Journal of Applied Intelligence 1, 311-332 (1992)
< 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Beyond Intelligent Interfaces:
Exploring, Analyzing, and Creating Success Models of
Cooperative Problem Solving

GERHARD FISCHER & BRENT REEVES
Departinent of Computer Science and Institite of Cogaitive Science, University of Colorado,
Campus Box 430, Boulder, CO 80309

Received March 1991, Revised August 199]

Abstract. Cooperative problem-solving systems are computer-based systems that augment a person’s
ability to create, reflect, design, decide, and reason. Our work focuses on supporting cooperative prob-
lem solving in the context of high-funcuonality computer systems. We show how the conceptual frame-
work behind a given system determines crucial aspects of the system’s behavior. Several systems are
described that attempted to address specific shortcomings of prevailing assumptions. resulting in a new
conceptual framework. To further test this resulting framework, we conducted an empirical study of a
success model of cooperative problem solving between people in a large hardware store. The conceptual
framework is instantiated in a number of new system-building efforts, which are described and dis-
cussed.

Key words: Success model, knowledge-based systems, cooperative problem solving, intelligent inter-
faces. empiricat studies, integrating problem setting and problem solving, shared understanding, high-

functionality systems,

I. Introduction

We explore conceptual frameworks. methodolo-
gies, and technologies to develop cooperative
problem-solving systems and exploit the unique
opportunity offered by powerful computer sys-
tems. The purpose is to augment human potential
and productivity {1-3]. and nol to replace hu-
mans with automated systems.

Our research approach, and the structure of
this paper. is illustrated in Figure 1. We first re-
view work that has been done in cooperative
probleni-solving svstems and discuss why they
provide o better conceptual framework tor joint
human-computer systems than intelligent inter-
tuces. Shortcomings of these systems motivated
us to ook for success models [4-6] and alterna-
tive conceptual frameworks (such as situated
cognition approaches [7-10]). The major portion

of this paper addresses how success models help
o confirm intuitions and introduce new chal-
lenges. We describe integrated, domain-ori-
ented, knowledge-based design environments as
prototypes of a second generation of cooperative
problem-solving systems. From these sources.
we draw lessons for a new conceptual framework
for joint human computer systems.

2. First Generation of Cooperative
Problem-Solving Systems

This sectian describes several issues that have
surfaced in research on cooperative problem-
solving systems. First, an analysis is made of dif-
ferent conceptual frameworks for integrating
user interfuces and knowledge-based systems.
Next. several dimensions of cooperative prob-

312 Fischer and Reeves

Previous Efforts @ Build Success Models for Situated
Cooperative Problam. Heunsuc Guidance Cognition
Saolving 5ystems (MoGuckin Hardware) Porspective

\

Lnwegraed
Design

Envifonmenis

'

Conceplual Framework.
for Cooperative Probhem-
Solving Sysiems

Fig. {. Research approach.

The basic approach taken in the research described in this
paper. By analyzing previous shortcomings and looking 1o
existing success models in domains other than computer
science. and then placing the lessons learned into the larger
context of situated cognition research, we are building in-
tegrated design environments, which help us to incremen-
tally refine an evolving conceptual framework for cooper-
ative problem-solving systems.

lem-solving systems are discussed. followed by a
brief description of carlier prototypes and how
they fell short of being truly cooperative prob-
lem-solving systems. We conclude by arguing
that systems need to be both usable and useful
[11], leading to high-functionality systems.

2.1. Interfaces to Intelligent Svstems and
Iatelligent Interfaces

Traditionally the Artificial Intelligence commu-
nity has classified user interface research into
two subareas: “interfaces to intelligent sys-
tems”™ and “intelligent interfaces.”™ Although
these terms have been used mostly without any
effort to define them. we will use a classification
effort (inspired by a model from [12]: sec Figure
2) to clarify how these terms may be defined.

Intelligent interfaces can now be defined by
an attempt to put intelligence into the user dis-
course machine, The WEST system [13] can be
considered an example of an inteligent interface.
The underlying problem domain (computing al-
gebraic expressions to salisfy certain objectives)
is rather simple, but the user discourse machine
of WEST consists of a number of interesting
components such as a user modelling compo-
nent, an explanation component, and a tutoring
component.

@ User
O | 5 || Discourse |9
Machine .
Machine
Task User

Fig. 2. Intelligent interfaces vs. interfaces to intelligent
systems.

A simplification of Card's |12] Triple Agent Model of Hu-
man-Computer [nteraction (which. in turn was inspired by
Sheridan. Fischhoff, Posncr. and Pew, 1983, Fig. 4-1}. Card
used the ariginal ligure to illustrate the different perspec-
tives of three agents: User, Task machine. and User Dis-
course Machine. We use this simplified version to show
how Intelligent Interfaces focus on the Task machine,
whercas Interfaces to Intelligent Systems focus on the
User Discourse Machine.

Atternatively interfaces to intelligent systems
are an attempt to put intelligence into the task
machine. MYCIN [14] is an example of such a
system. Although there has been an effort in
MYCIN to put some intelligence into the user
discourse machine (e.g., to support explanations
[15]), these efforts have been modest compared
to that of modelling the task.

The separating of the interface from the un-
derlying application is inadequate for many sys-
tem-building efforts. We support this claim with
a human analogy: a person who can communi-
cate well but knows very little has severe limita-
lions as a cooperative partner, just as a person
who knows a lot but cannot communicate. Co-
operative problem-solving systems are an at-
tempt (o avoid this separation and increase the
usefulness and usability by a tight integration of
interaction mechanisms with the underlying do-
main knowledge.

2.2, Dimensions of Cooperative
Problem-Solving Svsteins

Our original system-building efforts were very
much influenced by some of the major shortcom-
ings of expert systems. The major difference be-
tween classical expert systems (such as MYCIN
[14] and R1 [16]) and cooperative problem-solv-
ing systems is that the human is much more an
active agent and participant in the latter. Tradi-

tional expert systems asked the user many ques-
tions and then returned an answer. In a cooper-
ative problem-solving system, the user and the
system share the problem solving and decision
making. Thus different role distributions may be
chosen depending on the user’s knowledge, the
user’s goals and the task domain. A cooperative
system requires much richer communication fa-
cilities than those offered by traditional expert
systems.

The following issues are important dimensions
of research in cooperative problem-solving sys-
tems:

Understanding complex task domains. The in-
teraction paradigms for dealing with complex in-
formation stores have often been based on the
unfounded assumption that people using these
systems approach them with a precisely de-
scribed task. But in most problem-solving and in-
formation-retrieval tasks, the precise articulation
of a task is the most difficult problem [17). Users
of such systems suffer from a lack of knowtedge
about the interdependencies between problem
setting and solving, and they do not know about
the tools that exist for solving these problems.
lgnorant of these mappings, users are unable
to develop a complete specification of what
they want: theretore specifications must be con-
structed incrementally.

The level of cooperation between human and
computer. Cooperative problem solving systems
consisting of a human and a computer can exploit
the asymmetry of the two communication part-
ners. Humans contribute what they do best (e.g..
use of common sense. goal definition. decompo-
sition into subproblems, etc.), whereas the com-
puter should be used for what it is good for (e.g.,
exlernal memory support. consistency mainte-
nance, hiding irrelevant information. intelligent
summarizing. visualization support, etc.) [I8].

The impact of communication breakdowns. Ef-
fective assistance depends on a collaborative ef-
fort in which advisor and client work together to
detect and repair troubles that arise. in cooper-
ative problem-solving systems. breakdowns are
not as detrimental as in expert systems, because
humans are part of the overall system and can
step in if necessary. One can never anticipate or
“design away™ all of the misunderstandings and
problems thuat might arise during the use of these

(]
s

Beyond Intelligent Interfaces

systems. We need to recognize and develop sys-
tem resources for dealing with the unexpected:
“The problem is not that communicative trouble
arises that does not arvise in human-to-himan
comnmunication, but rather that when these in-
evitable troubles do arise, there are not the same
resources available for their detection and re-
puir” [8]. A cooperative agent needs to under-
stand the nature of open problems. the intentions
of the problem solver, and the fact that goals are
modified during the problem-solving process.

The role of background assumptions. We need
a better understanding of the possibilities and
limitations of expert systems research. We have
to define the characteristics for problems that are
suitable for expert systems research to generate
realistic expectations. When we talk of a human
expert, we mean someone whose depth of under-
standing serves not only to solve specific well-
formulated problems, but also to put them in a
larger context [9]. The nature of expertise lies
not only in solving a problem or explaining the
results (which some expert systems can do to
some extent). but in learning incrementally and
restructuring one’s knowledge, in breaking rules,
in determining the relevance of something, and
in degrading gracefully if a problem is not within
the core of the expertise. Knowledge-based sys-
tems should be built on the premise that back-
ground assumptions can never be fully articu-
lated.

Semi-formal versus formal approaches. Semi-
formal systems [19-20] do not require the com-
puter to interpret all information structures, but

just to serve as a delivery system of information

to be read and interpreted by people. Semi-for-
mal svstems can be used more extensively in co-
operative systems than in expert systems, and
will play a large role in the design of effective

joint human-computer systems.

Humans enjoy “doing” and “deciding.” Hu-
mans olten enjoy the process and not just the fi-
nal product: they want to take part in something.
This is why they build model trains. plan their
vacations. and design their own kitchens. Auto-
mation is a4 lwo-edged sword. At one extreme. it
is a servant, relieving humans of the tedium of
low-level operations and freeing them for higher
cognitive functions: Many people do not enjoy
checking documents for spelting errors. and they

h

314 Fischer and Reeves

welcome the automation provided by spelling
checkers in word processors. At the other ex-
treme. automation can reduce the status of hu-
mans to “button pushers™ and can strip their
work of its meaning and satisfaction. The chal-
lenge is to automate tasks that people consider
tedious or uninteresting, but these change as
technology changes.

