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Supporting Software Designers with Integrated 
Domain-Oriented Design Environments 

Gerhard Fischer, Andreas Girgensohn, Kumiyo Nakakoji, and David Redmiles 

Abstract- The field of knowledge-based software engineer­
ing has been undergoing a shift in emphasis from automatic 
programming to human augmentation. We support this shift 
with an approach that embeds human-computer cooperative 
problem-solving tools into knowledge-based design environments 
that work in conjunction with human software designers in 
specific application domains. Domain orientation reduces the 
large conceptual distance between problem-domain semantics 
and software artifacts. Integrated environments support the co­
evolution of specification and construction while allowing design­
ers to access relevant knowledge at each stage of a software 
development process. The access and development of knowledge 
is supported in a cycle of location, comprehension, and mod­
ification. Modification includes the evolution of the knowledge 
base and tools. A framework for building such tools and mech­
anisms is described and illustrated in terms of three systems: 
CATALOGEXPLORER, EXPLAINER, and MODIFIER. User studies 
of these systems demonstrate the promises and limitations of our 
design environment approach. 

Index Terms- Coevolution of specification and construction, 
domain orientation, end-user modifiability, explanation, informa­
tion retrieval, knowledge representation, knowledge-based design 
environments, software reuse and redesign, user interface. 

1. INTRODUCTION 

T HE field of knowledge-based software engineering has 
been undergoing a shift in emphasis from automatic 

programming to human augmentation. A growing number 
of researchers are using knowledge-based systems and new 
communication paradigms to assist software engineers, not to 
replace them. The idea of human augmentation, beginning 
with Engelbart [12], has gained strength steadily through 
now-familiar projects such as the Knowledge-Based Soft­
ware A'>Sistant [55], the Programmer's Apprentice [54], the 
Software Designer's Associate [27], the Knowledge Base 
Designer'S Assistant [43], and earlier systems described by 
Barstow, Shrobe, and Sandewall [3]. 

Parallel to these projects, the need for domain orientation 
has received increased recognition. The software reuse com­
munity is concerned with approaches to domain modeling [38]. 
The "thin spread of application knowledge" has been identified 
in empirical studies [10]. Just as good writers cannot write 
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books on subjects with which they are not familiar, good 
software engineers cannot write programs for domains they do 
not understand. The goal of knowledge-based software tools 
is to shorten the large conceptual distance between problem 
domain semantics and software artifacts [18]. 

Many knowledge-based tools have been built around design 
artifacts with little emphasis on how to support human aspects. 
Our approach goes beyond these systems by embedding co­
operative problem-solving tools into knowledge-based design 
environments that work in conjunction with human software 
designers in specific application domains [19]. These design 
environments imply a separation of software engineers into 
two types: those who build domain-oriented software envi­
ronments using generic programming languages, and those 
who build application software programs using such domain­
specific software environments. 

This paper will provide software engineers, acting as design 
environment builders, with guidance in building such domain­
specific design environments. The architectures and techniques 
presented describe domain-independent approaches for build­
ing domain-specific design environments and suggest how 
such design environments can be used by software engineers 
acting as end users of such design environments. Critical to our 
approach is how this latter class of end users bears some of the 
burden of maintaining and increasing the domain-dependent 
knowledge base using end-user modification techniques. The 
techniques described allow end users knowledgeable in the 
application domain to extend the knowledge base without the 
assistance of the original design environment builders. 

II. CONCEPTUAL FRAMEWORK 

Software design, use, and maintenance is best understood as 
an evolutionary design process [45]. As such, it shares many 
features with other, more established design disciplines, such 
as architectural design, engineering design, musical compo­
sition, and writing. Based on an analysis of the historical 
development of design methods in these other disciplines, 
Archer [1, p. 348] observed that "one of the features of the 
early theories of design methods that really disenchanted many 
practicing designers was their directionality and causality 
and separation of analysis from synthesis, all of which was 
perceived by the designers as being unnatural." 

A field study by our research group supported the above 
observation [21]. Our study also showed that in many cases 
people were initially unable to articulate complete require­
ments and tended to start from a partial specification and 
refine it incrementally based on feedback. This observation 
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Fig. 1. Coevolution of specification and construction. 

concurs with that of Bauer [4], who describes programming 
as an evolutionary process. Whereas Bauer interprets evolution 
as a process that transforms formal specifications into program 
code, we believe that evolution applies more generally to the 
development of a better understanding of a real world problem 
and a better mapping of that problem to a formal construct. 
Automated design methodologies fail to support designers in 
problem framing [40] and require complete representations of 
problem domains before starting design [2]. 

What is required, then, of knowledge-based and domain­
oriented design tools is an integrated environment that can 
support the coevolution of specification and construction [49]. 
Furthermore, information delivered by the computer needs to 
be conveyed to people in ways they can comprehend, and 
likewise, people need convenient ways to convey their reason­
ing to the computer. Seeking an optimal balance between the 
respective capabilities and limitations of people and computers 
leads to the notion of cooperative problem-solving tools. The 
computer is capable of storing and searching large amounts of 
information such as instances of previous designs; the human 
is capable of reasoning with and inventing new designs from 
appropriate information. The focal point is the interface and its 
accommodation of the cognitive steps in the design process. 

