
British Computer Society Conference Series 7

People and Computers VIII

Proceedings of HeI 93,
Loughborough, September 1993

Edited by

J.L. Alty
University of Loughborough

D. Diaper
University (~f Liverpool

S. Guest
University of Loughborough

Published 017 behalf (~f

THE BRITISH COMPUTER SOCIETY

by

'N CAMBRIDGE
UNIVERSITY PRESS

Preface

The Eighth Conference in the People and Computers Series was held at Loughborough
University of Technology in September 1993. It is one a series of conferences held under
the auspices of the British HCI Group (a Specialist Group of the British Computer Society).
This volume brings together all the papers accepted for the conference proceedings. From
the many high quality papers submitted to the conference, only about one third could be
accepted for inclusion after being rigorously refereed by three independent experts in the
field. We would like to re-iterate the comment made in the preface last year that, for
conferences such as the HeI series, publication selection criteria are often as stringent as
for some learned journals.

As usual the content reflects current interests in the Human Computer Interaction research
field. Although it is often difficult to characterise papers into streams we have selected the
following broad section headings - "User Interface Design", "User Modelling", "Tools
or Techniques" (where we have combined two sessions from the conference with similar
content). These papers are all concerned in some way with the designing and building of
interfaces. Equally important is evaluation, and the sections "Evaluation Issues" and "User
Evaluation" are intended to provide a forum for discussion of such issues. The sections
"Computer Supported Cooperative Work", "Programming" and "Hypertext", all reflect the
widening interest area of HeI research. We hope that authors will forgive us if they feel
that their paper is wrongly categorised.

The volume commences with two of the papers presented by our keynote speakers. Eric
Hollnagel, who is Principal Scientist with Computer Resources International AlS, is well­
known in the field of cognitive ergonomics and intelligent decision support systems.
His paper, "The Design of Reliable Human-Computer Interaction: The Hunt for Hidden
Assumptions", examines the role of implicit assumptions about human performance which
have so characterised early HeI design. The second keynote speaker, Gerhard Fischer,
who is from the Institute of Cognitive Science at University of Colorado, Boulder, USA,
presents a paper entitled "Beyond Human Computer Interaction: Designing Useful and
Usable Computational Environments". He puts the case for pushing human-centred design
further forward, and argues for new conceptual and computational environments which
will enable the domain specialists to be more independent from computer specialists.
He calls for the power of the "high-tech scribes" to be limited just as the role of the
'scribes' of the Middle Ages was redefined. The third keynote speaker at the conference
was Karmen Guevara who spoke about "HeI will need to Change because the World is
Changing".

x Preface

This year we had some additional sessions at the conference concerned with "Industrial
Applications of HeI" and "Current Research". By their very nature, these sessions were
intended to be very up-to-date and therefore had a deadline way beyond the publication
deadline for this book.

The Editors would like to thank all those people who gave their help some willingly during
the conference and particularly towards the production of these proceedings. In particular
we would like to thank Teresa Kennedy and Jo McOuat for their help before, and during,
the Conference. Finally we would like to thank all referees and authors for keeping to the
very tight deadlines imposed on us by the production schedule. In particular the evaluations
of the referees has contributed enormously to the quality of the papers in this volume.

Prof James Alty
Department of Computer Studies, Loughborough University of Technology.

Dr Dan Diaper
Department of Computer Science, University of Liverpool.

Dr Steven Guest
Department of Computer Studies, Loughborough University of Technology.

r

Beyond Human Computer Interaction:
Designing Useful and Usable
Computational Environments

Gerhard Fischer

Department of Computer Science and Institute of Cognitive Science,
University of Colorado at Boulder, Boulder, CO 80309 0430, USA.
EMail: gerhard@cs.colorado.edu

Human-computer interaction has refocussed many research efforts within
computer science from a technology-centered view to a human- centered
view. But current research efforts and systems (both prototypes and
those commercially available) are just the beginning rather than the end.
Conceptual frameworks and computational environments are needed that
will give domain workers more independence from computer specialists.
Just as the pen was taken out of the hands of the scribes in the middle
ages, the power of high-tech computer scribes should be re-defined. To
turn computers into convivial tools requires that end users themselves can
use, change and enhance their tools and build new ones without having to
become professional-level programmers.

This article explores a number of future themes transcending current
views of human-computer interaction. It describes domain-oriented design
environments as new prototypes of computational environments which are
simultaneously useful and usable by focusing on humans and their tasks.

Keywords: human-computer interface design, cooperative work, domain oriented
design.

1. Introduction

Each of us might have a different opinion about what the most important problems in the
unexplored territory beyond current research in human-computer interaction (HeI) are -
for other opinions see (Carroll, 1993; Kay, 1990; Lewis, 1990; Norman, 1990). I will
enumerate and justify some of the views characterizing the general conceptual framework
for our own current research efforts centered around arguments, claims, and hypotheses
that current research in human-computer interaction is often based on misconceptions of

18 Gerhard Fischer

what the essential problems and issues are. My contribution will address the following
misconceptions:

• The user interface is the major (and maybe only) problem for human-computer
interaction research.

