
DOMAIN·ORIENTED DESIGN ENVIRONMENTS 

Gerhard Fischer 

Reprinted from PROCEEDI GS OF THE SEVENTH 
KNOWLEDGE-BASED SOFTWARE ENGINEERING CONFERENCE. 

McLean. Virginia, Sep ember 20-23. 1992 



Domain-Oriented Design Environments 

Gerhard Fischer 

Department of Computer Science and Institute of Cognitive Science, 
University of Colorado 

Boulder, Colorado 80309 

Abstract 

This paper argues that domain-oriented design en­
vironments (DaDE) provide a complementary goal for the 
future of software engineering to the approaches pursued 
with knowledge-based software assistant systems (KBSA). 
The DaDE extends the KBSA framework by emphasizing a 
human-centered and domain-oriented approach facilitat­
ing communication about evolving systems among all 
stakeholders. The paper briefly discusses the major chal­
lenges for software systems, develops a conceptual 
framework to address these problems, and illustrates the 
contributions of the Ki3SA and DaDE approaches toward 
solving these problems. 

1. Introduction 

Software design (to be understood as the creation and 
evolution of complex software systems) is a challenging 
intellectual activity without a "silver bullet" [3] in sight. 
In order to make progress, we first have to understand 
what the most pressing problems are. In the next section, I 
present a brief description of problems (drawn from the 
literature, from field studies, and from experience). A 
theoretical and conceptual framework relevant to these 
problems will be developed in the following section. This 
framework will be applied to assess the almost 10 year 
old effort to develop knowledge-based software assistant 
systems (KBSA) [25]. Domain-oriented design environ­
ments (DODE) will be presented as an alternative to the 
KBSA approach. 

2. Framing the Problem 

Historically, software engineering research has been 
concerned with the transition from specification to im­
plementation ("downstream activities") rather than with 
the problem of how faithfully specifications really ad­
dressed the problems to be solved ("upstream activities") 

0-8186-2880-4/92 $03.00 © 1992 IEEE 
204 

[2]. Many methodologies and technOlogies were 
developed to prevent implementation disasters [40]. The 
progress made to successfully reduce implementation dis­
asters (e.g., structured programming, information hiding, 
etc.) allowed an equally relevant problem to surface: how 
to prevent design disasters [40]- meaning that a correct 
implementation with respect to a given specification is of 
little value if the specification is wrong to begin with and 
does not solve the given problem. 

Upstream and downstream activities are fundamentally 
different. They require different groups of people, dif­
ferent methodologies, and different support environments 
(see Figure 1). 

Understanding the Problem Is the Problem. The 
predominant activity in designing complex systems is the 
participants' teaching and instructing each other [7]. Be­
cause complex problems require more knowledge than 
any single person possesses, communication and col­
laboration among all the involved stakeholders are neces­
sary. Domain experts understand the practice (they know 
implicitly what the system is supposed to do) and system 
designers know the technology (they know how the sys­
tem can do it). Based on this "symmetry of ignorance" 
[37], as much knowledge from as many stakeholders as 

possible should be activated with the goal to achieve 
mutual education and shared understanding with respect 
to the task at hand. 

Dertouzous (as reported in [9]) argued that the com­
puter science community should operate less on the 
supply side (i.e., specifying and creating technology and 
"throwing the resulting goodies over the fence into the 
world") and more on the demand side. More emphasis 
should be put on the creation of computational environ­
ments fitting the needs of professionals of other dis­
ciplines outside the computer science community. 
Modern application needs are not satisfied by traditional 
programming languages that evolved in response to sys­
tems programming needs [39,46]. 



Problem T Specification T Implementation 

type of problem: 

criteria to Judge 
solutions: 

support environments: 

Interaction paradigm: 

Upstream 

III-defined problems 

adequate, understandable, 
enjoyable 

domaln-orlented 
design environments 

languages of 
doing 

Downstream 

well-defined problems 

correct 

knowledge-based 
software assistants 

formal 
specifications 

Figure 1: Upstream Versus Downstream Activities 

Integrating Problem Setting and Problem Solving. 
Design methodologists (e.g., [37, 38]) demonstrate with 
their work the strong interrelationship between problem 
setting and problem solving. They argue convincingly that 
(1) one cannot gather information meaningfully unless 
one has understood the problem, but one cannot under­
stand the problem without information about it, and (2) 
professional practice has at least as much to do with 
defining a problem as with solving a problem. New re­
quirements emerge during development [23], because 
they cannot be identified until portions of the system have 
been designed or implemented. The conceptual structures 
underlying complex software systems are too complicated 
to be specified accurately in advance, and too complex to 
be built faultlessly [3]. Specification and implementation 
have to co-evolve [43], requiring the owners of the 
problems to be present in the development. If these obser­
vations and findings describe the state of affairs ade­
quately, one has to wonder why waterfall models have 
survived despite the overwhelming evidence that they are 
not suited for most of today's software problems. One of 
the reasons for their survival is that traditional manage­
ment likes them because they provide a model of an or-" 
derly process with multiple checkpoints. 

