
HUMAN-COMPUTER INTERACTION, 1991, Volume 6, pp. 393-419
Copyright Q 1991, Lawrence Erlbaum Associates, Inc.

Making Argumentation Serve Design

Gerhard Fischer, Andreas C. Lemke, and
Raymond McCall
University of Colorado

Anders I. Morch
NYNEX Science and Technology

ABSTRACT

Documenting argumentation (i.e., design rationale) has great potential for
serving design. Despite this potential benefit, our analysis of Horst Rittel's
and Donald Schon's design theories and of our own experience has shown
that there are the following fundamental obstacles to the effective documen-
tation and use of design rationale: (a) A rationale representation scheme must
be found that organizes information according to its relevance to the task at
hand; (b) computer support is needed to reduce the burden of recording and
using rationale; (c) argumentative and constructive design activities must be
linked explicitly by integrated design environments; (d) design rationale must
be reusable. In this article, we present the evolution of our conceptual
frameworks and systems toward integrated design environments; describe a
prototype of an integrated design environment, including its underlying
architecture; and discuss some current and future work on extending it.

---- -

Authors' present addresses: Gerhard Fischer, Department of Computer Science and
Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430;
Andreas C. Lemke, GMD-IPSI, Dolivostr. 15, 6100 Darmstadt, Germany; Raymond
McCall, College of Environmental Design and Institute of Cognitive Science,
University of Colorado, Boulder, CO 80309-0314; Anders I. Morch, NYNEX
Science and Technology, 500 Westchester Avenue, White Plains, NY 10604.

FISCHER, LEMKE, McCALL, MORCH

CONTENTS

1. INTRODUCTION
2. DESIGN BATIONALE
3. SUPPOBT FOR ARGUMENTATION

3.1. IBIS
3.2. PHI and the Critique of IBIS
3.3. PHI Hypertext
3.4. Grounding Argumentation in Construction

4. SUPPORT FOR COFJST&UCT$ON
5. INTEGRATED DESIGN ENVIEONMENTS

5.1. Reflection in Action
5.2. An Architecture for Integrated Dwign Environments
5.3. Evaluation, Shortcornimp, and Limitations of j m s

6. CURaENT AND FUTURE WOIUf
7. CONCLUSIONS

1. INTRODUCTION

Documenting argumentation (i.e., design rationale) has great potential for
improving design. In addition to being invaluable for maintenance, redesign,
and reuse, it promotes critical reflection during design. Despite such potential
benefits, our experience has shown that there are fundamental obstacles to the
effective documentation and use of design rationale. Argumentation does not
naturally serve design; it must be made to do so.

The structure of this article follows the history of our work, driven by the
development and evaluation of conceptual frameworks and prototype sys-
tems. In Section 2, the term design rationale is characterized. In Section 3, we
discuss issue-based information systems (IBIS) and Procedural Hierarchy of
Issues (PHI), two frameworks for representing argumentation. We show that
IBIS has fundamental problems. IBIS represents neither dependency rela-
tionships between issues nor nondeliberated issues. PHI is a variant of IBIS
that remedies these problems. In the past, argumentation has been considered
in isolation from the activity of solution construction. The major break-
through in our thinking, based on observing the shortcomings of the two
isolated approaches, was the realization that argumentation must be inte-
grated into the context of construction. In Section 4, we describe approaches
to devising tools for construction to reduce the transformation distance from
application domain to implementation domain by supporting human problem-
domain communication. In Section 5, we discuss intqrdcd design nvironmmts
that unify construction and argumentation. The theoretical basis for this
integration is Schon's theory of reflection in action. In Section 6, we describe

MAKING ARGUMENTATION SERVE DESIGN 395

current and future work on adaptive and reusable domain-oriented issue
bases, enriched catalogs, and improved representations of the task at hand.

Throughout the article, we use the JANUS system (Fischer, McCall, &
Morch, 1989a, 1989b) as an object to think with. The article discusses aspects
of the JANUS system only as they are relevant to our theme; details about JANUS

can be found in the references provided.

