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Abstract 
Many problem-solving approaches are based on the as­
sumption that a problem can be precisely defined before it is 
solved. These approaches are inadequate for dealing with 
ilI-defined problems, which require the coevolution of 
problem setting and problem solving. In this paper, we 
describe integrated, domain-oriented, knowledge-based 
design environments and their underlying multifaceted 
architecture. The environments empower humans to cope 
with ilI-defined problems, such as design, by supporting an 
incremental approach to problem setting and problem solv­
ing. We focus on the integration of specification, construc­
tion, and a catalog of prestored design objects in those 
environments. The synergy of integration enables the en­
vironments to make those objects relevant to the task at 
hand. Taking architectural design as a domain to illustrate 
our approach, we describe an operational, prototype system 
(CATALOGExpLORER) that assists designers in locating ex­
amples in the catalog that are relevant to the task at hand as 
articulated by a partial specification and a partial construc­
tion. Users are thereby relieved of the task of forming 
queries and navigating in information spaces. 1 

Introduction 
Artificial intelligence has often been characterized as the 
discipline dealing with ill-defined problems (Simon, 1973). 
Problem-solving approaches that are based on direc­
tionality, causality, and separation of analysis from syn­
thesis are inadequate for solving ill-defined problems 
(Cross, 1984). Design is an example of such an ill-defined 
problem. Our work is based on the premise that design 
problems are best solved by supporting a cooperative 
problem-solving approach between humans and integrated, 
domain-oriented, knowledge-based design environments 
(Fischer, 1990). Combining knowledge-based systems and 
innovative human-computer communication techniques 
empowers humans to produce "better" products by aug­
menting their intellectual capabilities and productivity 

IThe research was supported by Software Research Associates, 
Inc. (fokyo, Japan), by the National Science Foundation under 
grants No. IRI-8722792 and IRI-9015441, and by the Army 
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rather than by replacing them with an automated system 
(Stefik, 1986; Winograd & Flores, 1986). 

In this paper, we will use the domain of architectural 
design of kitchen floor plans as an "object-to-think-with" 
for purposes of illustration. The simplicity of the domain 
allows us to concentrate on the issues of our approach 
without being distracted by understanding the domain it­
self. We discuss ill-defined problems, emphasize the im­
portance for design environments to be domain-oriented 
and integrated, and describe the multifaceted architecture. 
We describe CATALOGExPLORER, which integrates 
specification, construction, and a catalog of prestored 
design objects. The system demonstrates the synergy of the 
integration by showing that it can partially articulate the 
user's task at hand by a partial specification and focus the 
user's attention on design objects that are relevant to that 
task. We conclude with a discussion of our own and other 
related work, and future directions. 

Coping with III-defined Problems 

III-defined Problems 
Most design problems are ill-defined (Hayes, 1978; Cross, 
1984; Rittel & Webber, 1984; Swartout & Balzer, 1982). 
Such problems require the coevolution of problem setting 
and problem solving. The information needed to under­
stand the problem depends on one's idea for solving it, and 
vice versa. Professional practitioners spend at least as 
much time in defining the problem as in solving the 
problem (Schoen, 1983; Rittel, 1984). Every step made 
toward a solution creates a new problem, providing 
humans with a continuing source of new ideas (Simon, 
1981). Expert systems and automated problem-solving 
technologies fail in coping with ill-defined problems be­
cause they need to identify the information required for a 
solution a priori. 

Cooperative Problem Solving 
An empirical study of our research group, which analyzed 
human-human cooperative problem solving in a large 
hardware store (Reeves, 1990), provided ample evidence 
that in many cases humans arc initially unable to articulate 



complete requirements. They start from a partial specifica­
tion and refine it incrementally, based on the feedback they 
get from their environment. Because users are actively 
involved in problem setting and problem solving 
processes, there is a necessity for systems to support the 
task at a level that is comprehensible by the user. 

Domain Orientation 
To reduce the transformation distance between a design 
substrate and an application domain (Norman, 1986), 
designers should be able to perceive design as communica­
tion with an application domain. The computer should 
become invisible by supporting human problem-domain 
communication, not just human-computer communication 
(Fischer & Lemke, 1988). Human problem-domain com­
munication provides a new level of quality in human­
computer communication by building the important 
abstract operations and objects in a given area directly into 
a computing environment. In such an environment, desig­
ners build artifacts from application-oriented building 
blocks according to the principles of the domain, reducing 
the large transformation distance between problem for­
mulation and computational environment. 