Limitation of Formal Specifications. Although there 
is growing evidence that system requirements are not so 
much analytically specified as they are collaboratively 
evolved through an iterative process of consultation be­
tween end-users and software developers [6], many 
research efforts do not take this into account. For ex­
ample, CASE tools are limited because they devise more 
elaborate methods of insuring that software meets its 
specification, hardly ever questioning whether there might 
be something wrong with the specifications themselves. 

205 

They provide support after the problem has been solved. 
A consequence of the thin spread of application 
knowledge [7] is that specification errors often occur 
when designers do not have sufficient application 
knowledge to interpret the customer's intentions from the 
requirement statements - a communication breakdown 
based on a lack of shared understanding [34]. 

The main objective of formal specifications is that they 
are "formal," which means that they are manipulable by 
mathematics and logic and interpretable by computers. 
They do not represent languages of doing [10] (such as 
prototypes, mock-ups, sketches, or use situations that can 
be experienced), whose primary objective is to create 
mutual understanding among the stakeholders of a 
problem. 

Evolution. Successful systems need to evolve. The 
need for evolution is based on new and fluctuating 
requirements [7], new technologies, and the fact that 
human knowledge is tacit [32] - meaning that we know 
more than we can say and articulate in the abstract. 

Lack of Empirical Research. Nothing can be worse 
than designers who think everyone else is just like them. 
In the early days of computing, almost all systems were 
developed and used by computer professionals. Introspec­
tion by software designers served as a reasonable source 
of knowledge at that time, but it has lost its power today 
for the development of systems in application domains. 
Research in software engineering in the past has operated 
as an overly prescriptive discipline often postulating a 
"new human" [41] with interests (e.g., detailed 
knowledge of low-level computer operation), knowledge 
(e.g., about work procedures of an application domain), 
and motivations (e.g., to provide extensive amounts of 
design rationale, or to deal with formal methods), which 



had little correspondence in reality. In addition, software 
design suffers from a lack of detailed analysis of failures 
and successes of previous systems [31]. 

Reinventing the Wheel. Software design is a new 
design discipline compared with other more established 
disciplines (e.g., architecture, social systems, etc). I claim 
that software designers can learn a lot by studying these 
other design disciplines. For example, the limitations and 
failures of design approaches relying on a strict separation 
between analysis and synthesis have been recognized in 
architecture for a long time [37]. A careful analysis of 
these failures could have saved software engineering the 
effort expended in finding out that waterfall-type models 
can at best be an impoverished and oversimplified model 
of real design activities. 

3. A Theoretical and Conceptual Framework 

Beyond Automatic Programming: Cooperative 
Problem Solving. Until recently, many researchers 
believed (and maybe some still do) that the" the ultimate 
goal of artificial intelligence applied to software en­
gineering is automatic programming" [35]. Rich and 
Waters [36] modified their position when they argued that 
the "cocktail party" description of automatic program­
ming is based on a number of faulty assumptions. Rather 
than ., get the human out of the loop," the direction 
should be "get the computer into the loop" (a goal ex­
plicitly articulated for KBSA [25]). Automatic program­
ming in its ultimate sense is not only not achiel'able (be­
cause the goals need to be articulated by someone outside 
the automatic programming system), but it is also not 
desirable, because humans enjoy "doing" and "decid­
ing." 

In many situations humans enjoy the process, not just 
the product. They want to take part in something. This is 
why they build model trains, why they plan their vaca­
tions, and why they design their own kitchens. Automa­
tion is a two-sided sword. At one extreme, it can be 
regarded as a servant, relieving humans of the tedium of 
low-level operations (e.g., compiling a program, comput­
ing the dependency graph between function calls, creating 
an index for a large document, etc.), freeing them for 
higher cognitive functions. At the other extreme it can be 
viewed as reducing the status of humans to "button 
pushers," stripping work of its meaning and satisfaction. 
Cooperative problem solving approaches [12] in which 
computational environments empower, augment and com­
plement human skills and knowledge are a much more 
desirable goal to pursue than automatic programming. 
Cooperative problem solving systems raise questions such 
as (a) which part of the responsibility can or should be 
exercised by the human and which part by the computer, 

200 

and (b) how do the human and the intelligent system ef­
fectively communicate? 

Communication and Coordination. Because design­
ing complex systems is an activity involving many 
stakeholders, communication and coordination [16] are of 
crucial importance, appearing at a number of different 
levels: (1) between designers and users/clients (where 
clients do not know what they want), (2) between mem­
bers of design teams (who might have very different inter­
ests), and (3) between designers and their computational 
knowledge-based design environment. 

