
IEEE TRANSALI10NS ON SOfTWARE ENGINEERING, VOL. 18. NO, 6, JUNE 1992 51l

Supporting Software Designers with Integrated
Domain-Oriented Design Environments

Gerhard Fischer, Andreas Girgensohn, Kumiyo Nakakoji, and David Redmiles

Abstract- The field of knowledge-based software engineer­
ing has been undergoing a shift in emphasis from automatic
programming to human augmentation. We support this shift
with an approach that embeds human-computer cooperative
problem-solving tools into knowledge-based design environments
that work in conjunction with human software designers in
specific application domains. Domain orientation reduces the
large conceptual distance between problem-domain semantics
and software artifacts. Integrated environments support the co­
evolution of specification and construction while allowing design­
ers to access relevant knowledge at each stage of a software
development process. The access and development of knowledge
is supported in a cycle of location, comprehension, and mod­
ification. Modification includes the evolution of the knowledge
base and tools. A framework for building such tools and mech­
anisms is described and illustrated in terms of three systems:
CATALOGEXPLORER, EXPLAINER, and MODIFIER. User studies
of these systems demonstrate the promises and limitations of our
design environment approach.

Index Terms- Coevolution of specification and construction,
domain orientation, end-user modifiability, explanation, informa­
tion retrieval, knowledge representation, knowledge-based design
environments, software reuse and redesign, user interface.

1. INTRODUCTION

T HE field of knowledge-based software engineering has
been undergoing a shift in emphasis from automatic

programming to human augmentation. A growing number
of researchers are using knowledge-based systems and new
communication paradigms to assist software engineers, not to
replace them. The idea of human augmentation, beginning
with Engelbart [12], has gained strength steadily through
now-familiar projects such as the Knowledge-Based Soft­
ware A'>Sistant [55], the Programmer's Apprentice [54], the
Software Designer's Associate [27], the Knowledge Base
Designer'S Assistant [43], and earlier systems described by
Barstow, Shrobe, and Sandewall [3].

Parallel to these projects, the need for domain orientation
has received increased recognition. The software reuse com­
munity is concerned with approaches to domain modeling [38].
The "thin spread of application knowledge" has been identified
in empirical studies [10]. Just as good writers cannot write

Manuscript received February 5, 1992. This work was supported by the
National Science Foundation under Grants IRI-8722792 and IRI-90l5441,
by the Army Research Institute under Grant MDA903-S6-C0143, and by
Software Research Associates, Recommended by A Borgida and M, Jarke,

The authors are with the Department of Computer Science and Institute
of Cognitive Science, University of Colorado, Boulder, Colorado 80309. K.
Nakakoji is also affiliated with the Software Engineering Laboratory, Software
Research Associates, Chiyoda·ku, Tokyo 102, Japan,

IEEE Log Number 9200169,

books on subjects with which they are not familiar, good
software engineers cannot write programs for domains they do
not understand. The goal of knowledge-based software tools
is to shorten the large conceptual distance between problem
domain semantics and software artifacts [18].

Many knowledge-based tools have been built around design
artifacts with little emphasis on how to support human aspects.
Our approach goes beyond these systems by embedding co­
operative problem-solving tools into knowledge-based design
environments that work in conjunction with human software
designers in specific application domains [19]. These design
environments imply a separation of software engineers into
two types: those who build domain-oriented software envi­
ronments using generic programming languages, and those
who build application software programs using such domain­
specific software environments.

This paper will provide software engineers, acting as design
environment builders, with guidance in building such domain­
specific design environments. The architectures and techniques
presented describe domain-independent approaches for build­
ing domain-specific design environments and suggest how
such design environments can be used by software engineers
acting as end users of such design environments. Critical to our
approach is how this latter class of end users bears some of the
burden of maintaining and increasing the domain-dependent
knowledge base using end-user modification techniques. The
techniques described allow end users knowledgeable in the
application domain to extend the knowledge base without the
assistance of the original design environment builders.

II. CONCEPTUAL FRAMEWORK

Software design, use, and maintenance is best understood as
an evolutionary design process [45]. As such, it shares many
features with other, more established design disciplines, such
as architectural design, engineering design, musical compo­
sition, and writing. Based on an analysis of the historical
development of design methods in these other disciplines,
Archer [1, p. 348] observed that "one of the features of the
early theories of design methods that really disenchanted many
practicing designers was their directionality and causality
and separation of analysis from synthesis, all of which was
perceived by the designers as being unnatural."

A field study by our research group supported the above
observation [21]. Our study also showed that in many cases
people were initially unable to articulate complete require­
ments and tended to start from a partial specification and
refine it incrementally based on feedback. This observation

0162--8828(92$03.00 © 1992 IEEE

512 IEEE TRANSACTIONS ON SOHWARE ENGINEERING, VOL. 18, NO.6, JUNE 1992

Multifaceted Des n Environments

Construction

....... EvolutJOI1

Influence/Reference

Fig. 1. Coevolution of specification and construction.

concurs with that of Bauer [4], who describes programming
as an evolutionary process. Whereas Bauer interprets evolution
as a process that transforms formal specifications into program
code, we believe that evolution applies more generally to the
development of a better understanding of a real world problem
and a better mapping of that problem to a formal construct.
Automated design methodologies fail to support designers in
problem framing [40] and require complete representations of
problem domains before starting design [2].

What is required, then, of knowledge-based and domain­
oriented design tools is an integrated environment that can
support the coevolution of specification and construction [49].
Furthermore, information delivered by the computer needs to
be conveyed to people in ways they can comprehend, and
likewise, people need convenient ways to convey their reason­
ing to the computer. Seeking an optimal balance between the
respective capabilities and limitations of people and computers
leads to the notion of cooperative problem-solving tools. The
computer is capable of storing and searching large amounts of
information such as instances of previous designs; the human
is capable of reasoning with and inventing new designs from
appropriate information. The focal point is the interface and its
accommodation of the cognitive steps in the design process.

A. Coevolution of Specification and Construction

Fig. 1 illustrates the process of coevolution of specification
and construction. This coevolution does not separate the
upstream activities and downstream activities [49]. Hypertext
systems for recording design decision processes and design
rationale, such as gIBIS [8], SIBYL [30], and DESIGN RA­
TIONALE [32], support designers in organizing the upstream
activities and allow them to deal with framing problem re­
quirements specification. However, these artifacts are isolated
from constructed solutions. In contrast, in our approach, by
integrating the upstream and downstream activities, designers
are simultaneously articulating "what" they need to design and
"how" to design it [41]. Designers create a partial specifica­
tion or a partial construction from a vague design goal. As
the design environment provides relevant feedback, designers
develop the partial construction and specification gradually.

reformulation

Fig. 2. Knowledge-access paradigm in design environments.

The feedback information is derived from the knowledge base
consisting of argumentation, catalog of previous solutions, and
domain semantics.

Both the model of coevolution of specification and con­
struction and the spiral model of software design [7] support
iteration of requirements specification and solution construc­
tion. The difference is that the spiral model places emphasis on
discrete cycles of revision, remedy, and modification of design
artifacts in terms of risk reduction, with a strict separation of
cycles by reviews that are used to ensure the commitment to
proceed to the next phase. In contrast, our model does not
require any separation of the activities, but rather supports
continuous growth of design, both in the specification and
construction.