2.3. Brief Discussion of Our Earlier Prototypes

Many knowledge-based systems are built based
on some of the following assumptions: (1) users
of these systems can fully articulate their prob-
lems in advance. (2) users will ask for help, (3) a
consultation model of interaction (in which users
serve mostly as data sources) is behaviorally ac-
ceptable, and (4) general purpose programming
environments are sufficient for supporting coop-
crative problem solving [3]. We believe these as-
sumptions are anfounded.

The assumption that users can fully articulate
prablems in advance has been refuted in several
studies [10]. Curtis, Krasner, and Iscoe |21] ob-
served in an empirical study of large software
projects: “Even when a customized svstem wasy
developed for one client, the requirements often
provided a moving target for designers. During
svstem development, the customer, as well as
the developer, learned abour the application
domain.” Many current software development
methodologies (such as the waterfall modetb)
falsely assume that problems are well defined.

The assumption that users are always capable
of asking for help breaks down as soon as the
system becomes very complex. Users are unable
to ask about information they do not know ex-
Ists.

MYCIN [14] is an example of a system that
was based on the assumption that human-com-
puter interaction is wetl supported hy a consul-
tation model in which the computer asks the hu-
man guestions. From an engineering point of
view. MYCIN had the advantage of being clear
and simple: the program controlled the diatogue.
But empirical studies have shown that these pro-
grams are behaviorally unacceptable |22].

General purpose tools are fundamentally lim-
iting because the solution space represented by

them is too far away from the problem space. In
order to bridge the gap between general purpose
tools and complex problem-solving environ-
ments, we need stable subsystems at various lev-
els in between. Complex systems develop faster
if they can build on stable subsystems [23] and if
they can be based on a marketplace of developed
pieces of knowledge [2].

In order to overcome some of these concep-
tual deficiencies, we have previously built 4 num-
ber of prototype systems (this brief annotated list
is restricled to our own efforts: other research
groups have addressed these probhlems as well.)
s HELGON: Incremental Construction of Que-
ries by Reformudation, HELLGON [24] is based
on the retrieval-by-reformulation paradigm
|25]. which was derived from a theory of human
remembering. This theory postulates that hu-
mans incrementally construct queries and nat-
urally think about categories of things in terms
of specific examples. HELGON supports the
incremental description of a desired object with
multiple specification techniques.
LISP-CRITIC AND ACTIVIST: Critiquing
Users” Work and Volumieering Information.
LISP-CRITIC [26] is a knowledge-based sys-
tem that critiques ISP programs. The interac-
tion is controlled by the user, who selects parts
of programs and asks the systems for help in
improving the code either for human compre-
hensibitity or machine efficiency. Humans often
learn by receiving answers to questions that
they did not or could not pose. The active help
svstem ACTIVIST [27] volunteers information
that was not requested. ACTIHVIST “looks over
the shoulder™ of a user working with an editor.
infers the intended goal from user actions. and
volunteers editing advice.

SYSTEMS ASSISTANT: Information Volun-
teering by Users. Despite the tact that commu-
nication capabilities such as wived-initiative
dicdogues |28=29] have been found Lo be crucial
for cooperative systems. the progress in achiev-
ing them has been rather modest. SYSTEMS®
ASSISTANT [30] was an effort (o support more
mixed-initiative dialogues by allowing users to
volunteer information. One of the migjor find-
ings in hutlding SYSTEMS™ ASSISTANT was
that to provide a more mixed-initiative interac-
tion style requires more elaborate underlying

knowledge structures and not just a change of
the interface.

« FINANZ: Enriching Svstenys with Domuain-Ori-
ented Abstractions. FINANZ is a knowledge-
based spreadsheet system [6]. Rather than forc-
ing financial experts to describe their problems
to programmers, who then build spreadsheet
models. FINANZ builds higher-level abstrac-
tions related to the financial expert’s problem
domain. This allows the expert to interact with
the computer system using abstractions specific
to the problem domain, thereby supporting hu-
man problem-domiin communication [31].

Building HELGON, LISP-CRITIC. ACTIVIST.
SYSTEMS® ASSISTANT. and FINANZ deep-
ened our understanding of iterative problem
specification, information volunteering, mixed-
initiative dialogues, and human problem-domain
communication. Although each of these systems
explored issues of importance and each made an
identifiable step forward, they all fell short in
supporting truly cooperative systems. The sys-
tems were isolated efforts and were built for rel-
atively simple domains. One of the lessons
learned was that cooperative problem-solving
systems are very resource intensive. The next
section argues why high-functionality computer
systems are the foundations upon which these
systems must be built.

2.4, High-Functiouality Computer Svstems

Computer systems should be both wusable and
usefud [11]. For a system to be useful for a broad
class of different tasks. it must offer broad func-
tionality. Computing svstems have been moving
more and more toward high-functionality sys-
tems. In our own work, we have analyzed the
Symbolics Lisp machine as a high-functionality
computer system. To get a teel for how complex-
ity has evolved from simple programming lan-
guages, consider a comparison of the Pascal
language with the Symbolics Lisp Machine pro-
gramming environment shown in Figure 3.

The more powerful systems become, the more
ditficult they are to use. Before users will be able
to take advantage of the power of high-function-

ality computer systems. the cognitive costs ol

mastering them must be reduced. The following

Beyond Inteltigent interfaces 315

Pascalt L ge vs Symbolics Envir
Pascal Symbolics
Funclions; Operators | 29 functions and procs 627 CL functions
19 infix operators 31352 functions total
Classes None 3322 with 17305 methods
Control Struclures |7 38 special forms
45 CL macros

Documentation

3K pages average hook | 44(N) pages in manuals

Fig. 3. Low- v, high-functionality systems.

problems of high-functionality systems (as iden-
tified by Draper [32]. Fischer [1]], and Lemke
[33]} must be overcome:

s Users do not know abour the existence of tools.
Users cannot develop complete mental models
of high-functionality systems. Without com-
plete models, users are sometimes unaware of
the existence of tools. A passive help system is
of no assistance in these situations. Active sys-
tems and browsing tools let users explore a sys-
tem, and critics [34]) point out useful informa-
tien.

Users do not know how to aceess tools. Know-
ing that something exists does not necessarily
imply that users know how to find it.

Users do not know when ro use tools. In many
cases, users lack the applicability conditions
for tools or components. Features of a com-
puter system may have a sensible design ratio-
nate from the viewpoint of system engineers.
but this rationale is frequently beyond the grasp
of users, even those who are familiar with the
basic functions of the system. Systems seem
imponderabte because users have to search
through « large list of options and do not know
how to choose among them.

Users cannot combine, adapt, and modify tools
according to their speeific needs. Even after
having overcome all of the previous problems
(i.e.. a tool was found, its functioning was
understood, ete.), in many cascs the tool does
not do exactly what the user wants. This prob-
lem requires system support to carry out mod-
itication at an operational level with which the
user is familiar,

One major isste that is not directly related to
high-functionality svstems but nevertheless plays
an important part in their effectiveness is that
users do not have well-formed goals and plans.

316 Fischer and Reeves

Problem-solving in ill-defined domains can be
characterized by the fact that no precise goals
and specifications can be articulated. Users of
high-functionality systems suffer from a lack of
knowledge of the interdependencies between
problem specification and which tools exist to
solve these problems. Unfamiliarity with this
mapping leads users to concentrate too quickly
on implementation issues, and they often over-
look alternative solutions.

3. Success Models for Cooperative
Problem Solving

To deepen our understanding of the problems of
high-functionality systems and find ways to over-
come these problems, we engaged in a search for
success models of such systems. The success
model idea has proven to be of great value. We
have previously analyzed skiing as a success
model [4] and derived architectural components
for computer-based learning environments [35]
from this analysis. In a similar fashion, the ideas
behind spreadsheets were used as guiding prin-
ciples in system-building efforts in other domains
[6,36-37]. Studying success models can provide
us with equally important insights as studying the
role of failures |38] and their impact on the ad-
vancement of design.

in this section, we describe a study done at
McGuckin Hardware, argue why it is retevant to
these issues. and show how the store has suc-
cessfully addressed the difficult problems men-
tioned previously. We then place the study in the
larger context of research in situated cognition.

3.4, McGucekin: An Empirical Stody

A preliminary analysis indicated the McGuckin
Hardware in Boulder, Colorado, might be an
ideal candidate for a success model. McGuckin
carries more than 350,000 different line items in
33.000 square fect of retail space. The store’s su-
perior reputation among its customers and its
continued growth and profitability make it a suc-
cess model.

To get a better understanding of just how the
“system’ operates. we asked McGuckin Hard-
ware for permission to observe and record inter-

actions between customers and sales agents.
Some of the dialogues were transcribed from
audiotapes and carefully analyzed. Videotapes
would have been a superior medium, but would
have interfered too much with store opera-
tions.

The decision to observe directly as people do
problem solving and design in the real world was
made as a result of considering the perspective of
situated cognition research. Lave [10], Schoen
[7], and others have shown how problem solving
in daily activity is shaped by the dynamic en-
counter between the culturally endowed mind
and its total context. This leads to a vision of
cognition as a dialectic between persons acting
and the settings in which their activity is con-
stituted. Lave [10] argued that theoretically
charged, unexamined. normative models of think-
ing lose their descriptive and predictive power
when research is moved to everyday settings and
relaxes its grip on the structuring of activities.

The following dialogues illustrate the inherent
difficulties in high-functionality systems men-
tioned above (for additional details of our study
see Reeves |39]).