Domain-Orientation. In a conventional, domain­
independent software environment, designers who 
produce new software artifacts have to start typically with 
general programming constructs and methodologies. This 
forces them to focus on the raw material to implement a 
solution rather than to try to understand the problem. En­
vironments are needed to support not only human­
computer communication but human problem-domain 
communication [20]. Human problem-domain com­
munication is facilitated by computational environments 
that model the basic abstractions of a domain, thereby 
tuning the semantics of primitives to specific domains of 
discourse. They give designers the feeling that they inter­
act with a domain rather than with low-level computer 
abstractions. This allows humans to take into account 
both the content and context of the problem, whereas the 
strength of formal representation is that the content and 
context are irrelevant [30]. 

Evolution. There is growing agreement (and empirical 
data to support it) that the most critical software problem 
is the cost of maintenance and evolution [6]. Studies of 
software costs indicate that about two-thirds of the costs 
of a large system occur after the system is delivered. 
Much of this cost is due to the fact that a considerable 
amount of information (such as design rationale [14]) is 
lost during development and must be reconstructed by the 
maintainers and evolvers of the system. 

Languages of Doing. The development of complex 
systems is difficult, not primarily because of the com­
plexity of technical problems, but because of communica­
tion and coordination problems, and the need for shared 
understanding and mutual education about ill-defined 
problems [26]. Downstream activities are centered 
around the manipulation and implementation of given 
specifications, but they do not help to create a shared 
understanding among all stakeholders. Support environ­
ments must serve as languages of doing [10] that (1) are 
familiar to all participants, (2) use the practice of the 
users as a starting point, (3) allow the envisioning of work 
situations supported by the new systems, and (4) enhance 
incremental mutual learning and shared understanding 
among the participants. 



4. An Assessment of the It Classical" Model of 
Knowledge-Based Software Assistant 
Systems (KBSA) 

KBSA (or KBSE, as it was renamed last year to recog­
nize the need to broaden the focus and to rethink some of 
its goals) is a broad and heterogeneous research effort. 
Since its original inception in 1983 [25J, numerous 
research activities have been carried out, providing in­
sights into a variety of important software design 
problems [45). Rather than enumerating and discussing 
the achievements of KBSA efforts here (e.g., the ARIES 
project [27] and the numerous other activities reported in 
the yearly KBSE conferences), I would like to focus on 
what I consider shortcomings and questionable goals in 
order to contribute to an agenda for future research 
themes. 

"Human in the Loop" as a Necessary and Tem­
porary Evil. Many research activities centered around the 
KBSA concept point in the wrong direction: rather than 
being human-centered (empowering and augmenting all 
stakeholders in design processes to create more adequate, 
more understandable, and more enjoyable systems), they 
are based on the assumption that the "human in the loop" 
is a necessary and temporary evil (indicating that they still 
believe in the myths associated with automatic program­
ming [36]). 

Understandability of Specifications. Contrary to a 
basic assumption behind the KBSA effort, I claim that 
specification-based descriptions of artifacts have a much 
narrower scope and are more difficult to develop, main­
tain, and mutually understand than artifacts supported by 
languages of doing. As argued before, formal and decon­
textualized descriptions may serve well for formal 
manipulations, but they are not well suited for com­
munication between humans (except for the verification 
of complicated algorithms and theorems). This claim is 
supported by W. Wulf [5]: "J am skeptical that classical 
mathematics is an appropriate tool for our purposes: wit­
ness the fact that most formal specifications are as large, 
as buggy as, and usually more difficult to understand than 
the programs they purport to specify. J don't think the 
problem is to make programming 'more like math­
ematics'; it's quite the other way around." 

Lack of Domain Orientation. The lack of domain 
orientation limits (1) the. amount of support that a 
knowledge-based system can provide, and (2) the shared 
understanding among stakeholders. By necessity, it must 
focus primarily on downstream activities requiring min­
imal domain knowledge (e.g., transformations within the 
formal system rather than correspondence of the formal 
system and the world being modelled). 

Lack of Success Models. The assessment given by 

207 

DeBellis et al. [8J summarizes some additional shortcom­
ings of the KBSA effort, namely lack of evidence for 
scalability, lack of experiments demonstrating the 
usability, and insufficient attention to reuse and evolution. 

5. Domain-Oriented Design Environments 
(DODE) 

JANUS: An Example. To illustrate DODEs, I will use 
the JANUS system [21] as an "object-to-think-with." 
JANUS supports kitchen designers in the development of 
floorplans. JANUS-CONsTRUcnON (see Figure 2) is the 
construction kit for the system. The palette of the con­
struction kit contains domain-oriented building blocks 
such as sinks, stov~s, and refrigerators. Designers con­
struct kitchens by obtaining design units from the palette 
and placing them into the work area. In addition to design 
by composition (using the palette for constructing an ar­
tifact from scratch), JANUS-CONSTRUcnON also supports 
design by modification (by modifying existing designs 
from the catalog in the work area). 

The critics in JANUS-CONSTRUCTION [15] identify 
potential problems in the artifact being designed. Their 
knowledge about kitchen design includes design prin­
ciples based on building codes, safety standards, and 
functional preferences. When a design principle (such as 
"the length of the work triangle is greater than 23 feet") 
is violated, a critic will fire and display a critique in the 
messages pane (Figure 2) identifying a possibly problem­
atic situation (a breakdown), and prompting the designer 
to reflect on it. The designer has broken a rule of func­
tional preference, perhaps out of ignorance or by a tem­
porary oversight. 

