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Abstract

Many problem-solving approaches are based on the as-
sumption that a problem can be precisely defined before it is
solved. These approaches are inadequate for dealing with
ill-defined problems, which require the coevolution of
problem setting and problem solving. In this paper, we
describe integrated, domain-oriented, knowledge-based
design environments and their underlying multifaceted
architecture. The environments empower humans to cope
with ill-defined problems, such as design, by supporting an
incremental approach to problem setting and problem solv-
ing. We focus on the integration of specification, construc-
tion, and a catalog of prestored design objects in those
environments. The synergy of integration enables the en-
vironments to make those objects relevant to the task at
hand. Taking architectural design as a domain to illustrate
our approach, we describe an operational, prototype system
(CATALOGEXPLORER) that assists designers in locating ex-
amples in the catalog that are relevant to the task at hand as
articulated by a partial specification and a partial construc-
tion. Users are thereby relieved of the task of forming
queries and navigating in information spaces.!

Introduction
Artificial intelligence has often been characterized as the
discipline dealing with ill-defined problems (Simon, 1973).
Problem-solving approaches that are based on direc-
tionality, causality, and separation of analysis from syn-
thesis are inadequate for solving ill-defined problems
(Cross, 1984). Design is an example of such an ill-defined
problem. Our work is based on the premise that design
problems are best solved by supporting a cooperative
problem-solving approach between humans and integrated,
domain-oriented, knowledge-based design environments
(Fischer, 1990). Combining knowledge-based systems and
innovative human-computer communication techniques
empowers humans to produce ‘‘better’” products by aug-
menting their intellectual capabilities and productivity
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rather than by replacing them with an automated system
(Stefik, 1986; Winograd & Flores, 1986).

In this paper, we will use the domain of architectural
design of kitchen floor plans as an ‘‘object-to-think-with”’
for purposes of illustration. The simplicity of the domain
allows us to concentrate on the issues of our approach
without being distracted by understanding the domain it-
self. We discuss ill-defined problems, emphasize the im-
portance for design environments to be domain-oriented
and integrated, and describe the multifaceted architecture.
We  describe CATALOGEXPLORER, which integrates
specification, construction, and a catalog of prestored
design objects. The system demonstrates the synergy of the
integration by showing that it can partially articulate the
user’s task at hand by a partial specification and focus the
user’s attention on design objects that are relevant to that
task. We conclude with a discussion of our own and other
related work, and future directions.

Coping with Ill-defined Problems

Ill-defined Problems

Most design problems are ill-defined (Hayes, 1978; Cross,
1984; Rittel & Webber, 1984; Swartout & Balzer, 1982).
Such problems require the coevolution of problem setting
and problem solving. The information needed to under-
stand the problem depends on one’s idea for solving it, and
vice versa. Professional practitioners spend at least as
much time in defining the problem as in solving the
problem (Schoen, 1983; Rittel, 1984). Every step made
toward a solution creates a new problem, providing
humans with a continuing source of new ideas (Simon,
1981). Expert systems and automated problem-solving
technologies fail in coping with ill-defined problems be-
cause they nced to identify the information required for a
solution a priori.

Cooperative Problem Solving

An empirical study of our research group, which analyzed
human-human cooperative problem solving in a large
hardware store (Reeves, 1990), provided ample evidence
that in many cases humans are initially unable to articulate



complete requirements. They start from a partial specifica-
tion and refine it incrementally, based on the feedback they
get from their environment. Because users are actively
involved in problem setting and problem solving
processes, there is a necessity for systems to support the
task at a level that is comprehensible by the user.

Domain Orientation

To reduce the transformation distance between a design
substrate and an application domain (Norman, 1986),
designers should be able to perceive design as communica-
tion with an application domain. The computer should
become invisible by supporting human problem-domain
communication, not just human-computer communication
(Fischer & Lemke, 1988). Human problem-domain com-
munication provides a new level of quality in human-
computer communication by building the important
abstract operations and objects in a given area directly into
a computing environment. In such an environment, desig-
ners build artifacts from application-oriented building
blocks according to the principles of the domain, reducing
the large transformation distance between problem for-
mulation and computational environment.

Information Relevant to the Task at Hand

In supporting integration of problem setting and problem
solving in design environments, supporting retrieval of in-
formation relevant to the task at hand is crucial. Every
step made by a designer toward a solution determines a
new space of related information, which cannot be deter-
mined a priori due to its very nature.