B. Knowledge-Access Paradigm:
Location-Comprehension-M odification

Knowledge-intensive systems invariably lead to large infor­
mation spaces. They contain many classes of objects, making
it likely that an object close to what is needed exists. However,
without adequate system support in the design process, it is
difficult to locate and understand appropriate objects [16], [17],
[37]. The richer the knowledge base is, the more expensive
to access it, in terms of both computational and cognitive
costs. Our interest is to reduce this cognitive cost in dealing
with a huge amount of knowledge stored in the environment
and to focus the selection and use of knowledge around the
human designer's approach to solving a problem. Designers
have to locate design information, comprehend the retrieved
information, and modify it according to their current needs.
Comprehension may lead directly to further retrieval, and
modification may require further comprehension or additional
retrieval. Fig. 2 illustrates the cycle of these activities.

Location: In a design environment, designers should be
able to access knowledge relevant to the task at hand. The task
at hand can be partially identified through specification. The
partially identified task can be used to provide background for
information retrieval processes. Using the partial specification
relieves designers of the need to specify database queries
explicitly, and thereby prevents them from being distracted
by information retrieval activities, which are not their primary
concern in designing software.

Comprehension: The comprehension phase is a bridge be­
tween the location and subsequent use (modification) of infor­
mation for solving a problem. Comprehension is necessary for

FISCHER et aL SUPPORTING SOFTWARE DESIGNERS

designers to judge the applicability of retrieved information
and may lead to reformulation of their partial specifications.

One kind of information retrieved would be examples of
previous design solutions. After finding a potentially useful
example, the designer is expected to explore it more carefully
to build an analogy between the example task and the current
task. For example, in the software domain, glancing at program
code may not be sufficient to determine that it produces a
correlation plot. The hypothesis is that by learning about the
example program, the designer learns by analogy how to
program the current task. The goal of the comprehension phase
is to aid the designer in building this analogy and specifically
to recognize what elements of the example are applicable to
solving the current task.

Modification: After a design object has been located and
understood, it might be necessary to adapt it to a new use.
The representation of objects allows designers to perform at
least some of the adaptations on a level above that of the
programming language. For example, in a design environment
that supports programming for plotting graphs, concepts such
as drawing coordinate axes would be represented in the design
objects and could be used for manipulating the associated pro­
gram code. Evolution of the design environment is supported
by allowing new concepts to be added to accommodate new
design objects.

III. SYSTEM-BUILDING EFFORTS

During the last five years, we have developed and eval­
uated several prototype systems of domain-oriented design
environments [19],[31]. These system-building efforts helped
us to define an integrated architecture for design environments
consisting of tools for evolving design artifacts and knowledge
bases.

This section describes three systems that act together to
support the location, comprehension, and modification phases
in knowledge-based design (Fig. 2). The systems operate on
design objects stored in the catalog base in the domain of LISP
programs for plotting data. These design objects can be reused
for case-based reasoning, such as providing a solution to a
new problem, evaluating and justifying decisions behind the
partial specification or construction, and informing designers
of possible failures [28},[46].

The CATALOGExPLORER system helps designers to locate
prestored design solutions relevant to their task at hand as
articulated with a partial specification [20]. The EXPLAINER
system helps designers in comprehending retrieved design so­
lutions by providing various perspectives [17]. The MODIFIER
system helps designers to modify design objects, and the
design environment itself, at a level closely related to the task
[22].

A. Scenario in Accessing Design Objects
Stored in the Catalog Base

A simple scenario shows how the three systems would be
used. A designer wants to create a program to plot the results
of two persons playing one-on-one basketball. The task is first

513

described as supported by commonly available tools; this is
then contrasted with the use of the three systems.

Assuming that there is a collection of examples available,
the designer has to find one that is close to his or her needs.
For this purpose, tools such as the hypertext-based SYMBOLICS
document examiner [53], a database access program, or the
UNIX grep command could be used. These require the de­
signer to find keywords that might appear in an appropriate
example. After one or more examples are located, the designer
has to read through the program code and try traces or sample
executions to determine whether the example will be useful,
and also has to understand what parts might be extracted or
modified. Finally, the appropriate program example has to be
changed with a text editor.

With our systems, the designer first specifies some of
the requirements using the specification component provided
by CATALOGEXPLORER. CATALOGEXPLORER then searches the
stored example programs in the catalog according to the partial
specification. The search yields an example program that plots
the results of two people playing squash. The example code is
brought into EXPLAINER, which helps the designer understand
its operation, build an analogy between the example task and
the current task, and learn how to program the current task.
During the examination of the retrieved example, the designer
wants to add another form of representation (perspective) to
the retrieved program, and thus invokes MODIFIER, which
provides support to add a new perspective to the program.

B. CATALOGExPLORER

The CATALOGExPLORER system [20] provides a tool to
support designers in specifying their problem requirements
in terms of the problem domain. This specification partially
identifies the designer's task at hand. From this partial specifi­
cation, CATALOGExPLORER locates relevant example programs
in the catalog base. It infers relevance by using specification­
linking rules that are dynamically derived from a domain
argumentation base. The rules map a high-level abstract spec­
ification to a set of condition rules over program constructs.

The domain argumentation base is based on the Issue-based
Information System (IBIS) structure [8], [14],[29]. It consists
of issues, optional answers (i.e., alternatives), and arguments
to the answers. This information is accumulated by recording
design rationale for design decisions made in previous design
sessions. The specification component (see Fig. 3(a)) is an
issue-base hypertext system that allows designers to add such
information and to articulate positions in the issue base as
a requirements specification activity. Each of the answers
and arguments in the specification component is associated
with a pre-defined domain distinction. For example, in the
scenario, domain distinctions include types of graphs (e.g., line
graph, bar graph, circular graph), emphases (e.g., transitions,
comparisons), nature of data (e.g., continuous, discrete), and
design components (e.g., dividing line, x-axis/y-axis, center of
a circle).

In the IBIS structure, answers to issues are encouraged
by pro-arguments and discouraged by contra-arguments. An­
swers are tied to domain distinctions. Consider the example

514 IEEE TRA1',SACTlONS ON SOFTWARE ENGINEERING. VOL. 18. NO.6. JUNE 1992

Questions
Current object: GRAPHIC-PROGRAMMING DEF

, What should be th~ deSign of graphic
progral'"ll"'ling?

> ~h~t 15 ~ purpo~e of this graph?
~ Ho~ nany Obj~Ct5 do you have to
ill u!j:trete:?

, ~ il ~ ~ 2f ~ illy,tratioo?
? ~hich type of graph do you ~ant to use?

~ ~hich type of line do you want to u~e?
Do~s the 9r~ph have a titl~?

? Doe~ the graph have a subtitle?
~ ~here to put the title?

Answers
Current i5sue: ~hat is a purpose of the illustration?
Current ansuers: illustrate the correlation of the tuo values;

-lllu5trate ~ correlation 2f ~ ~ ~
-trace change~ over tine

(al

Soeci f the factor of i"Dortance for each 5D"cif1"d it",1'\ Least Most
~hat i~ ~ purpo~e of thi~ graph? To plot value~ B BBBBBBBB ~ Ho~ Many objects do you have to illustrate? Two
~hat is a purpose of the illustration? illustrate the corre:lotion betwe~n the t~o v~lue~ 0 00000000
~hich type of graph do you want to use? R 5; I'\p 1 eli ne graph 0 001li2000DD
Does the graph have a title? Yes 0 OOOODO~D
Does the graph have a SUbtitle? No 0 1li20000DDO

Do It U Rbort 0

(b)

Fig. 3. Specification components. (a) Designers can specify their design requirement in a form of a questionnaire. The left window
provides designers with questions. By clicking one of them, the right window provides possible answers to select. (b) After the
specification, designers have to weight the importance of each specified item .