Information Relevant to the Task at Hand 
In supporting integration of problem setting and problem 
solving in design environments, supporting retrieval of in­
formation relevant to the task at hand is crucial. Every 
step made by a designer toward a solution determines a 
new space of related information, which cannot be deter­
mined a priori due to its very nature. 

Conventional information retrieval techniques are thus 
not applicable for design environments (Fischer, Hen­
ninger, & Redmiles, 1991). In a conventional query-based 
search, a specific query has to be formulated. Once users 
can articulate what they need, a query-based search takes 
away much of the burden of locating promising objects 
(Henninger, 1990). In navigational access provided by a 
browsing mechanism, users tend to get lost looking for 
some target information if the browsing space is large and 
the structure is complex (Halasz, 1988). Navigational ac­
cess requires that the information space have a fairly rigid 
and predetermined structure, making it impossible to tailor 
the structure according to the task at hand. Browsing 
mechanisms become useful once the space is narrowed by 
identifying a small set of relevant information. 

Design environments, therefore, need additional 
mechanisms (as discussed in this paper) that can identify 
small sets of objects relevant to the task at hand. The 
systems must be able to support users to incrementally 
articulate the task at hand. The information provided in 
response to these problem-solving activities must assist 
users in refining the definition of their problem. 
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Integrated, Domain-Oriented, 
Knowledge-Based Design Environments 

A Multifaceted Architecture 
During the last five years, we have developed and 
evaluated several prototypes of domain-oriented design en­
vironments, for example, for architectural design (Fischer, 
McCaIl, & Morch, 1989) and for user interface design 
(Lemke & Fischer, 1990). The different system-building 
efforts led to the multifaceted architecture shown in 
Figure 1. 

constrain 
scenarios 

ArgumellfllJioll 
IIIustratOl' 

Figure 1: A Multifaceted Architecture 

This figure shows the components of the multifaceted 
architecture. The links between the components are 
crucial for exploiting the synergy of the integration. 

The multifaceted architecture consists of the following 
five components (for details see Fischer, McCall, and 
March (1989), and Fischer (1990) ): 
• A construction kit provides a palette of domain abstrac­

tions and supports the construction of artifacts using 
direct manipulation and other interaction styles. This is 
the principal medium for implementing design reflecting 
a user's current problem situation. Completed designs 
can be stored in the catalog for reuse. 

o An argumentative hypermedia system contains issues, 
answers, and arguments about the design domain. 

• A catalog provides a coIlection of prestored design ob­
jects iIlustrating the space of possible designs in the 
domain. Catalog examples support reuse and case-based 
reasoning (Riesbeck & Schank, 1989; Slade, 1991). 

• A specification component allows designers to describe 
some characteristics of the design they have in mind. 
The specifications are expected to be modified and aug­
mented during the design process, rather than to be fully 
articulated at the beginning. They are used to prioritize 
all other information spaces in the system with respect to 
the emerging task at hand. 

o A simulation component aIlows users to carry out 



"what-if games" to simulate usage scenarios with the 
artifact being designed. Simulation complements the ar­
gumentative component, which cannot capture all 
relevant aspects in the situation. 

Integration 
The multifaceted architecture derives its essential value 
from the integration of its components and links between 
the components. Each component augments the value of 
the others, forming a synergistic whole. At each stage in 
the design process, the partial design embedded in the 
design environment serves as a stimulus to users for sug­
gesting what they should attend to next. The multifaceted 
architecture supports that "situations talk back" to users 
by providing them with immediate and task-relevant feed­
back (Schoen, 1983). 

Links among the components of the architecture are sup­
ported by various mechanisms (see Figure 1). A user's 
task at hand can be partially articulated in each component 
of the environment. Consequently the integration enables 
the system to provide the user with the information 
relevant to the task at hand. The major mechanisms to 
achieve this are: 
• CONSTRUCTION ANALYZER consists of a set of critics (Fis­

cher et aI., 1990) that detect and critique partial solutions 
constructed by the users. The firing of a critic signals a 
breakdown to users and provides them with immediate 
entry into the exact place in the argumentative hyper­
media system at which the corresponding argumentation 
is located. 

• ARGUMENTATION ILLUSTRATOR helps users to understand 
the information given in an argumentative hypermedia 
by using a catalog design example as a source of con­
crete realization (Fischer, 1990). The explanation given 
as an argumentation is often highly abstract and very 
conceptual. Concrete design examples that match the 
explanation help users to understand the concept. 