Our original assumption was that designers would have 
no difficulty understanding these critic messages. User 
experiments with JANUS demonstrated that the short mes­
sages the critics present to designers do not reflect the 
complex reasoning behind the corresponding design 
issues. To overcome this shortcoming, we initially 
developed a static explanation component for the critic 
messages [28] based on the assumption that there is a 
"right" answer to a problem. But the explanation com­
ponent proved unable to account for the deliberative na­
ture of design problems. Therefore, argumentation about 
issues raised by critics must be supported, and argumen­
tation must be integrated into the context of construction. 
JANUs-ARGUMENTATION (see Figure 3) is the argumen­
tation component of JANUS [14]. It is an argumentative 
hypermedia system offering a domain-oriented, generic 
issue base about how to construct kitchens. With 
JANUS-ARGUMENTATION, designers explore issues, 
answers, and arguments by navigating through the issue 
base. The starting point for the navigation is the ar-



Janus-Const;ruct;;on Clear !.lor\< Ar .. CritiQUe All Edit Global Oe.criptiom 
Load C ... I~ Sa ..... In Cata1o-o 5.1£ct Context-

Appllanc.t Palttt;Ut Won: Ar~ 
wa.11s 

low 1001 I 

-•• 

I 
~ III. Tho ength 0 tho work t"onglo (Doub10-80w =~ink- .[our-Eloment-Stovo-1 ~ 

II Slnal.-Door-Refrl"",.tor-1)" I. or •• tor than 23 f •• t. II, I 
·Slngle-Do-or-Aefrlg6fator-1 Is not near Four-Element-Stov.-1. 

CaIt>mand. 

tJ 
i ~ Criti"", Rll 

~ ~. 
I 

Figure 2: JANUS-CONSTRUCTION: The Work Triangle Critic 

JANUS-CONSTRUCTION is the construction part of JANUS. Building blocks (design units) are selected from the Palette and 
moved to desired locations inside the Work Area. Designers can reuse and redesign complete floor plans from the Catalog. The 
Messages pane displays critic messages automatically after each design change that triggers a critic. Clicking with the mouse on a 
message activates JANUs-ARGUMENTATION and displays the argumentation related to that message. 

gumentative context triggered by a critic message in 
JANUS-CONSTRUCTION. By combining construction and 
argumentation, JANUS was developed into an integrated 
design environment supporting "reflection-in-action" as 
a fundamental process underlying design activities 
[38,22]. 

A Domain-Independent, Multi-Faceted Architec­
ture for DODE. In addition to JANUS, design environ­
ments were developed in different areas throughout the 
last few years (e.g., user interface design [28], design of 
decision support system for water management [29], com­
puter network design [16], voice dialog design [42], 
COBOL programming [1], and graphics programming 
[17]). From the individual design efforts, we have 

developed the general architecture shown in Figure 4. 
Components. This multifaceted architecture consists 

of the following five components (Figure 4): 

o A construction kit (Figure 2) is the principal 
medium for modeling a design. It provides a 
palette of domain concepts and supports construc­
tion using direct manipulation and electronic forms. 

• An argumentative hypermedia system (Figure 3) 

lOR 

contains issues, answers, and arguments about the 
design domain. 

o A catalog (Figure 2) is a collection of prestored 
designs that illustrate the space of possible designs 
in the domain and support reuse and case-based 
reasoning, 

o A specification component [22] allows designers to 
describe characteristics of the design they have in 
mind. The specifications are expected to be 
modified and augmented during the design process, 
rather than to be fully articulated at the beginning. 
They are used to retrieve design objects from the 
catalog and to filter information in the hypermedia 
information space. 

• A simulation component allows designers to carry 
out "what-if" games to simulate various usage 
scenarios involving the artifact being designed. 

Integration. The multifaceted architecture derives its 
essential value from the integration of its components. 
Used individually, the components are unable to achieve 
their full potential. Used in combination, each component 
augments the values of the others, forming a synergistic 



Jsnus-Argurnent;stiion C.talog Exampl. 

Anawer (Refrigorator, SInk. Stov.) 

The dlstaf'K';$ betw.e-n sink, stove and refrlg~.t()r. the worl: triu·",k. ~ 
would be lQi"s thlln 23 feet. 

On<t-Wall-Kitch<>n 

l1!l ~ IDDJ I 1001 OW 1.·.1 

~ The I~th of the ..... ork tr langle (Stove. 

d, A.frl~.,.tor. Sink) I, I ... than :23 f •• t. 