Conventional information retrieval techniques are thus
not applicable for design environments (Fischer, Hen-
ninger, & Redmiles, 1991). In a conventional query-based
search, a specific query has to be formulated. Once users
can articulate what they need, a query-based search takes
away much of the burden of locating promising objects
(Henninger, 1990). In navigational access provided by a
browsing mechanism, users tend to get lost looking for
some target information if the browsing space is large and
the structure is complex (Halasz, 1988). Navigational ac-
cess requires that the information space have a fairly rigid
and predetermined structure, making it impossible to tailor
the structure according to the task at hand. Browsing
mechanisms become useful once the space is narrowed by
identifying a small set of relevant information.

Design environments, therefore, nced additional
mechanisms (as discussed in this paper) that can identify
small sets of objects relevant to the task at hand. The
systems must be able to support users to incrementally
articulate the task at hand. The information provided in
response to these problem-solving activities must assist
users in refining the definition of their problem.

Integrated, Domain-Oriented,
Knowledge-Based Design Environments

A Multifaceted Architecture

During the last five years, we have developed and
evaluated several prototypes of domain-oriented design en-
vironments, for example, for architectural design (Fischer,
McCall, & Morch, 1989) and for user interface design
(Lemke & Fischer, 1990). The different system-building
efforts led to the multifaceted architecture shown in
Figure 1.
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Figure 1: A Multifaceted Architecture

This figure shows the components of the multifaceted
architecture. The links between the components are
crucial for exploiting the synergy of the integration.

The multifaceted architecture consists of the following
five components (for details sec Fischer, McCall, and
Morch (1989), and Fischer (1990) ):

* A construction kit provides a palette of domain abstrac-
tions and supports the construction of artifacts using
direct manipulation and other interaction styles. This is
the principal medium for implementing design reflecting
a user’s current problem situation. Completed designs
can be stored in the catalog for reuse.

* An argumentative hypermedia system contains issues,
answers, and arguments about the design domain.

* A catalog provides a collection of prestored design ob-
jects illustrating the space of possible designs in the
domain. Catalog examples support reuse and case-based
reasoning (Riesbeck & Schank, 1989; Slade, 1991).

* A specification component allows designers to describe
some characteristics of the design they have in mind.
The specifications are expected to be modified and aug-
mented during the design process, rather than to be fully
articulated at the beginning. They are used to prioritize
all other information spaces in the system with respect to
the emerging task at hand.

* A simulation component allows users to carry out



““what-if games’” to simulate usage scenarios with the
artifact being designed. Simulation complements the ar-
gumentative component, which cannot capture all
relevant aspects in the situation.

Integration

The multifaceted architecture derives its essential value
from the integration of its components and links between
the components. Each component augments the value of
the others, forming a synergistic whole. At each stage in
the design process, the partial design embedded in the
design environment serves as a stimulus to users for sug-
gesting what they should attend to next. The multifaceted
architecture supports that “‘situations talk back’ to users
by providing them with immediate and task-relevant feed-
back (Schoen, 1983).

Links among the components of the architecture are sup-
ported by various mechanisms (see Figure 1). A user’s
task at hand can be partially articulated in each component
of the environment. Consequently the integration enables
the system to provide the user with the information
relevant to the task at hand. The major mechanisms to
achieve this are:

* CONSTRUCTION ANALYZER consists of a set of critics (Fis-
cher et al., 1990) that detect and critique partial solutions
constructed by the users. The firing of a critic signals a
breakdown to users and provides them with immediate
entry into the exact place in the argumentative hyper-
media system at which the corresponding argumentation
is located.

* ARGUMENTATION [LLUSTRATOR helps users to understand
the information given in an argumentative hypermedia
by using a catalog design example as a source of con-
crete realization (Fischer, 1990). The explanation given
as an argumentation is often highly abstract and very
conceptual. Concrete design examples that match the
explanation help users to understand the concept.

* CATALOGEXPLORER helps users to search the catalog
space according to the task at hand. It retrieves design
examples similar to the current construction situation,
and orders a set of examples by their appropriateness to
the current specification.

A typical cycle of events supported by the multifaceted
architecture is: (1) users create and refine a partial
specification or construction, (2) a breakdown occurs, (3)
users switch and consult other components in the system
made relevant by the system to the partially articulated task
at hand, and (4) users refine their understanding based on
‘““back talk of the situation’” (Schoen, 1983). As users go
back and forth among these components, the problem
space is narrowed, a shared understanding between users
and the system evolves, and the artifact is incrementally
refined.