A. Coevolution of Specification and Construction 

Fig. 1 illustrates the process of coevolution of specification 
and construction. This coevolution does not separate the 
upstream activities and downstream activities [49]. Hypertext 
systems for recording design decision processes and design 
rationale, such as gIBIS [8], SIBYL [30], and DESIGN RA­
TIONALE [32], support designers in organizing the upstream 
activities and allow them to deal with framing problem re­
quirements specification. However, these artifacts are isolated 
from constructed solutions. In contrast, in our approach, by 
integrating the upstream and downstream activities, designers 
are simultaneously articulating "what" they need to design and 
"how" to design it [41]. Designers create a partial specifica­
tion or a partial construction from a vague design goal. As 
the design environment provides relevant feedback, designers 
develop the partial construction and specification gradually. 

reformulation 

Fig. 2. Knowledge-access paradigm in design environments. 

The feedback information is derived from the knowledge base 
consisting of argumentation, catalog of previous solutions, and 
domain semantics. 

Both the model of coevolution of specification and con­
struction and the spiral model of software design [7] support 
iteration of requirements specification and solution construc­
tion. The difference is that the spiral model places emphasis on 
discrete cycles of revision, remedy, and modification of design 
artifacts in terms of risk reduction, with a strict separation of 
cycles by reviews that are used to ensure the commitment to 
proceed to the next phase. In contrast, our model does not 
require any separation of the activities, but rather supports 
continuous growth of design, both in the specification and 
construction. 

B. Knowledge-Access Paradigm: 
Location-Comprehension-M odification 

Knowledge-intensive systems invariably lead to large infor­
mation spaces. They contain many classes of objects, making 
it likely that an object close to what is needed exists. However, 
without adequate system support in the design process, it is 
difficult to locate and understand appropriate objects [16], [17], 
[37]. The richer the knowledge base is, the more expensive 
to access it, in terms of both computational and cognitive 
costs. Our interest is to reduce this cognitive cost in dealing 
with a huge amount of knowledge stored in the environment 
and to focus the selection and use of knowledge around the 
human designer's approach to solving a problem. Designers 
have to locate design information, comprehend the retrieved 
information, and modify it according to their current needs. 
Comprehension may lead directly to further retrieval, and 
modification may require further comprehension or additional 
retrieval. Fig. 2 illustrates the cycle of these activities. 

Location: In a design environment, designers should be 
able to access knowledge relevant to the task at hand. The task 
at hand can be partially identified through specification. The 
partially identified task can be used to provide background for 
information retrieval processes. Using the partial specification 
relieves designers of the need to specify database queries 
explicitly, and thereby prevents them from being distracted 
by information retrieval activities, which are not their primary 
concern in designing software. 

Comprehension: The comprehension phase is a bridge be­
tween the location and subsequent use (modification) of infor­
mation for solving a problem. Comprehension is necessary for 
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designers to judge the applicability of retrieved information 
and may lead to reformulation of their partial specifications. 

One kind of information retrieved would be examples of 
previous design solutions. After finding a potentially useful 
example, the designer is expected to explore it more carefully 
to build an analogy between the example task and the current 
task. For example, in the software domain, glancing at program 
code may not be sufficient to determine that it produces a 
correlation plot. The hypothesis is that by learning about the 
example program, the designer learns by analogy how to 
program the current task. The goal of the comprehension phase 
is to aid the designer in building this analogy and specifically 
to recognize what elements of the example are applicable to 
solving the current task. 

Modification: After a design object has been located and 
understood, it might be necessary to adapt it to a new use. 
The representation of objects allows designers to perform at 
least some of the adaptations on a level above that of the 
programming language. For example, in a design environment 
that supports programming for plotting graphs, concepts such 
as drawing coordinate axes would be represented in the design 
objects and could be used for manipulating the associated pro­
gram code. Evolution of the design environment is supported 
by allowing new concepts to be added to accommodate new 
design objects. 

III. SYSTEM-BUILDING EFFORTS 

During the last five years, we have developed and eval­
uated several prototype systems of domain-oriented design 
environments [19],[31]. These system-building efforts helped 
us to define an integrated architecture for design environments 
consisting of tools for evolving design artifacts and knowledge 
bases. 

This section describes three systems that act together to 
support the location, comprehension, and modification phases 
in knowledge-based design (Fig. 2). The systems operate on 
design objects stored in the catalog base in the domain of LISP 
programs for plotting data. These design objects can be reused 
for case-based reasoning, such as providing a solution to a 
new problem, evaluating and justifying decisions behind the 
partial specification or construction, and informing designers 
of possible failures [28},[46]. 

The CATALOGExPLORER system helps designers to locate 
prestored design solutions relevant to their task at hand as 
articulated with a partial specification [20]. The EXPLAINER 
system helps designers in comprehending retrieved design so­
lutions by providing various perspectives [17]. The MODIFIER 
system helps designers to modify design objects, and the 
design environment itself, at a level closely related to the task 
[22]. 