VI.lhHi Noo.. 
~ * d2 * dJ ( 23 ,.¥t . An8u~r (Refrig-erator. Sink. Stave:) Section 

Figure 10: tha work tr lang Ie-

Argument (Walking Dlatanee) 
Th. work triangle la an Important conc~t In kltchi&n design. T~ 
work triangle denote~ the c~nt~ front dIstance between the 

three main appliances: 'ink • • tove and refrlf}t!rator. This length 
should b. lees than 23 feet to avo!d unnecessary walkIng and to 
ensure an efficient work flow In the kltchenl 

Argument (Small Room) 
In small kitchens wher~ the work trlanole Is le:ss tl)an 16 feet. 

Vlewsr: Osfgult Vlfi-WK 
I I 

Command. Show Outli"" R~g~ C()(I~truction 

~S~OW E,<"pl., 'An,wor ( •• ,r<oorotor. 51nk, Stovo)' 
Search ForT opic, Show COflstn..lCtion 

Show ~umentation 5ho~~oo~n~;~!Ple Sh"", (X4!1pZ. R01;..,.r (R.tri~.r.tor, SiAA j 5::ov .. ) Show Cont.c.xt 
"I 

Figure 3: JANUS-ARGUMENTATION: Rationale for the Work Triangle Rule 

JANus-ARGL'MEi'<'TATION is an argumentative hypermedia system. The Viewer pane shows a diagram illustrating the work 
triangle concept and arguments for and against a work triangle answer. The Up right pane shows an example illustrating the 
answer generated by the ARGUMENTATION-ILLUSTRATOR. 

whole. At each stage in the design process, the partial 
design embedded in the design environment serves as a 
stimulus to users, suggesting what they should attend to 
next. Links among the components of the architecture are 
supported by various mechanisms (see Figure 4): 

• CONSTRUCTION-ANALYZER is a critiquing system 
[15] that provides access to relevant information in 

the argumentative issue base. The firing of a critic 
signals a breakdown to users and provides them 
with an entry into the exact place in the argumen­
tative hypermedia system where the corresponding 
argumentation is located. 

• ARGUMENTATION-ILLUSTRATOR. The explanation 
given in argumentation is often highly abstract and 
very conceptual. Concrete design examples that 
match the explanation help users to understand the 
concept. The ARGUMENTATION-ILLUSTRATOR 
[14] helps users to understand the information 

given in the argumentative hypermedia by finding a 
catalog example that illustrates the concept. 

• CATALOG-ExPLORER. CATALOG-EXPLORER helps 
users to search the catalog space according to the 
task at hand [22J. It retrieves design examples 
similar to the current construction situation, and or-

209 

ders a set of examples by their appropriateness to 
the current specification. 

Seeding and Evolution. Collaborating domain profes­

sionals and software designers need to seed the domain­

independent multifacted architecture to create a DODE 

[17]. Seeding entails embedding as much knowledge as 

possible into all components of the design environment. 

But design knowledge as embedded in design environ­

ments will never be complete because (1) real world 

situations are complex, unique, uncertain, conflicted, and 

instable, and (2) knowledge is tacit (i.e., competent prac­

titioners know more than they can say [32]), implying that 

additional knowledge is triggered and activated by situa­

tions and breakdowns. These observations require com­

putational mechanisms m support of end-user 

modifiability [18], end-user programming [24], and 

programmable applications [11]. The end-user 

modifiability of JANUS allows users to introduce new 

design objects, new critiquing rules, and new kitchen 

designs that fit the needs of different user groups (e.g., 

blind persons or persons in a wheelchair). 



Isp~~iii~~·t·;~~·l 

Construction Analyzer 

~ 
Argumentative i 

Hypermedia i 

t 
Argumentation 

Illustrator 

~ 
Catalog 

...-Catalog -. 
Explorer 

Figure 4: A Multifaceted Architecture 

The components of the multifaceted architecture. The links between the components are crucial for exploiting the synergy of 
the integration. 

6. Assessment of KBSA versus DODE 

Figure 5 presents a high-level comparison between 
KBSA and DaDE (along the dimensions outlined in the 
earlier sections). 

Current Limitations and Research Issue for DODE. 

I have argued before that the KBSA approach lacks con­
vincing success models. Obviously, a similar claim can be 
raised for the DaDE approach. The appeal of the DaDE 
approach lies in its compatibility with an emerging 
methodology for design [4, 10, 38, 41], with views of the 
future as articulated by practicing software engineering 
experts [6], with reflections about the myth of automatic 
programming [36], with findings of empirical studies [7], 
and with the integration of many recent efforts tackling 
specific issues in software design (e.g., recording design 
rationale [14], supporting case-based reasoning [33], 
creating artifact memories r 44], and so forth). We are 
further encouraged by the excitement and widespread in­
terest of DaDEs and the numerous prototypes being con­
structed, used and evaluated in the last few years. 