• Computer systems should be usable - ignoring the fact that usable systems that
are not also useful are of no value.

• Most users are interested in computers per se, rather than in their tasks.

• Access to computers should be restricted to high-tech scribes (Le. trained computer
specialists).

• Design can ignore the traditions of the user community that the system will serve.

These 'misconceptions' will be discussed and alternative views will be presented. I will
briefly discuss how our own research about domain-oriented design environments tries to
explore some of these alternatives and challenges for future human-computer interaction
research.

2. Human-Computer Interaction Is More than User Interfaces

Human-computer interaction is more than 'screen-deep' (Laurel, 1991). The interface is
important - but if we change only interfaces and not the systems behind them we will
only be able to scratch the surface. We should strive for 'interfaceless systems' in which
nothing stands between users and their tasks (and in which system objects become 'ready­
at-hand' in a Heideggerian sense). Human-computer interaction should be concerned with
tasks, with shared understanding, with explanations, justifications, and argumentation about
actions, and not just with interfaces. According to Kay:

"Many are just discovering that user interface design is not a sandwich
spread - applying the MacIntosh style to poorly designed applications and
machines is like trying to put Bearnaise sauce on a hotdog!" (Kay, 1990)

In a similar way, Norman argues:

"The real problem with the interface is that it is an interface. Interfaces
get into the way. I don't want to focus my energies on an interface. I
want to focus on the job." (Norman, 1990)

Although the usual concerns of interface designers (creating more legible types, designing
better scroll bars, integrating color, sound and voice, developing models of keystroke
use (Card, Moran & Newell, 1983» are all important, they are secondary considerations.
The essential challenges are improving the way people can use computers to work, think,
communicate, learn, critique, explain, argue, debate, observe, decide, calculate, simulate,
and design. The emphasis in the future has to be on humans and their tasks - not on
computers and their tools.

3. Make Systems Useful and Usable

Useful computers that are not usable are of little help; but so are usable computers that
are not useful (Fischer, 1987). One of the major goals of human-computer interaction

Beyond Human Computer Interaction . .. 19

research has to be to achieve these two goals - usefulness and usability - simultaneously
by breaking the 'conservation law of complexity' (Simon, 1981), which claims that
the relationship between the complexity and usability of a system is a given constant.
Complexity can be reduced:

1. by exploiting information that is already known and familiar;

2. by using familiar representations (based on previous knowledge and analogous
si tuations);

3. by exploiting the strengths of human information processing;

4. by integrating knowledge in the head with knowledge in the world; and

5. by designing 'better' systems that take advantage of the unique possibilities of
interactive computer systems.

Computer systems of today primarily model parts of the world and do not just implement
algorithms - and the reality of the world is not user-friendly. Systems that try to capture
and model reality will therefore be complex, high-functionality systems. High-functionality
systems are a consequence of creating knowledge markets (Stefik, 1986) and layered
architectures (Dawkins, 1987; Fischer & Girgensohn, 1990), which make it possible to build
complex systems that would be infeasible if everything had to be built from scratch. LISP
machines and UNIX systems are examples of high-functionality computer systems. LISP
machines, for example, offer approximately 30,000 functions and 3,000 object-oriented
classes documented on 4,500 pages of manuals. They contain software objects that form
substrates for many kinds of tasks. Systems with such a rich functionality offer power but
also problems for designers and users. Even experts are unable to master all the facilities of
high-functionality computer systems (Draper, 1984). Designers using these systems can no
longer be experts with respect to all existing tools - especially in a dynamic environment
in which new tools are being added continuously (Eisenberg, 1991). High-functionality
computer systems create a 'tool-mastery' burden (Brooks, 1987) that can outweigh the
advantage of the broad functionality offered.

Many approaches that represented major advances in human-computer interaction, such
as direct manipulation (Hutchins, Hollan & Norman, 1986) (bridging the interface gulf by
representing the world of the computer as a collection of objects that are directly analogous
to objects in the real world; the Macintosh desktop being the most successful example
of this approach), lose some of their power in high~functionality systems in which the
complex and abundant functionality can neither be represented explicitly on the screen nor
be explored by browsing mechanisms.