A. Scenario in Accessing Design Objects 
Stored in the Catalog Base 

A simple scenario shows how the three systems would be 
used. A designer wants to create a program to plot the results 
of two persons playing one-on-one basketball. The task is first 
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described as supported by commonly available tools; this is 
then contrasted with the use of the three systems. 

Assuming that there is a collection of examples available, 
the designer has to find one that is close to his or her needs. 
For this purpose, tools such as the hypertext-based SYMBOLICS 
document examiner [53], a database access program, or the 
UNIX grep command could be used. These require the de­
signer to find keywords that might appear in an appropriate 
example. After one or more examples are located, the designer 
has to read through the program code and try traces or sample 
executions to determine whether the example will be useful, 
and also has to understand what parts might be extracted or 
modified. Finally, the appropriate program example has to be 
changed with a text editor. 

With our systems, the designer first specifies some of 
the requirements using the specification component provided 
by CATALOGEXPLORER. CATALOGEXPLORER then searches the 
stored example programs in the catalog according to the partial 
specification. The search yields an example program that plots 
the results of two people playing squash. The example code is 
brought into EXPLAINER, which helps the designer understand 
its operation, build an analogy between the example task and 
the current task, and learn how to program the current task. 
During the examination of the retrieved example, the designer 
wants to add another form of representation (perspective) to 
the retrieved program, and thus invokes MODIFIER, which 
provides support to add a new perspective to the program. 

B. CATALOGExPLORER 

The CATALOGExPLORER system [20] provides a tool to 
support designers in specifying their problem requirements 
in terms of the problem domain. This specification partially 
identifies the designer's task at hand. From this partial specifi­
cation, CATALOGExPLORER locates relevant example programs 
in the catalog base. It infers relevance by using specification­
linking rules that are dynamically derived from a domain 
argumentation base. The rules map a high-level abstract spec­
ification to a set of condition rules over program constructs. 

The domain argumentation base is based on the Issue-based 
Information System (IBIS) structure [8], [14],[29]. It consists 
of issues, optional answers (i.e., alternatives), and arguments 
to the answers. This information is accumulated by recording 
design rationale for design decisions made in previous design 
sessions. The specification component (see Fig. 3(a)) is an 
issue-base hypertext system that allows designers to add such 
information and to articulate positions in the issue base as 
a requirements specification activity. Each of the answers 
and arguments in the specification component is associated 
with a pre-defined domain distinction. For example, in the 
scenario, domain distinctions include types of graphs (e.g., line 
graph, bar graph, circular graph), emphases (e.g., transitions, 
comparisons), nature of data (e.g., continuous, discrete), and 
design components (e.g., dividing line, x-axis/y-axis, center of 
a circle). 

In the IBIS structure, answers to issues are encouraged 
by pro-arguments and discouraged by contra-arguments. An­
swers are tied to domain distinctions. Consider the example 
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Fig. 3. Specification components. (a) Designers can specify their design requirement in a form of a questionnaire. The left window 
provides designers with questions. By clicking one of them, the right window provides possible answers to select. (b) After the 
specification, designers have to weight the importance of each specified item . 
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Fig. 4. Dynamic derivation of specification-linking rules in CATALOG EXPLORER. When designers specify that they want 
to illustrate the correlation of the two values. the system derives specification-linking rules, one of which says the illustrating 
correlation requires a graphic program to have a dividing line. Then. knowing that having a dividing line requires horizontal and 
vertical axes and a diagonal line, the design environment delivers program examples from the catalog base, each of which has 
horizontal and vertical axes and a diagonal line. 
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illustrated in Fig. 4. The answer "Yes" to the issue "Do 
you need a dividing line?" is connected to the domain dis­
tinction "dividing-line-p." The pro-argument "a dividing line 
provides a nice illustration for correlation" has the domain 
distinction "correlation." Because it is a pro-argument, the de­
pendency "correlation --+ dividing-line-p" is implied. Contra­
arguments cause dependencies of the form "X -; not Y." 
The specification-linking rules represent those dependencies. 
When designers specify a domain distinction in their design 
requirements by selecting a certain answer, the system finds 
other answers that have arguments tied to the same domain 
distinction. The domain distinctions of the found answers are 
used to define specification-linking rules. The system uses the 
specification-linking rules for finding all example programs in 
the catalog that have some of the required domain distinctions. 

computed appropriateness values. When designers articulate 
specification choices, they are asked to assign a weight to 
each to indicate its degree of importance (see Fig. 3(b)). The 
appropriateness of an example in terms of a set of specification 
items is defined as the weighted sum of the satisfied conditions 
provided by the related specification-linking rules (for details, 
see Fischer and Nakakoji [20]). By seeing the effects of chang­
ing the degree of importance in the ordered catalog examples, 
designers can make trade-offs among specification items. 