CATALOGEXPLORER
CATALOGEXPLORER links the specification and construc-
tion components with the catalog in JANUS (see Figure 1).
CATALOGEXPLORER (1) exploits the information articu-
lated in a partial specification to prioritize the designs
stored in the catalog, and (2) analyzes the current construc-
tion and retrieves similar examples from the catalog using
similarity metrics. Figure 2 shows a screen image of the
system. Each design object stored in the catalog of JANUS
consists of a floor layout and a set of slot values filled by
users. Those design objects can be reused for case-based
reasoning such as providing a solution to a new problem,
evaluating and justifying decisions behind the partial
specification or construction, and informing designers of
possible failures (Slade, 1991; Kolodner, 1990).

Based on the HELGON system (Fischer & Nieper-Lemke,
1989), CATALOGEXPLORER stores the design examples as
objects in a KANDOR knowledge base (Patel-Schneider,
1984). Examples are automatically classified according to
their features specified as slot values. The system supports
retrieval by reformulation (Williams, 1984), which allows
users to incrementally improve a query by critiquing the
results of previous queries.

CATALOGEXPLORER extends HELGON and other existing
information retrieval systems by relieving users of the task
of forming queries and navigating in information spaces.
Being integrated based on the multifaceted architecture,
CATALOGEXPLORER can capture a user’s task at hand by
analyzing the partial specification and construction. The
system, then, computes and infers the relevance of stored
information to that task. In general, the relevance cannot
be determined objectively in dealing with ill-defined
problems because we cannot completely identify such
relevant factors. What has been made explicit always sets a
limit, and there exists the potential for breakdowns that call
for moving beyond this limit (Winograd & Flores, 1986).
For overcoming issues of using a fixed set of rules for
inferring the relevance, therefore, one of our current efforts
is focusing on dynamically deriving such rules by the
domain knowledge stored by users in the argumentation
component.

In the rest of this section, we describe the mechanism of

making design objects relevant to the task at hand by using
a partial specification. The retrieval mechanism using a
partial construction is discussed in Fischer and Nakakoji
(1991).
Retrieval from Specification. As a specification com-
ponent in the multifaceted architecture,
CATALOGEXPLORER provides (1) a Specification Sheet for
specifying requirements for a design (see Figure 3), and (2)
a Weighting Sheet for assigning a weight to each specifica-
tion item to differentiate the factor of importance (see
Figure 4). By analyzing given information by those
mechanisms, the system reorders catalog examples by
computing the appropriateness value of each design ex-
ample according to the given set of weighted specifications
(see the Matching Designs window in Figure 2).

For capturing the user’s task at hand from a specification
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Figure 2: A Screen Tmage of CATALOGEXPLORER

The leftmost Matching Designs window lists all currently retrieved design examples in the catalog, ordered according to
appropriateness to the current specification. The Bookmarks window is used as a temporary name holder of catalog items. The
two panes in the middle show one of the matching examples in detail (the top pane provides a set of slot values and the bottom
pane a floor layout). The Caiegory Hicrarchy window shows the hierarchical structure of the catalog. The Specification
window shows specified items with the assigned weight of importance (result of Figures 3 and 4). Items in this window are

mouse-sensitive, and by clicking on one,

specification-linking rules (two lines in the middle of the window).

CATALOGEXPLORER provides the information of the corresponding

Clicking on one of the rules will activate

JANUS-ARGUMENTATION providing the underlying argumentation for that rule (see Figure 5).

and making design objects relevant to that task by inferring
the relevance, one must deal with hidden features, partial
matching, and contradictory features of design. To address
these issues, the system has specification-linking rules for
matching between a specification and design objects, and a
metric to measure the appropriateness of an existing
design with respect to a specification.
Specification-linking Rules. = CATALOGEXPLORER sup-
ports users in retrieving catalog cxamples by hidden fea-
ture  specifications (sec  Figure 3) by using
specification-linking rules.

There are two types of specification items:  swrface
features such as “‘a kitchen that has a dishwasher’ and
hidden features such as “‘good for a small family.”
Retrieving design examples from the catalog by surface
feature specification can be done in a straightforward man-
ner using conventional searching mechanisms. In contrast,
retrieval using hidden features requires domain knowledge
to infer those features because it is often difficult to deter-
mine a priori the features that become important for later

recall. Hidden features can be classified into objective and
subjective ones; the former ones can be derived by a set of
predefined formal rules, whereas the latter need to be
dynamically inferred because they are subject to dispute
and may vary across time and society.

