allows the user to carry out 'what-if' games to sim­
ulate usage scenarios with the artifact being designed. Such simulation com­
plements the argumentative component. 
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Fig. 4. Screen image of Janus Specification. 
The specify command in CatalogueExplorer (see Figure 7) provides a specification sheet 
in the form of a questionnaire. After specification, users weigh the importance of each 
specified item. 

3.2. INTEGRATION OF THE MULTIFACETED ARCHITECTURE 

The architecture derives its value from the integration of its components and the 
links between them. Used individually, the components cannot achieve their full 
potential, but used in combination they form a synergistic whole. Links between 
components are supported by a number of mechanisms (see Figure 2). These 
include: 

The Construction Analyser. This is a critiquing component (Fischer, Mastaglio 
et aI., 1991) that detects and critiques partial solutions constructed by users. 
The firing of a critic signals a breakdown (Winograd and Flores, 1986), warning 
users of potential problems in the current construction, and providing them 
with an immediate entry into the exact place in the argumentative hypermedia 
system where the corresponding argumentation occurs (see Figures 3 and 5). 
The Argumentation Illustrator. This helps users to understand the infonnation 
given in an argumentative hypermedium by providing an example (see Fig­
ure 5). Explanations given as argumentation are often highly abstract and very 
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Fig. 5. Screen image of Janus Argumentation. 
This shows an answer to the question of where to locate the kitchen stove with respect 
to a door. It shows the desirable relative positions of the two units. Below this is a list 
of arguments for and against the answer. The example in the upper right comer (which 
is activated by the show example command in the Commands pane) contextualizes an 
argumentative principle in relation to a specific design (carried out by the Argumentation 
Illustrator). 

conceptual. Concrete design examples help users to understand the concepts. 
CatalogueExplorer. This is described in detail below. It helps designers to 
search the catalogue space and retrieve examples that are similar to the current 
construction situation. It orders the examples according to their relevance to 
the current specification. 

4. Going beyond the macho approach of artificial intelligence with 
Domain-Oriented Design Environments 

Our work addresses the problems mentioned above and asks how they can be 
facilitated by the computer-based tools of our multifaceted architecture. Our interest 
is in understanding how designers design (Fischer and B5cker, 1983), how they 
might organize their design activities so that they are more effective and less error­
prone, how they learn new things as they go along, how they produce creative 
artifacts, and how all or some of these activities can be supported by computational 
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media. Our thinking has been influenced by the work of a number of researchers 
who are trying to gain a deeper understanding of design as a creative activity (e.g., 
Simon, 1981; SchOn, 1983; Rittel, 1984; Winograd and Flores, 1986; Suchman, 
1987; Ehn, 1988; and Lave, 1988). Some of these methodologists, however, have 
not followed their own theories, since they have failed to intertwine theory building 
(reflection) with theory instantiation (action). We are engaged in building 'objects­
to-think-with', in the forms of demonstration prototypes, to test our theories in 
practice, to experience breakdowns of a theory, and to refine it as a consequence. 
We try to demonstrate that computational mechanisms can be created that can 
take some of the concepts mentioned in Section 2, and bring them to life in a 
computational environment. 

4.1. DESIGN ACITVITIES SUPPORTED BY OUR DESIGN ENVIRONMENTS 

Design environments based on the multifaceted architecture amplify the creative 
skills of designers by integrating a number of different aspects of design activity. 
We discuss four activities that our environment supports. 

4.1.1. Co-evolution of problem specification and solution construction 

Designers start with a vague design goal, and go back and forth between different 
components in our environment. A typical cycle of events in the environment 
includes the following: 

designers create a partial specification or a partial construction; 
they do not know how to continue, so 
they switch and consult other components in the system that provide them 
with information that is relevant to the partially articulated task at hand; then 
they refine their understanding by reflecting upon the situation. 

As designers move between components, the problem space is narrowed and dif­
ferent facets of the artifact are refined. 