CatalogEXPLORER orders the found examples according to 

C. EXPlAINER 

The result of the location phase is that designers are 
presented with a program example for a task similar to their 
current task at hand. In this case (Fig. 5), designers are 
presented with a program that plots the results of two people 
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Fig. 5. EXPLAINER screen. EXPLAINER provides the designer with the ability to view and explore the multiple perspectives 
of an example. The programming language perspective is shown in the code pane; a plotting perspective is shown in the example 
output pane; and a game·playing perspective is described in the explanation dialog pane. 

playing squash. One goal for designers in the comprehension 
phase is to determine an analogy between this located example 
and their current task of plotting basketball results. Designers 
are aided in building an analogy by assuming that the presented 
example is relevant to their current task. This foreknowledge 
of relevance is an implicit result of the catalog search done 
by CATALOGExPLORER. The necessary details are found by 
exploring the example with the EXPLAINER system. 

Examples are represented from multiple perspectives; differ­
ent fonns of representation, including code, diagram, sample 
picture, and text; and also different domains within these rep­
resentations. For instance, an example may be used to illustrate 
programming language concepts such as function calling and 
looping. The same example from another perspective might 
illustrate graphic features such as curves or labels drawn 
on a plot. From still another perspective, the example could 
illustrate how to compare scores of two players competing in 
squash matches. This notion of perspectives is consistent with 
its use in other knowledge representation systems such as KRL 
[6] and MERLIN [35]. By clicking on fragments in the different 
perspectives and selecting actions from menus, designers can 
expand the infonnation presented in the different perspectives. 
In Fig. 5, the designer has identified the horizontal axis label, 

how that plot feature is implemented in code, and how in the 
game-playing perspective the label is the second player. 

In exploring an example from different perspectives, a 
minimalist strategy is followed. Designers using EXPLAINER 
expand only the infonnation they determine to be relevant to 
their task. The use of minimal explanation in the context of an 
example avoids overwhelming designers with irrelevant infor­
mation [13]. Actively guiding the interactions based, for ex­
ample, on the requirements articulated in CATALOGEXPLORER 
is not yet implemented. 

An important kind of knowledge supported is the mapping 
between different perspectives on an example. The principal 
point served by representing these mappings is to illustrate 
how elements of a task map onto features of a solution (e.g., 
how concepts in the squash problem map onto plot or code 
concepts). Thus, the usefulness of the perspective knowledge 
is in search algorithms to find infonnation of the appropriate 
perspective and in presentation algorithms to support viewing 
and interaction with the knowledge. 

The smallest unit of knowledge in EXPLAINER is a concept. 
Concepts become nodes in semantic networks. Perspectives are 
instantiated by collections of networks with a common theme. 
Fig. 6 shows two networks about the same piece of code, 
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Fig. 6. Multiple perspectives within EXPLAINER. (a) LISP code from the 
squash example. (b) Network of LISP concepts. (c) Network of plotting 
concepts. 

which from the plotting perspective, draws the horizontal axis 
label. 

The primary relations that connect concepts within a net­
work are "is-part-of," "consists-of," and "is-also-a." These 
relations more generally constitute generalization, specializa­
tion, and equivalence, respectively. For example, the network 
in Fig. 6(c) means that "a horizontal axis consists of an axis 
line, an axis label, and axis marks." It also provides the 
information that "the axis marks are part of the horizontal 
axis." An "is-also-a" link between "horizontal axis label" and 
"function call" (Fig. 6(b» states that "the horizontal axis label 
corresponds to a function call," though this information is more 
effectively presented by highlighting equivalenced objects, as 
shown in Fig. 5. Within a perspective, a concept can participate 
in several networks. Concepts within a network are always 
of the same perspective; only through the "is-also-a" slot are 
perspectives mixed. 

The English text generated by EXPLAINER from these net­
works may vary according to the context. For example, the 
phrase "consists of' is reasonable for building a sentence for 
the network in Fig. 6( c), but the phrase "has arguments" is 
more meaningful in interpreting Fig. 6(b). These variations 
are supported by sentence patterns associated with concepts 
in objects called descriptors. Case, number, and agreement 
of articles and nouns are computed according to primitive 
rules. There are default descriptors for concepts within a given 
perspective. Descriptors record presentation instructions for 

other views as well, e.g., how to format code. Thus, descriptors 
serve as a generalized notion of a lexicon in our representation 
scheme. Free text can also be associated with concepts in 
networks using the equivalence link. 

A search and presentation is initiated by the designer 
clicking on a screen object and selecting an action from the 
command menu (Fig. 5). For example, suppose a designer 
clicks on the diagram node "horizontal axis" and selects "E.3 
How" from the command menu. EXPLAINER searches for 
specializations of this concept and finds the three parts "axis 
line," "axis label," and "axis marks." The default descriptor for 
this plotting perspective yields "consists of' for the English 
pattern for specialization. Such patterns implicitly give one­
to-many relations from the concept itself to nodes linked by 
specialization; the sentence generated by EXPLAINER is "the 
horizontal axis consists of an axis line, an axis label, and axis 
marks." 

D. MODIFIER 

The modification component, MODIFIER, helps designers 
modify various kinds of objects. First, program modules found 
by CATALOG EXPLORER and explained by EXPLAINER need to 
be adapted to their use in the program being written. Second, 
the domain knowledge in CATALOGEXPLORER and EXPLAINER 
need to be modified and extended. 