Users do not know about the existence of tools.
In this dialogue, the customer is unsure about
how to attach a sign to a metal pole. The cus-
tomer does not know of self-tapping bolts and
therefore cannot ask for them. Even if we assume
a complete understanding of the problem., this is
not enough to guarantee the knowledge of the
best tool for the problem. Here the customer
ends up buying a fastener that is introduced and
explained by the salesperson.

Dialogue,: Attaching a Sign to a Square Metal Pole'

I. C: I'm looking for a small fastener mavhe

one-sixteentl,

S: Okay. Plastic? Metal?

3. Co Well, what 've got is to fasten o sign on

to a square pole. Fyve got a hole in the top
and it [its fine and I got 1o get one on the
bhottom.
After looking at several fas—
teners, and asking a few more
questions, the salesperson sug-
gests a certain type of fas-
tener.

[

4. S: How about a self-tapping bolt?
Picks one up and shows it.

5. C: Well, what ulih, well, this would probably
do it, what about, would it come back
out?

6. S: Oh sure. It'd come back out.
7. C: Butonce it's in?
8. S: As long as the hole is smaller than this

thing, you can thread it in and out.

Users don’t know how to access tools. The next
dialogue shows that it can be difficult just to find
items you “know™ exist. The customer is spe-
cific about the wanted item and even seems to
know the store fairly well, but still cannot find
the item.

Dialogue,: Finding Tool Clips

I. C: I need clips for tools wihere vou shove it
up in them and it holds
Yeah.

12
v

3. C: I mean not just a single clip, a bunch of

them., We tried in housewares, the cheap
little ones, tools only have like funny kind
of ones. Where else could they be?

4. S: Garden center, for rakes and shovels and
things like that

5. C: Wonld it be there?

6. S: Yeah,

7. C: Okav, I know where that is, thanks.

Users do not know when to use tools. The inter-
action shown in Dialogue, involves a search for
scales to weigh small animals and illustrates the
concept of applicability conditions: the condi-
tions under which an item can be used, especially
for “unintended™ purposes. The salesperson is
able to recognize a crucial element: namely, that
there be a platform large enough to hold some-
thing of a certain approximate size and weight.
He helps the customer to know when to use a
given tool, even though that use might not have
been intended by the designer of the tool. The
fact that a scale is intended for food is less im-
portant than those features.

Dialogue, also illustrates the use of differential
descriptions. The customer describes the in-
tended item “differentially™ in terms of an ex-

Beyond Intelligent interfaces a7

ample, building on what the environment has to
offer. The customer uses an example item (the
“little tiny ones over here™) to differentially de-
scribe the intended solution. The salesperson ex-
tracts the crucial information and suggests an
item intended for a different domain, yet useful
for accomplishing the described task.

In Dialogue, the customer wants strength, but
the salesperson has to point out a crucial feature
of that strength: that it comes at the expense of
brittleness.

Dialogue,: Scales for Small Animals

1. C: I'mt looking for some scales aud | saw
some little tiny ones over here, but [need
something that has a large platforn on it,
to weigh small animals on.
Holds hands about 18
apart.

I would think something in our house-
wares department, for weighing food and
things like that. Go on down to the last
isle on the left.

3. C: Okay.

Dialogue,: Hardened Bolts

inches

[
v

I. C: So if I were going to hook something
would this be the best thing? What I'm
going to have is 'm going to drill into the
cement and lave it sticking ont.

2. S: You going to have this sticking out, just
the shaft of the bolt? holding a bolt
and pointing to the unthreaded

shaft.
3. C: Right.
4. S: Hmm. Interesting problem.
5. C: A hardened bolt would give me more . . .
6. S: Yeah. but it’ll shear. they're more brittle.

| don't know if you'd be any better off
with a hardened.

Users can not combine or adapt tools for special
uses. Although the combination m Dialogue; is
simple. it does illustrate how tools can be com-
bined in various ways. The customer doesn’t
know why the salesperson suggests a certain
combination of tools. but ventures a guess. The
salesperson allows the suggestion, but then
states his reason.

B el E

318 Fischer and Reeves

Dialogues: Combining Simple Tools

I. 8: After deciding that a three—-six-
teenth inch wire is to be looped
around a half-inch bolt, which
is mounted in cement
You want a small enough loop. put it be-
tween two washers. Picks up two
washers and places them on the
shaft of abolt.

2. C: Small enougl loop.

3. S Yeah.

4. C: Why benveen nvo washers, so it won't
rih?

5. S: Yeah, so it won’t slide off. Probably
won''t.

Observing interactions like these confirmed
the previous analysis of the difficulties of using
high-functionality systems. In addition. it raised
several other issues that must be considered in
building cooperative problem-sotving systems.

Incremental problem specifications. Dialogue,
shows that there is a close relationship between
defining specifications incrementally, as seen
here. and establishing shared knowledge, as will
be seen in the next dialogue. The distinction is a
subtle, yet useful one. Shared knowledge has
more to do with establishing a common reference
point with which to discuss a situation, and less
to do with the specific process of identifying rel-
evant parts of the problem domain.

Dialogue,: Incrementally Refining a Query

I. C: Hueed a cover for a barbecue.

2. §: {Leading customer daown an isle
where several grills are lined
up and accessories are dis-—
played) Okay ... what have we got
here . .. chaise. chair barbecue grill
cover. . . . Does that took Kind of like
what you got? (Pointing to one of
the grills) Similar? No?

3. C: No.

4. S: Take any measurements?

5. C: No.

6. S: That's a good guess there. (Pointing

to a one-burner grill.)
7. C: It's a double burnner one.

8. S: 52 inches. That's the total length it'll
cover. (Measuring with the tape
and holding the tape over one of
the grills.)

9. C: Yeah. I know it's not that big at all.

10. S: You saying about 18 by 18. Well, this is
27.it’ll cover up to here. (Using mea—
suring tape again and pointing.)

1. C: I need mwo.

12. S: A couple . . . in that brand, that's all |
have. Here are these Weber ones, thicker
material and all that. Here are some
smaller ones.

13. C: I'll take this one.

4. S: We'll be getting more of these pretty

soon.
I5. C: You'll have them by Christmmas?
16. S: Hopefully Thursday.

Achieving shared understanding. Between the
time a customer begins Lo interact with a sales
agent and the time the customer leaves with a
“satisticing™ solution [23], a shared understand-
ing must be created between the two cooperating
agents. The customer must begin to appreciate
relevant parts of the solution domain and the
sales agent must understand the problem in
enough depth to mike reasonable suggestions.
Dialogue,; shows how establishing shared under-
standing is a gradual process in which each per-
son participates. sometimes ignoring questions,
sometimes volunteering information, and some-
times identifying miscommunications. {llustrated
also are the problems of knowing about the ex-
istence of tools and understanding the results
that they produce. The customer wants to fasten
a sign to a square metal pole. The top of the sign
has been fastened via a preexisting hole, but the
bottom is still unattached. The customer learns
about certain fasteners while the salesperson
learns about the specific problem. Their shared
understanding increases as each in turn asks
questions and makes suggestions that are cri-
tiqued by the other.

Dialogue,: Attaching a Sign to a Square Metal
Pole*
1. C: 'mlooking for a smaller fustener. Mayhe
one-sixteenth.

-,

i

I~

=

~
2Rk

9.

10.

13.
14,

5.
16.
17.
i8.
19.

20.

24.

[
LA

26.

27.

23.

0%

o]

w

w

: (Scrutinizing

NvnvRyn

Okay. Plastic? Metal?

Well, whar I've got is (o fasten a sign
onto a square pole. I've got a hole in the
top and it fits fine and I've got to get one
on the bottom.

Pole have holes in it?

Yeah. I had a one-eighth bolt, but it's too
big. Need something smaller than that,
Round pole? Square Pole?

Squtare pole.

(Picking up a fastener and show-
ing it) You tried these?
the fastener.)
Hmmnium.,

You've got to have a five-sixteenths hole
and you fold this thing up and stick it in.
Would that work?

2 'y got to be five-sixteentls?

Yes. The size of the shaft on this thing.
(Pointing to the fastener.)

It's not thar big.

No way to drill it?

o No.

No. What did you use the first time?

A ried g one-eighil inch.

How thick is the metal in the pole?

O, probably about one eighth iuch.
(Pointing toacertain fastener.)
How abont these?

(Picking one up and showing the
moving parts.) These work on hollow-
core doors.

Yealr.

(Walkingover toadifferent kind
of fastener and picking it up) |
don’t know if this would be strong
enough. Still need a three sixteenth hole.
If the wind 1s blowing hard it might give
way. Just putting it in with a screw-
driver?

Yeah.

How about a self-tapping bolt? (Picks
one up and shows it.) Put that in.
tighten it down. (points to tiph that's
a thread cutting thread there.

Well, what, nlnn, well, this wonld prob-
ablv do i, What abont, wonld it cone
back out?

Oh sure. 1t would come back out.

s But onee it'’s in?

Beyond Intelligent Interfaces 319

28. S: As long as the hole is smaller than this
thing, you can thread it in and out.

Integration between problem setting and prob-
lem solving. Dialoguey shows an interaction in
which a customer wanted to buy heaters, then
decided to reconceptualize the problem from one
of “adding heat.” to one of ‘“retaining heat.”
This appears to be a trivial reframing and hardly
worth notice, but we will argue that understand-
ing exactly this kind of reframing is crucial to
building cooperative problem-solving systems.
The problem itself was redefined.

Dialogue,: Generating Versus Containing Heat

1. C: I want 10 get a couple of heaters for a
downstairs hallway.
What are you doing? What are you tryving
to heat?

1~
L

3. C: 'mowrving 1o heat a downstairs halhway.

4. S: How high are the ceilings?

5. C: Normal, abont eight feet.

6. S: Okay, how about these here?

They proceed to agree on two
heaters.