2. DESIGN RATIONALE

Design. To define design rationale, we must first define the term design.
Similar to design theorists such as Cross (1984), Ritte1(1984), Schon (1983),
and Simon (1981), we see design not only as problem solving but also as
continual problem finding. It is a process of dealing with the kind of "messy
situationsn that are characterized by uncertainty, conflict, and uniqueness. It
is an evolutionary process in which "understanding the problem is identical
with solving it" (Rittel, 1972, p. 392), and it can best be characterized by
creativity, judgment, and dilemma handling, rather than by objective
scientific methods.

We agree with Donald Schon's view of design. For Schon, designing is not
primarily a form of problem solving, information processing, or search, but
a kind of making. "I shall consider designing as a conversation with the
materials of a situationn (Schon, 1983, p. 78). This definition covers a wide
range of fields, including architectural (building) design, urban design,
software design, hardware design, and various types of engineering design.
We call the transactions of designers with materials and artifacts construction,
which is the activity of creating the actual form of the solution. Construction
cannot always be physical but may have to be carried out in the abstract (e.g.,
on the drafting board). Physical interactions with materials may be too
expensive or too dangerous.

Des* Rationale. In our approach, design rationale means statements of
reasoning underlying the design process that explain, derive, and justify
design decisions. A truly complete account of the reasoning relevant to design
decisions is neither possible nor desirable. It is not possible because some
design decisions and the associated reasoning are made implicitly by construc-
tion and are not available to conscious thinking. Some of the rationale must
be reconstructed after design decisions have been made. Many design issues
are trivial; their resolution is obvious to the competent designer, or the design
issue is not very relevant to the overall quality of the designed artifact.
Accounting for all reasoning is not desirable because it would divert too many
resources from designing itself.

Design rationale in our approach is a synonym for argumentation. Rittel

FISCHER, LEMKE, McCALL, MORCH

was the first to advocate systematic documentation of design rationale as part
of design (Rittel, 1972). He sees design problems as fundamentally open
ended and controversial in the sense that there are no objective criteria for
closing problem definitions and settling disagreements. Such closing and
settling are necessary for design, but, for the designer, the decisions on closing
and settling are judgmental and political in nature. The design rationale takes
the form of a network of issues (design questions), selected and rejected
answers, and arguments for and against these answers (see Section 3).

The Promise of Design Retionale. Design rationale serves design if it helps
designers (a) to improve their own work, (b) to cooperate with other people
holding stakes in the design, and (c) to understand existing artifacts (i.e.,
communicate with past designers). Design rationale can trigger critical
thought in the individual designer. Writing an idea down allows the designer
to make the transition from simply creating that idea to thinking about it.

Design rationale can serve as a memory aid not only to individuals but also
to groups (Conklin & Begeman, 1988) by providing a forum for airing issues
crucial for coordinating group activities. It is useful for triggering and
focusing discussion among members of a project team. By making the
processes of reasoning public, it extends the number of people who can
participate in the critical reflection of decisions. This reduces the chances of
missing some important consideration, and it rationalizes discussion.

To alter a design sensibly - adding, fixing, or modifying features- it is
crucial to have an understanding of why it has been designed the way it has.
Without knowing the rationale, a designer is apt to violate constraints and to
repeat errors by ignoring what previous designers have learned. That is, the
rationale created in one design project may be a resource for future, related
design projects. Even If the difficulties encountered in a project are not
overcome, they might still be informative for future designers. The mere
existence of unforeseen problems is itself valuable information. Often, design
is based on mistaken predictions of how the artifact will perform in use. If
these predictions are documented, they can be compared to actual use. This
allows for the development of better theories for predicting performance.

3. SUPPORT FOR ARGUMENTATION

On the basis of his theory of wicked problems, Rittel (1984) rejected the
efforts by the majority of design methodologists to automate design reason-
ing. The argumentative approach tries to enhance design by improving the
reasoning underlying it and is aimed at supporting the reasoning of human
designers rather than replacing it with automated reasoning processes
(Fischer, 1990; Stefik, 1986).