The modification of a program example is supported through 
the perspectives maintained by EXPLAINER. For example, in 
order to use the squash example for plotting basketball results, 
the spacing and values of the axes have to be changed. 
The corresponding LISP code can be accessed and modified 
through the graph of plotting concepts. A starting point is the 
concept "horizontal axis mark" in the "Diagram" window in 
Fig. 5. From there, the designer can locate loop variables and 
axis marks and change them as needed. 

The input of knowledge about examples is a semi-automated 
process. The creator of the knowledge is currently assumed 
to be the original author of the example. Once an example 
program has been written, its code is parsed automatically into 
a semantic net of LISP concepts. Higher level perspectives 
can be created by a graph editor (see Fig. 7(a)). Concepts 
from different perspectives can be equated. For instance, the 
concept "data set 1" can be equated to the phrase "Gerhard" 
(see Fig. 7(b»). Concepts in many perspectives may be linked 
to corresponding concepts in other perspectives. The object 
net of concepts associated with a program example is saved 
together with the example. Each example is represented in 
terms of at least two perspectives: The LISP programming 
language perspective and a plotting perspective. 

Descriptors associated with some concepts are edited in 
property sheets (see Fig. 8). The fields of these sheets have 
help displays associated with them. The help window displays 
all possible values, such as all program code descriptors in the 
system. Descriptions for any object in the help window can 
be requested. 

MODIFIER supports both the evolution of individual ex­
amples and the evolution of the design environment. The 
design environment itself evolves through the introduction 
of new domain knowledge, for example, adding the new 
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Fig. 7. Adding a new concept. (a) The new concept "correlation" and its two 
parts "data set 1" and "data set 2" are defined with the menu command "Input 
Root." (b) The concept "data set 1" is then linked to the phrase "Gerhard" in 
the explanation window with the menu command "Equate." 

concept "correlation" or new patterns for parsing program 
code. An individual example starts with parsed program code 
and evolves through the addition of perspectives that describe 
the function of the example. 

E. Mechanisms for Knowledge Representation and Reasoning 

Our work is focused on creating representations supporting 
domain experts as end users. Therefore, our research interests 
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in knowledge representation and reasoning are driven by 
the needs of these knowledge workers rather than specific 
properties of different formalisms. This focus and concern for 
efficiency led us to tailor our own representations and methods 
in CLOS [47] on the SYMBOLICS LISP machine. This imple­
mentation work was possible since the CATALOG EXPLORER, 
EXPLAINER, and MODIFIER tools did not require all of the fea­
tures of general-purpose knowledge representation platforms, 
as we discuss below. 

The specification-linking rules (implemented as objects) in 
CATALOGExPLORER use backward chaining to infer require­
ments. A rule interpreter such as JOSHUA [50] could be used 
for implementing the inference engine but the mechanism is 
simple enough that a specialized implementation based on 
CLOS methods turned out to be more straightforward and 
more efficient. 

In EXPLAINER, most of the work involves searching different 
semantic networks comprising an example. Since EXPLAINER 
works with only one example at a time, the search space is 
relatively small (in general in the order of one to two thousand 
objects) making the time to find and present information 
negligible. For generating text, sufficiently good results have 
been obtained just by using patterns stored on the descriptors 
for different classes and perspectives. This implementation 
decision is a trade-off against using more sophisticated genera­
tion packages such as PENNMAN [33] or MUMBLE [34]. These 
systems are currently too slow and memory intensive to be 
used as components in interactive interfaces, their goal being 
more to support the careful analysis of language structures. 

MODIFIER is supported by the SYMBOLICS presentation 
substrate, a package similar to the new CLIM standard [51]. 
Our extensions to provide editing of class objects through 
property sheets and to support subsumption for new classes 
have been reused in other design environment applications 
[22]. 

IV. LESSONS LEARNED 

Evolution of knowledge-based design environments is cru­
cial because it is not possible for environment builders to 
anticipate all the information that will be relevant in all 
future cases. Design information can never be complete, and 
design practices change with time [41], [42], [56]. Good 
concepts should be reused, and new concepts should be readily 
incorporated into the knowledge base as they arise. End users 
of the design environment should be able to modify tools such 
as we have presented without requiring knowledge about low­
level programming. In this section, we first discuss various 
issues identified while evaluating our system-building efforts 
and then focus on the idea of evolution of knowledge and tools. 

A. User Studies 

Preliminary observations and user studies were performed 
with our three systems. These studies provided insight into 
improving the tools themselves as well as insights into the 
conceptual framework of retrieval, explanation, and end-user 
modifiability. 