4. A Broader View of Communication and Coordination Processes

Most of human-computer interaction research until now has been focused around a single
user interacting with a single computer system offering tools rather than task support.
Communication and coordination processes can provide a focus for a number of needed
research efforts. A communication and coordination perspective illustrates the requirement
to include support for communication with:

• ourselves - e.g. capturing our thoughts of the past, allowing us to create
personalized information environments that extend the knowledge we can keep
in our head (Bush, 1945; Norman, 1993);

20 Gerhard Fischer

• our tools - e.g. knowing which tools exist, how they can be used, and how they
can be tailored to our specific needs (Fischer, 1987);

• our colleagues - e.g. supporting long-term, indirect collaboration (Fischer et aI.,
1992);

• other humans - e.g. supporting interdisciplinary computer-supported cooperative
work (Greif, 1988); and

• our agents and critics - e.g. in the context of cooperative problem-solving systems
(Fischer et aI., 1993).

The following broad classes of communication and coordination processes need to be
analyzed, studied, and further supported:

• Communication processes between designers and clients, which create the follow­
ing challenges:

a. clients do not know what they want; and

b. designers and clients need shared knowledge and artifacts for mutual
understanding, thus requiring 'languages of doing' (Ehn, 1988) instead
of formal representations.

• Communication processes within design teams, because most real tasks are not
done by individuals but by groups of people. Members within such teams might
have very different interests (for example, waterfall models in software design are
heaven for managers and hell for creative programmers).

• Communication processes between designer(s) and knowledge-based design envi­
ronments in which these environments serve as group and design artifact memories
that can be used to support indirect, long-term communication, requiring that
discussions about the design must be embedded in the design (Fischer et al., 1992;
Trigg, Suchman & Halasz, 1986).

5. Support Human Problem-Domain Interaction

To bring tasks to the forefront, computers must become 'invisible'. To achieve this
goal, human-computer interaction needs to advance to human problem-domain interaction
(Fischer & Lemke, 1988), requiring that the major abstractions of a given domain are
modeled in the computer. This will enable users to describe things briefly because
the systems understand domain-oriented concepts. To achieve human problem-domain
interaction, we have to sacrifice generality for the power of specialized interactions. This
domain-oriented design of artifacts supports the grounding of interaction, creates languages
of doing, and allows referential anchoring.

Human problem-domain interaction puts owners in charge, by allowing them to communi­
cate with the systems at a level that is situated within their own world (Suchman, 1987). By
supporting languages of doing (Ehn, 1988) such as prototypes, mock-ups, scenarios, images,
or visions of the future, human problem-domain interaction makes it easier for the owners
of problems to participate in the design process because the representations of the evolving
artifacts are less abstract and less alienated from practical use situations. By keeping
owners in the loop, domain-oriented design environments support the integration of problem
framing and problem solving (Rittel, 1984; Schoen, 1983); and allow software systems to

Beyond Human Computer Interaction . ..

"In Jesus' time, those who could read and write were in a different caste
from those who could not. Nowadays, the high priesthood tries to take
over the computing business. One of the biggest obstacles to the future
of computing is C. C is the last attempt of the high priesthood to control
the computing business. It's like the Scribes and the Pharisees who did
not want the masses to learn how to read and write."

6. Redefine the Role of High-Tech Computer Scribes

21

Domain workers should gain more independence from computer specialists. Just as the
pen was taken out of the hands of the scribes in the Middle Ages, the power of the high­
tech computer scribes should be re-defined. To tum computers into convivial tools (Illich,
1973) requires that the end users themselves can change their tools and build new ones
without having to become professional-level programmers. This implies that not only can
they access materials and tools created by others, but they can generate modified and new
materials and tools for themselves and for others.

Domain workers are not 'novice' or 'naive' users. They are people who have computational
needs and want to make serious use of computers but are not interested in becoming
professional programmers. They are skilled and knowledgeable in their respective domains;
they use computers by choice, and over extended periods of time. To understand their
use of computers requires a new orientation of many current HeI efforts. Rather than
focusing on short-term events (i.e. being concerned with events taking between 0.1 and
10 seconds (Carroll & Campbell, 1986», the educational, social and organizational needs
(being concerned with activities that range for days, months, and years (Newell & Card,
1985» have to be investigated. New themes such as the integration of working and learning,
learning on demand (Fischer, 1991), production paradox (Carroll & Rosson, 1987), intrinsic
motivation, and possibilities for self-expressions should be assessed. A few of the major
efforts to empower end-users and domain workers will be briefly described.

6.1. Computational Environments for Children
One of the earliest efforts to empower end-users was the creation of computational
environments for children, such as LOGO (with the embedding of turtle geometry) (Boecker,

22 Gerhard Fischer

Eden & Fischer, 1991; Papert, 1980) and Small talk (with the vision of a DYNABOOK behind
it) (Kay, 1977). These efforts showed that humans (even children) could use computers to
achieve their own goals without requiring detailed knowledge of low-level computational
concepts.