MAKING ARGUMENTATION SERVE DESIGN

3.1. IBIS

IBIS (see Kunz & Rittel, 1970) is a method (not a computer system) for
structuring and documenting design rationale. The central activity of IBIS is
deliberation, that is, considering the pros and cons of alternative answers to
questions. The questions deliberated are called issues. Proposed answers-
including ones that are mutually exclusive - are called answers or positions.
Statements of the pros and cons of answers are called arguments. The decision
as to which answers to accept and reject is called the resolution of the issue.

The various issue deliberations are connected by a variety of interissue
relationships. The original IBIS included "more general than," "similar to,"
"replaces," "temporal successor of," "logical successor of," and others. Graph
diagrams with labeled notes and links representing issues and their relation-
ships were used for visualization. Such diagrams, called issue maps, were
meant to facilitate navigation through the IBIS "problemscape."

From 1970 to 1980, a variety of projects was undertaken that attempted to
use IBIS in real-world settings. These projects included IBIS systems for the
United Nations, the Commission of European Communities, the (West)
German Parliament, the German Federal Office of the Environment, and the
German Office of Health (Reuter & Werner, 1983). None of these systems
got past the pilot project stage. At the end of this stage, each was judged as
somehow failing to serve adequately the design tasks for which it had been
created.

After a decade of intensive and generally well-funded efforts to implement
IBIS, it became difficult to believe that the failures to do so were coincidental.
Clearly, there were fundamental problems with the IBIS method or the
approach to implementing it.

The identification and solution of fundamental problems in the creation
and use of issue-based design rationale have been central concerns of our
research. The first step in this research was a critique of IBIS and an
improved issue-based method called PHI (McCall, 1979). The next step was
the proposal of a new sort of software technology, hypertext, to handle
issue-based rationale (McCall, Mistrik, & Schuler, 1981). We next look at
these suggested improvements and the results of their implementation and
use.

3.2. PHI and the Critique of IBIS

McCall (197811979) suggested that there are two related types of informa-
tion that are omitted from IBIS but that are required for an issue-based
approach to serve design effectively. The first and most basic is dependency
relationships between issue resolutions, that is, relationships representing the

FISCHER, LEMKE, McCALL, MORCH

fact that the answering of issues often depends on how other issues are
answered. IBIS has no way of representing such dependencies; instead, it
treats issue-resolution processes as if they were separable.

The second type of information omitted from IBIS is questions that are not
deliberated, that is, questions for which pros and cons of alternative answers
are not considered. IBIS ignores these in favor of those questions with which
debate and controversy are most likely to be associated. Yet nondeliberated
questions occur frequently in design and can influence the resolutions of
issues. Furthermore, many such questions themselves have answers that
depend on the resolutions of issues.

In an effort to overcome these limitations of IBIS, McCall (1991)
developed the PHI approach to documenting design rationale. PHI, like
IBIS, is a design method rather than a piece of software. It differs from IBIS
in two crucial respects: It uses a broader definition of the concept issue, and
it uses a new principle for linking issues together.

In IBIS, the term issue denotes a design question that is deliberated; in PHI,
however, every design question counts as an issue, whether deliberated or not.
PHI also abandons the interissue relationships proposed by Rittel- "temporal
successor of," "similar to," "replaces," and so on. Instead, it uses serve
relationships. We say Issue A serves Issue B if and only if the resolution of A
influences the resolution of B. The dominant type of serve relationship used
in PHI is the "subissue of" relationship, which indicates that resolving one
issue is a subtask of the task of resolving another. More formally, we say Issue
A is a subissue of Issue B if and only if A serves B and B is raised before A.
Note that this means that A's being a subissue of B implies that A serves B,
and A's serving B does not in itself imply that A is a subissue of B.

In Rittel's IBIS, as evidenced by the many years of real-world and student
projects, an issue map is characteristically a dense and tangled network of
issues connected by a half dozen different relationships (see Figure I). In
PHI, however, an issue map is a simple quasi-hierarchical structure con-
nected only by serve relationships and having a single root issue (see Figure
2). This structure is tree-like but is seidom a pure tree, because issues can
share subissues (Figure 2). The root of a PHI issue map is an issue that
represents the project as a whole. For example, if one is designing a kitchen,
the root issue might be, "What should be the design of this kitchen?"