518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18. NO.6. JUNE 1992 

Code Descriptor ~0S! Help for Code Descriptor ~0 
ID: DOTIMES You are being asked to enter a parse pattern. 
Key: DOTIMES Available descriptors: 
Lexicon Entry: ~ list Antecedent Macro-Arg-List 
Par5e Pattern: • Bind-Form Macro-Name 
Pr~tty Patt~rn: 4 print p~tt~rn 
PP Splice: Ye5 Ko Body Mapcar 
PP Read Nacro: d syMbol CI-Concept Multipl e-Value-Bind 

Clause Number 

Save Revert Example 
Cond Prog 
Consequent Pstatements 
Defmacro Ptag 
Defun Pvar 
Defvar Pvar-List 
Direction-Option Quote 
Do Return 
Do-Sequential Rotation-Option 

Code Descriptor ~IQ] Dolist Saving-Graphics-Transform 
End-Test Setf 

10: OOLIST Fixnum Setq 
Key: DOLIST Float String 
Lexicon Entry: (ENGLISH (NAME (SINGULAR loop over a list» ) Form Symbol 
Par~e P~ttern! (Macro-Nane Var-Result-Forn Body) 
Pretty Pattern: (x a) Function Var-List 

PP Splice: No Function-Call Var-Result-Form 
PP R""d Macro: NIL Function-Name Vars 

Integer Vars-List 
Lambda Wlth-CI ipping-From-Output 
Lambda-List With-Graphics-Scale 
Let With-Graphics- Transl ation 
Let-Binding Wlth-Open-File 
Let-Binding-List With-Open-Stream 
Let-Sequenti a I With-Room-For-Graphics 
List X-Attachment-Option 
Lists Y -Attachment-Option 

Fig. 8. Modifying objects in EXPLAINER. In order to add knowledge about LISP construct, a new code descriptor that describes 
how LISP code can be parsed and printed has to be defined in a property sheet (top-left window). Existing descriptors can serve as 
examples (bottom-left window). The help window (right) shows a list of the existing descriptors. For each of these descriptors, 
additional infonnation can be requested. 

CATALOcEXPLORER: Preliminary observations for CATALOG 

EXPLORER focused on designers locating reusable objects 
in software development. The lack of appropriate support 
mechanisms for locating reusable objects is a primary obstacle 
hindering active software reuse. Designers need to access 
reusable objects relevant to the task at hand even when they 
are not able to articulate exactly what they need, or even know 
that potentially useful information exists. CATALOG EXPLORER 

circumvents these situations somewhat by inferring the task at 
hand from a partial specification. 

While building CATALOG EXPLORER, we were concerned 
with whether designers would be frustrated by the possible 
incorrect identification of their task at hand and whether de­
signers might become confused by the behavior of the system. 
In the preliminary studies, subjects wanted to know the ratio­
nale behind the system retrieving software objects and how 
the retrieved objects were related to their task at hand. Being 
derived from the domain argumentation base, the specification­
linking rules can provide designers with casual relationships 
about the retrievaL While the method of computing appro­
priateness values that CATALOGExPLORER currently uses is 
comparatively naive, the subjects appreciated its simplicity. 
The need for a mechanism that allows designers to modify an 
identified task (i.e., a constructed query) was identified. 

If designers are not aware of the existence of potentially 
reusable information, they are not motivated to retrieve it 
In these situations, the design environments should "deliver" 
information relevant to their current problem. Through the in­
tegration, the environments can partially identify the designer's 
intent, as well as detect occurrences of breakdowns in their 

partially constructed design solutions. When the environments 
become aware of such breakdowns, the systems will construct 
queries for designers and retrieve information relevant to the 
detected breakdowns. This notion of information delivery will 
complement the information access mechanisms and provide 
more effective information retrieval techniques for designers. 

EXPLAINER: In planning improvements to the EXPLAINER 

system, we observed subjects solving simple graphic program­
ming tasks independent of EXPLAINER in order to determine 
ideally what types of questions designers would ask about an 
example, and in general, what kinds of information they would 
seek. Subjects were given a programming task to complete 
and an example from which to start. They were told that the 
example was related to a potential solution of the programming 
task, as if a query and location had already taken place. They 
worked in an EMACS editor buffer and directed questions and 
comments to a human consultant Subjects were observed 
through questions they asked, spontaneous talking aloud, and 
mouse cursor movements as they studied different parts of an 
example's code. Questions were restricted by the observer to 
questions about the example and not about the task. 

Overall, subjects followed a prototyping behavior cycle 
when working with an example. They studied and asked 
questions to determine what parts of a program example 
were critical to their task. The subjects modified the critical 
sections and tested the new function they were building. On 
subsequent passes, subjects directed their attention to more 
detailed aspects of the example. 

The perspective of the questions and relevance judgment 
focused on the LISP and plotting perspectives. For example, 
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relevance of examples was initially judged by their visual or 
graphic features, such as whether they contained a circle or plot 
axis. Less experienced programmers asked questions about 
function parameters or programming constructs. Although the 
observer was prepared to answer questions about the domain 
of the plots, subjects did not request this information. 

In summary, subjects working from examples followed a 
prototyping cycle, made use only of basic perspectives such 
as LISP and plotting, and took advantage of the visual nature 
of our domain. The issue of usefulness of domain perspectives 
is a question we plan to investigate further. We believe that 
the simplicity of examples and tasks tested so far contributed 
to the lack of a need for domain perspectives. 