The specification-linking rules of CATALOGEXPLORER
link each subjective hidden feature specification item to a
set of physical condition rules. In Figure 2, in the
Specification window, the shown rules indicate that a
kitchen that has a stove away from both a door and a
window satisfies a hidden feature such as « safe kitchen.

In the integrated environment thjs domain knowledge
can be derived from the content of the argumentative hy-
permedia component. Suppose users provided the system
with the following formal representation to the *‘Fire
Hazard’ argument in Figure 5,

-~ (Away-from-p STOVE DOOR) — FIRE-HAZARDOUS 1)

and the system has the domain knowledge such as:
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Figure 3: Specification Sheet

The Specify command in CATALOGEXPLORER provides
a specification sheet in the form of a questionnaire.
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Figure 4: Weighting Sheet for the Specification

After specification, users have to weigh the importance
of each specified item.

SAFETY — - FIRE-HAZARDOUS ')

Then, when users specify that they are concerned about
safety, the system infers that design examples with a stove
away from a door are appropriate as follows:

(1) = ( ~ FIRE-HAZARDOUS — (Away-from-p STOVE DOOR)) (3)
(2) A (3) = ( SAFETY — (Away-from-p STOVE DOORY)) 6

The specified items (see the Specification window in
Figure 2) are associated with a set of specification-linking
rules, and each of those rules is associated with cor-
responding arguments in JANUS-ARGUMENTATION. Thus,
users can freely explore the underlying inference
mechanisms by simply clicking on a displayed rule that
provides  users with an  exact entry in
JANUS-ARGUMENTATION.

Those specification-linking rules could be dynamically
augmented by being derived from arguments in the ar-
gumentative hypermedia component. Suppose that users
come up with a new argument in JANUS-ARGUMENTATION
and provide the system with a corresponding formal
representation as follows:

Issue: Where should the location of a stove be?

Answer: Not next (o a refrigerator.

Argument: A siove next (o a refrigerator is fire hazardous because
one’s clothes may accidentally caich fire from a stove while looking
into the refrigerator.

(Next-to-p STOVE REFRIGERATOR) — FIRE-HAZARDOUS (5)
Then, the system adds a new condition to the specification

rule for being a safe kitchen, and infers kitchens with a
stove next to a refrigerator are not appropriate to the user’s

Janus-Argumsntation

Arswor (Stove, Door)
The stove should be away from a door.

E:: 0 N

dgis¢ > IZ inches

Figure 5: stove-door

Argument (Fire Hazard)
By piacing the stove too close 1o a door It will be a fira and
burn harard to unsuspected passers by (such as smail children)

Argument (Dining Boom])
If the door leads into a dining room, it will ba sasy to bring hot
tood from the stove (nto the dining areal

Figure 5: Corresponding Arguments in
JANUS-ARGUMENTATION

JANUS-ARGUMENTATION is the argumentative hyper-
media component of JANUS.

specification concerning safety.

Appropriateness to a Set of Specifications. To deal with
partial matching and contradictory features of a design ob-
ject, CATALOGEXPLORER provides a mechanism for as-
signing a weight to cach specification item and uses the
concept of appropriateness of a design example to a set of
specification items. The appropriateness of a design in
terms of a set of specification items is defined as the
weighted sum of the number of satisfied conditions out of
applicable specification-linking rules to cach design (for
details see Fischer and Nakakoji (1991)). By seeing the
effects of changing the factor of importance in the ordered
catalog examples, users can make tradeoffs among con-
tradictory specification items.

Discussion of Our Approach

Related Work

Using catalogs in design raises many problems in
case-based reasoning (Riesbeck & Schank, 1989; Slade,
1991). Retrieval techniques used in case-based reasoning
systems, however, are often applicable only for domains in
which problems can be clearly articulated, such as word
pronunciation (Stanfill & Waltz, 1988), or in which
problem and solution structures can be articulated in frame
representations before starting a retrieval process (Kolod-
ner, 1988).

Most existing case-based reasoning systems require
representations of cases to be predetermined, and therefore
are not feasible for design domains. Our work addresses
the indexing problem by using more than a surface
representation of a case, and the matching process operates
at an abstract level of representation. The specification-
linking rules support analogical matching (similar to a
systematicity-based match (Navinchandra, 1988)). In our
work, the explanations associated with cases can be



dynamically computed and do not need to be predeter-
mined.