.. . '\W ,.

WJ&; Do you need a dividing line?

~ Yes.
Domain-distlnctlon: (dividing-line-p) ~

ArgY!ru1Ill:l;[I2[Ql!1 A dividing line provides a nice i\ illustration for correlation ..
Domain-distinction: correlation

(dIVidin~~ine-P) -: (:~riz~ntal-aXiS-P) & J
(vertical-axis-p) &
(dlagonal-Iine-p)

W hat is a purpose of this graph?

illustrate the correlation of the
two values.

Domain-dislinclion: correlation

Specification-linkin!: rule
correlation _>(horizontal-axis-p) &

(vertical-axis-p) &
(dlagonal-llne-p)

+
'" M.

j ontaJaxlS

Fig. 4. Dynamic derivation of specification-linking rules in CATALOG EXPLORER. When designers specify that they want
to illustrate the correlation of the two values. the system derives specification-linking rules, one of which says the illustrating
correlation requires a graphic program to have a dividing line. Then. knowing that having a dividing line requires horizontal and
vertical axes and a diagonal line, the design environment delivers program examples from the catalog base, each of which has
horizontal and vertical axes and a diagonal line.

~
0
D
0

illustrated in Fig. 4. The answer "Yes" to the issue "Do
you need a dividing line?" is connected to the domain dis­
tinction "dividing-line-p." The pro-argument "a dividing line
provides a nice illustration for correlation" has the domain
distinction "correlation." Because it is a pro-argument, the de­
pendency "correlation --+ dividing-line-p" is implied. Contra­
arguments cause dependencies of the form "X -; not Y."
The specification-linking rules represent those dependencies.
When designers specify a domain distinction in their design
requirements by selecting a certain answer, the system finds
other answers that have arguments tied to the same domain
distinction. The domain distinctions of the found answers are
used to define specification-linking rules. The system uses the
specification-linking rules for finding all example programs in
the catalog that have some of the required domain distinctions.

computed appropriateness values. When designers articulate
specification choices, they are asked to assign a weight to
each to indicate its degree of importance (see Fig. 3(b)). The
appropriateness of an example in terms of a set of specification
items is defined as the weighted sum of the satisfied conditions
provided by the related specification-linking rules (for details,
see Fischer and Nakakoji [20]). By seeing the effects of chang­
ing the degree of importance in the ordered catalog examples,
designers can make trade-offs among specification items.

CatalogEXPLORER orders the found examples according to

C. EXPlAINER

The result of the location phase is that designers are
presented with a program example for a task similar to their
current task at hand. In this case (Fig. 5), designers are
presented with a program that plots the results of two people

FISCHER et of..' SUPPORTING SOFTWARE DESIGNERS

Explainer

(defun plot (1 1St)
(9r~phlc5 :1,..Iith-roo1"'l-for-9r~ph'c~ (l5to!nd~,...d-outputt saG)

{9r~phi cs ~ uith-gr phi cs-tr-.'!n~ 1 at i 01"'\ (.~t~ndard-output* 1 B
(greph1c.s:u1th-grephics-sca le (l"5tandard-output* 1.3)

, ics:drau-errou: fa 0 2BG e

(do «x 2e t· x 29»)
(0= x 2ea»
(graphice::draloJ-l1ne: ,.., -2 x 2)
(9r&phic5:drlJl,oJ-~trin9 (forMat nil --D- x)

xa Ie t t

188

1G8

149

;: 129

" .c le8
L
v 88
'"

68

48

28

In aroma oS

x
-5
: ~ttechnent-y
:top
: att~chnent-k

ol"l,,"nd: 00 nark Plecl! ·Hor1!'ontel Axis L.!lb~l·
I,Col'll'land: [Abort]
~Cor'ln4nd: •

Ii

\" I zont..l .. i s I'IMks

[8

l1or~ --
In this exanple, Gerhard is pl~yer 1 an~ of

[7 Mr_;
J :" horizontal axis la e

A. Any Concept
A.l Highlight Off x
B. BookMark
B.l Remove
C. Code
C.1 Add Code
D. Dlagral't
0.1 Add root
0.2 Remove root
E. Text Explanation
E.1 What

orry I on t knou 041

E.2 What [Alil
E.3 How
E.4 Why

as -- ser 8r, F. Window Perspective
F.1 Set
F.2 Add
F.3 Subtract

515

Fig. 5. EXPLAINER screen. EXPLAINER provides the designer with the ability to view and explore the multiple perspectives
of an example. The programming language perspective is shown in the code pane; a plotting perspective is shown in the example
output pane; and a game·playing perspective is described in the explanation dialog pane.

playing squash. One goal for designers in the comprehension
phase is to determine an analogy between this located example
and their current task of plotting basketball results. Designers
are aided in building an analogy by assuming that the presented
example is relevant to their current task. This foreknowledge
of relevance is an implicit result of the catalog search done
by CATALOGExPLORER. The necessary details are found by
exploring the example with the EXPLAINER system.

Examples are represented from multiple perspectives; differ­
ent fonns of representation, including code, diagram, sample
picture, and text; and also different domains within these rep­
resentations. For instance, an example may be used to illustrate
programming language concepts such as function calling and
looping. The same example from another perspective might
illustrate graphic features such as curves or labels drawn
on a plot. From still another perspective, the example could
illustrate how to compare scores of two players competing in
squash matches. This notion of perspectives is consistent with
its use in other knowledge representation systems such as KRL
[6] and MERLIN [35]. By clicking on fragments in the different
perspectives and selecting actions from menus, designers can
expand the infonnation presented in the different perspectives.
In Fig. 5, the designer has identified the horizontal axis label,

how that plot feature is implemented in code, and how in the
game-playing perspective the label is the second player.

In exploring an example from different perspectives, a
minimalist strategy is followed. Designers using EXPLAINER
expand only the infonnation they determine to be relevant to
their task. The use of minimal explanation in the context of an
example avoids overwhelming designers with irrelevant infor­
mation [13]. Actively guiding the interactions based, for ex­
ample, on the requirements articulated in CATALOGEXPLORER
is not yet implemented.

An important kind of knowledge supported is the mapping
between different perspectives on an example. The principal
point served by representing these mappings is to illustrate
how elements of a task map onto features of a solution (e.g.,
how concepts in the squash problem map onto plot or code
concepts). Thus, the usefulness of the perspective knowledge
is in search algorithms to find infonnation of the appropriate
perspective and in presentation algorithms to support viewing
and interaction with the knowledge.

The smallest unit of knowledge in EXPLAINER is a concept.
Concepts become nodes in semantic networks. Perspectives are
instantiated by collections of networks with a common theme.
Fig. 6 shows two networks about the same piece of code,

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18, NO.6, JUNE 1992

(graphics:draw-string-image "Dieter" 100 -10
:attachment-y :top
:attachment-x :center)

(a)

/Ifunction na~e draw-string-i~ag€

i ,lstri ng "Di eter" I
II,P nteger 11313\

Ifunct ion ca 11 r- fI/ .--li nteger -10\
{:: ""'Iopt ion attachMent-y I
~\

hori zontal axis

\\ 'Ioption top I

\ 'loPt i on at tach~ent -x I
'Iopt i on cente r I

(b)

IhO r i zonta 1 axis

IhO r i zonta 1 axis

IhO r i zonta 1 axis

(c)

1 inel

label I
fYlarksl

Fig. 6. Multiple perspectives within EXPLAINER. (a) LISP code from the
squash example. (b) Network of LISP concepts. (c) Network of plotting
concepts.

which from the plotting perspective, draws the horizontal axis
label.