4.1.2. Reflection in action 

Design (as supported by the multifaceted architecture) iterates through cycles of 
specification, construction, evaluation, and reuse. At each stage, the partial design 
serves as a stimulus for suggesting what users should attend to next. The direction 
of a new move permits new information to be extracted from memory and refer­
ence sources, and leads to new steps toward the development of the design. The 
integration of various aspects of the design enables the situation to 'talk back' to 
users, following the characterization of design activity given by SchOn (1983): 

The designer shapes the situation in accordance with his initial appreciation 
of it [construction], the situation 'talks back' [critics], and he responds to 
the situation's back-talk. In a good process of design, this conversation with 
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the situation is reflective. In answer to the situation's back-talk, the designer 
reflects-in-action on the construction of the problem [argumentation]. 

We pay tribute to this concept by integrating construction and argumentation 
with the help of critics (Fischer, Lemke, Mastaglio et aI., 1991; Fischer, Lemke, 
McCall et ai., 1991). 

4.1.3. Evolution of design environments 

Design knowledge is tacit, and competent practitioners usually know more than 
they can say (polanyi, 1966). Their tacit knowledge is triggered by new design 
situations and by breakdowns that occur as they engage in a design process. De­
sign environments must be open-ended and modifiable by their users (Fischer and 
Girgensohn, 1990). In the Janus environment, a system component called Modifier 
(Fischer and Girgensohn, 1990) allows end-users (professional kitchen designers 
rather than software designers) to add domain concepts without dealing with the 
underlying programming language. A completed design artifact (consisting of a 
specification and a construction) may be stored in the catalogue for later reuse . If 
users do not agree with the argumentation presented to them, they can add their 
own counter-arguments in the argumentative hyper-media component. Through 
these processes, the environment gradually accumulates design knowledge through 
constant use (Henderson and Kyng, 1991; Fischer, Grudin et aI., 1992). 

4.1.4. Making information relevant to the task at hand 

The integration provided by the multifaceted architecture enables the system to 
incrementally identify the task at hand. Suppose a user is designing a kitchen 
as shown in Figure 1. In this example, the partially articulated task is to design 
a floor plan for a kitchen that is suitable for a left-handed person with a small 
child. On the basis of this partial specification, the system provides users with 
relevant information without requiring them to form queries or navigate through 
large information spaces to locate relevant information. (This process is described 
in more detail in Section 5.) By implicitly creating queries, the system accesses 
relevant information that users may not have thought of. It is up to them whether 
to use this information, but it encourages them to view the current design from a 
new perspective. 

4.2. AMPLIFYING THE DESIGNER'S CREATrvITY 

To amplify creativity in design, our environments provide designers with informa­
tion relevant to the task at hand. Reminding is considered to be crucial in supporting 
creativity (Mclaughlin and Gero 1989; Boden, 1990). In our environments remind­
ing is supported by: 

breakdowns, that signal the violation of a rule; 



· '., -. _ : 1.1'· 'I' "', I," l. . " ,_ 

valuable 
design 

1".0 •• 

AMPLIFYING DESIGNERS' CREATIVITY 

Or I"" Information ...... nI 

o'>J,~t 
1
0
" 

"''0.." 

""" 10 tI·.1 
9"·"11 1..-____________ innovative 

design 

353 

Fig. 6. Spectrum of information provided by design environments in relation to different 
dimensions of creativity. 

accessing domain concepts in the argumentation; and 
locating interesting examples in the catalogue. 

Designers can analyse this information, and draw analogies and/or discover new 
ideas that will lead them to make new moves that they might otherwise have 
overlooked. 

The challenge of building computational environments is primarily not just to 
provide more information, but to say the 'right' thing at the 'right' time (Fischer, 
Nakakoji et aI., 1992). There is a spectrum of how accurately and closely related 
the presented information should be to the task at hand. At one end is information 
that is retrieved on the basis of precise questions formulated by the designer. At 
the other is information that is only relevant in a very general way (Owen, 1986). 
Creative design should be innovative and valuable. If designers are given arbitrary 
information, they may get innovative ideas, but these may not be valuable (though 
we should not overlook the value of serendipity (Roberts, 1989)). If they are 
given information that is based on precise queries, they may get valuable but less 
innovative ideas (see Figure 6). 