Believing DaDEs are the way to go, numerous research 
issues are raised. Creating seeds for a variety of different 
domains will require substantial resources and the will­
ingness of people from different disciplines to collaborate. 
Evolving the seeds over time will require more involve­
ment of users and different qualifications, as well as dif-

210 

ferent organizational commitments. 
By being high-functionality systems, DaDEs create a 

tool mastery burden. Our experience has shown that the 
costs of learning a programming language are modest 
compared to those of learning a full-fledged design en­
vironment. New tools (e.g., support for a location/­
comprehension/modification cycle [19], critics [15], and 
support mechanisms for learning on demand [13]) are 
needed to address these problems. 

Redefining the Roles of High·Tech Scribes. There 
are numerous reasons that a DaDE approach will not be 
readily accepted. Software engineers often have dif­
ficulties with the idea that they do not create "universal 
solutions" that make everyone happy. They have dif­
ficulties in sacrificing generality for increased domain­
specific support. DaDEs replace the clean and controllable 
waterfall model with a much more interactive situation in 
which the search for "correct" solutions is limited to 
downstream activities. 

DaDE (see Figure 6) will lead to further specialization 
of computer users into knowledge engineers who create 
(in cooperation with domain workers) the seeds for design 
environments, and of domain workers who solve 
problems by exploiting the resources of the design en­
vironments [24]. Support for end-user modifiability al­
lows domain workers to extend the functionality of the 



emphasis 

primary 
support 

methodology 

user groups 

interaction 
level 

KBSA 

downstream 

human "in the loop" 
(as a necessary evil) 

automation 

generic 

formal specifications 

getting it right 
from the beginning 

designers 

human-computer 
communication 

DODE 

upstream 

human-centered 

cooperative problem solving 

domain-orientation 

languages of doing (supported 
by the whole DaDE) 

incremental, evolutionary 
development driven by 
breakdowns and collaboration 

all stakeholders 

human problem-domain 
communication 

Figure 5: A Comparison between KBSA and DODE 

design environment over time [18]. 

7. Conclusions 

In conclusion, I want to briefly summarize the main 
issue of the "message" derived from a DaDE perspective. 

Emphasis on Humans Rather than on Automation. 
Rather than "getting the human out of the loop," we 
should empower designers and users to create and evolve 
the artifacts fitting their needs and desires. Human­
centered communication and collaboration technologies 
(such as languages of doing) should assist all stakeholders 
to create shared knowledge and support mutual education. 

A Deeper Understanding of Design. Solving ill­
defined problems requires the intertwining of problem 
framing and problem solving. "Understanding the 
problem is the problem" - which is impossible without 
an understanding of the problem domain. The role of 
domain knowledge is critical. Designers do not reason 
from first order principles, but they rely on experience 
with similar problems. Design in use is inevitable in a 
changing world requiring access or reconstruction of the 
rationale behind the artifact. 

Empirical Foundations Through User Experiments. 
The times of purely prescriptive design methodologies in 
software engineering belong to the past. "Arm-chair" 
design and supply-side computing is not sufficient to 
solve real-world problems. Software is created in the real 
world, dealing with real task>, and involving human be­
ings with different interests, skills, and knowledge. To 
make future computing systems succeed requires more 
than concern for technology - it requires concern for 

211 

human beings, their tasks, and their organizations. 

Acknowledgments 

I would like to thank Stephen Fickas, Dennis Heimbigner, 
Lewis Johnson, Peter Selfridge, and Loren Terveen, who helped 
me with important ideas and criticism. The members of the 
Human-Computer Communication group at the University of 
Colorado contributed to the conceptual framework and the sys­
tems discussed in this article. The research was supported by 
the National Science Foundation under grant IRI-9015441, and 
by grants from the Intelligent Interfaces Group at NYNEX; from 
Software Research Associates (SRA), Tokyo; and by the 
Software Designer's Associate (SDA) Consortium, Tokyo. 

References 

[1] M.E. Atwood, B. Burns, W.D. Gray, A.I. Morch, E.R. 
Radlinski, A. Turner, "The Grace Integrated Learning 
Environment-A Progress Report", Proceedings of the 
Fourth International Conference on Industrial & En­
gineering Applications of Artificial Intelligence & Expert 
Systems (lEA/AlE 91), ACM, June 1991, pp. 741-745. 

[2] L. Belady, "MCC: Planning the Revolution in Software", 
IEEE Software, November 1985, pp. 68-73. 

[3] F.P. Brooks Jr., "No Silver Bullet: Essence and Accidents 
of Software Engineering", IEEE Computer, Vol. 20, No. 
4, April 1987, pp. 10-19. 

[4] N. Cross, Developments in Design Methodology, John 
Wiley & Sons, New York, 1984. 

[5] Computer Science and Technology Board, Scaling Up: A 
Research Agenda for Software Engineering, National 
Academy Press, Washington, D.C., 1988. 

[6] Computer Science and Technology Board, "Scaling Up: 



• • • • 

Programming 
Languages 

• • • • • • 

Design 
Environments Problem 

Domains 

Figure 6: Domain-Oriented Design Environments 

In the 1950's, programmers had to map problems directly to assembly languages and the assembly programs retained basically 
no semantics of the problems to be solved. In the 1960's, general purpose high-level programming languages reduced the 
transformation distance, allowing programs to retain some problem semantics and the programming profession was specialized 
into compiler writers and into programmers developing programs in high-level programming languages. Design environments 
reduce the gap between problems and their descriptions as computational artifacts further by introducing another domain-oriented 
layer. 