The primary relations that connect concepts within a net­
work are "is-part-of," "consists-of," and "is-also-a." These
relations more generally constitute generalization, specializa­
tion, and equivalence, respectively. For example, the network
in Fig. 6(c) means that "a horizontal axis consists of an axis
line, an axis label, and axis marks." It also provides the
information that "the axis marks are part of the horizontal
axis." An "is-also-a" link between "horizontal axis label" and
"function call" (Fig. 6(b» states that "the horizontal axis label
corresponds to a function call," though this information is more
effectively presented by highlighting equivalenced objects, as
shown in Fig. 5. Within a perspective, a concept can participate
in several networks. Concepts within a network are always
of the same perspective; only through the "is-also-a" slot are
perspectives mixed.

The English text generated by EXPLAINER from these net­
works may vary according to the context. For example, the
phrase "consists of' is reasonable for building a sentence for
the network in Fig. 6(c), but the phrase "has arguments" is
more meaningful in interpreting Fig. 6(b). These variations
are supported by sentence patterns associated with concepts
in objects called descriptors. Case, number, and agreement
of articles and nouns are computed according to primitive
rules. There are default descriptors for concepts within a given
perspective. Descriptors record presentation instructions for

other views as well, e.g., how to format code. Thus, descriptors
serve as a generalized notion of a lexicon in our representation
scheme. Free text can also be associated with concepts in
networks using the equivalence link.

A search and presentation is initiated by the designer
clicking on a screen object and selecting an action from the
command menu (Fig. 5). For example, suppose a designer
clicks on the diagram node "horizontal axis" and selects "E.3
How" from the command menu. EXPLAINER searches for
specializations of this concept and finds the three parts "axis
line," "axis label," and "axis marks." The default descriptor for
this plotting perspective yields "consists of' for the English
pattern for specialization. Such patterns implicitly give one­
to-many relations from the concept itself to nodes linked by
specialization; the sentence generated by EXPLAINER is "the
horizontal axis consists of an axis line, an axis label, and axis
marks."

D. MODIFIER

The modification component, MODIFIER, helps designers
modify various kinds of objects. First, program modules found
by CATALOG EXPLORER and explained by EXPLAINER need to
be adapted to their use in the program being written. Second,
the domain knowledge in CATALOGEXPLORER and EXPLAINER
need to be modified and extended.

The modification of a program example is supported through
the perspectives maintained by EXPLAINER. For example, in
order to use the squash example for plotting basketball results,
the spacing and values of the axes have to be changed.
The corresponding LISP code can be accessed and modified
through the graph of plotting concepts. A starting point is the
concept "horizontal axis mark" in the "Diagram" window in
Fig. 5. From there, the designer can locate loop variables and
axis marks and change them as needed.

The input of knowledge about examples is a semi-automated
process. The creator of the knowledge is currently assumed
to be the original author of the example. Once an example
program has been written, its code is parsed automatically into
a semantic net of LISP concepts. Higher level perspectives
can be created by a graph editor (see Fig. 7(a)). Concepts
from different perspectives can be equated. For instance, the
concept "data set 1" can be equated to the phrase "Gerhard"
(see Fig. 7(b»). Concepts in many perspectives may be linked
to corresponding concepts in other perspectives. The object
net of concepts associated with a program example is saved
together with the example. Each example is represented in
terms of at least two perspectives: The LISP programming
language perspective and a plotting perspective.

Descriptors associated with some concepts are edited in
property sheets (see Fig. 8). The fields of these sheets have
help displays associated with them. The help window displays
all possible values, such as all program code descriptors in the
system. Descriptions for any object in the help window can
be requested.

MODIFIER supports both the evolution of individual ex­
amples and the evolution of the design environment. The
design environment itself evolves through the introduction
of new domain knowledge, for example, adding the new

FISCHER et al .. · SUPPORTING SOFTWARE DESIGNERS

~
.J1r-at..11ng areal

~r'h:onhl ~xl"l

~_r-.1iIIPhlr"l9 fl.Jt"l(;t,on Ertlcal ~xt$1

'1<""<>"".' 1 '''''1
feur dr-.,.nnQ

I'''''''' 'unct, ""I
Qperation on the i~9!"al"l I-J-indow

D. DiagraM
0.1 Input (New) Root
F. Window Perspective
F.4 Input (Define) New

"

Typein Commands
I~l.,o,""and: Input Root

NaMe of new root: correlation
COMMand: •

(a)

~ ,J:lraulnQ .,-... aJ

rimntaJ axt:J
l/9raph1rl9 f'.R-,dl0n Ertle.l aX1»1

'fdl~dll 11nE'

'jCurv~ drllWir1Q

Ii""'" ,unet'''''1
@ata S~t 11

fOr"'~lf1tiOl"l~
~

: a data Sf!t

A. Any Concept
A.2 Equate ~

It:.xpfanation la/Ofj A.3 Di sassoci ate
Th15 plot COMpore~ th~ w C. Code [8
More] D. DiagraM
Thi~ plot 5how~ the carr 0.1 Input (New) Root ele

cW + and Die:>:ter. [8 (0.2 Delete (Old) Root
0.3 Input (New) Part
0.4 Delete (Old) Part
0.5 Reorder Part
E. Text Explanation
E.1 (Edit) What
E.2 (Edit) What [AIIJ
E.3 (Edit) How
E.4 (Edit) Why
E.6 (Edit Old) Sentence
F. Window Perspective
F.4 Define (New) Perspective

(b)

Fig. 7. Adding a new concept. (a) The new concept "correlation" and its two
parts "data set 1" and "data set 2" are defined with the menu command "Input
Root." (b) The concept "data set 1" is then linked to the phrase "Gerhard" in
the explanation window with the menu command "Equate."

concept "correlation" or new patterns for parsing program
code. An individual example starts with parsed program code
and evolves through the addition of perspectives that describe
the function of the example.

E. Mechanisms for Knowledge Representation and Reasoning

Our work is focused on creating representations supporting
domain experts as end users. Therefore, our research interests

517

in knowledge representation and reasoning are driven by
the needs of these knowledge workers rather than specific
properties of different formalisms. This focus and concern for
efficiency led us to tailor our own representations and methods
in CLOS [47] on the SYMBOLICS LISP machine. This imple­
mentation work was possible since the CATALOG EXPLORER,
EXPLAINER, and MODIFIER tools did not require all of the fea­
tures of general-purpose knowledge representation platforms,
as we discuss below.

The specification-linking rules (implemented as objects) in
CATALOGExPLORER use backward chaining to infer require­
ments. A rule interpreter such as JOSHUA [50] could be used
for implementing the inference engine but the mechanism is
simple enough that a specialized implementation based on
CLOS methods turned out to be more straightforward and
more efficient.

In EXPLAINER, most of the work involves searching different
semantic networks comprising an example. Since EXPLAINER
works with only one example at a time, the search space is
relatively small (in general in the order of one to two thousand
objects) making the time to find and present information
negligible. For generating text, sufficiently good results have
been obtained just by using patterns stored on the descriptors
for different classes and perspectives. This implementation
decision is a trade-off against using more sophisticated genera­
tion packages such as PENNMAN [33] or MUMBLE [34]. These
systems are currently too slow and memory intensive to be
used as components in interactive interfaces, their goal being
more to support the careful analysis of language structures.