PHI has been in nearly continual test use both with and without computer
support since 1977. This testing has been informal rather than in the
framework of a formal, experimental setting. Furthermore, the testing has
emphasized intensive use by relatively few users at a time rather than
extensive use by many people-a style we have found to be especially
informative for system-building efforts. Testing began in 1977 and 1978 with
students at the University of California, Berkeley (McCall, 1978/1979). It

MAKING ARGUMENTATION SERVE DESIGN

Figun 1. An IBIS issue map.

I
temporal \4

temporal Where should s w s o r _ Where should
Wbre should SUCCe"Q the sink the stove
the walls be located?
be located? \ f i l a r

be located?

the Where windows should fl similar 1) milar tempocal Xr(m - a ~ SWSM belwated? War successor

Where should Where 4 Where should
the doors the counters +irplla~ the refrigerator
be located? be located? be located?

temporal

lpgical
SuCCeSsor

continued in Heidelberg, Germany, from 1979 to 1984. Since 1984, continual
test use has been made of PHI at the University of Colorado, Boulder.

Testing in Berkeley used eight undergraduates and was spread out over a
2-year period. The most important results of this were the generation of issue
bases (i.e., networks of issues) that showed the applicability of the PHI to
student design projects.

3.3. PHI Hypertext

In Heidelberg, testing of PHI began with the attempt in 1979 to use PHI
with only typewriters and word processors. By 1980, these efforts ran into
severe diff~culties in managing the issue-base information. In particular, the
information management tasks were so labor intensive and error prone that
the decision was made to attempt to develop computer support for PHI. The
system developed, called MIKROPLIS (McCall, Mistrik, & Schuler, 1981),
became the first issue-based hypertext system.

The defining characteristics of hypertext are nonlinear structure and
navigation. The need for the former was understood at the beginning of the
MIKROPLIS project (McCall, 1978t1979). The need for the latter emerged in
1982 from working with early users of MIKROPLIS who repeatedly pointed to
displayed nodes and asked how to retrieve the nodes linked to them.

Since the beginning of the MIKROPLIS project, several other issue-based
hypertext systems have been developed. These include Rittel's own system
(Conklin, 1987), gIBIS (Conklin & Begeman, l988), JANUS-ARGUMENTATION

What should the
design of this
kitchen be'

What types of Where should these
components need components be
to be arranged? located?

Where should the Where should the
arch'iectural wmponents kitchen equipment
be located? be located?

// \ w A w b s s w + // /&-\\b-

What are the Where should Where should Where should What are the Where should Where should Where should Where should
various types of the walk the doors the windows various types of the smk the couMrs the stove the reff i rator
architectural be located? be located? be located? kitchen be located? be located? be located? be located?
mmmnents equipment

\ * /
What is the
sue of the
family?

Figure 2. A PHI issue map. The starred issues, which are not deliberated, are dealt with by PHI but not by IBIS.

MAKING ARGUMENTATION SERVE DESIGN 40 1

(Fischer et al., 1989a), and PHIDIAS (McCall et al., 1990). MIKROPLIS, PHIDIAS,

and JANUS-ARGUMENTATION differ from the others by using PHI rather than
IBIS.

To further test PHI and the computer support being developed for it, the
MIKROPLIS team kept a PHI issue base for the design of the system. As soon
as MIKROPLIS became usable, this issue base was maintained using the
MIKROPLIS system itself. This self-referential use encouraged a certain level of
awareness and honesty about the performance of PHI and MIKROPLIS.

Additional testing of PHI and MIKROPLIS involved the development of issue
bases with MIKROPLIS by a dozen users of various kinds over a period of 3
years. These users included MIKROPLIS project members, people from other
project groups within the organization in Heidelberg, and several "knowledge
workers" from other organizations. In 1984, an American physician was hired
to test the system on a full-time basis for 3 months by attempting to develop
an issue base on health care policy. In 11 weeks, he developed a tightly
structured issue base equivalent to exactly 500 single-spaced pages in length.
This was taken by the physician and others as evidence of the usefulness and
usability of both PHI and MIKROPLIS. In particular, the physician felt that he
could not have achieved these results with alternative methods or technolo-
gies.