By exploiting the information contained in a partial specification and a partial 
construction, our environments can provide information that can give rise to ideas 
that are both valuable and innovative. Our environments have three mechanisms 
for doing this: 

the Construction Analyser is the critiquing component (Fischer, Lemke, Mc­
Call et al. 91) that signals breakdowns (such as the violation of basic design 
principles); 
Catalogue Explorer accesses design examples relevant to the task at hand, and 
Case-Deliverer delivers catalogue design examples without an explicit request 
from the user (Fischer, Henninger et aI., 1992). 
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By integrating construction and argumentation (Fischer, Lemke, McCall et a1., 
1991), we overcome the deficiencies of non-integrated systems (e.g., gIBIS (Con­
klin and Begeman, 1988», where it is impossible to access information relevant to 

the task at hand. 

5. CatalogueExplorer 

In this section we describe CatalogueExplorer, which links the specification and 
construction components with the catalogue (see Figure 2). We provide a scenario 
that illustrates a typical use of the system, and then describe the mechanisms 
underlying the scenario. 

5.1. SYSTEM DESCRIPTION 

Design objects stored in a catalogue can be used for 
providing a solution to a new problem; 
warning of possible failures; and 
evaluating and justifying a decision (Kolodner, 1990; Rissland and Skalak, 
1989). 

The catalogue provides a source of potentially interesting ideas. Designers may be 
reminded of a new way of designing by drawing an analogy between a catalogue 
example and their current task. For large catalogues, however, identifying design 
examples that are relevant to the task at hand is a challenging and time-consuming 
task (see Figure 1). 

By integrating specification, construction, and a catalogue, CatalogueExplorer 
helps users to retrieve information that is relevant to the task at hand. This helps 
them to refine their partial specification and partial construction, which eliminates 
the need to form queries or browse in the catalogue. 

The design examples in the catalogue are stored as objects in the Kandor 
knowledge-base (patel-Schneider, 1984). Each design example consists of a floor 
layout and a set of slot values. The examples are automatically classified according 
to their features specified as these slot values. 

CatalogueExplorer (see Figure 7) is based on the Helgon system (Fischer and 
Nieper-Lemke, 1989), which instantiates the retrieval-by-reformulation paradigm 
(Williams, 1984). It allows users to incrementally improve a query by critiquing 
the results of previous queries. Reformulation allows users to search iteratively for 
more appropriate design information by refining the specification, rather than being 
constrained by an initially specified query. 

On the basis of the retrieval-by-reformulation paradigm, CatalogueExplorer 
retrieves design objects that are relevant to the task by: 

using the information contained in a partial specification to prioritize the 
designs stored in the catalogue (retrieval from specification) 
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analysing the current construction, and retrieving similar examples from the 
catalogue using similarity metrics (retrieval from construction). 

5.2. A SCENARIO USING CATALOGUEExPLORER 

CatalogueExplorer (see Figure 7) is invoked by the catalogue command from Janus 
Construction (Figure 3). The specify command invokes Janus Specification (Fig­
ure 4) and allows users to specify their requirements in the fonn of a questionnaire. 
After specification, users are asked to assign a weight to each specified item in a 
weighting sheet. 

The specified items are shown in the specification window in Figure 7. Clicking 
on an item provides users with physical necessary-condition rules (specification­
linking rules) for a kitchen design to satisfy the item, as seen in the two lines in the 
middle of the specification window in Figure 7. Given this information, users can 
explore the arguments behind the rules. The rules shown on the screen are mouse­
sensitive. Clicking on one of them activates Janus Argumentation, which provides 
more detailed information. Figure 5 illustrates the rationale behind the rule 'the 
stove should be away from a door if a user wants a kitchen to be safe.' Invoking the 
retrieve from specification command orders the design examples in tenns of their 
appropriateness values to the specified items (see the matching designs window in 
Figure 7). 

Users can now retrieve design examples that are similar to the current construc­
tion. When invoking the retrieve from construction command, they are asked to 
choose a criterion (a parsing topic) for defining the similarity between the current 
construction and the design examples in the catalogue. When they choose 'design 
unit types' as a parsing topic, a menu comes up that allows them to select all or 
some of the design unit types being used in the current construction. In Figure 8 a 
user has selected all the appliances that were used in the construction of Figure 3. 
The system then retrieves examples that contain the specified design unit types. 