MODIFIER is supported by the SYMBOLICS presentation
substrate, a package similar to the new CLIM standard [51].
Our extensions to provide editing of class objects through
property sheets and to support subsumption for new classes
have been reused in other design environment applications
[22].

IV. LESSONS LEARNED

Evolution of knowledge-based design environments is cru­
cial because it is not possible for environment builders to
anticipate all the information that will be relevant in all
future cases. Design information can never be complete, and
design practices change with time [41], [42], [56]. Good
concepts should be reused, and new concepts should be readily
incorporated into the knowledge base as they arise. End users
of the design environment should be able to modify tools such
as we have presented without requiring knowledge about low­
level programming. In this section, we first discuss various
issues identified while evaluating our system-building efforts
and then focus on the idea of evolution of knowledge and tools.

A. User Studies

Preliminary observations and user studies were performed
with our three systems. These studies provided insight into
improving the tools themselves as well as insights into the
conceptual framework of retrieval, explanation, and end-user
modifiability.

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 18. NO.6. JUNE 1992

Code Descriptor ~0S! Help for Code Descriptor ~0
ID: DOTIMES You are being asked to enter a parse pattern.
Key: DOTIMES Available descriptors:
Lexicon Entry: ~ list Antecedent Macro-Arg-List
Par5e Pattern: • Bind-Form Macro-Name
Pr~tty Patt~rn: 4 print p~tt~rn
PP Splice: Ye5 Ko Body Mapcar
PP Read Nacro: d syMbol CI-Concept Multipl e-Value-Bind

Clause Number

Save Revert Example
Cond Prog
Consequent Pstatements
Defmacro Ptag
Defun Pvar
Defvar Pvar-List
Direction-Option Quote
Do Return
Do-Sequential Rotation-Option

Code Descriptor ~IQ] Dolist Saving-Graphics-Transform
End-Test Setf

10: OOLIST Fixnum Setq
Key: DOLIST Float String
Lexicon Entry: (ENGLISH (NAME (SINGULAR loop over a list») Form Symbol
Par~e P~ttern! (Macro-Nane Var-Result-Forn Body)
Pretty Pattern: (x a) Function Var-List

PP Splice: No Function-Call Var-Result-Form
PP R""d Macro: NIL Function-Name Vars

Integer Vars-List
Lambda Wlth-CI ipping-From-Output
Lambda-List With-Graphics-Scale
Let With-Graphics- Transl ation
Let-Binding Wlth-Open-File
Let-Binding-List With-Open-Stream
Let-Sequenti a I With-Room-For-Graphics
List X-Attachment-Option
Lists Y -Attachment-Option

Fig. 8. Modifying objects in EXPLAINER. In order to add knowledge about LISP construct, a new code descriptor that describes
how LISP code can be parsed and printed has to be defined in a property sheet (top-left window). Existing descriptors can serve as
examples (bottom-left window). The help window (right) shows a list of the existing descriptors. For each of these descriptors,
additional infonnation can be requested.

CATALOcEXPLORER: Preliminary observations for CATALOG

EXPLORER focused on designers locating reusable objects
in software development. The lack of appropriate support
mechanisms for locating reusable objects is a primary obstacle
hindering active software reuse. Designers need to access
reusable objects relevant to the task at hand even when they
are not able to articulate exactly what they need, or even know
that potentially useful information exists. CATALOG EXPLORER

circumvents these situations somewhat by inferring the task at
hand from a partial specification.

While building CATALOG EXPLORER, we were concerned
with whether designers would be frustrated by the possible
incorrect identification of their task at hand and whether de­
signers might become confused by the behavior of the system.
In the preliminary studies, subjects wanted to know the ratio­
nale behind the system retrieving software objects and how
the retrieved objects were related to their task at hand. Being
derived from the domain argumentation base, the specification­
linking rules can provide designers with casual relationships
about the retrievaL While the method of computing appro­
priateness values that CATALOGExPLORER currently uses is
comparatively naive, the subjects appreciated its simplicity.
The need for a mechanism that allows designers to modify an
identified task (i.e., a constructed query) was identified.

If designers are not aware of the existence of potentially
reusable information, they are not motivated to retrieve it
In these situations, the design environments should "deliver"
information relevant to their current problem. Through the in­
tegration, the environments can partially identify the designer's
intent, as well as detect occurrences of breakdowns in their

partially constructed design solutions. When the environments
become aware of such breakdowns, the systems will construct
queries for designers and retrieve information relevant to the
detected breakdowns. This notion of information delivery will
complement the information access mechanisms and provide
more effective information retrieval techniques for designers.

EXPLAINER: In planning improvements to the EXPLAINER

system, we observed subjects solving simple graphic program­
ming tasks independent of EXPLAINER in order to determine
ideally what types of questions designers would ask about an
example, and in general, what kinds of information they would
seek. Subjects were given a programming task to complete
and an example from which to start. They were told that the
example was related to a potential solution of the programming
task, as if a query and location had already taken place. They
worked in an EMACS editor buffer and directed questions and
comments to a human consultant Subjects were observed
through questions they asked, spontaneous talking aloud, and
mouse cursor movements as they studied different parts of an
example's code. Questions were restricted by the observer to
questions about the example and not about the task.

Overall, subjects followed a prototyping behavior cycle
when working with an example. They studied and asked
questions to determine what parts of a program example
were critical to their task. The subjects modified the critical
sections and tested the new function they were building. On
subsequent passes, subjects directed their attention to more
detailed aspects of the example.

The perspective of the questions and relevance judgment
focused on the LISP and plotting perspectives. For example,

FISCHER el al.: SUPPORTING SOFTWARE DESIGNERS

relevance of examples was initially judged by their visual or
graphic features, such as whether they contained a circle or plot
axis. Less experienced programmers asked questions about
function parameters or programming constructs. Although the
observer was prepared to answer questions about the domain
of the plots, subjects did not request this information.

In summary, subjects working from examples followed a
prototyping cycle, made use only of basic perspectives such
as LISP and plotting, and took advantage of the visual nature
of our domain. The issue of usefulness of domain perspectives
is a question we plan to investigate further. We believe that
the simplicity of examples and tasks tested so far contributed
to the lack of a need for domain perspectives.

MODIFIER: Two user studies were carried out. In both,
subjects were asked to complete different tasks in MODIFIER
that required them to define new objects or to modify existing
ones. The first study showed that help texts provided by
MODIFIER about a modification task were insufficient. Further­
more, subjects had difficulty decomposing the modification
tasks and making use of the information provided by the
system. These findings led to new principles for explanations
and showed the need for system-maintained task agendas. A
task agenda was implemented as an advertisement mechanism,
a method to draw the users' attention to the work materials
that bear more work [57].

In the second study, the previous difficulties were alleviated.
The advertisement mechanism guided the subjects smoothly
through the task of defining a new class. The help texts
emphasized examples of modification tasks in addition to
textual descriptions. An "example button" retrieved classes
and objects similar to the ones being modified. Although
the retrieval mechanism for examples used a fairly simply
matching algorithm (it used all slots in the new objects that
already had values and looked for the object with the most
matching values), the subjects found this button very useful.
These experiments further contributed to our understanding of
peoples' reliance on examples in completing tasks.