• CATALOGExpLORER helps users to search the catalog 
space according to the task at hand. It retrieves design 
examples similar to the current construction situation, 
and orders a set of examples by their appropriateness to 
the current specification. 
A typical cycle of events supported by the multifaceted 

architecture is: (1) users create and refine a partial 
specification or construction, (2) a breakdown occurs, (3) 
users switch and consult other components in the system 
made relevant by the system to the partially articulated task 
at hand, and (4) users refine their understanding based on 
"back talk of the situation" (Schoen, 1983). As users go 
back and forth among these components, the problem 
space is narrowed, a shared understanding between users 
and the system evolves, and the artifact is incrementally 
refined. 
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CATALOGEXPLORER 
CATALOG EXPLORER links the specification and construc­
tion components with the catalog in JANUS (see Figure 1). 
CATALOG EXPLORER (1) exploits the information articu­
lated in a partial specification to prioritize the designs 
stored in the catalog, and (2) analyzes the current construc­
tion and retrieves similar examples from the catalog using 
similarity metrics. Figure 2 shows a screen image of the 
system. Each design object stored in the catalog of JANUS 

consists of a floor layout and a set of slot values filled by 
users. Those design objects can be reused for case-based 
reasoning such as providing a solution to a new problem, 
evaluating and justifying decisions behind the partial 
specification or construction, and informing designers of 
possible failures (Slade, 1991; Kolodner, 1990). 

Based on the HELGON system (Fischer & Nieper-Lemke, 
1989), CATALOG EXPLORER stores the design examples as 
objects in a KANDOR knowledge base (Patel-Schneider, 
1984). Examples are automatically classified according to 
their features specified as slot values. The system supports 
retrieval by reformulation (Williams, 1984), which allows 
users to incrementally improve a query by critiquing the 
results of previous queries. 

CATALOGEXPLORER extends HELGON and other existing 
information retrieval systems by relieving users of the task 
of forming queries and navigating in information spaces. 
Being integrated based on the multifaceted architecture, 
CATALOG EXPLORER can capture a user's task at hand by 
analyzing the partial specification and construction. The 
system, then, computes and infers the relevance of stored 
information to that task. In general, the relevance cannot 
be determined objectively in dealing with ill-defined 
problems because we cannot completely identify such 
relevant factors. What has been made explicit always sets a 
limit, and there exists the potential for breakdowns that call 
for moving beyond this limit (Winograd & Flores, 1986). 
For overcoming issues of using a fixed set of rules for 
inferring the relevance, therefore, one of our current efforts 
is focusing on dynamically deriving such rules by the 
domain knowledge stored by users in the argumentation 
component. 

In the rest of this section, we describe the mechanism of 
making design objects relevant to the task at hand by using 
a partial specification. The retrieval mechanism using a 
partial construction is discussed in Fischer and Nakakoji 
(1991). 

Retrieval from Specification. As a specification com­
ponent in the multifaceted architecture, 
CATALOG EXPLORER provides (1) a Specification Sheet for 
specifying requirements for a design (see Figure 3), and (2) 
a Weighting Sheet for assigning a weight to each specifica­
tion item to differentiate the factor of importance (see 
Figure 4). By analyzing given information by those 
mechanisms, the system reorders catalog examples by 
computing the appropriateness value of each design ex­
ample according to the given set of weighted specifications 
(see the Matching Designs window in Figure 2). 

For capturing the user's task at hand from a specification 
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Figure 2: A Screen Image of CATALOGEXPLORER 

The leftmost Matching Designs window lists all currently retrieved design examples in the catalog, ordered according to 
appropriateness to the current specification. The Bookmarks window is used as a temporary name ho lder of catalog items. The 
two panes in the middle show one of the matching examples in detail (the top pane provides a se t of slot values and the bottom 
pane a floor layout). The Category Hierarchy window shows the hierarchical structure of the catalog. The Specification 
window shows specified items with the assigned weight of importance (result of Figures 3 and 4). Items in this window are 
mouse-sensitive, and by clicking on one, CATALOG EXPLORER provides the informat ion of the corresponding 
specification-linking rules (two lines in the middle of the window). Clicking on one of the rules will activate 
JANUs-ARGUMENTATION providing the underlying argumentation for that rule (see Figure 5). 

and making design objects relevant to that task by inferring 
the relevance, one must deal with hidden features, partial 
matching, and contradictory features of design. To address 
these issues, the system has specificatioll-linking rules for 
matching between a specification and design objects, and a 
metric to measure the appropriateness of an existing 
design with respect to a specification. 

Specification-linking Rules_ CATALOG EXPLORER sup­
ports users in retrieving catalog examples by hidden fea­
ture specifications (sec Figure 3) by using 
specification-linking rules. 