These interactions gradually narrow the catalogue space, providing users with a 
small set of examples that are relevant to the current construction and are ordered in 
terms of their appropriateness. Users can examine them one at a time. If no objects 
appropriate to the current task are found, the specification may be modified by 
selecting other answers in the specification sheet, or by changing the weights in the 
weighting sheet, or both. The retrieval from specification command then reorders 
the examples. Users may use the retrievalfrom construction command, and choose 
other criteria for defining the Similarity. This will retrieve another set of examples. 
Finally, users may be interested in one of the presented catalogue examples, and may 
bring it into the one of the matching design examples window. They then go back 
to Janus Construction with the resume construction command. Janus Construction 
automatically shows the selected example in its catalogue window (see Figure 3). 
Users can refer to this example for new ideas on how to proceed with the current 
construction, or they can replace the current construction with the example they 
have found. 
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Fig. 7. A screen image of CatalogueExplorer. 
The leftmost Matching Designs window lists all the currently retrieved design examples, 
ordered according to their appropriateness to the current specification. The Bookmarks 
window is used as a temporary name-holder of catalogue items. The two panes in the 
middle show one of the matching examples in detail (the top pane provides a set of slot 
values and the bottom pane provides a floor layout). The Category Hierarchy window shows 
the hierarchical structure of the catalogue. The Specification window shows specified items 
with the assigned weight of importance (the result of Figure 4). The items in this window are 
mouse-sensitive, and by clicking on one of them, CatalogueExplorer provides information 
about the corresponding specification-linking rules (the two lines in the middle of the 
window). Clicking on a rule activates Janus Argumentation, which provides the underlying 
argumentation for that rule (see Figure 5). 

5.3. RETRlEVAL MECHANISMS 

5.3.1. Retrievalfrom specifications 

To use a partial specification to identify a relevant design object, we must consider 
the following issues: types of specifications, and weighting importance for dealing 
with multiple contradictory features. 

Types of specifications. There are two types of specifications for a design: 
surface features and hiddenfeatures. For example, the specification 'a kitchen with 
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Explorer 

Fig. 8. Retrieve from Construction. 
The retrieve from construction command with a parsing topic ' design unit types ' analyses 
the current construction, and provides a list of all the design unit types being used in the 
construction. Users can select which design unit types they consider to b« most important 
for locating prestored designs in the catalogue. 

a dishwasher' is a surface feature that explicitly describes the design, whereas 
'a kitchen suitable for small children' is a hidden feature of the design (it is 
not explicitly expressed in the final design (Kolodner, 1990)). Surface features 
are determined by the structure of a design, whereas hidden features are related to 
functions and behavior of the design (Gero, 1990). Hidden features can be computed 
or inferred only by using domain knowledge. 

In practice, initial customer questionnaires given by professional kitchen de­
signers to their customers often ask questions that relate to hidden features. The 
expertise, or domain knowledge, of the designers allows them to map these speci­
fications into concrete structural features . 

Surface features are represented in terms of a solution domain. In contrast, 
hidden features are often represented in terms of a problem domain. Mechanisms 
for retrieving design objects from specifications should, therefore, vary according to 
their type. Design examples can be retrieved from the catalogue by surface-feature 
specifications with a conventional query mechanism, because the surface features 
are already represented in the solution domain. In contrast, in order to retrieve 
design examples by specifying hidden features, the system must have the domain 
knowledge to relate these features to the solution structure. 

Weighting importance. Sometimes specified items contradict each other. Users 
may not notice the contradictions if they occur between hidden features. If this 
happens, the system will be unable to retrieve design examples that satisfy the 
specifications, because (of course) such examples do not exist. Consider the spec­
ifications 'a safe kitchen ' and 'a kitchen that provides easy access to the dining 
area.' Although they do not seem to contradict each other, they do so in terms of 
hidden features. As Figure 5 shows, a stove should be away from a door for the 
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first specification, but close to a door for the second specification. 
To resolve the conflict, users must prioritize the specifications and make trade­

offs. They must indicate the importance of the specifications by assigning a weight 
to each specification. If they specify that 'a safe kitchen' is more important to them, 
the stove should be placed away from the doors. 