Despite this success, there were still problems with using both PHI and
MIKROPLIS. The artifact the physician was trying to produce was the issue base
itself. To those for whom the issue bases were only means for designing other
kinds of artifacts, the use of PHI involved a great deal of work over and above
the ordinary work of design. MIKROPLIS substantially reduced the errors and
secretarial work of creating an issue base, but there remained a large amount
of conceptual and editorial work. Many people were therefore disinclined to
use PHI because the costs of invested effort exceeded the immediate payoff.
For them, even with MIKROPLIS support, PHI still did not serve sufficiently the
design task at hand.

3.4. Grounding Argumentation in Construction

PHI hypertext with domain-oriented issue bases reduced the cost and
increased the benefits of design rationale. But as our systems dealt success-
fully with this aspect of design rationale, another, more fundamental obstacle
was revealed. There is a crucial design activity not supported by argumenta-
tive hypertext: construction. In fields such as architectural design, construction
is a graphic activity traditionally done by drawing. Construction is the sine qua
non of design, for no design project can be completed until the construction is
done. Argumentation gets its usefulness in design only by influencing
construction. For argumentation to serve design, it must serve construction.

402 FISCHER, LEMKE, McCALL, MORCH

Test use of PHI at the University of Colorado, Boulder, provided evidence
for the need to integrate argumentation with construction. The test use began
with two junior-level undergraduate environmental design studios, each with
about 20 students taught by Raymond McCall in 1985. Each studio involved
the same semester project: designing a neighborhood shopping center at a
particular location in Boulder. Students were asked to record their rationale in
PHI form during the project. In both studios, this worked well until students
began working out the details of the solution form, that is, actual drawings of
buildings. At this point, it became effectively impossible to get students to
document their rationale.

To see if these difficulties were independent of instructor and project, two
independent study students were asked to document a studio on housing
design taught by a nationally known architect. In an effort to keep this
inquiry unbiased, the students who did the documentation were not told
anything about the hypothesis being investigated and were given only
minimal supervision by McCall. The student produced a 175-page document
in PHI form, representing the work of a project group of five students in the
studio. Again, the documentation of rationale ceased shortly after the
construction of solution form began. According to the students who did the
documentation, the project group members became unable or unwilling to
talk to the documenters as form generation began.

The difficulties encountered in attempting to document the studio projects
suggested that there was a fundamental incompatibility between form
construction and PHI. To understand what this incompatibility might be,
M c C d made a series of three videotaped think-aloud protocols of student
designers from the College of Environmental Design.

The first protocol involved two juniors who worked for 6 weeks on the
design of a store. The second involved a senior working for 10 weeks on the
design of a house. The third involved a single senior working for 3 weeks on
the design of a kitchen. All were analyzed informally and the second was
selected for intensive formal analysis. In particular, representative sections of
the form construction process were transcribed and compared to the struc-
tures of PHI on a sentence-by-sentence and drawing-by-drawing basis. These
results suggested some revisions of PHI (e.g., more explicit representation of
criteria and better representation of hypothetical reasoning). On the whole,
however, there was a clear match between the processes the student used in
form generation and the processes represented in PHI.

The student who created the protocol was asked whether he felt the con-
clusions of this analysis were accurate. Before being shown the actual video-
tapes of his protocol, he claimed that he would not be able to think in PHI form
while he was designing. When shown the videotapes and their analysis, he
agreed that the analysis was correct but professed great surprise at this fact.

MAKING ARGUMENTATION SERVE DESIGN 403

At first, these results were quite puzzling. It seemed that students claimed
not to be able to use exactly the kind of thinking that they in fact used.
Eventually, we found a solution to this puzzle in Schon's theory of reflection
in action (Schon, 1983), which is explained later. This theory suggests that
the problem was not that students could not think in a PHI-type manner while
they devised a solution form but, rather, that they could not be self-
consciously aware of doing so. The principle is the same as that which makes
it impossible to watch one's own fingers while playing the piano and which
incapacitated the fabled centipede who attempted to think about his feet while
running.