There are two types of specification items: slilface 
features such as "a kitchen that has a dishwasher" and 
hidden features such as "good for a small family." 
Retrieving design examples from the catalog by surface 
feature specification can be done in a straightforward man­
ner using conventional searching mechanisms. In contrast, 
retrieval using hidden features requires domain knowledge 
to infer those features because it is often difficult to deter­
mine a priori the features that become important for later 
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recall. Hidden features can be classified into objective and 
subjective ones; the former ones can be derived by a set of 
predefined formal rules, whereas the latter need to be 
dynamically inferred because they are subject to dispute 
and may vary across time and society. 

The specification-linking rules of CATALOGEXPLORER 

link each subjective hidden feature specification item to a 
set of physical condition rules. In Figure 2, in the 
Specificalion window, the shown rules indicate that a 
kitchen that has a stove away from both a door and a 
w indow satisfies a hidden feature such as a safe kitchen. 

In the integrated environment this domain knowledge 
can be derived from the content of the argumentative hy­
permedia component. Suppose users provided the system 
with the following form al represen tation to the "Fire 
Hazard" argument in Figure 5, 

- (Away-from-p STOVE DOOR) ..... FIRE-HAZARDOUS (1) 

and the system has the domai n knowledge such as: 
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Figure 3: Specification Sheet 

The Specify command in CATALooExpLORER provides 
a specification sheet in the form of a questionnaire. 
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Figure 4: Weighting Sheet for the Specification 

After specification, users have to weigh the importance 
of each specified item. 

SAFETY ... ~ FIRE-HAZARDOUS (2) 

Then, when users specify that they are concerned about 
safety, the system infers that design examples with a stove 
away from a door are appropriate as follows: 

(1) • ( ~ FIRE-HAZARDOUS -. (Away-from-p STOVE DOOR» (3) 

(2)" (3) ... (SAFETY ... (Away-from-p STOVE DOOR» (4) 

The specified items (see the Specification window in 
Figure 2) are associated with a set of specification-linking 
rules, and each of those rules is associated with cor­
responding arguments in JANus-ARGUMENTATION. Thus, 
users can freely explore the underlying inference 
mechanisms by simply clicking on a displayed rule that 
provides users with an exact entry m 
JANUs-ARGUMENTATION. 

Those specification-linking rules could be dynamically 
augmented by being derived from arguments in the ar­
gumentative hypermedia component. Suppose that users 
come up with a new argument in JANUS-ARGUMENTATION 
and provide the system with a corresponding formal 
representation as follows: 

Issue: Where slwuld the location of a stove be? 
Answer: Noi next to a refrigerator. 
Argument: A stove next to a refrigerator is fire hazardous because 
one's clothes may accidentally catch fire from a Slove while looking 
into the refrigerator. 

(Next-to-p STOVE REFRIGERATOR) -. FIRE-HAZARDOUS (5) 

Then, the system adds a new condition to the specification 
rule for being a safe kitchen, and infers kitchens with a 
stove next to a refrigerator are not appropriate to the user's 
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Figure 5: Corresponding Arguments in 
JANUS-ARGUMENTATION 

JANUS-ARGUMENTATION is the argumentative hyper­
media component of JANUS. 

specification concerning safety. 

Appropriateness to a Set of Specifications, To deal with 
partial matching and contradictory features of a design ob­
ject, CATALOGExpLORER provides a mechanism for as­
signing a weight to each specification item and uses the 
concept of appropriateness of a design example to a set of 
specification items. The appropriateness of a design in 
terms of a set of specification items is defined as the 
weighted sum of the number of satisfied conditions out of 
applicable specification-linking rules to each design (for 
details see Fischer and Nakakoji (1991». By seeing the 
effects of changing the factor of importance in the ordered 
catalog examples, users can make tradeoffs among con­
tradictory specification items. 

Discussion of Our Approach 

Related Work 
Using catalogs in design raises many problems in 
case-based reasoning (Riesbeck & Schank, 1989; Slade, 
1991). Retrieval techniques used in case-based reasoning 
systems, however, are often applicable only for domains in 
which problems can be clearly articulated, such as word 
pronunciation (Stanfill & Waltz, 1988), or in which 
problem and solution structures can be articulated in frame 
representations before starting a retrieval process (Kolod­
ncr, 1988). 

Most existing case-based reasoning systems require 
representations of cases to be predetermined, and therefore 
are not feasible for design domains. Our work addresses 
the indexing problem by using more than a surface 
representation of a case, and the matching process operates 
at an abstract level of representation. The specification­
linking rules support analogical matching (similar to a 
systematicity-based match (Navinchandra, 1988». In our 
work, the explanations associated with cases can be 



dynamically computed and do not need to be predeter­
mined. 