6.2. End-User Programming
Professional programmers and end-users define the endpoints of a continuum of computer
users. The former like computers because they can program, and the latter because they
get their work done. The key to end-user programming is:

1. to offer task-specific languages (Fischer & Lemke, 1988) that take advantage of
existing user knowledge (e.g. a mathematician already knows the mathematical
knowledge embedded in Mathematica, and an accountant already knows the
conceptual model behind spreadsheets);

2. to provide a programming environment that makes the functionality of the system
transparent and accessible so that the computational drudgery required of the user
can be substantially reduced; and

3. to hide low-level computational details as much as possible from the users. The
challenge in developing these environments is (as argued before) to make them
useful and usable.

6.3. Programmable Applications
Direct manipulation interfaces have made an important contribution in making computa­
tional environments accessible to a large number of users, but they face two important
hurdles:

1. the semantics of clicking, dragging, and selection are too impoverished to
accommodate the imagination of long-term users; and

2. the specific needs of users cannot be fully anticipated by the original designer.
Programmable applications (Eisenberg, 1991) have as their goal the integration of
the successes of extensive, learnable direct manipulation interfaces with the ricb
expressive range of programming languages.

6.4. Communities of System Users
The high-functionality systems mentioned earlier have as a consequence that there are nc
experts (i.e. individuals who know everything about a system) any more. For these types of
systems, groups, rather than individuals need to be the locus of knowing. In using powerful
computational environments in groups, a continuum of users between developers and end­
users emerges. Intermediate users are called local developers (Nardi Gantt, 1992) or power­
users. Many systems offer embedded programming environments (often as macro languages
or simplified programming languages, such as HyperTalk in HyperCard, AutoLISP in
AutoCAD, EmacsLisp in Emacs, extensible databases in Scribe, among others). Local
developers create extensions to computational environments either on their own initiatives or
upon request from other users, and the whole community of users profits from their efforts.

7. Domain-Oriented Design Environments

Over the last 10 years, our research efforts have tried to take the preceding discussion
into account and to develop prototypes of new kinds of computational environments that

r Beyond Human Computer Interaction ... 23

allow us to put our evolving conceptual framework to work and test its viability and its
shortcomings. Our current prototypes are domain-oriented design environments (Fischer,
1992) and we and others have developed numerous prototypes in different domains e.g.
floorplan design for kitchens (Fischer & Nakakoji, 1992), user interface design (Lemke &
Fischer, 1990), decision support system for water management (Lemke & Gance, 1991),
computer network design (Fischer et al., 1992), voice dialog design (Repenning & Sumner,
1992), COBOL programming (Atwood et al., 1991), and lunar habitat design (Stahl, 1993).

The essential components of domain-oriented design environments are - for details see
(Fischer, 1992):

1. a construction kit;

2. an argumentative hypennedia system;

3. a catalog of pre-stored designs;

4. a specification component; and

5. a simulation component.

Design environments derive their power from the integration of their components. Used
individually, the components are unable to achieve their full potential. Used in combination,
each component augments the values of the others, forming a synergistic whole. The
integration among the components are supported by various mechanisms (Fischer et al.,
1991b):

• Construction-analyzer is a critiquing system (Fischer et aL, 1991a) that provides
access to relevant infonnation in the argumentative issue base. The firing of a critic
signals a breakdown to users and provides them with an entry into the exact place
in the argumentative hypennedia system where the corresponding argumentation
is located.

• Argumentation-illustrator. The explanation given in argumentation is often highly
abstract and very conceptuaL Concrete design examples that match the explanation
help users to understand the concept. The Argumentation-illustrator (Fischer et
aL, 1991 b) helps users to understand the infonnation given in the argumentative
hypennedia by finding a catalog example that illustrates the concept.

• Catalog-explorer helps users to search the catalog space according to the task at
hand (Fischer & Nakakoji, 1992; Nakakoji, 1993). It retrieves design examples
similar to the current partial construction situation and orders a set of examples by
their appropriateness to the current partial specification.

8. Moving Beyond Human-Computer Interaction with Domain-Oriented
Design Environments

Figure 1 establishes a mapping between the conceptual framework outlined in this paper
and the features of design environments.

8.1. Saying the 'Right' Thing at the 'Right' Time in the 'Right' Way

Making information relevant to the task at hand poses many challenges for the design of
interactive computer systems, particularly for problems in which the need for information
is critical and yet precise information needs cannot be known in advance of attempts to
solve the problem. Designers are often unwilling to disrupt the design process to search

24 Gerhard Fischer

Conceptual Issues Domain-oriented Design Issues

human-computer interaction is more domain modelling
than user interfaces

make systems useful and usable provide functionality and mechanisms to
make information relevant to the task at
hand

a broader view of communication and support for: (1) languages of doing; (2)
coordination processes between: (1) computer-supported cooperative work;
designer and client; (2) design teams; and (3) cooperative problem solving
and (3) human and computer

artifacts do not speak for themselves critics and simulation components

human problem-domain interaction represent and present abstraction; make
the computer visible

redefine the role of the high-tech empower the owners of problems by
computer scribes allowing them to interact directly with

computational environments

support design as tradition and task -orientation, critics, seeds,
transcendence evolutionary growth, and end-user

modifiability

Figure l: Exploration of relevant issues in domain-oriented design environments

for information in large information spaces, even if they know the information exists. In
addition, designers may not know when they need information Embedded critics (Fischer
et 'a1., 1993) save designers the trouble of explicitly querying the system for information.
Critics notify designers of situations indicating the need to reflect (breakdowns) and provide
access to information fuelling reflection. The context of the breakdown situation serves as
an implicit query that enables embedded critics to deliver relevant information. Designers
benefit from needed information without having to explicitly ask for it.