7. C: Well, the reason it gets so cold is that
there's o staircase ar the end of the hall-
way

8. S: Where do the stairs lead?

9. C: They go up to a landing with a cathedral
ceiling.

10. S: Ok, maybe you can just put a door across

the stairs, or put a ceiling fan up to blow
the hot air back down.

Summary. The findings of the McGuckin
study can be summarized as follows:

Natnral Language is lesy important than Nat-
wral Commupnication. People rarely spoke in
complete, grammatical sentences, yel managed
to communicate in a natural way. In fact. most of.
the dialogues shown here had to be “cleaned up™
lor readahility. The study provided convincing
evidence that the support for natural cominni-
cation |29], allowing for breakdowns. clarifying
dialogues. explanations, etc.. is more important
lor cooperative problem solving than being able
to parse syntactically complex sentences. One
ohjective of future human-computer communi-

320 Fischer and Reeves

cation research should therefore be lo under-
stand the processes of intention communication
and recognition well enough to enable a system
to participate in a natural dialogue with its user
[40].

Multiple Specification Techniques. Customers
used a great variety of specification techniques
such as bringing in a broken part. pointing to an
item in a catalog or in the store, and giving gen-
eral descriptions such as "I need a lock that qual-
ifies for cheaper insurance rates.”

Mixed Initiative Diolognes. People were flex-
ible in the roles they played during a problem-
solving episode. They easily switched from ask-
ing to explaining, from learning to teaching.
Because Dialogue, is the [ongest. it probably
shows this best. The structure of these dialogues
was determined neither by the customer nor by
the sales agent, but clearly indicated mixed ini-
tiative [28] determined by the specifics of the
joint problem-solving effort.

Management of Trouble. Many breakdowns
and misunderstandings occurred during the ob-
served problem-solving episodes, bul in almost
all cases clarifying dialogues allowed their recov-
ery. Problem solving among humans cannot be
characterized by the absence of trouble, but by
the identification and repair of breakdowns |[8].
Dialogue, and Dialogue, contain examples of
this.

Simuftancous Exploration of Problem and
Solution Spaces. Customers and sales agents
worked within both problem and solution spaces
simuitaneously. or at least alternatively. Typi-
cally the problem owner (customer) had a better
grasp of the problem space and the problem sol-
ver (sales agent) had a better understanding of
the solution space. but over time these spaces
converged until there was a large enough inter-
section of shared knowledge within which poten-
tial solutions could be evaluated. This is seen in
Dialogue- in which the customer knows what
needs to be done but needs a better understanding
of the possible solutions. and the salesperson
knows how many different fasteners work but
needs to understand the specific application.

Humnans operate within the physical world.
Although perhaps obvious, system designers
overlook the fact that people use elements of the
physical world as sources of information, as re-
minders. and in general as extensions of their

own knowledge and reasoning systems. In most
of the dialogues that deal with fasteners, both the
customer and salesperson held the items and
used them to guide and clarify the discussion.
For example. in Dialogue;, the salesperson
picked up two washers and placed them on the
shaft of the bolt, leaving a small gap between
them to show where the cable would go. and how
the loop needs to be small enough to be guided
or constrained by the washers.

Humans make use of distributed intelligence.
Much of people’s intelligent behavior results
from the interaction of mental processes with the
objects and constraints of the world. and much
behavior takes place through a cooperative pro-
cess with others. Collaborators challenge each
other’s analysis of the problem and help to
achieve creative solutions. One thing that sur-
faced in discussions with salespeople is that
when they send a customer to another depart-
ment. they count on the customer being able to
find the items. but also expect another salesper-
son to be available there.

3.2. A Sitmwated Cognition Perspective

The perspective of situated cognition researchers
is important in this analysis of cooperative prob-
lem-solving success models. McGuckin Hard-
ware provides an example of what situated cog-
nition researchers have been claiming: much of
problem solving is fundamentally related to the
larger context in which the problem gets per-
ceived. framed, and eventually resolved. Such-
man [8] argued that plans are just one of the re-
sources in the problem-solving process, not the
guiding principles. The McGuckin study con-
firms this view of plans: customers do have
plans, but these plans are just one resource, not
the primary guide.

Lave [10] argued that the problem-solving
context plays a crucial role in problem framing.
The McGuckin study confirmed this finding. As
customers interacted with the wide variety of
hardware (e.g. two isles of fasteners). they were
able to recast their perception of the problem
they came in to solve.

In & critique of the approach technical ratio-
nality has encouraged professional practitioners
to take toward ill-defined problems. Schoen [7]
argued against abstract principles and for skills

developed in domain-specific problem solving,
emphasizing the role that problem setting plays.
Real problems are never given. but “must be
constructed from the materials of problematic
situations which are puzzling, troubling, and un-
certain.”

The setting of a problem is as important as the
problem itself. The word “setting” means two
things: (1) the physical and social environment
(the “context™) in which a problem solver acts,
and (2) the process of defining the problem. The
problem context provides key resources in solv-
ing the problem, because it affects how we come
to perceive the problem and the resources avail-
able to us.

Carraher. Carraher, and Schliemann [4]] de-
scribed how important the setting was to Brazil-
tan school children who worked as street ven-
dors. On the street, they were quite accurate in
their calculations (98 percent correct), but when
given mathematically identical problems outside
the marketplace context, their accuracy dropped
to a dismal 37 percent.

Attempts have been made to bring more of
the environment into consideration in analyzing
problem soiving. Larkin et al. [42] studied sev-
eral issues, such as the interaction between the
person solving a problem and external memory
aids such as paper and pencil, and representing
situations that change over time. Situated cogni-
tion appears to push this concept of setting and
problems that change over time even further into
our physical environment and social relations.

When people encounter problems, these prob-
lems are embedded in an environment that pro-
vides ways in which the problem is perceived and
resources with which to analyze it. Problems can
be divorced neither from the social settings in
which they occur, nor from the process of prob-
lem defining. The former provides structuring re-
sources to the problem solver and the latter af-
fects how the problem is allowed to evolve.

Problems and solutions coevolve—one cannot
exist without the other. Empirical studies of peo-
ple developing complex computer systems [2]]
have confirmed that often the problem is not to
implement a given specification, but rather ex-
pressing the problem itseif: deciding what prob-
lem to solve.

in the context of design problems, Rittel [43]
argued that “vou cannot understand the problein

Beyond Intelligent Interfaces 32|

without having a concept of the solution in mind;
and that you cannot gather information mean-
ingfully anless voa have understood the problem
but that vou cannot understand the problem
withowt information about it.” Taken literally,
this leaves no room for a beginning, but there is
a way in which this view nevertheless makes
sense. If one cannot begin one without the other,
then the only way 1o proceed is with both simul-
taneously. In problem solving, people cannot
proceed until they have a “resolution shape—a
sense of an answer and a process for bringing it
together with its parts™ [10, p. 19].

John Dewey noted that “*discovering a prob-
lem is the first step in knowing™ (cited in [44]).
And Werthetmer [45] observed that: “Often in
great discoveries the most important thing is that
a certain question is found. Envisaging, putting
the productive guestion is often more important,
often a greater achievement than the solution of
a set question™ (cited in VanGundy [44, p. 102]).

We are trying to understand what this means
to designers of cooperative problem-solving sys-
tems. Success models of these systems provide a
new perspective that informs the design of such
systems buiit on a computing platform. Studying
people at McGuckin provided an opportunity to
observe “evervday cognition.” These observa-
tions confirm the importance that the situated
cognition perspective brings to the design of co-
operative problem-solving systems.

4. Second Generation of Cooperative
Problem-Solving Systems

In this section. findings from the McGuckin
study are refated to the framework suggested in
the first section. This is followed by a description
of a prototype of an integrated. domain-oriented.
knowledge-based design environment.

4.1. Reguirements for Cooperative
Problem-Solving Systems

Beyond user interfaces. Effective human-com-
puter communication is more than creating
attractive displays on a computer screen: it
requires providing the computer with a consid-
erable body of knowledge about the world, about
users, and about communication processes. This

322 Fischer and Reeves

is not to say that the user interface is not of ¢cru-
cial importance to knowledge-based systems.
Analysis of expert systems (such as the DIP-
METER advisor [46]), has shown that the accep-
tance and real use of expert systems depends on
far more than a knowledge base and an inference
engine. The developers examined the relative
amount of code devoted to different functions of
DIPMETER and found that the wuser interfuce
portion was 42 percent compared to § percent for
the inference engine and 22 percent f{or the
knowledge base. Similar data are reported for
commercial knowledge-based system tools (e.g.,
in Intellicorp’s tools, 55-60 percent of the code
is interface related [47]). A good user interface is
important for two groups: for the developers of
knowledge-based systems and for the end-user of
these systems.

The communication requirements are even
more important for cooperative problem-solving
systems. Because the user is actively involved in
the problem-solving and deciston-making pro-
cess, there is an increased necessity for the
interface to support the task at a level that is
comprehensible by the user. In order for a knowl-
edge-based system to support cooperative prob-
lem solving, the following components depend
critically on each other:

« the structure of the knowledge and problem-
solving system itself—how a system represents
its problem-solving -activity and retrieves the
relevant portion appropriately in response to
user queries
the generation of views of this knowledge
which corresponds to the needs and the knowl-
cdge of the user: for this a system must contain
a model of the user
the presentation of this knowledge on the
screen; this part is mostly (explicitly or implic-
itly) associated with user-interface research.
Problems can be fully articulated only in the
context of solving them. The McGuckin study
clearly indicated that problems in realistic situa-
tions are not fixed targets. The combination of a
large selection of objects and knowledgeubie
sales agents creates an environment in which
customers can produce partial solutions and get
{feedback from the items in the store and from the
sales agents n the form of critiques. As problem
solvers tentatively explore possible soluttons and

evaluate how those affect their perception of the
original problem, they shape the situation; in ac-
cordance with their initial appreciation of it, the
situation “talks back,” and they respond to the
situation’s back-talk [7].