Specification-linking rules. CatalogueExplorer automatically infers subjective 
hidden features of design examples in the catalogue by using domain knowledge 
in the fonn of specification-linking rules (see Figure 9). The specification-linking 
rules link each subjective hidden-feature specification to a set of physical-condition 
rules. For example, in the middle of the specification window in Figure 7, two rules 
are shown ('stove is away from door' and 'stove is away from window'). These are 
conditions for a kitchen to have the hidden feature 'a safe kitchen' (Figure 4). 

Ique: Where should a stove be? 
An8wwr. Away from a door. 

Arguments: If stove is not away from a door. 
it is fire-hazardous. 

~ (away-from stove door) -> flrlH1lllZl1rdc)us 

-> ~ flnl-hluardclUS' 

Saf9ty is vety important 
tome. 

Specification-linking rule 
satety -> (away-from stove door) 

+ 

Fig. 9. Specification-linking rules in CatalogueExplorer. 

The important aspect of the specification-linking rilles is that they can be dynam­
ically derived from the content of Janus Argumentation (see Figure 9). Suppose that 
the system has the following internal representation for the fire hazard argument 
shown in Figure 5: 

'" (Away-from-p STOVE DOOR) -- FIRE-HAZARDOUS (1 ) 

and the system has the domain knowledge: 

SAFETy ...... '" FIRE-HAZARDOUS (2) 

. . 

- - .- - - - j 
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When designers specify that they are concerned about safety, the system infers 
that design examples with a stove that is away from a door are appropriate to their 
need by the following inference. (1) is equivalent to; 

'" FIRE-HAZARDOUS -+ (Away-from-p STOVE DOOR) (3) 

From (2) and (3) we get: 

SAFETY -+ (Away-from-p STOVE DOOR) (4) 

5.3.2. Retrievalfrom construction 

For the retrieval of design examples that are relevant to a partial construction, we 
must deal with the issues of matching design examples in terms of the surface 
features of a design, i.e. at the structural level. The issues discussed in the previous 
section, such as partial matching and factor of importance, also hold here. 

Domain-specific parsers analyse the design under construction. They represent 
the user's criteria for the articulation of the task at hand from a partial construction. 
That is, they determine how similarities between the partial construction and a 
design example in the catalogue are to be defined for the retrieval of design examples 
from the catalogue (see Figure 8). 

CatalogueExplorer supports the following two parsers (users have a mechanism 
for choosing which parser they want to use); 

Design unit types: Search for examples that have the same design unit types as 
the current construction. The system analyses the current construction, finds 
which design unit types are used, and provides the user with a menu to select 
some of them (see Figure 8). 
Configuration of design units: Search for examples that have the same configu­
ration of design units. For example, if the current construction has a dishwasher 
next to the sink, examples that match this configuration are retrieved. 

5.4. DISCUSSION OF CATALOGUEExPLORER 

In CatalogueExplorer, users gradually narrow a catalogue space. The system can 
dynamically infer hidden features of catalogue examples, and provide users with 
an explanation of the inference mechanism. The system retrieves examples that 
are similar to the current construction, and provides users with directions in which 
to proceed; or it warns them of potential failures. The retrieved information may 
remind them of ideas which they had not thought of before, thus inspiring them to 
develop creative solutions to their problems. 

By using the environment over time, catalogue examples are collected incre­
mentally. The system allows designers to store design examples in the catalogue 
(currently without checking for duplications and redundancies). Other systems store 
only prototypes (Gero, 1990), or prototypes and a small number of examples that 
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are a variation of them (Riesbeck, 1988). These approaches allow designers to ac­
cess good examples easily and prevent a chaotic growth in the size of the catalogue. 
However, by not including failure cases, they do not help designers to discover 
what went wrong in the past. 

Our design environments empower both inexperienced and experienced design­
ers. The system is useful for inexperienced designers because it supports learning 
on demand (Fischer, 1991). It is useful for experienced designers because it allows 
them to incrementally accumulate domain knowledge into the system. Interactions 
with numerous 'experts' have led us to believe that expert knowledge is never 
complete, because design situations are idiosyncratic and unique. 