Embedded critics can deliver relevant information (Nakakoji, 1993) about which designers
were unaware. Critics provide the designer with a pointer into part of the system's
information space with which the designer needs to become aware. The designer can
further browse the unfamiliar portion of the information space starting from the entry point
provided by the critic. Critics afford learning on demand (Fischer, 1991) by letting designers
access new knowledge in the context of actual problem situations. They inform users:

1. when they are getting into trouble;

2. when they are missing important information; and

3. when they come up with problematic solutions.

8.2. End-User Modifiability

Design in real world situations deals with complex, unique, uncertain, conflicted, unstable
situations of practice. Design knowledge as embedded in design environments will
never be complete because design knowledge is tacit i.e. competent practitioners know

Beyond Human Computer Interaction ... 25

more than they can say - (Polanyi, 1966) - and additional knowledge is triggered
and activated by situations and breakdowns. These observations require computational
ItlCChanisms in support of end-user modifiability (Fischer & Girgensohn, 1990). The end­
user modifiability of JANUS (Girgensohn, 1992) allows users to introduce new design
objects (e.g. a microwave), new critiquing rules (e.g. appliances should be against a wall
unless one deals with an island kitchen), and kitchen designs which fit the needs of a blind
person or a person in a wheelchair.

Our work on creating domain-oriented design environments has indicated that a promising
model for creating them involves the creation of a seed for such an environment (Fischer
et aI., 1992). A seed will be created in cooperation between knowledge engineers and
domain experts. It will evolve in response to its extensive use in new design projects in
this domain. 'Use' is not just use because requirements fluctuate, change is ubiquitous,
and because design knowledge is tacit, design environments need to evolve (Henderson
& Kyng, 1991). This evolution is primarily driven by using the existing environment
to develop new designs that uncover its limitations through 'breakdowns" (Winograd &
Aores, 1986). But these breakdowns are perceived by the people who use the programs,
not by the professionals who have developed them in the first place. Supporting end-user
modifiability is critical for the evolution of the design environment itself as well as for
individual design projects developed within the design environment.

8.3. New Role Distributions: Between High-Tech Scribes and Domain Workers
in Domain-Oriented Design Environments

Domain-oriented design environments represent the next step in the historical efforts to
make computers invisible behind domain abstractions, thereby allowing users to focus on
understanding problems rather than fighting media.

A consequence of domain-oriented design environments is that the professions using
computers become further specialized (see Figure 2): high-tech scribes (e.g. knowledge
engineers, programmers) in collaboration with domain workers create design environments
(at least the seeds for them (Fischer et aI., 1992), and domain workers use and evolve the
seeded environments.

Domain-oriented design environments reduce the dependency on high-tech scribes by
supporting design in use (Henderson & Kyng, 1991), tailorability and customizability
(MacLean et aI., 1990; Trigg, Moran & Halasz, 1987), and end-user modifiability (Fischer &
Girgensohn, 1990; Girgensohn, 1992). They contribute to the goal of convivial computing
by resolving the conflict between the generality, power, and rich functionality of modem
computer systems and the limited time and effort that domain specialists are willing to spend
in solving their problems. They are promising architectures to put owners of problems in
charge. They are based on:

1. the basic belief that humans enjoy deciding and doing; and

2. the assumption that the experience of having participated in a problem makes a
difference to those who are affected by the solution. People are more likely to like
a solution if they have been involved in its generation, even though it might not
make sense otherwise.

Figure 3 characterizes the role distribution between high-tech scribes and domain workers
in future computing environments.

26

Assembly
Languages

__ ..-!i'?i. ("?1 ~ ~
~
~

Programming
Languages

~

~
~
~

~

~

Design
Environments

Gerhard Fischer

Problem
Domains

Figure 2: Domain-oriented design environments (In the 1950's programmers had to
map problems directly to assembly languages and the assembly programs
retained basically no semnatics of the problems to be solved. In the 1960's,
general purpose high-level programming languages reduced the
transformation distance, the programs written in them were able to retain
some problem semantics and the programming profession was specialized
into programmers who wrote compilers and programmers who developed
programs in high-level languages. Design environments introduce another
layer which is domain-oriented. The professions are further specialized into
knowledgeengineers who create (in cooperation with domain workers) the
seeds for design environments and domain workers who solve problems by
exploiting the resources of the design environments. Support for end-user
modifiability allows domain workers to extend the functionality of the design
environment over time.)