B. Maintenance-Enhancements by End Users

Design environments and design artifacts created in such
environments are both software systems. Empirical analyses
have shown that more than half of the effort in the development
of complex software goes into maintenance. The data show
that 75% of the maintenance effort goes into enhancements,
such as changing systems to meet additional requirements [9].
In order to make maintenance a "first class citizen" activity in
the lifetime of an artifact, the following are required.

• Design and development processes are more efficient if
the reality of change is accepted explicitly. A lesson we
learned in our work on end-user modifiability [16] is that
there is no way to modify a system without detailed pro­
gramming knowledge unless modifiability was an explicit
goal in the original design of the system.

• The up-front costs (based not only on designing for what
is desired and known at the moment but also anticipating
changes and creating structures to support these changes)
have to be acknowledged and dealt with.

519

The evolution of a software system from this perspective
occurs as a feedback mechanism by responding to discrepan­
cies between a system's actual and desired states. This allows
one to adapt the system to changes without requiring these
changes in detail at the original design time. The possibility for
domain experts to change systems provides a potential solution
to address the maintenance problems in software design. Users
of a system are knowledgeable in the application domain
and know best which enhancements are needed. An end­
user modification component supports these users in adding
enhancements to the system without the heIp of the system
developers. End-user modifiable systems will take some of
the burden to implement enhancements away from the system
developer.

Not every desired enhancement can be implemented within
the end-user modification component. In some cases, the
system developers will have to change the system with more
traditional means. It is also likely that the users do not use
the "best" method for modifying the system. The system
developers can collect the modifications done by the users
from time to time and incorporate them into the next version
of the system. Domain experts might not be able or willing
to do major changes and reconceptualizations. Therefore, the
evolutionary growth of our systems will be supplemented by
major revisions performed by knowledge engineers.

C. Design for End-User Modifiability

Making a system end-user modifiable introduces additional
costs during system development. However, Henderson and
Kyng [25] argue that end-user modifiability is still advan­
tageous because the resources saved in the initial develop­
ment by ignoring end-user modifiability will be spent several
times over during the system's lifetime. Several principles
for making systems end-user modifiable have been identified
during the development of MODIFIER and its integration and
evaluation with the other systems implemented with our ap­
proach [16], [19], [22]. These principles, discussed below,
include layered architectures, parameterization, explanations,
task agendas, and critics.

Layered architectures have been used successfully in many
areas, such as the design of operating systems [44]. They
narrow the gap between the system space and the problem
domain addressing the thin spread of application knowledge
[10]. If a change extends beyond the functionality provided
by one layer, users are not immediately thrown back to the
system space but can descend one layer at a time. Our effort to
develop domain-oriented environments provided an important
step towards more user-accessible tailoring by creating high­
level, or application-oriented, building blocks together with
application-oriented ways of manipulating them.

Parameterization relieves the user of the task of modifying
program code and locating the program parts responsible for
a certain behavior. End users change only those parameters
to change the behavior of the system, and can be supported
in such modifications much better than in the modification of
program code. These parameters have a meaning at higher
layers of the layered architecture. The user can choose values

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO.6, JUNE 1992

for these parameters that the designer of the system did not
foresee, but it is not possible to modify unparameterized parts
of the system without resorting to programming.

The system must provide help about the possible values
and the purpose of a parameter a user wants to modify. For
example, during the modification of a program code descriptor
in EXPLAINER, the software designer can ask the system to list
all existing code descriptors that could be used in the parse
pattern. In addition, an explanation has to be provided for
code descriptors and what consequences would result from
putting certain descriptors into the parse pattern. The form
of explanation preferred during testing was explanation by
example. Suchman's work on situated action [48] supports this
observation, illustrating that people reason best in the context
of a situation.

Decomposing modification tasks into manageable elements
is an important part of a modification process. According
to Jeffries et al. [26], novices are incapable of performing
and recursively refining such task decomposition. Therefore,
the system has to aid the user in decomposing the task
by determining the relevant issues and directing the user's
attention to them. To do so, the system needs a representation
of the modification task. A task agenda such as the one
used in DETENTE [57] can maintain the steps in a task and
check their preconditions and states. DETENTE embeds agendas
into application interfaces, maintains tasks, and advertises
task recommendations. Checklists [31] are another method for
guiding a user through a task.

Critics, although emphasized more in other systems of ours
[15], playa critical role during a modification process. Critics
are advisory systems that act as demons watching out for
certain conditions, notifying users of such conditions, and
proposing remedial actions. For instance, when adding a new
descriptor in EXPLAINER (see Fig. 8), critics can signal that
constraints between different fields are violated, e.g., that the
parse and print pattern of a code descriptor do not match.
Critics can also make users aware that the new descriptor is
similar to an existing one, and suggest the two be merged.

V. RELATED WORK

Several software reuse systems maintain representations of
what we have referred to as the higher-level specification
or problem-domain knowledge. They use formal, automated
techniques to produce new programs. The REQUIREMENT
APPRENTICE [39] supports designers in the reuse of require­
ment specifications through cliches, commonly occurring struc­
tures that exist in most engineering disciplines. Cliches support
designers in framing a problem. However, the approach is
based on the waterfall model, and does not allow designers
to intertwine problem specification and solution construction.
DRACO [36] also stores requirement specifications, but it uses
formal approaches to automatically derive designs from the
specifications and does not reuse the specifications to help
designers frame new problems.

LASSIE [11] and ARIES [23] overlap with our approach in
their use of knowledge bases for supporting software reuse.
LASSIE focuses more on the knowledge base in terms of

the structure and representation of artifacts, and less on the
integration of access methods. ARIES focuses on how to
build a knowledge base for reusable requirements, but does
not focus on supporting designers' formulation of problem
requirements. Our approach complements these aspects by
stressing an integrated environment for designers that supports
the concurrent development of requirements specifications and
solution constructions, and the delivery of prestored objects
related to the task at hand.

In common with our approach, domain analysis techniques
[38] support software reuse in domain-specific contexts. They
focus on capturing deterministic knowledge about behaviors,
characteristics, and procedures of a domain but do not include
heuristics and probabilistic rules of inference. They require a
well-defined domain with an analysis before reuse is possible.
In our approach, such knowledge is gradually constructed
through end-user modifiability as designers constantly use the
design environments.

The DESIRE system assists in design recovery for reuse
and maintenance of software [5]. The emphasis is on how
much information can be recovered from existing codes. Our
approach assumes a knowledge-rich approach, relying on new
examples input by original designers and evolution of the
knowledge base supported by end-user modifiability. We also
focus on evaluating the use and usefulness of different kinds
of knowledge by designers.

Some software environments support designers with
knowledge about software objects and development processes.
MARVEL [24] uses rules for coordinating and integrating
software development activities. An early tool, MASTERSCOPE
[52] assisted users in "analyzing and cross-referencing" a
LISP program, computing information about function calls
and variable usage. While these tools can support the design
process per se, they cannot ensure better solutions with respect
to a problem domain.

In general, the distinguishing principle in our approach
centers around the role of human designers in the software
development process. In particular, we stress the value of
keeping designers closely involved in the development of
an evolving software artifact by integrating domain-oriented
knowledge into the location, comprehension, and modification
cycle.