A Research Agenda for Software Engineering", 
Communications of the ACM, Vol. 33, No.3, March 1990, 
pp. 281-293. 

[7] B. Curtis, H. Krasner, N. Iscoe, " A Field Study of the 
Software Design Process for Large Systems" , 
Communications of tite ACM, Vol. 31, No. 
11, November 1988, pp. 1268-1287. 

[8] M. DeBellis, W.e. Sasso, G. Cabral, "Directions for Fu­
ture KBSA Research", Proceedillgs of the 6th Annual 
Knowledge-Based Software Engilleering (KBSE-9l) Con­
ference (Syracuse, NY) , Rome Laboratory, New York, 
September 1991. 

[9] P. Denning, "Awakening", Communications of the 
ACM, Vol. 31, No. 11, November 1988, pp. 1254-1255. 

[10] P. Ehn, Work-Oriented Design of Computer Artifacts, 
Almquist & Wiksell International, Stockholm, Sweden, 
1988. 

[11] M. Eisenberg, G. Fischer, " Programmable Design En­
vironments and Design Rationale", Working Notes of the 
AAAi 1992 Workshop on Design Rationale Capture and 
Use, AAAI, San Jose, CA, July 1992, pp. 81-90. 

[12] G. Fischer, "Communications Requirements for Coopera­
tive Problem Solving Systems", The International Jour­
nal of Information Systems (Special Issue on Knowledge 
Engineering), Vol. 15, No.1, 1990, pp. 21-36. 

[13] G. Fischer, " Supporting Learning on Demand with 
Design Environments", Proceedings of the International 
Conference on the Learning Sciences 1991, Evanston, IL, 

212 

August 1991, pp. 165-172. 

[14] G. Fischer, A.e. Lemke, R. McCall, A. Morch, "Making 
Argumentation Serve Design" , Human Computer 
Interaction , Vol. 6, No. 3-4,1991, pp. 393-419. 

[15] G. Fischer, A.e. Lemke, T. Mastaglio, A. Morch, "The 
Role of Critiquing in Cooperative Problem Solving", 
ACM Transactions on Informacion Systems, Vol. 9, No. 
2, 1991, pp. 123-151. 

[16] G. Fischer, J. Grudin, A.e. Lemke, R. McCall,1. Ostwald, 
B.N. Reeves, F. Shipman, "Supporting Indirect, Col­
laborative Design with Integrated Knowledge-Based 
Design Environments", Human Computer Interaction, 
Special Issue on Computer Supported Cooperative 
Work, Vol. 7, No.3, 1992, (in press) 

[17J G. Fischer, A. Girgensohn, K. Nakakoji, D. Redmiles, 
"Supporting Software Designers with Integrated, 
Domain-Oriented Design Environments", IEEE Trans­
actions on Software Engineering, Special Issue on 
Knowledge Representation and Reasoning in Software 
Engineering, Vol. 18, No.6, 1992, pp. 511-522. 

[18] G. Fischer, A. Girgensohn, "End-User Modifiability in 
Design Environments", Human Factors in Computing 
Systems, CHJ'90 Conference Proceedings (Seattle, WAY, 
ACM, New York, April 1990, pp. 183-191. 

[19] G. Fischer, S.R. Henninger, D.F. Redmiles, "Cognitive 
Tools for Locating and Comprehending Software Objects 
for Reuse", Thirteenth International Conference on 
Software Engineering (Austin, TX), IEEE Computer 
Society Press, ACM, IEEE, Los Alamitos, CA, 1991, pp. 



318-328. 
[20] G. Fischer, AC. Lemke, "Construction Kits and Design 

Environments: Steps Toward Human Problem-Domain 
Communication", Human-Computer Interaction, Vol. 
3, No.3, 1988, pp. 179-222. 

[21] G. Fischer, R. McCall, A Morch, "JANUS: Integrating 
Hypertext with a Knowledge-Based Design Environ­
ment", Proceedings of Hypertext'89 (Pittsburgh, PAY, 
ACM, New York, November 1989, pp. 105-117. 

[22] G. Fischer, K. Nakakoji, "Beyond the Macho Approach 
of Artificial Intelligence: Empower Human Designers -
Do Not Replace Them", Knowledge-Based Systems 
Journal, Vol. 5, No.1, 1992, pp. 15-30. 

[23] G. Fischer, B.N. Reeves, "Beyond Intelligent Interfaces: 
Exploring, Analyzing and Creating Success Models of 
Cooperative Problem Solving", Applied Intelligence, Spe­
cial Issue Intelligent Interfaces, Vol. 1, 1992, pp. 311-332. 