The fidelity of the design situations’ “back
talk” must be increased. Many of the problems
that are discussed at McGuckin are ill-defined.
The artifacts and inventory at McGuckin are
powerful to the extent that the sales agents are
knowledgeable. Providing rich functionality with-
out domain-specific expertise is not enough. In
our system-building work, we originally believed
that domain-oriented construction kits would be
powerful enough to “talk back™ by themselves,
but this turned out not to be the case [31]. Con-
struction kits support the construction of an ar-
tifact, but they do not provide any feedback on
the quality of the design. Knowledgeable sales
agents provide this higher level expertise and so
help the situation to “talk back.™

McGuckin hires experts in the various depart-
ments and considers previous experience within
a field, such as plumbing, to be more important
than previous sales experience in that field. The
difference between working and selling experi-
ence in a field is crucial. Behind the surface or
syntactic layer of the inventory, there is a seman-
tic understanding of trade-offs, and experience
in mapping specific problems to multipurpose
tools.

There is a need for specialization and putting
knowledge in the world. Simon [23] predicted that
when a domain reaches a point where the knowl-
edge for skillful professional practice cannot be
acquired in roughly a decade, a burden on mas-
tering all the tools and the knowledge will occur
[48]. Simon predicted that the following adaptive
developments will occur: (1) specialization will.
increase and (2) practitioners will make increas-
ing use of books and other external reference
aids in their work [49]. McGuckin addresses the
tool mastery burden by (1) organizing function-
ality according to external task domains, and (2)
incrementally making the information space rel-
evant to the task at hand by an evolving shared
understanding between customers and salespeo-
ple.

Supporting human problem-domain communi-
cation with domain-oriented architectures. The

McGuckin study illustrates the need to respond
to a diverse set of tasks. There is an important
need in computer science to develop domain-ori-
ented architectures in order to avoid the pitfall of
excess generality. Instead of serving all needs
obscurely and insufficiently with general purpose
programming languages, domain-oriented archi-
tectures serve a few needs well. The semantics
of our computing environments need to be better
tuned to specific domains of discourse; this in-
volves support for different kinds of primitive en-
tities, for specification of properties other than
computational functionality. and for computa-
tional models that match the users’ own models.
Human-computer communication needs to be
advanced to human-problem domain communi-
cation. where the computer becomes “invisible™
and users have the fecling of interacting directly
with a problem domain.

4.2 hitegrated, Domain-Oriented,
Knowledge-Based Design Enviromments

The requirements articulated for the second gen-
eration of cooperative problem solving systems
lead us to the development of integrated domaiin-
oriented design environments, Over the last few
years, design environments were developed in
the following areas: (1) user interface design [30],
(2) kitchen design [20.51]. (3) COBOL. program-
ming [52]. (4) design of decision support system
for water management [53]. and (5) computer
network design [34]. In this section, we will first
describe a general architecture for design envi-
ronments. then illustrate it with a specific exam-
ple and discuss how information can be made rei-
evant to the task at hand in such environments.
A multifaceted architecture. I“rom the individ-
ual design efforts, we have developed the general
architecture as shown in Figure 4. This muitifac-
eted architecture consists of the following five
components:
« A construction kit (sce Figure 5} is the principal
medium for modeling a design. It provides a
palette of domain concepts and supports con-
struction using direct manipulation and elec-
tronic forms.
AN argnmentative hiypermedia system (see Fig-
ure G) contains issues. answers. and arguments
about the design domain.

Beyond iIntelligent Interfaces 323

_enify] Construction | inform

Kit . Construction

provide) consirain — s . Analyzer
context -

Simulation

Componcnl
critigue
constTain reduce 2
SCCRAFIOs search | A

. ﬁypmut
inform| ™09y / .
case-based
Specification / reasaning

Component
= PN
scarch

Argumeniation

TT—eea Canlog [Hiustrator
reduce search illustrate

modifly

CatalogExplorer

Fig. 4. A multifaceted architecture.

The components of the multifaceted architecture. The links
between the components are crucial for exploiting the syn-
ergy ol the integration.

= A catalog (see Figure 5) is a collection of pre-
stored designs that illustrate the space of pos-
sible designs in the domain and support reuse
and case-based reasoning.

A specification component (see Figures 7 and
8) allows designers to describe characteristics
of the design they have in mind. The specifica-
tions are expected to be modified and aug-
mented during the design process, rather than
to be fully articulated at the beginning. They are
used to retrieve design objects from the catalog
and to filter information in the hypermedia in-
formation space.

A simulation component allows designers to
carry out “what-if” games to simulate various
usage scenarios involving the artifact being de-
signed.

JANUS: An example. JANUS [20]. a design
environment to support kitchen designers. will
be used as an exampie to illustrate our approach.
JANUS-CONSTRUCTION is the construction
kit for the system. The palette of the construc-
tion kit contains domain-oriented building blocks
called design units, such as sink, stove. and re-
frigerator (Figure 5). Designers construct by se-
lecting design units from the palette and placing
them into the work area. In addition to design by
composition (using the palette and constructing
an artifact from scratch), JANUS-CONSTRUC-
TION also supports design by modification. Ex-

- s Clear Work Ares Critigue All Edit Global Descriptions
Janus-Construction toad Catalog Guve In Catalog Select Context

Commard
B Cratigue A11
L}

Sdanus-Cossirvenion: The work tnangle eritic.

Janus-Construcnion is the construction part of Janvs. Building blocks (design unitsy are selected Irom the Paferie and moved
to desired locations inside the Work Area. Designers can reuse and redesign complete oor plans from the Catalog. The
Messages pane displays critic messages automatically alter cach design change that triggers a eritique. Clicking with the
mouse on @ message activates JANUs-ArGuMENTATION and displays the argumentation retated to that message (see Figure 6),

Janus-Argumentation Cetalog Example

Annwar (Rafrigerstor, Sink, Stova)

. Tha distance batwaen gink, stove and rafrigecator, the work trisngle,
oL should be less than 23 feat,

Ona-Wail-Kitchan

BREIRA

The langth ol the work trisngle (Stove,
Rafrigarator, Sink] Is less then 23 fest.

Vislted Nodes
§edyrdy & 2T faet i » Ansuer (Refrigerscoc, Bink, Btove) Bsction

Figure 10: tha work triangis

Argumant (Welking Dlstenca)

Tre work trlangle le an mporant concept In kitchen design. The
waek trlangle denctes the cented front dittance betewasn the
theas nmaln sppliencen: 1ink, atcie snd refrigeeator. This langth
should ba lasy than Z3 leat 1o Bvold unnecesanry watking and lo
ahgure an afficient work flow fn the kitchanl

Arguenent (Small Room)
& In sl kitchans where the work trisnale s lesd than 18 feet.
T Viewer: Defbult Viewss

L —~ —)
Commardy Show Cutline Fesume Constrution
F]’ > Eranales “An Refrt i Bravel® Snrt:rfor Topica Show Construction
Bhow Exsnglas surr (Refrigerator, + Etove Show Argura! it T
W Show Enemsie Musier (Refslparator, sink, Stove) Tt e levie

Fig. 6. Lanes-Arsuate st sios: Rationale Tor the work trisingle rule,

Cdanmis-Arcamentation is an arernentative ivpermedia syseem. The Viewer pane shows o diagram iltustrating the work
triangle concept and arguments for and against a work teiangle answer. The top right pane shows an example ifustrating this
answer generiated by the ArGUMiNtanon-lurestr vior, The Visiced Nodes pane lists in sequential ovder the previously visited
argumentation topics. By clicking with the mouse on one of these items, or on any bold or italicized item in the argumentation

testitself, the user can navigate to related issues, answers. and arguments.

Beyond Intelligent Interfaces

325

Specification sheet.

Size of fanily? Swall Medi
Do both husband and wife work?

un L

E

arge Do-Mot-Care
1ther

Both Do-Hot-Care

Are you interested in an efficient kitchen?

Yes

Who does the cooking? Husband Mife Senior House-Maid Do-Mot-Care
Cook's approxinate height? -5" 5'-5"6" 5'6"-6" 6'- Do-MNot-Care
Right Handed or left handed? Right Left Do-Hot-Care

Houw many neals are generally prepared a day? 1 2 3 More Do-Hot-Car
Size of neals? Big Medium G5mall Do-Not-Care

Do kids help cook or bake? Often Sometimes HNever Do-Hot-Care

Do you usually use a dishuasher? Yes Me Do-Hot-Care

Is safety important to you? Yes Mo Do-Mot-Care

No Do-Hot-Care

Done

Abort

Fie. 7. Specification sheet,

The Specifv command in Cataroc-Exerorer provides i specilication sheer in the form of a questionnaire,

isting designs can be modified by retrieving them
from the catalog and manipulating them in the
work area.

Designers using JANUS-CONSTRUCTION
experienced a sense of accomplishment in using
the system because it enabled them to construct
something quickly without having detailed
knowledge about computers. But construction
kits do not in themselves tead to the production
of flawless artifacts [31] because they do not help
designers discover the shortcomings of the arti-
fact they are constructing. As passive represen-
tations, constructions in the work area do not
talk back unless designers have the skill and ex-
perience to form new appreciations and under-
standings when constructing. Designers often do
not see characteristics that lead to breakdowns
in real use situations.