MODIFIER: Two user studies were carried out. In both, 
subjects were asked to complete different tasks in MODIFIER 
that required them to define new objects or to modify existing 
ones. The first study showed that help texts provided by 
MODIFIER about a modification task were insufficient. Further­
more, subjects had difficulty decomposing the modification 
tasks and making use of the information provided by the 
system. These findings led to new principles for explanations 
and showed the need for system-maintained task agendas. A 
task agenda was implemented as an advertisement mechanism, 
a method to draw the users' attention to the work materials 
that bear more work [57]. 

In the second study, the previous difficulties were alleviated. 
The advertisement mechanism guided the subjects smoothly 
through the task of defining a new class. The help texts 
emphasized examples of modification tasks in addition to 
textual descriptions. An "example button" retrieved classes 
and objects similar to the ones being modified. Although 
the retrieval mechanism for examples used a fairly simply 
matching algorithm (it used all slots in the new objects that 
already had values and looked for the object with the most 
matching values), the subjects found this button very useful. 
These experiments further contributed to our understanding of 
peoples' reliance on examples in completing tasks. 

B. Maintenance-Enhancements by End Users 

Design environments and design artifacts created in such 
environments are both software systems. Empirical analyses 
have shown that more than half of the effort in the development 
of complex software goes into maintenance. The data show 
that 75% of the maintenance effort goes into enhancements, 
such as changing systems to meet additional requirements [9]. 
In order to make maintenance a "first class citizen" activity in 
the lifetime of an artifact, the following are required. 

• Design and development processes are more efficient if 
the reality of change is accepted explicitly. A lesson we 
learned in our work on end-user modifiability [16] is that 
there is no way to modify a system without detailed pro­
gramming knowledge unless modifiability was an explicit 
goal in the original design of the system. 

• The up-front costs (based not only on designing for what 
is desired and known at the moment but also anticipating 
changes and creating structures to support these changes) 
have to be acknowledged and dealt with. 
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The evolution of a software system from this perspective 
occurs as a feedback mechanism by responding to discrepan­
cies between a system's actual and desired states. This allows 
one to adapt the system to changes without requiring these 
changes in detail at the original design time. The possibility for 
domain experts to change systems provides a potential solution 
to address the maintenance problems in software design. Users 
of a system are knowledgeable in the application domain 
and know best which enhancements are needed. An end­
user modification component supports these users in adding 
enhancements to the system without the heIp of the system 
developers. End-user modifiable systems will take some of 
the burden to implement enhancements away from the system 
developer. 

Not every desired enhancement can be implemented within 
the end-user modification component. In some cases, the 
system developers will have to change the system with more 
traditional means. It is also likely that the users do not use 
the "best" method for modifying the system. The system 
developers can collect the modifications done by the users 
from time to time and incorporate them into the next version 
of the system. Domain experts might not be able or willing 
to do major changes and reconceptualizations. Therefore, the 
evolutionary growth of our systems will be supplemented by 
major revisions performed by knowledge engineers. 

C. Design for End-User Modifiability 

Making a system end-user modifiable introduces additional 
costs during system development. However, Henderson and 
Kyng [25] argue that end-user modifiability is still advan­
tageous because the resources saved in the initial develop­
ment by ignoring end-user modifiability will be spent several 
times over during the system's lifetime. Several principles 
for making systems end-user modifiable have been identified 
during the development of MODIFIER and its integration and 
evaluation with the other systems implemented with our ap­
proach [16], [19], [22]. These principles, discussed below, 
include layered architectures, parameterization, explanations, 
task agendas, and critics. 

Layered architectures have been used successfully in many 
areas, such as the design of operating systems [44]. They 
narrow the gap between the system space and the problem 
domain addressing the thin spread of application knowledge 
[10]. If a change extends beyond the functionality provided 
by one layer, users are not immediately thrown back to the 
system space but can descend one layer at a time. Our effort to 
develop domain-oriented environments provided an important 
step towards more user-accessible tailoring by creating high­
level, or application-oriented, building blocks together with 
application-oriented ways of manipulating them. 

Parameterization relieves the user of the task of modifying 
program code and locating the program parts responsible for 
a certain behavior. End users change only those parameters 
to change the behavior of the system, and can be supported 
in such modifications much better than in the modification of 
program code. These parameters have a meaning at higher 
layers of the layered architecture. The user can choose values 
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for these parameters that the designer of the system did not 
foresee, but it is not possible to modify unparameterized parts 
of the system without resorting to programming. 

The system must provide help about the possible values 
and the purpose of a parameter a user wants to modify. For 
example, during the modification of a program code descriptor 
in EXPLAINER, the software designer can ask the system to list 
all existing code descriptors that could be used in the parse 
pattern. In addition, an explanation has to be provided for 
code descriptors and what consequences would result from 
putting certain descriptors into the parse pattern. The form 
of explanation preferred during testing was explanation by 
example. Suchman's work on situated action [48] supports this 
observation, illustrating that people reason best in the context 
of a situation. 