VI. CONCLUSIONS

Software design incorporates many cognitive activities, such
as recognizing and framing a problem, understanding reusable
information, and adapting information to a specific situation.
Many researchers have turned their attention to knowledge­
based and domain-oriented tools to support these processes.
Our approach has been to combine such techniques into
integrated domain-oriented design environments.

By integrating cooperative problem-solving approaches with
knowledge-based techniques, we have developed a conceptual
framework for supporting coevolution of problem specifica­
tions and software implementation that focuses on the role
of human designers. This human-centered approach takes
advantage of peoples' ability to understand and incrementally

FISCHER et al.: SUPPORTING SOFTWARE DESIGNERS

reformulate their problems, while allowing them to contribute
to the gradual improvement of the underlying knowledge
base. The notion of evolution circumvents the inability of
the original builders of a design environment to anticipate
all future needs and knowledge for complete coverage of a
domain.

Within our conceptual framework, tools supporting loca­
tion (CATALOGExpLORER), comprehension (EXPLAINER), and
modification (MODIFIER) of software objects have been imple­
mented. Preliminary studies have shown these tools to offer
promising solutions to providing design objects relevant to
the task at hand, making design objects more comprehensible
to designers, and anticipating potential changes at the hands
of the end users. Admittedly, our approach is knowledge
intensive. An important issue for our future work, and for
other researchers in this area, is how efficient and durable the
evolutionary process that we envision will be in large-scale
projects.

ACKNOWLEDGMENT

The authors would like to thank all the members of the
Human-Computer Communication Group at the University of
Colorado who contributed to the development of our design
environment approach.

REFERENCES

[1] L.R Archer, "Whatever became of design methodology," in Develop­
ments in Design Methodology, N. Cross, Ed. New York: Wiley, 1984,
pp. 347-349.

[2] D. Barstow, "A perspective on automatic programming," in Proe. Eighth
Int. Joint Con! Artifieiallntelligence, pp. 1170-1179, 1983.

[3] D.R. Barstow, H.E. Shrobe, and E. Sandewall, Eds., Interactive Pro­
gramming Environments New York: McGraw-Hill, 1984.

[4] F.L. Bauer, "Programming as an evolutionary process," in Proc. Second
Int. Con! Software Engineering, pp. 223-234, 1976.

[5] T.J. Biggerstaff, "Design recovery for maintenance and reuse," IEEE
Computer, vol. 22, pp. 36-49, July 1989.

[6] D.G. Bobrow and T. Winograd, "An overview of KRL: A knowledge
representation language," Cognitive Science, vol. 1, pp. 3-46, 1977.

[7] RW. Boehm, "A spiral model of software development and enhance­
ment," IEEE Computer, vol. 21, pp. 61-72, May 1988.

(8] J. Conklin and M. Begeman, "gIBIS: A hypertext tool for exploratory
policy discussion," Trans. Office Information Systems, vol. 6, pp.
303-331, Oct. 1988.

[9] Computer Science and Technology Board, "Scaling up: A research
agenda for software engineering," Commun. ACM. vol. 33, pp. 281-293,
Mar. 1990.

[10] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design
process for large systems," Commun. ACM, vol. 31, pp. 126&---1287,
Nov. 1988.

(11] P. Devanbu, R.J. Brachman, P.G. Sefridge, and RW. Ballard, "LaSSIE:
A knowledge-based software information system," Commun. ACM, vol.
34, pp. 34-49, 1991.

[12] D.e. Engelbart, "A conceptual framework for the augmentation of
man's intellect," in Computer-Supported Cooperative Work: A Book of
Readings, I. Greif, Ed. San Mateo, CA: Morgan Kaufmann, 1988, pp.
35 66, ch. 2.

[13] G. Fischer, T. Mastaglio, RN. Reeves, and J. Rieman, "Minimalist
explanations in knowledge-based systems," in Proc. 23rd Hawaii Int.
Con! System Sciences, vol. Ill: Decision Support and Knowledge Based
Systems Track, Jay F. Nunamaker, Jr, Ed" pp. 309-317, 1990.

[14J G. Fischer, A.e. Lemke, R. McCall, and A. Morch, "Making argumen­
tation serve design," Human Computer Interaction, vol. 6, pp. 393-419,
1991.

[15] G. Fischer, A.e. Lemke, T. Mastaglio, and A. Morch, "The role of
critiquing in cooperative problem solving," ACM Trans. Inform. Syst.,
vol. 9, pp. 123-151, 1991.

521

[16] G. Fischer and A. Girgensohn, "End-user modifiability in design en·
vironments," in Human Factors in Computing Systems, CHl'90 Con!
Proc., pp. 183-191, Apr. 1990.

(17] G. Fischer, S.R. Henninger, and D.F, Redmiles, "Cognitive tools fOJ

locating and comprehending software objects for reuse," in Proc.
Thirteenth Int. Con! Software Engineering, pp. 31&---328, 1991.

[18J G. Fischer and A.e. Lemke, "Constrained design processes: Steps
towards convivial computing," in Cognitive Science and its Application
for Human-Computer Interaction, R. Guindon, Ed. Hillsdale, NJ:
Lawrence Erlbaum, 1988, pp. 1-58, ch. 1.

[19] G. Fischer, R. McCall, and A. Morch, "JANUS: Integrating hypertext
with a knowledge-based design environment," in Proc. Hypertexr'89,
pp. 105-117, Nov. 1989.

[20] G. Fischer and K. Nakakoji, "Beyond the macho approach of artifi­
cial intelligence: Empower human designers-Do not replace them,"
Knowledge-Based Systems 1., to be published.

[21] G. Fischer and RN. Reeves, "Beyond intelligent interfaces: Exploring,
analyzing and creating success models of cooperative problem solving,"
Applied Intelligence, special issue, intelligent interfaces, to be published.

[22] A. Girgensohn and F. Shipman, "Supporting knowledge acquisition
by end users: Tools and representations," in Proc. Symp. Applied
Computing, pp. 310-348, Mar. 1992.

[23] D.R. Harris and W.L. Johnson, "Sharing and reuse of requirements
knowledge," in Proc. 6th Annual Knowledge-Based Software Engineer­
ing (KBSE-91) Con!, pp. 65-77, Sept. 1991.

[24] G.T. Heineman, G.E. Kaiser, N.S. Barghouti, and LZ. Ben-Shaul, "Rule
chaining in MARVEL: Dynamic binding of parameters," in Proc. 6th
Annual Knowledge-Based Software Engineering (KBSE-91) Con!, pp.
276-287, Sept. 1991.

[25] A. Henderson and M. Kyng, "There's no place like home: Continuing
design in use," in Design at Work: Cooperative Design of Computer
Systems, J. Greenbaum and M. Kyng, Eds. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1991, pp. 219-240, ch. 11.

[26] R. Jeffries, A.A. Turner, P.G. Polson, and M. Atwood, "The processes
involved in designing software," in Cognitive Skills and Their Acquisi­
tion, I.R. Anderson, Ed. Hillsdale, NJ: Lawrence Erlbaum Associates,
1981, pp. 255-283, ch. 8.

[27] K. Kishida, T. Katayama, M. Matsuo, l. Miyamoto, K. Ochimizu, N.
Saito, J.H. Sayler, K. Torii, and L.G. Williams, "SDA: A novel approach
to software environment design and construction," in Proc. 10th Int.
Con! Software Engineering, pp. 69-79, Apr. 1988.

[28] 1.L. Kolodner, "Improving human decision making through case-based
decision aiding," AI Magazine, vol. 12, pp. 52-68, Summer 1991.