Critics. Critics [34] operationalize the concept
of a situation that “talks back™ [7]. They use

knowledge of design principles to detect and
critigue partial and suboptimal solutions con-
structed by the designer. The critics in JANUS-
CONSTRUCTION identify potential problems
in the artifact being designed. Their knowledge
about kitchen design includes design principles
based on building codes, safety standards, and
functional preferences. Critics are implemented
as condition-action rules, which are tested when-
ever the design is changed. The changes that trig-
ger a critic are operations that modify the design
in the work area. When a design principle is vi-
olated. a critic will fire and display a critique in
the messages pane of Figure 5. In the figure, the
work triangle critic fired telling the designer that
the ~work triangle is greater than 23 feet.” This
identifics a possibly problematic situation (a
breakdown). and prompts the designer to reflect
on it,

Lack of Argumentative Support. The advan-

Sige of family? GSrall
Do both husband and wife work? Both
Hho does the cooking? Hife

Cook's approximate height? 5'-5'g"
Right Handed or left handed? Left

Do wou usually use a dishuasher? HNo

Hou many meals are generally prepared a day? 2

:

Is safety important to wou? Yes
Are you interested in an efficient kit

chen?

fes

UL
ROO0O00DO
00000aeo
0o0oR00o0

10000000

DO0ORE000
uauununuug

LI00000C

Do It [}
—

Fie. & Weightung sheet Tor the specilication.

Alter specilication. users can weigh the importance ol cach specified item.

326 Fischer and Reeves

tage of constructing something is that the con-
structed artifacts and situations can “talk back™
to the designer. But the short messages the crit-
ics present to designers cannot reflect the com-
plex reasoning behind the corresponding design
issues. To overcome this shortcoming, we ini-
tially developed a static explanation component
for the critic messages [50]. The design of this
component was based on the assumption that
there is a “right™ answer to a problem. But the
explanation component could not support the de-
liberative nature of design problems. Therefore,
argumentation about issues raised by critics must
be supported,. and argumentation must be inte-
grated into the context of construction.

JANUS-ARGUMENTATION. JANUS-
ARGUMENTATION is the argumentation com-
ponent of JANUS (Figure 6). It is an argumen-
tative hypermedia system implemented using the
SYMBOLICS DOCUMENT EXAMINER [55].
JANUS-ARGUMENTATION offers a domain-
oriented, generic issue base about how to
construct residential kitchens. With JANUS-
ARGUMENTATION, designers explore issues,
answers, and arguments by navigating through
the issue base. The starting point for the naviga-
tion is the argumentative context triggered by a
critic message in JANUS-CONSTRUCTION.
Clicking with the mouse on a critique in JANUS-
CONSTRUCTION (Figure 5) activates JANUS-
ARGUMENTATION and accesses issues and
answers corresponding lo the critique.

Domain orientation. The substrate used to de-
sign computer-based artifacts typically consists
of low-leve| abstractions (such as statements and
data structures in programming languages. and
primitive geometric objects in engineering com-
puter-aided design}. Abstractions at that level are
far removed from the concepts that form the ba-
sis of thinking in the application domains in
which these artitfacts are to operate. Our design
environments support fuiman problem-domain
communication [31] by allowing designers to
build artifacts from application-oriented building
blocks according to the principles of that do-
main—nol the principles of software or geo-
melry.

Integration. The multifaceted architecture de-
rives its essential value from the integration of its
components and links between the components.

Used individually, the components are unable to
achieve their full potential. Used in combination.
each component augments the value of the oth-
ers. forming a synergistic whole. At each stage
in the design process, the partial design embed-
ded in the design environment serves as a stim-
ulus to users, suggesting what they should attend
to next. Links among the components of the ar-
chitecture are supported by vartous mechanisms
(see Figure 4):
* CONSTRUCTION-ANALYZER. The CON-
STRUCTION-ANALYZER is a critiquing sys-
tem that provides access to relevant informa-
tion in the argumentative issue base. The firing
of a critic signals a breakdown to users and pro-
vides them with an entry into the exact place in
the argumentative hypermedia system where
the corresponding argumentation is located.

ARGUMENTATION-ILLUSTRATOR. The ex-

planation given in argumentation is often highly

abstract and very conceptual. Concrete design
examples that match the explanation help users
to understand the concept. The ARGUMEN-

TATION-ILLUSTRATOR (see Figure 6) helps

users to understand the information given in the

argumentative hypermedia by finding a catalog
example that illustrates the concept.

+ CATALOG-EXPLORER. CATALOG-EX-
PLORER helps users to search the catalog space
according to the task at hand [56]. 1t retrieves de-
sign examples simifar to the current construction
situation, and orders a set of examples by their
appropriateness to the current specification.

Next we describe in more detail the system
components that link the specification. construc-
tion and the existing information spaces. We fo-
cus on this part of our overall system-building ef-
fort, because it illustrates most clearly some of
the lessons we have learned in the McGuckin
study.

Making information relevant to the task at
hand. To integrate problem setting and problem
solving in design environments, it is crucial to
support retrieval of information relevant to the
task at hand. Every step made by a designer to-
ward a solution determines a new space of re-
lated information. which cannot be determined a
priori. Conventional information retrieval tech-
niques are thus not applicable for design envi-
ronments |17]. In a conventional querv-based

PP

search, a specific query has to be formulated.
Once users can articulate what they need, a
query-based search takes away much of the bur-
den of locating promising objects [57]. In navi-
gational access provided by browsing mecha-
nisms, users tend to get lost looking for some
target information if the browsing space is large
and the structure is complex [58].

Design environments need additional mecha-
nisms that can identify small sets of objects rel-
evant to the task at hand. The systems must al-
low users to incrementally articulate the task at
hand. The information provided in response 10
these problem-solving activities musl assist users
in refining the definition of their problem. A typ-
ical cycle of events supported by the multifac-
eted architecture is: (1) users create a partial
specification or partial construction, (2) a break-
down occurs. (3) users switch and consult other
components in the system made relevant by the
system to the partially articulated task at hand,
and (4) users refine their understanding based on
“the back talk of the situation™. As users go back
and forth among these components, the problem
space is narrowed, a shared understanding be-
tween users and the system evolves, and the ar-
tifact is incrementally refined.

CATALOG-EXPLORER. CATALOG-EX-
PLORER (for details see [36.59]) links the spec-
ification and construction components with the
catalog in JANUS (see Figure 4). CATAL.OG-
EXPLORER (1) exploits the information articu-
lated in a partial specification to prioritize the de-
signs stored in the catalog. and (2) analyzes the
current construction and retrieves similar exam-
ples from the catalog using similarity metrics.
Each design object stored in the catalog of
JANUS consists of a floor layout and a set of slot
values filled by users. Those design objects can
he reused for case-based reasoning such as pro-
viding a solution to a new problem. evaluating
and justifying decisions behind the partial speci-
fication or construction, and informing designers
of possible failures [60.61].

CATALOG-EXPLORER extends HELGON
and other information retrieval systems hy re-
lieving users of the task of forming queries and
navigating in information spaces. Due to its in-
tegration based on the multitaceted architecture,
CATALOG-EXPLORER can capture a user’s

Beyond Intelligent Interfaces 327

task at hand by analyzing the partial specification
and construction. The system then infers the rel-
evance of stored information to that task.

Retrieval from Specification. As a specifica-
tion component in the multifaceted architecture,
CATALOG-EXPLORER provides (1) a Specifi-
cation Sheet for specifying requirements for a de-
sign (see Figure 7), and (2) a Weighting Sheet for
assigning a weight to each specification item to
differentiate the factor of importance (see Figure
8). By analyzing information obtained by those
mechanisms. the system reorders catalog exam-
ples by computing the appropriateness value of
each design example according to the given set
of weighted specifications.

To capture the user’s task at hand from a spec-
ification and make design objects relevant to that
task by inferring the relevance. one must deal
with hidden features, partial matching, and con-
tradictory features of design. To address these is-
sucs, the system has specification-linking rules
for matching between a specification and design
objects, and a metric to measure the appropriate-
ness of an existing design with respect to a spec-
ification. '

Specification-linking Rules. There are two
types ol specification items: surface features
such as “«a kirchen that has «a dishwasher” and
hidden featnres such as “good for a small fam-
iflv." Retrieving design examples from the catalog
by surfuce feature specification can be done
in a straightforward manner using conventional
searching mechanisms. In contrast, retrieval us-
ing hidden features requires domain knowledge
to infer those features because it is often difficult
to determine a priori the features that become
important for later recall.

The specification-linking rules of CATALOG-
EXPLORER link each hidden feature specifica-
tion item to a set of condition rules. In the inte-
grated environment this domain knowledge can
be derived from the contents of the argumenta-
tive hypermedia component. Figure 9 illustrates
how specification-linking rules can (1) bridge
the gap between problem spaces and solution
spaces. (2} create a shuared understanding by
narrowing the information space through extrac-
tion of examples from the catalog that are rele-
vant to the task at hand. and (3) infer that a
kitchen that has a stove away from both a door

328 Fischer and Reeves

taaue: Where should @ stove be?
Angwer: Away from a door.

Arguments: {f stove is nof away from a door,
it is fire-hazardous.
~ {away-from stove door) -> fire-hazardous
L

safety -> -~ fira-hazardous

Fig. 9. Specilication-linking rules in Cartal.ou-EXPLORER.

and a window satisfies a hidden feature such as
a safe kitchen. '

4.3. Futire Work

Our efforts to develop cooperative problem-solv-
ing systems based on the exploration and analy-
sis of a success model opens up a number of re-
search issues for future work.

Transferring success models. Any use of a suc-
cess model in one domain cannot be transferred
to another domain without great care. The most
obvious difference in generalizing from our
McGuckin study to the development of computer
systems is that human-human interaction s not
human-computer interaction. A major shortcom-
ing of human-computer interaction when com-
pared to human-human interaction is the limited
bandwidth of the explicit (facial expressions,
gestures) as well as the implicit (shared under-
standing, mutual intelligibility) communication
channel between the cooperating agents [8]. Co-
operative systems must have better access to the
users” actions and intentions, make clear their
own limits, and try to compensate for those lim-
its. The integration of the different components
in our design environments is a first attempt to
allow users to communicate their goals to the
system in the form of partial specifications and
partial constructions.