A major limitation of the current system is the relatively small size of the 
catalogue, which contains less than 100 examples. Many problems of effectively 
managing large information spaces have therefore not been dealt with. However, the 
authors are concerned about the limited cognitive resources of humans, and are not 
greatly concerned about computational resources. Because there are no mechanisms 
for associating formal representations with arguments, the specification-linking 
rules must be manually derived. The parsers for analysing partial constructions 
need to be extended to deal with more abstract levels, such as an emerging shape 
(e.g. an L shape or a U shape). Currently, these have to be specified by the user. A 
combinatorial use of the structural features for detecting emerging features should 
be explored, such as the connectionist approach described by Newton and Coyne 
(1991). 

6. Amplifying human creativity with computers 

We are interested in human creative potential-not just with analysing it, but with 
asking how people can become more creative. We are convinced that the power 
of the unaided mind is highly overrated, and that much of human intelligence and 
creativity results from our technology (Norman, 1993). Knowledge in the head 
needs to be augmented by knowledge in the world. However, large quantities of 
information do not necessarily enhance creative design, or problem solving, or 
decision making: in fact they may overwhelm people with too much information. 
The challenge is to say the 'right' thing at the 'right' time (Fischer, Nakakoji et aI., 
1992). 

Our approach is to build domain-oriented design environments to empower 
people, rather than to build expert systems to replace them (Fischer, 1990; Fischer 
and Nakakoji, 1991). These environments aim to inform and support the judgment 
of designers, rather than 'de-skilling' them by judging for them, or designing for 
them. Designers who use these systems are free to ignore, or tum off, or alter 
the critiques that the system provides. We have pursued this approach not only 
because automative approaches have failed in many domains (e.g. software design 
(Barstow, 1983) and machine translation (Kay, 1980)), and not only because serious 
doubts have been articulated about the 'in principle' limitations of expert systems 
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(Winograd and Flores, 1986). We have also pursued them because we believe that 
people enjoy 'doing' and 'deciding '. People enjoy the process, not just the final 
product. They wish to participate. This is why they build model trains, plan their 
vacations, and design their own kitchens. 

Building cooperative problem-solving systems allows us to exploit the relative 
strengths of the two participants: people are creative and can put tasks into larger 
contexts; computers are effective repositories and managers of large amounts of in­
formation. We have chosen design (Simon, 1981) as the domain in which to explore 
issues in creativity. Design incorporates many cognitive issues, such as recognizing 
and framing a problem, understanding given information, adapting generic infor­
mation to the idiosyncrasies of a situation, and relating partial specifications and 
partial constructions to a catalogue of prestored designs. 

Our research is based on the conceptual framework we have outlined: the in­
tegration of action, assessment, and reflection. By engaging in reflection in action 
with the use of computational environments, we have created situations that 'talk 
back' to us. Our system-building efforts, and the use of these systems, create break­
downs, which trigger further reflection. This has given rise to a large number of 
issues that need to be addressed in the future: 

Are there differences in the performance, quality, and creativeness of the 
product if the system is used with or without critics, the catalogue and the 
simulation components? 
What are the tradeoffs between running the system in a critiquing versus a 
constraint mode (Gross and Boyd, 1991), where the latter prevents certain 
problems from arising (e.g. by enforcing building codes), and the former 
provides designers with opportunities to deal with breakdowns? 
What are the tradeoffs between different intervention strategies, e.g. between 
displaying enough information as opposed to disrupting the work process? 
When are designers willing to suspend the construction process in order to 
access relevant information? Does 'making information relevant to the task at 
hand' prevent serendipity (Roberts, 1989)? 
If an environment can always supply the information that the situation requires, 
why would users bother to learn the information (Fischer, 1991)? 
Under what conditions will designers challenge or extend the knowledge 
represented in the system? How can they be motivated to do so (Fischer, 
Girgensohn et aL, 1992)? 
Should the 'back-talk' be embedded directly into the artifact, or should it be 
handled by a separate discourse (such as feedback from the critiquing and 
simulation components)? 
To what extent are situations and reflective conversations controlled by media 
properties? 
How can a balance be achieved between technical rationality (e.g. the use of 
plans and rules) and reflective action (Ehn, 1988; Such man, 1987)? Even ifit 
is true that 'design is more than the application of standard principles,' it does 
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not follow that principles are not useful. 
We hope that our ongoing research efforts in designing, building and evaluating 

design environments will increase the ability of these environments to amplify 
human creativity. 
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