A mechanism of INTERFACE (Riesbeck, 1988) that dif-
ferentiates the importance of design features is similar to
the weighting sheet in CATALOGEXPLORER, but it requires
the features to be linearly ordered. Assigned importance
values in our system enable users to deal with more com-
plex contradictory features. Being built for the purpose of
constructing a case-based library, the INTERFACE system
supported these mechanisms only while storing cases in
the library. In our work, the retrieval processes arc driven
by the user’s task at hand, requiring that the weights are
determined at the retrieval time rather than at the time
when cases are stored. The INTERFACE system supports the
creation of such matching rules only in an ad hoc manner.
The integrated architecture of CATALOGEXPLORER enables
the specification-linking rules to be derived from the ar-
gumentation component associating the rules with a clearly
stated rationale.

CATALOGEXPLORER allows users to store design ex-
amples in the catalog without checking for duplications
and redundancies. Other systems store only prototypes
(Gero, 1990), or prototypes and a small number of ex-
amples that are a variation of them (Riesbeck, 1988).
These allow users to access good examples easily and
prevent the chaotic growth of the size of the catalog.
However, by not including failure cases, these catalogs
prevent users from learning what went wrong in the past.

Many case-based reasoning systems support comprehen-
sion and adaptation of cases (Slade, 1991).
CATALOGEXPLORER supports the comprehension of ex-
amples by allowing users to evaluate them with
CONSTRUCTION ANALYZER. Adaptation is done by the
users by bringing an example into the Work Area in
JANUS-CONSTRUCTION. No efforts have been made toward
automating adaptation in our approach.

Achievements

In CATALOGEXPLORER, users gradually narrow a catalog
space. By analyzing the retrieved information, they can
incrementally refine a specification and a construction in
JANUS. The retrieval mechanisms described in this paper
allow users to access information relevant to the task at
hand without forming queries or navigating in information
spaces. Use of a partial specification and a partial con-
struction based on a retrieval by reformulation paradigm
allows users and the system to share control and respon-
sibility for retrieval.

The system can infer the relevance of subjective hidden
features specification and provide users with an explana-
tion for the inferences used. The underlying domain-
knowledge can be dynamically derived from the content of
the argumentative hypermedia component. The ordering
of retrieved examples by the computed appropriateness
values support dealing with the problem of partial match-
ing and multiple contradictory features of a design object.

By integrating knowledge-based construction, hyper-
media argumentation, catalogs of prestored design objects,

and specification components, several crucial design ac-
tivities can be supported, such as recomputing large infor-
mation spaces to make them relevant to the task at hand,
allowing the situation to talk back, and supporting
reflection-in-action (Schoen, 1983).

Limitations

We have not been confronted with the many problems as-
sociated with managing large spaces effectively because
our design object information spaces (palettes, arguments,
catalogs, critics) have been rather small. A lack of
mechanisms associating formal representations that can be
interpreted by the system with the textual representations
usced in the argumentative hypermedia component and in
the specification component forces us to manually derive
the specification-linking rules.

The current specification component needs to be ex-
tended and systematized. A task at hand partially articu-
lated by the specification can be used to dynamically deter-
mine the set of relevant arguments in the argumentation
component. A link between construction and specification
can reduce the size of a set of design units displayed in the
palette in the construction component by eliminating ir-
relevant ones. Articulation of the task at hand can be used
not only for reducing information spaces but also for guide
and constrain design processes. For example, application
of specification-linking rules can enable the system to
detect inconsistencies between specification and construc-
tion.

The representation of design examples in the catalog
needs to be enriched both formally and informally. The
specification needs to be stored together with the con-
structed floor layout. More support mechanisms are
needed to annotate and add arguments, enabling users to
record specification and design rationale associated with a
specific design stored in the catalog.

Conclusion

Dealing with ill-defined problems requires the integration
of problem setting and problem solving. This implies that
the task at hand cannot be fully articulated at the begin-
ning, but only be incrementally refined. The refinement is
driven by identifying the most relevant design objects (e.g.,
parts in the palette, critics in the construction analyzer,
arguments in the argumentative component and design ex-
amples in the catalog). The power of a design environment
is based on the integration within the multifaceted architec-
ture. ln this paper we have described mechanisms linking
partial specifications and a catalog of prestored designs,
thereby making design objects stored in a catalog relevant
to the task at hand without forcing users to articulate
queries or navigate in information spaces.
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