Software environments have dilferent quwoli-
ties and shortcomings than a hardware store. A
software-specific challenge and opportunity is
that of making software truly “soft™ by support-

ing end-user modifiability [62]. Because situa-
tions of practice are complex, unique, uncertain,
conflicting, and unstable, supporting end-user
modifiability is a necessity rather than a luxury
for the development of future computer systems.
The need to enhance existing systems cannot be
restricted to the interface alone, but extends to
the system as a whole.

The critical role of examples. Examples play a
major role in shaping the problem. This is a dif-
ficult issue to study because one cannot know
beforehand how examples will affect the prob-
lem. and a post-hoc analysis will be blind to the
subtle changes in the problem definition that ex-
amples have induced. As much as sales agents
use analogies and examples to narrow the search
down, it would be desirable to get a better grasp
of what 1s involved in creatively generating par-
tial solutions that best clarify the problem itself.

Avoid delegation—put owners of problems in
charge. Related to the assumption that problems
can be clearly defined is the notion that they can
be delegated. If a problem description could in-
deed grow apatt from its solution. then it would
be possible 1o “delegate™ that problem descrip-
tion to an intermediary. Compared to problem
owners, however, intermediaries have severe
fimitations acting in an ill-defined problem. A
key attribute of a problem is that the owner has
the authority to change its description. The dif-
fieulty with delegating ili-defined problems is
that the owner of the problem interacts only in-
directly with the emergent solution and is not
able to foresee itmplications that certain specifi-
cations and assumptions are having on the final
solution. The way this manilests itself at
McGuckin is that sometimes problem owners go
to the store themselves whereas at other times
they send someone clse. Studving these cases
may provide us with more insights into con-
structing computing systems with which problem
owners can interact directly. Based on the feed-
back of the situation and intermediate results of
possible solutions. the owner of a problem rein-
terprets the problem description itself. However.
when a problem is delegated this feedback loop
1s broken.

The McGucekin study suggests that the diffi-
culties of delegating u moving target, i.e.. the
problem still being defined. should be addressed

by supporting the problem owner rather than
building better and better systems for delegatees
who have trouble intepreting the problem as they
try to solve it. We must build systems that model
the intermediate agents between the problem
owner and the hardware. Each of the intermedi-
ate agents provides expertise, and this must be
captured in the interaction with the owner of the
problem, Providing a nice interface will not be
enough unless we believe that that is all that the
intermediate agents do.

Collaborating designers. Support 1s needed for
multiple designers working on the same design
artifact. The evolution of the design should be
captured as well as the annotations that docu-
ment the design discussions that took place. One
should help users collaborate by more tightly in-
tegrating the catalog and argumentative hyper-
media components. Rather than carrying out de-
sign discussions in the abstract, an annotation
component should allow arguments to be made
using the design artifact itself. Annotation sup-
ports designers arguing about specific design
problems and is a step toward capturing design
rationale [34].

5. Conclusions

Interfaces (whether intelligent or not) by them-
selves are not sufficient to make systems more
useful and more usable. This position was also
articulated by Papert [63]: I think the interface
is part of a larger thing. 1 think that putting the
emphasis on the interfuce somewhat coufuses
the issnes. But if ondy the interfuce is changed.
and what lies behind it and what vou can do with
the svstem isu't changed, you're only scratching
the surfuce. The interface is ondy the surface. |
think we need deeper wavs to think abont differ-
ences in computing.”

Compuring current compuler systems to what
we saw at McGuekin led us the following claim:
“High-functionality computer svstems offer the
sanre broad functionality as large hardware
stores, but they are operated like disconnt de-
puartiient stores”—what ts missing from them is
the cooperative support of knowledgeable sales
agents. Our efforts to develop conceptual frame-
works and prototypes of cooperative problem-

Beyond Intelligent Interfaces 329

solving systems are based on these insights and
represent an effort to take us beyond the limita-
tions of interface research as well as the limita-
tions of autonomous expert systems.

Acknowledgments

We thank Scott Henninger, Tammy Sumner, and
the anonymous reviewers for helpful sugges-
tions. We thank McGuckin Hardware in Boulder
{especially Robb Hight, Randy Dilkes, and Larry
Kemmer) for allowing us to record and analyze
interactions between customers and sales agents.
We thank the members of the Human-Computer
Communication research group at the Univer-
sity of Colorado. Boulder, who helped us to de-
velop the ideas and the systems described in this
paper. The research was partially supported by
grants No. CDA-8420944, IR1-8722792, and IRI-
9015441 from the National Science Foundation:
grant No. MDA903-86-C0143 from the Army Re-
search Institute; and grants from the Intelligent
Systems Group at NYNEX, Software Research
Associates (SRA) in Tokyo. and the Colorado In-
stitute of Artificial intelligence.

Notes

1. In this and the following dialogues. C: means customer
and S: means sales agent. OQur explanations and
comments are in this typeface. This dialogue is
part of a fonger one, Dialogue..

. The beginning of this dialogue was also shown n
Diitlogue,.

("]

References

L D.C Engetbart. WK, Enghish. A rescarch center Tor
augmenting human intellect.”™ 0 Procecdings of the
AFIPS Fall Joine Compater Conference, The Thomp-
son Book Company. Washington. 1.0, 1963, pp. 395-
410,

20 ML Seefik, The nest knowledge medium.™ Af Mag-

asife. vol. 7.pp. 316, [986,

S Gl Fischer, “Communications requirements for coop-
crative prohlem solving systems.” The Ternational
dowrnal of Informarion Svsiems (Special Isswe on
Knowledee Engineering), vol. |3, pp. 21-36. 1990,

4. R.E. Burton, 1.5, Brown. G, Fischer., “Analysis ol

ad

330

. G. Fischer, ™

Fischer and Reeves

skiing as a success model of instruction: Manipulating
the learning environment to enhance skill acquisition.”™
in Evervday Cognition: Its Development in Social Con-
text, edited by B, Rogoff, J. Lave. Harvard University
Press: Cambridge. MA—I.ondon, pp. 139-150, 1984,

. T.W. Malone. “How do pecople vrganize their desks?

Implications Tor the design of office information sys-
tems.” ACM Transactions on Office Information Sys-
fems, vol. 1. pp. 99=112. [983.

. G. Fischer. C. Rathke, “Knowledge-based spreadsheet

systems.” in Proceedings of AAAL-88, Seventh Na-
tionul Conference on Artificial Intelligence (5t. Paul.
fMN), Morgan Kaufmann Publishers, San Mateo, CA |
1988, pp. RO2-807.

. D.A. Schoen. The Reflective Practitioner: How Profes-

stonals Think in Action. Basic Books: New York, 1983,

. L.A. Suchman. Plans and Sitwated Actions, Cambridge

University Press: New York, [987.

. T. Winograd. F. Flores, Understanding Computers and

Cognition: A New Fonndution for Design, Ablex Pub-
lishing Corporation: Norwood, NJ, 1986,

X Lave. Cognition in Practice, Cambridge University

Press: Cambridge, UK. 1988.

Making computers more uselul and more
usable.™ in Procecdings of the 2nd International Con-
ference on Hiuman-Computer Tnteraction (Honolulu,
Hawaii), Elsevier Science Publishers. New York. 1947,
pp. 97-104.

. S.K. Card, "Human factors and the intelligent inter-

face.” in Combining Human and Artificial Intelligence:
A New Frontier for Human Factors, Svmpositem for the
Metropolitan Clhapter of the Human Fuactors Sociery.
New York. 1984,

. RUR. Burton. J.S. Brown. “An investigation of com-

puter coaching for informal learning activities.™ in fa-
telligent “hitoring Systems, edited by DUH. Sleeman.
150 Brown. Academiv Press: London—New York,
chapter 4. pp. 79-98. 1982,

. B.G. Buchanan., E.H. Shortlilfe. Rule-Based Fxpert

Svatems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley Pub-
lishing Company: Reading. MA. 1984,

. B.G. Buchanan, E_H. Shorthffe, “Human engincering

of medical expert systems.” in Rude-Bused Expert Sva-
tems: The MYCIN Experiments of the Stanford Heuris-
tic Programming Project. Addison-Wesley Publishing
Company: Reading. MA. pp. 399-612, chapter 323,
1984,

b MeDermott. “RI: A rule-based configurer ol com-

puter systems.” Arriticial tuteflizence, vol, 1Y, pp. 39-
BR. 1942,

Gl Fischer, SR Hennmger., DUE Redmiles. “lnter

twining gquery construction and relevance evaluation.”
in Heeman Factors in Commpiting Svatemys, CHEPY Con-
ference Proceedings iNew Orleans, £.4). ACM., pp. 53—
h1. 1991,

L DUDL Woods. Cognitive technotogies: The deaign of

joint human-machine cognitive svstems.” A7 Mayva-

cine. vol. 6, pp. 8692 198G

9

20.

49

18,

29

3.

it

-

13

24, G. Fischer. H. Nieper-Lemke, ™

. T.W. Malone. K.R. Grant. K.-Y. Lai. R. Rao. D. Ro-

senblitt, “Object fens: A “spreadsheet™ for cooperative

work.”™ in Proceedings of the Conference on Computer-

Supported Cooperative Work (CSCW'88), ACM. New

York. 1988, pp. 115-124.

G. Fischer, R. McCall, A. Morch, "JANUS: Integrat-

ing hypertext with a knowledge-based design environ-

ment.” in Proceedings of Hypertext 89 (Pittsburgh,

PA). ACM. New York. 1989, pp. 105-117.