9. Design: Tradition and Transcendence

Successful design has to achieve the two goals of tradition and transcendence simulta­
neously. Taking tradition into account implies a work-oriented design of artifacts (Ehn,
1988). Tradition can be captured within design environments by supporting domain-oriented
abstractions and by reminding users with the help of critics of established design principles.

9.1. Success Models

Because an over-emphasis on tradition often overlooks the fact that new tools change tasks
(e.g. electronic forms and how humans can deal with them do not need to be restricted to
an imitation of forms on paper), transcending established work practices requires that we
have to move 'beyond the city walls'. We have to:

1. Look for success models in other disciplines (e.g. architecture (Cross, 1984), drama
(Laurel, 1991), skiing (Burton, Brown & Fischer, 1984), etc.).

2. Forget the vividness of the present and to get back to basic principles that are
centered around humans, and to exploit the power of computational media beyond
the limitation of paper and desk top metaphors.

Beyond Human Computer Interaction ...

High-tech Scribes

Design of generic tools suited
for widespread distribution

Design of software related to
computing as a subject
domain

Development of technical
knowledge ('how')

Validating and verifying the
seed at the formal level
(enhancement at the
technical level)

Interpretation, extension, and
reconceptualization of
technical knowledge ('how')

_ Creation of seeds -t

- Reseeding -t

Domain Workers

Design of personal tools and
applications

U sing programming to
incrementally understand
ill-defined problems

Development of conceptual
knowledge ('what')

Enhancements to the seed in
response to breakdowns
(enhancements at the
conceptual level)

Interpretation, extension, and
reconceptualization of
conceptual knowledge
('what')

Figure 3: Role distribution between high-tech scribes and domain workers in future
computing environments

27

We have to be aware of the premature establishment of restricted work practices. The HCI
community runs the danger that the Macintosh becomes the QWERTY keyboard, COBOL
or MS-DOS of user interface design (Kay, 1990).

10. Beyond Technological Aspects

Moving beyond human computer interaction is not only a technical problem, but a
considerable social effort. Many HCI approaches (e.g. recording of design rationale, design
for reuse) have failed not for their lack of technical sophistication, but by not paying enough
attention to human-centered principles - e.g. "who is the beneficiary and who has to do
the work?" (Grudin, 1988).

If the most important role for computation in the future is to provide people with a powerful
medium for expression, then the medium should support them in working on the task,
rather than requiring them to focus their intellectual resources on the medium itself. The
analogy to writing and its historical development suggests the goal "to take the control of
computational media out of the hands of high-tech scribes". Computational media may
turn out to be of greater importance to people than writing because the objects created with
them can be interpreted not only by humans (as the printed word) but in part by computers.

Convivial tools and systems - as defined by Illich (1973) - allow users "to invest the
world with their meaning, to enrich the environment with the fruits of their vision and to use
them for the accomplishment of a purpose they have chosen". Conviviality is a dimension
that sets computers apart from other communication and infonnation technologies (e.g.
television, video disks, interactive videotex) that are passive and cannot confonn to the
users' own tastes and tasks. Passive technologies offer some selective power, but they
cannot be extended in ways that the designer of those systems did not directly foresee. An
old Asian Proverb states:

28 Gerhard Fischer

"Give human beings a fish and they have food for a day - teach them
fishing, and they will have food for their whole life."

This can be taken even a step further: if we can provide human beings with the knowledg
the know-how, and the tools for making a fishing rod, they can feed a whole communit~t
The real goal of future computational environments is to provide means to create, critici~
and disseminate knowledge and put it to work to assist us in solving our problems and
satisfying our needs - and to do so in a way, that these environments are simultaneously

useful and usable.

Acknowledgments

The author would like to thank the members of the Human-Computer Communication
group at the University of Colorado, who contributed to the conceptual framework and
the systems discussed in this article. The research was supported by the National Science
Foundation under grants No.IRI-9015441 and No.MDR-9253425, and by grants from the
Intelligent Interfaces Group at NYNEX and from Software Research Associates (SRA).

References
Atwood, M E, Bums, B, Gray, W D, Morch, A I, Radlinski, E R & Turner, A (1991), "The Grace Integrated

Learning Environment - A Progress Report", in Proceedings of the Fourth Intemational Conference
on Industrial & Engineering Applications of Artificial IntelJigence & Expert Systems (lEA/AlE 91),

ACM Press, pp.741-745.

Boecker, H-D, Eden, H & Fischer, G (1991), Interactive Problem Solving Using Logo, Lawrence Erlbaum

Associates.

Brooks, F P (1987), "No Silver Bullet: Essence and Accidents of Software Engineering", IEEE Computer 20

(4), pp.10-19.