[29] W. Kunz and H.W.I. Rittel, "Issues as elements of information systems,"
Working Paper 131, Center for Planning and Development Research,
Univ. California, 1970.

[30] J. Lee, "SIBYL: A tool for managing group decision rationale," in Proc.
Con! Computer-Supported Cooperative Work, pp. 79-92, Oct. 1990.

[31] A.e. Lemke and G. Fischer, "A cooperative problem solving system for
user interface design," in Proc. AAAI-90, pp. 479-484, Aug. 1990.

[32] A. Maclean, R. Young, and T. Moran, "Design rationale: The argument
behind the artifact," in Proc. Con! Human Factors in Computing
Systems, pp. 247-252, 1989.

[33] w.e. Mann, "An introduction to the Nigel text generation grammar." in
Systemic Perspectives on Discourse: Selected Theoretical Papers from
the 9th International Systemic Workshop, J.D. Benson, R.O. Freedle,
W.S. Greaves, Eds., Ablex, 1985. pp. 84-95, ch. 4.

[34] M.W. Meteer, D.D. MacDonald, S.D, Anderson, D. Forster, L.S. Gay,
A.K. Huettner, and P. Sibun, "Mumble-86: Design and implementation,"
Coins Tech. Rep. 87--87, Computer and Information Science, Univ.
Massachusetts at Amherst, Sept. 1987.

[35] J. Moore and A. Newell, "How can MERLIN understand?," in Knowl-
edge and Cognition, L.W. Gregg, Ed. Potomac, MD: Erlbaum, 1974,
pp. 201-252.

[36] J. M. Neighbors, "The Draco approach to constructing software from
reusable components," IEEE Trans. Software Eng., vol. SE-lO, pp.
564-574, Sept. 1984.

[37] I. Nielsen and J.T. Richards, "The experience of learning and using
Smalltalk," IEEE Software, pp. 73-77, May 1989.

[38] R. Prieto-Diaz and G. Arango, Domain Analysis and Software Systems
Modeling, IEEE Computer Society Press, Los Alamos. CA, 1991.

[39] H.B. Reubenstein. "Automated acquisition of evolving informal descrip­
tions," AI-TR 1205, MIT. 1990.

[40] e.H. Rich and R.e. Waters, "Automatic programming: Myths and
prospects," Computer, vol. 21, pp. 40-51, Aug. 1988.

[41] H.W.J. Rittel, "Second-generation design methods," in Developments
in Design Methodology, N. Cross, Ed. New York: Wiley, 1984, pp.
317-327.

IEEE TPANSACTIONS ON SOfTWARE ENGINEERING. VOL. I ll. NO. fJ . JUNE 1lJ92

[42J D.A. Schoen, The Reflective Practilioner: How Professionals Think in
Acrion. New York: Basic Books, 1983.

[43J E. Schoen, R.G. Smith, and B.G. Buchanan, "Design of knowledge­
based syslcms wilh a knowledge-based assistant," IEEE Trans. Software
Eng., vol. SE-14, pp. 1771- 1791 , Dec. 1988.

[44J A. Silverschatz and 1.L. Peterson, Operating Syslem Concepts. Read­
ing, MA : Addison-Wesley Publishing Company, 1988.

[45J H.A. Simon, The Sciences of the Artificial. Cambridge, MA: MIT
Press, 198 1.

[46] S. Slade, "Case-based reasoning: A research paradigm," AI Magazine,
vol. 12, pp. 42- 55, Spring 1991.

[47J G.L. Steele, Common LISP: The LangUllge. Burlington, MA: Digital
Press, 1990, 2nd ed.

[48J L.A. Such man, Plans and Siluated Actions. Cambridge, UK: Cam­
bridge Uni versity Press, 1987.

[491 W.R. Swartout and R. Balzer, "On the inevitab le intertwining of spec­
ification and implementation ," Commun. ACM, vol. 25, pp. 438--439,
Jul y 191\2.

[50] Symbolics, Inc. , User 's Guide to Basic Joshua, Cambridge, MA. 1988.
[5 1 J Symholics, Inc. , Common Lisp Interface Manager (CLlM): Release 1.0,

Burlington, MA, 1991.
[52] W. Teitelman and L. Masinter, "The interli sp programming environ­

ment," in Imeractil'e Programming Environments, D.R. Barstow, H.E.
Shrobe, and E. Sandewall , Eds. New York: McGraw-Hill , 1984, pp.
83-96.

[53 J 1.H. Walker, " Document examiner: Delivery interface for hypertex t
documents," Hypertext 'I\7 Papers. University of North Carolina, Chapel
Hill, NC, pp. 307-323, Nov. 1987.

[54] R.e. Waters, "The programmer' s apprentice: A session with KBEmacs,"
IEEE Trans. Software Eng. , vol. SE-Il, pp. 1296-1320, Nov. 1985.

[55] D.A. White, "The knowledge-based software ass istant : A program
summary," in Proc. 61h Annual Knowledge-Based Software Engineering
Conf . pp. vi-xiii , Sept. 1991.

[56] T. Winograd and F. Flores, Understanding CompUlers and Cognition: A
New Foundation for Design. Norwood, NJ: Ablex , 1986.

[57] D.A. Wroblewski. T.P. McCandless, and W.e. Hill, "DETENTE: Prac­
tical support for practical action," in Proc. Con! Human FaclOrs in
Computing Systems. pp. 195- 202, 1991.

Gerhard Fischer is a professor in the Computer
Science Department and a member of the Institute
of Cognitive Science at the University of Colorado,
Boulder.

His research interests include artificia l intelli ­
gence, human-computer communication , cognitive
science, and software design. His research has led
to the development of new conceptual fram eworks
and to the design and implementation of a number
of innovative systems in the areas of cooperative
problem so lving, and integrated domain -ori ented
design environments supporting software design.

Andreas Girgensohn received the M.S. degree in
computer science from the University of Stuttgart.
Ge rmany, in 1987 :lOd is currently a Ph .D. student
in the Department of Computer Science and the
Insti tute of Cognitive Science at the Univers ity of
Colorado. Boulder.

His research interests include artificia l intelli­
gence, human-compu ter communication, cognitive
science , and software design. His Ph.D. research
(with Gerhard Fischer) focuses on support ing end­
user modifiability in knowledge-based design envi­
ro nments.

Kumiyo Nakakoji received the B.A. degree in
computer science from Osaka University . Japan, in
1986 and the M.S. degree in computer science from
the University of Colorado, Boulder, in 1990. and
is currently a Ph.D. student in the Department of
Computer Science and the Institute of Cognitive
Science at the University of Colorado, Boulder.

Her studies are sponsored through a scholarship
fro m Software Research Associates, Inc .. Japan.
where she has heen an employee since 1986. Her
Ph.D. research (with Gerhard Fischer) focuses on

creating knowledge delivery mechanisms in design environments.

David Redmiles received the B.S. degree in math­
ematics and computer science in 1980 and the M.S.
degree in computer science in 1982, both from
the American University, Washington , D.e. , and
is currentl y a Ph.D. student in the Department of
Computer Science and the Institute of Cognitive
Science at the University of Colorado, Boulder.

His Ph.D. research (with Gerhard Fischer) focuses
on the representation and reuse of catalog examples
in design environments. Before coming to the Uni­
versity of Colorado. he worked in the Center for

Computing and Applied Mathematics at the National Institute of Standards
and Technology, Gaithersburg. MD.