. B. Curtis. H. Krasner, N. Iscoe. A ficld study of the
software design process for Targe systems.” Conurnn-
nicationys of the ACM, vol. 3, pp. 1268-1287. 1988,

. RULL. Teach. E.H. Shortliffe, “An Analysis of Physi-
cians” Attitades.” in Rufe-Based Expert Systems: The
MYCIN Experiments of the Stanford Hewristic Pro-
grabuning Project. Addison-Wesley Publishing Com-
pany: Reading. MA. pp. 6353-632, Chupter 34, 1984,

. H.A. Simon. The Sciences of the Artificial, The MIT
Press: Cambridge. MA| 1981

HELGON: Extending
the retrieval by reformulation paradigm.”™ in Haman
Factors in Computing Svstems, CHI'89 Conference
Proceedings (Austin, TX), ACM: New York. pp. 357-
362, 1989,

. M.D. Williams. “What Makes RABBI'T Run?” firter-
national Jowrnal of Man-Macline Studies, vol. 21, pp.
333-352 1984,

. G. Fischer, = A critic Tor LISP.” in Proceedings of the
{oth tternational foint Conference on Artificial Intel-
ligence (Milan, ftafv), edited by J. McDermort, Morgan
Kaulmann Publishers. Los Altos, CA. August. 1987,
pp. 177-184.

.G, Fischer, AC. Lemke, 1. Schwab, “Knowledge-

bused help svstems.” in Human Factors in Compiting

Systems, CHE'SS Conference Proceedings ¢San Fran-

civeo, CAj, ACM, New York, pp. 161-167. 19835,

LR, Carbonell. “Mixed-initiative man-computer in-

structional dialogues.”™ Report 1971, BBN, 1970.

. DG Bobrow, RM. Kaplan, M. Kay. DA, Norman. H.
Thompson. T. Winograd. “GUS., A frame-driven dialog
system.” Artificial Intelfigence. vol. 8 pp. 155<173,

t977.

G. Fischer. C. Stevens, Volunteering inlformation—

Enhancing the communication capabilities o knowledge-

based systems.” in Proceedings of INTERACT'87.

2ad 1P Conference on Human-Computer bnteraction
tSrtrgart, FRG). edited by H.-). Bullinger, B. Shackel.

North-Hollund: Amsterdam. pages 963-971. 1987,

G. Fischer, A.C. Lemke, “Construction Kits and design

environments: Steps toward human problem-danan

communmcation.” Hhoman-Coniputer Interaction, vol.

3. pp. 179=222, 198K,

L SOWL Draper. UThe nature of expertise in UNIX. in

Proceedings ol INTERACT 84, IFIP Conferentee on

Human-Conyprater Interaction, Elsevier Science Pub-

Iishers, Amsterdam. 1984, pp. [82-186.

A.C. LemKke. “Destgn environments Tor high-function-

ality compaer svstems,” PhI> thesis, Department of

Computer Science, University of Colorado, 1989,

35,

36.

7.

38,

39.

440.

41.

43.

44,

46.

47.

48,

449,

30,

. G. Fischer. A.C. Lemke. R. McCall, A. Morch, “Mak-
ing argumentation serve design.” Human Compuier
Interaction, vol. 6, nos. 3-4, pp. 393-419_ 1991,

E. Wenger. Arificial tmelligence and Tutoring Svs-
fenis. Morgan Kaufmann Publishers: Los Altos. CA.
1987.

K.-Y. Lai. T.W. Malone, “Object lens: A “spread-
sheet™ for cooperative work." in Proceedings of the
Conference on Computer-Supporied Cooperative Work
(CSCW’'88). ACM. New York, 1988, pp. 115-124.

N. Wilde, C.H. Lewis. "Spreadsheet-based interactive
graphics: From prototype o tool,™ in Human Factors
in Computing Svstems. CHIU90 Conference Proceed-
ingy (Seanle, WA), ACM: New York. 1990, pp. 153
159,

H. Petroski. To Engineer 1s Human, St Martin's Press:
New York. 1985,

B.N. Reeves. " Locating the right object in a large hard-
ware store—An empirical study of cooperative problem
solving among humans.” Technical Report CU-CS-523-
91. Department of Computer Science, University of
Colorado. Boulder. CO. 199].

T. Winograd, A Language/Action Perspective on the
Design of Cooperative Work.” Human-Computer -
revaction, vol. 3. pp. 3-30. 1988,

FN. Carraher. D.W. Carraher. A.D. Schliemann,
“Mathematics in the streets and in the schools.” British
Journal of Developmental Psyvehology, vol. 3, pp. 21—
29, 1985,

Lo Larking et al, “Expert and novice performance in
solving physics problems.” Scrence. vol. 208, pp. 1335-
1342, 1980.

H.W.J. Rittel. “Second-generation design methods. ™ in
Developments in Design Methodology, John Wiley &
Sons: New York. 1984, pages 317-327.

AB. VanGundy. Srafking the Wild Sotution: A Prob-
femm-Finding Approach 1o Creative Problem Sofving.
Bearly Limited: Butfalo. NY. 1986,

. M. Wertheimer. Productive Thinking, Harper & Row:
New York. 1959,

R.G. Smith., “On the development of commercial ex-
pert systems.” Af Magazine. vol. 5. pp. 61-73.

M. Stelzner. M.D. Williums. “The evolution of inter-
fuce requirements for expert systems.”™ in Experr Svy-
temy: The User [nterface. Ablex Publishing Corpora-
tion: Norwood. NJ. pp. 285-306, Chapter 12, 1988,
F.P. Brooks Jr.. “No silver bullet. essence and acci-
dents of software engineening.” [EEE Compuier. vol,
20, pp. 10-19, 1987,

DA, Norman. The Psvehology of Evervday Things.
Basic Books. New York. 1988,

ALC. Lemke. G Fischer. A cooperative problem solv-
g svstem lor user interfuce desten.”™ in Procecdings
of AAAL90, Eiglnh Navonal Conference on Artificial
Intelligence, AAAL Press'The MIT Press. Cambridge.
ALA. 1990, pp. 479484,

S

hAE

57.

59,

60,

Ol

63,

Beyond Intelligent Interfaces 33|

G. Fischer. A.C. Lemke. R. McCall. “Towards a sys-
tem architecture supporting contextualized learning,™
in Proceedings of AAAL-90, Ninth National Conference
ot Artificial Intelligence. AAAL Press/The MIT Press.,
Cambridge. MA. 1990, pp. 420425,

. M.E. Atwood., B. Burns. W.D. Gray. A.1. Morch. E.R.

Radlinski. A. Turner, “The grace integrated learning
environment—A progress report.” in Proceedings of
the Fourth Drternational Conference on Industrial &
Engineering Applications of Artificial Intetligence &
Expert Svsteurs (IEAIALE 91), 1991, pp. 741-745.

. A.C. Lemke. S. Gance. "End-user modifiability in a

waler management application,” Technical Report. De-
partment of Computer Science. University of Colo-
rado, 1990.

.G, Fischer, J. Grudin, A.C. Lemke, R, McCall, J. Os-

twuld. B. Reeves. F. Shipman. “Supporting indirect,
collaborative design with integrated knowledge-based
design environments.” fluman Compuier bieraction,
Special Issue on Computer Supported Cooperative
Work. vol. 7. no. 3, 1992 (forthcoming).

J.H. Walker, " Document examiner: Delivery interface
for hypertext documents.”™ in Hypertext’'87 Papers.
University of North Carolina: Chapel Hill, NC. pp.
307-323, 1987,

. G. Fischer. K. Nakakoji. "Making design objects rele-

vant (0 the task at hand.” in Proceedings of AAAL-9],
Ninth National Conjevence on Artificial Imelligence.,
AAAI Press/The MIT Press, Cambridge, MA, 1991, pp.
67-73.

S. Henninger, *Defining the roles of humans and com-
puters in cooperitive problem-solving systems for in-
formation retrieval.”™ in Working Notes of the AAAL
Spring Svimposiim Workstiop on Knowledge-Based
Human Compoter Commanication, AAAl. Menlo
Park, CA, 1990, pp. 46-51. .

. F.G. Halasz, "Rellections on notecards: Seven issues

{or the next generation of hvpermedia syvstems,” Com-
mnsticationy of the ACM. vol. 31, pp. 836-852. [988.
G. Fischer. K. Nakakoji. “Empowering designers with
integrated design environments.”™ Argificial fneelli-
gence in Design '94. Butterworth-Heinemann Litd: Ox-
ford, England. 1991, pages 191-209,

S. Slade. “Case-based reasoning: A research para-
digm.”™ A/ Magaczine, vol. 12, pp. 42-55. 1991,

J.L. Kolodner, “What is case-based reasoning”?” in
AAALI0 tutorial on cuse-based reasoning. 1990, pp. 1-
32

. G, Fischer., A. Girgensohn. "End-user modifiability in

design environments, ™ in Human Factors in Compt-
itg Svstemns, CHEOO Conference Proceedings tSeatile,
WAL, ACM. New York. pp. IR3-191, 1990,

S. Papert. “Welcame to the BYTE summit: Future di-
rections.” BYTE. vol. 15, pp. 226-230. 1990,

332 Fischer and Reeves

Gerhard Fischer is a Professor in the Computer Science De-
partment and a Member of the [nstitute of Cognitive Sci-
ence at the University of Colorado. Boulder. His research
interests include artificial intelligence. human-computer
communication. cognitive science and software design. His
rescarch has led to the development of new conceptual
frameworks and to the design and implementation of
number of innovative systems in the arcas of cooperalive
problem solving. integrated domain-oricnted design cnvi-
ronments. intelligent support systems and end-user modi-
fiability tincluding rcuse and redesign).

Brent Reeves is a Research Assistant in the Computer Sci-
ence Department and a member of the Institute of Cogni-
tive Science at the University of Colorado. Boulder. He is
interested in artificial intelligence. human-computer inter-
action. and computer-supported cooperative work.