Burton, R R, Brown, J S & Fischer, G (1984), "Analysis of Skiing as a Success Model of Instruction:
Manipulating the Learning Environment to Enhance Skill Acquisition", in Everyday Cognition: Its
Development in Social Context, B Rogoff & J Lave [eds.], Harvard University Press, pp.139-150.

Bush, V (1945), "As We May Think", Atlantic Monthly 176(7), pp.lOl-lOg.

Card, S K, Moran, T P & Newell, A (\983), The Psychology of Human-Computer Interaction, Lawrence

Erlbaum Associates.

Carroll, J M (1993), "Creating a Design Science of Human-Computer Interaction", Interacting wid) Computers

5 (1), pp.3-12.

Carroll, J M & Campbell, R L (1986), "Softening Up Hard Science: Reply to Newell and Card", Human­
Computer Interaction 2, pp.227- 249.

Carroll, J M & Rosson, M B (1987), "Paradox of the Active User", in Interfacing Thought: Cognitive Aspects
of Human-Computer Intcmcfion, J M Carroll [ed.]. MIT Press, pp.80-111.

Cross, N [ed.] (1984), Developments in Design Methodology, John Wiley & Sons Ltd.

Dawkins, R (1987), The Blind Watc/Jm;ikcr, W W Norton and Company.

r

r.

..
""
i
Y

1

:t
e

d

n

)

r

I
I
I
i

Beyond Human Computer Interaction ... 29

Draper, S W (1984), "The Nature of Expertise in UNIX", in Proceedings of INTERACT'84 - First 1FJP
Conference on Human-Computer Interaction, B Shackel [ed.], Elsevier Science (North Holland),
pp.182-186.

Ehn, P (1988), Work-Oriented Design of Computer Artifacts, Almquist & Wiksell International.

Eisenberg, M (1991), "Programmable Applications: Interpreter Meets Interface", Department of Electrical
Engineering and Computer Science, MIT, Technical Report 1325.

Fischer, G (1987), "Making Computers more Useful and more Usable", in Proceedings of the 2nd Intemational
Conference on Human-Computer Interaction, Elsevier Science (North Holland), pp.97-104.

Fischer, G (1991), "Supporting Learning on Demand with Design Environments", in Proceedings of the
Intemational Conference on the Learning Sciences, pp.165-172.

Fischer, G (1992), "Domain-oriented Design Environments", in Proceedings of the 7th Annual Knowledge­
Based Software Engineering (KBSE-92) Conference, IEEE Computer Society Press, pp.204-213.

Fischer, G & Girgensohn, A (1990), "End-User Modifiability in Design Environments", in Proceedings of
CHI'90: Human Factors in Computing Systems, J C Chew & J Whiteside [eds.], ACM Press, pp.183-
191.

Fischer, G, Grudin, J, Lemke, A C, McCall, R, Ostwald, J, Reeves, B N & Shipman, F (1992), "Supporting
Indirect, Collaborative Design with Integrated Knowledge-Based Design Environments", Human­
Computer Interaction 7 (3), pp.281-314.

Fischer, G & Lemke, A (1988), "Construction Kits and Design Environments: Steps Toward Human Problem­
domain Communication", Human-Computer Interaction 3 (3), pp.179-222.

Fischer, G, Lemke, A C, Mastaglio, T & Morch, A (1991a), "The Role of Critiquing in Cooperative Problem
Solving", ACM Transactions on Office Information Systems 9 (2), pp.123-151.

Fischer, G, Lemke, A C, McCall, R & Morch, A (1991b), "Making Argumentation Serve Design", Human­
Computer Interaction 6 (3-4), pp.393-419.

Fischer, G & Nakakoji, K (1992), "Beyond the Macho Approach of Artificial Intelligence: Empower Human
Designers - Do Not Replace Them", Knowledge-Based Systems Joumal5 (1), pp.15-30.

FIscher, G, Nakakoji, K, Ostwald, J, Stahl, G & Sumner, T (1993), "Embedding Computer-based Critics in
the Contexts of Design", in Proceedings of INTERCHI'93, ACM Press, pp.157-164.

Girgensohn, A (1992), "End-User Modifiability in Knowledge-Based Design Environments", Department
of Computer Science, University of Colorado, Unpublished PhD Dissertation, Also available as
TechReport CU-CS-595-92.

Greif, r [ed.] (1988), Computer-Supported Cooperative Work: A Book of Readings, Morgan Kaufmann.

Grudin. J (1988), "Why CSCW Applications Fail: Problems in the Design and Evaluation of Organizational
Interfaces", in Proceedings ofCSCW'88: Conference on Computer Supported Cooperative Work, D
Tartar [ed.], ACM Press.

Henderson, A & Kyng. M (1991), "There's No Place Like Home: Continuing Design in Use", in Design at
Work: Cooperative Design of Computer Systems, J Greenbaum & M Kyng [eds.J. Lawrence Erlbaum
Associates, pp.219-240.