[24] M. Gantt, B.A Nardi, "Gardeners and Gurus: Patterns of 
Cooperation Among CAD Users", Human Factors in 
Computing Systems, CHI'92 Conference Proceedings 
(Monterrey, CAY, ACM, May 1992, pp. 107-117. 

[25] C. Green, D. Luckham, R. Balzer, T. Cheatham, C. Rich, 
"Report on a Knowledge-Based Software Assistant", 
Tech. report RADC-TR-83-195, Rome Air Development 
Center, August 1983, Reprinted in: C.H. Rich, R. Waters 
(eds): 'Readings in Artificial Intelligence and Software 
Engineering', Morgan Kaufmann Publishers, Los Altos, 
CA, pp 377-428,1986 

[26] J. Greenbaum, M. Kyng, editors, Design at Work: 
Cooperative Design of Computer Systems, Lawrence 
Erlbaum Associates, Hillsdale, NJ, 1991. 

[27J W.L. Johnson, M.S. Feather, D.R. Harris, "The KBSA 
Requirements/Specification Facet: ARIES", Proceedings 
of the 6th Annual Knowledge-Based Software Engineering 
(KBSE-9l) Conference (Syracuse, NY), Rome Laboratory, 
New York, September 1991, pp. 53-64. 

[28] AC. Lemke, G. Fischer, "A Cooperative Problem Solv­
ing System for User Interface Design", Proceedings of 
AAAI-90, Eighth National Conference on Artificial 
Intelligence, AAAI PresslThe MIT Press, Cambridge, 
MA, August 1990, pp. 479-484. 

[29] AC. Lemke, S. Gance, "End-User Modifiability in a 
Water Management Application", Tech. report CU­
CS-541-91, Department of Computer Science, University 
of Colorado, 1991. 

(30J D.A Norman, Things That Make Us Smart, Addison­
Wesley Publishing Company, Reading, MA, 1993, Ex­
pected publication, early 1993. 

[31J H. Petroski, To Engineer Is Human: The Role of Failure 
in Successful Design, St. Martin's Press, New York, 1985. 

[32] M. Polanyi, The Tacit DimellSion, Doubleday, Garden 

City, NY, 1%6. 

[33] D.F. Redmiles, From Programming Tasks to SolutiollS -­
Bridging the Gap Through the Explanation of Examples, 
PhD dissertation, Department of Computer Science, 
University of Colorado, 1992. 

[34] L.B. Resnick, "Shared Cognition: Thinking as Social 
Practice," in Perspectives on Socially Shared Cognition, 
L.B. Resnick, I.M. Levine, S.D. Teasley, eds., 
Washington, D.C.: American Psychological Association, 
1991, pp. 1-20, ch. 1. 

[35] C.H. Rich, R. Waters, editors, Readings in ArtifICial Intel­
ligence and Software Engineering, Morgan Kaufmann 
Publishers, Los Altos, CA, 1986. 

[36] C.H. Rich, R.C. Waters, 
Myths and Prospects" , 
8, August 1988, pp. 40-51. 

"Automatic Programming: 
Computer, Vol. 21, No. 

[37] H.W.J. Rittel, "Second-Generation Design Methods," in 
Developments ill Design Methodology, N. Cross, ed., New 
York: John Wiley & Sons, 1984, pp. 317-327. 

[38] D.A Schoen, The Reflective Practitioner: How Profes­
sionals Think ill Action, Basic Books, New York, 1983. 

[39] M. Shaw, "Maybe Your Next Programming Language 
Shouldn't Be a Programming Language," in Scaling Up: 
A Research Agenda for Software Engineering, Computer 
Science ano Technology Board, eds., Washington, D.C.: 
National Academy Press, 1989, pp. 75-82. 

[40] B.A Sheil, "Power Tools for Programmers", 
Datamation, Febru~[y 1983, pp. 131-143. 

[41] H.A Simon, The Sciences of the Artificial, The MIT 
Press, Cambridge, MA, 1981. 

[42] T. Sumner, S. Davies, AC. Lemke, P.Polson, "Iterative 
Design of a Voice Dialog Design Environment", Tech. 
report, Department of Computer Science, University of 
Colorado, 1991. 

[43] W.R. Swartout, R. Balzer, "On the Inevitable Intertwin­
ing of Specification and Implementation", 
Communications of the ACM, Vol. 25, No.7, July 1982, 
pp. 438-439. 

[44] L.G. Terveen, P.G. Selfridge, M.D. Long, "In the 
Footprints of the Masters: Living Organizational 
Memory", Tech. report, AT&T Bell Laboratories, 1992. 

(45] D.A White, "The Knowledge-Based Software Assistant: 
A Program Summary", Proceedings of the 6th Annual 
Knowledge-Based Software Engineering (KBSE-91) Con­
ference (Syracuse, NY), Rome Laboratory, New York, 
September 1991, pp. vi-xiii. 

[46J T. Winograd, "Beyond Programming Languages", 
Communications of the ACM, Vol. 22, No.7, July 1979, 
pp. 391-401. 