A mechanism of INfERFACE (Riesbeck, 1988) that dif­
ferentiates the importance of design features is similar to 
the weighting sheet in CATALOOExpLORER, but it requires 
the features to be linearly ordered. Assigned importance 
values in our system enable users to deal with more com­
plex contradictory features. Being built for the purpose of 
constructing a case-based library, the INTERFACE system 
supported these mechanisms only while storing cases in 
the library. In our work, the retrieval processes are driven 
by the user's task at hand, requiring that the weights are 
determined at the retrieval time rather than at the time 
when cases are stored. The INTERFACE system supports the 
creation of such matching rules only in an ad hoc manner. 
The integrated architecture of CATALOGExPLORER enables 
the specification-linking rules to be derived from the ar­
gumentation component associating the rules with a clearly 
stated rationale. 

CATALOGExpLORER allows users to store design ex­
amples in the catalog without checking for duplications 
and redundancies. Other systems store only prototypes 
(Gero, 1990), or prototypes and a small number of ex­
amples that are a variation of them (Riesbeck, 1988). 
These allow users to access good examples easily and 
prevent the chaotic growth of the size of the catalog. 
However, by not including failure cases, these catalogs 
prevent users from learning what went wrong in the past. 

Many case-based reasoning systems support comprehen­
sion and adaptation of cases (Slade, 1991). 
CATALOGExpLORER supports the comprehension of ex­
amples by allowing users to evaluate them with 
CONSTRUCTION ANALYZER. Adaptation is done by the 
users by bringing an example into the Work Area in 
JANUS-CONSTRUCTION. No efforts have been made toward 
automating adaptation in our approach. 

Achievements 
In CATALOGExpLORER, users gradually narrow a catalog 
space. By analyzing the retrieved information, they can 
incrementally refine a specification and a construction in 
JANUS. The retrieval mechanisms described in this paper 
allow users to access information relevant to the task at 
hand without forming queries or navigating in information 
spaces. Use of a partial specification and a partial con­
struction based on a retrieval by reformulation paradigm 
allows users and the system to share control and respon­
sibility for retrieval. 

The system can infer the relevance of subjective hidden 
features specification and provide users with an explana­
tion for the inferences used. The underlying domain­
knowledge can be dynamically derived from the content of 
the argumentative hypermedia component. The ordering 
of retrieved examples by the computed appropriateness 
values support dealing with the problem of partial match­
ing and multiple contradictory features of a design object. 

By integrating knowledge-based construction, hyper­
media argumentation, catalogs of prestored design objects, 
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and specification components, several crucial design ac­
tivities can be supported, such as recomputing large infor­
mation spaces to make them relevant to the task at hand, 
allowing the situation to talk back, and supporting 
reflection-in-action (Schoen, 1983). 

Limitations 
We have not been confronted with the many problems as­
sociated with managing large spaces effectively because 
our design object information spaces (palettes, arguments, 
catalogs, critics) have been rather small. A lack of 
mechanisms associating formal representations that can be 
interpreted by the system with the textual representations 
used in the argumentative hypermedia component and in 
the specification component forces us to manually derive 
the specification-linking rules. 

The current specification component needs to be ex­
tended and systematized. A task at hand partially articu­
lated by the specification can be used to dynamically deter­
mine the set of relevant arguments in the argumentation 
component. A link between construction and specification 
can reduce the size of a set of design units displayed in the 
palette in the construction component by eliminating ir­
relevant ones. Articulation of the task at hand can be used 
not only for reducing information spaces but also for guide 
and constrain design processes. For example, application 
of specification-linking rules can enable the system to 
detect inconsistencies between specification and construc­
tion. 

The representation of design examples in the catalog 
needs to be enriched both formally and informally. The 
specification needs to be stored together with the con­
structed floor layout. More support mechanisms are 
needed to annotate and add arguments, enabling users to 
record specification and design rationale associated with a 
specific design stored in the catalog. 

Conclusion 
Dealing with ill-defined problems requires the integration 
of problem setting and problem solving. This implies that 
the task at hand cannot be fully articulated at the begin­
ning, but only be incrementally refined. The refinement is 
driven by identifying the most relevant design objects (e.g., 
parts in the palette, critics in the construction analyzer, 
arguments in the argumentative component and design ex­
amples in the catalog). The power of a design environment 
is based on the integration within the multifaceted architec­
ture. In this paper we have described mechanisms linking 
partial specifications and a catalog of prestored designs, 
thereby making design objects stored in a catalog relevant 
to the task at hand without forcing users to articulate 
queries or navigate in information spaces. 
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