Hutchins, E L, Hollan, J D & Norman, D A (1986), "Direct Manipulation Interfaces", in User Centered
Systems Design: New Perspectives on Human-Computer Interaction, D A Nonnan & S W Draper
[eds.], Lawrence Erlbaum Associates, pp.87-124.

30 Gerhard Fischer

Illich, I (1973), Tools for Conviviality, Harper & Row.

Kay, A C (1977), "Microelectronics and the Personal Computer", Scientific American, pp.231-244.

Kay, A C (1990), "User Interface: A Personal View", in The Art of Human-Computer Interface Design, B
Laurel [ed.], Addison Wesley, pp.191-207.

Laurel, B (1991), Computers as Theatre, Addison Wesley.

Lemke, A C & Fischer, G (1990), "A Cooperative Problem Solving System for User Interface Design", in
Proceedings of AAAI-90 (Eighth National Conference on Artificial InteJligence), AAAI PresS/MIT

Press, pp.479-484.

Lemke, A C & Gance, S (1991), "End-User Modifiability in a Water Management Application", Department
of Computer Science, University of Colorado; Technical Report CU-CS-S41-9I.

Lewis, C H (1990), "A Research Agenda for the Nineties in Human-Computer Interaction", Human-Computer
Interaction 5, pp.125-143.

MacLean, A, Carter, K, Lovstrand, L & Moran, T (1990), "User-Tailorable Systems Pressing the Issues with
Buttons", in Proceedings ofCHI'90: Human Factors in Computing Systems, J C Chew & J Whiteside
[eds.], ACM Press, pp.17S-182.

Nakakoji, K (1993), "Increasing Shared Understanding of a Design Task between Designers and Design
Environments: The Role of a Specification Component", Department of Computer Science, University
of Colorado. Unpublished PhD Dissertation, Also available as TechReport CU-CS-6S1-93.

Nardi Gantt, B A (I ()l)2), "Gardeners and Gurus: Patterns of Cooperation Among CAD Users", in Proceedings
of CHI'92: f{1lf/wn Factors in Computing Systems, P Bauersfeld, J Bennett & G Lynch [eds.], ACM

Press, pp.W7-1I7.

Newell, A & Card. S K (1985), "The Prospects for Psychological Science in Human-Computer Interaction",
Human-Co!11purer Interaction 1 (3), pp.209-242.

Nomlan, D A (1990), "Why Interfaces Don't Work", in The Art of Human-Computer Interface Design, B
Laurel [ed.l. Addison Wesley, pp.209-219.

Nomlan, D A (1993). Things That Make Us Smart, Addison Wesley.

Papert, S (1980). /lfindstomls: Children, Computers and Powerful Ideas, Basic Books.

Polanyi, M (1966). nIt' Tacit Dimension, Doubleday.

Poumelle (1990). B) TE September.

Repenning, A & Sumnl'f. T (1992), "Using Agentsheets to Create a Voice Dialog Design Environment", in
Proceedin,!'.." (l(rhe 1992 ACMlSIGAPP Symposium on Applied Computing, ACM Press, pp.1199-

1207.

Rittel, H W J (l9S41. "Second-Generation Design Methods", in Developments in Design Methodology, N
Cross [cd. I. Jllhn Wiley & Sons Ltd, pp.317-327.

Schoen, D A (1983). Thc' Reflective Practitioner: How Professionals Think in Action" Basic Books.

Simon, H A (19811. T7;,' Sciences of the Artificial, MIT Press.

Stahl. G (1993). "Suf'l,,'f(ing Interpretation in Design", Architecture and Planning Research, Special Issue on
Compur:Jfh .::.1.' RC'presentations of Knowledge, (in preparation).

Beyon

Stefik. t.

Suchmar

Trigg. R

Trigg. R

Winogn

Beyond Human Computer Interaction . .. 31

SlCfik. M J (1986), "The Next Knowledge Medium", AI Magazine 7 (1), pp.34-46.

Suchman, L (1987), ~lans. and Situated Actions: The Problem of Human-Computer Communication,
Cambridge Umverslty Press.

Trigg, R H, Moran, T P & Halasz, F G (1987), "Adaptability and Tailorability in NoteCards", in Proceedings
of INTERACT'87 - Second IFIP Conference on Human-Computer Interaction, H-J Bullinger & B
Shackel [eds.], Elsevier Science (North Holland), pp.723-728.

Trigg, R H, Suchman, L A & Halasz, F G (1986), "Supporting Collaboration in NoteCards". in Proceedings
of CSCW'86: Conference on Computer Supported Cooperative Work, D Peterson [ed.], ACM Press,

pp.153-162.

Winograd, T & Flores, F (1986), Undersl1mding Computers and Cognition: A New Foundation for Design,

Ablex.