Decomposing modification tasks into manageable elements 
is an important part of a modification process. According 
to Jeffries et al. [26], novices are incapable of performing 
and recursively refining such task decomposition. Therefore, 
the system has to aid the user in decomposing the task 
by determining the relevant issues and directing the user's 
attention to them. To do so, the system needs a representation 
of the modification task. A task agenda such as the one 
used in DETENTE [57] can maintain the steps in a task and 
check their preconditions and states. DETENTE embeds agendas 
into application interfaces, maintains tasks, and advertises 
task recommendations. Checklists [31] are another method for 
guiding a user through a task. 

Critics, although emphasized more in other systems of ours 
[15], playa critical role during a modification process. Critics 
are advisory systems that act as demons watching out for 
certain conditions, notifying users of such conditions, and 
proposing remedial actions. For instance, when adding a new 
descriptor in EXPLAINER (see Fig. 8), critics can signal that 
constraints between different fields are violated, e.g., that the 
parse and print pattern of a code descriptor do not match. 
Critics can also make users aware that the new descriptor is 
similar to an existing one, and suggest the two be merged. 

V. RELATED WORK 

Several software reuse systems maintain representations of 
what we have referred to as the higher-level specification 
or problem-domain knowledge. They use formal, automated 
techniques to produce new programs. The REQUIREMENT 
APPRENTICE [39] supports designers in the reuse of require­
ment specifications through cliches, commonly occurring struc­
tures that exist in most engineering disciplines. Cliches support 
designers in framing a problem. However, the approach is 
based on the waterfall model, and does not allow designers 
to intertwine problem specification and solution construction. 
DRACO [36] also stores requirement specifications, but it uses 
formal approaches to automatically derive designs from the 
specifications and does not reuse the specifications to help 
designers frame new problems. 

LASSIE [11] and ARIES [23] overlap with our approach in 
their use of knowledge bases for supporting software reuse. 
LASSIE focuses more on the knowledge base in terms of 

the structure and representation of artifacts, and less on the 
integration of access methods. ARIES focuses on how to 
build a knowledge base for reusable requirements, but does 
not focus on supporting designers' formulation of problem 
requirements. Our approach complements these aspects by 
stressing an integrated environment for designers that supports 
the concurrent development of requirements specifications and 
solution constructions, and the delivery of prestored objects 
related to the task at hand. 

In common with our approach, domain analysis techniques 
[38] support software reuse in domain-specific contexts. They 
focus on capturing deterministic knowledge about behaviors, 
characteristics, and procedures of a domain but do not include 
heuristics and probabilistic rules of inference. They require a 
well-defined domain with an analysis before reuse is possible. 
In our approach, such knowledge is gradually constructed 
through end-user modifiability as designers constantly use the 
design environments. 

The DESIRE system assists in design recovery for reuse 
and maintenance of software [5]. The emphasis is on how 
much information can be recovered from existing codes. Our 
approach assumes a knowledge-rich approach, relying on new 
examples input by original designers and evolution of the 
knowledge base supported by end-user modifiability. We also 
focus on evaluating the use and usefulness of different kinds 
of knowledge by designers. 

Some software environments support designers with 
knowledge about software objects and development processes. 
MARVEL [24] uses rules for coordinating and integrating 
software development activities. An early tool, MASTERSCOPE 
[52] assisted users in "analyzing and cross-referencing" a 
LISP program, computing information about function calls 
and variable usage. While these tools can support the design 
process per se, they cannot ensure better solutions with respect 
to a problem domain. 

In general, the distinguishing principle in our approach 
centers around the role of human designers in the software 
development process. In particular, we stress the value of 
keeping designers closely involved in the development of 
an evolving software artifact by integrating domain-oriented 
knowledge into the location, comprehension, and modification 
cycle. 

VI. CONCLUSIONS 

Software design incorporates many cognitive activities, such 
as recognizing and framing a problem, understanding reusable 
information, and adapting information to a specific situation. 
Many researchers have turned their attention to knowledge­
based and domain-oriented tools to support these processes. 
Our approach has been to combine such techniques into 
integrated domain-oriented design environments. 

By integrating cooperative problem-solving approaches with 
knowledge-based techniques, we have developed a conceptual 
framework for supporting coevolution of problem specifica­
tions and software implementation that focuses on the role 
of human designers. This human-centered approach takes 
advantage of peoples' ability to understand and incrementally 
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reformulate their problems, while allowing them to contribute 
to the gradual improvement of the underlying knowledge 
base. The notion of evolution circumvents the inability of 
the original builders of a design environment to anticipate 
all future needs and knowledge for complete coverage of a 
domain. 

Within our conceptual framework, tools supporting loca­
tion (CATALOGExpLORER), comprehension (EXPLAINER), and 
modification (MODIFIER) of software objects have been imple­
mented. Preliminary studies have shown these tools to offer 
promising solutions to providing design objects relevant to 
the task at hand, making design objects more comprehensible 
to designers, and anticipating potential changes at the hands 
of the end users. Admittedly, our approach is knowledge 
intensive. An important issue for our future work, and for 
other researchers in this area, is how efficient and durable the 
evolutionary process that we envision will be in large-scale 
projects. 
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