In the past 3 years, additional informal testing of PHI has gone on at
Boulder, Colorado, within the framework of an undergraduate course on
design theory and methods. Each of the three times this course has been
offered, a consistent pattern has emerged that confirms the earlier results:
Students do not deal with issues of form construction until given a project that
requires them to do so. To do this project, students rely heavily on taped
protocols.

One reason for the need to support construction is that design argumen-
tation is densely populated with deictic references to parts of the partially
constructed solution. Without the ability to relate construction and argumen-
tation to each other, it is impossible to discuss the solution. Without
construction situations, design rationale cannot be contextualized. Students
using our systems to generate issue-based design rationale invariably left out
all the issues dealing with construction. They instead concentrated on
philosophical discussion, requirements, programmatic analysis, and other
preparatory issues rather than actually getting into the design.

Another problem was that serve relationships were often not effective in
helping the designer to generate the important rationale. Designers tended to
waste time on issues with little impact on the outcome of the project. This too
resulted from lack of support for construction. Designers were often unable to
judge the relative merits of issues because they could not see their influence
on construction. It is only by being relevant to construction that issues serve
the project. The serve relationships of PHI showed that resolving one issue
was valuable for resolving another. They could not, however, guarantee that
any issue served the project as a whole, for this depended on its influencing
construction. This lack of relevance to construction promoted what architects
call "talkitecturen (i.e., extended discussion having little impact on the
solution).

In a good design project, construction generates and regulates argumenta-
tion. Argumentation arises out of construction and is often tested by
construction. Creating good design rationale requires support for construc-
tion.

404 FISCHER, LEMKE, McCALL, MORCH

4. SUPPORT FOR CONSTRUCTION

Construction, a subactivity of design, is the composition of elementary
building blocks or materials to form an artifact. Sometimes the designer
constructs the artifact directly, but in many domains the designer constructs
it by making a model or plan of the artifact to be realized by others. The
elementary building blocks and materials available for construction activities
form the design substrate.

Construction is a crucial aspect of design because it creates situations that
can "talk back" to the designer:

Typically [the designer's] making process is complex. There are more
variables-kinds of possible moves, norms, and interrelationships of
these- than can be represented in a finite model. Because of this
complexity, the designer's moves tend, happily or unhappily, to produce
consequences other than those intended. When this happens, the
designer may take account of the unintended changes he has made in
the situation by forming new appreciations and understandings and by
making new moves. He shapes the situation, in accordance with his
initial appreciation of it, the situation "talks back," and he responds to
the situation's back-talk. (Schon, 1983, p. 79)

Humun Problem-Domuin Communication. The substrate used to design
computer-based artifacts typically consists of low-level abstractions (e.g.,
statements and data structures in programming languages and primitive
geometric objects in engineering computer-aided design). Abstracts at that
level are far removed from the concepts that form the basis of thinking in the
application domains in which these artifacts are to operate. The great
transformation distance between the design substrate and the application
domain (Hutchins, Hollan, & Norman, 1986) is a reason for the high cost and
the great effort necessary to construct artifacts using computers. To reduce
this transformation distance, high-level, domain-oriented substrates are
required. Akin (1978) and others have shown that designers design with
meaningful abstractions at different levels. For example, architects use
domain-related chunks or parts of buildings such as clusters of rooms,
individual rooms, areas, and furniture when they design.

Rather than communicating with computers, designers should perceive
design as communication with an application domain; the computer should
become effectively invisible. Human problem-domain communication
(Fischer & Lemke, 1988) tries to achieve this goal. It provides a new level of
quality in human-computer communication because the important abstract
operations and objects in a given area are built directly into the computing
environment. In an environment supporting human problem-domain com-

MAKING ARGUMENTATION SERVE DESIGN 405

munication, designers build artifacts from application-oriented building
blocks according to the principles of that domain, not the principles of
software or geometry.

Construction Kits. These kits (Fischer & Lemke, 1988) support human
problem-domain communication by offering domain-oriented building blocks
presented in a palette and a work area for construction by direct manipula-
tion. Interacting with a computer-based construction kit does not provide the
same back-talk afforded by designing with real objects. However, construc-
tion kits are an active medium that can react to the designer's actions in ways
that are different from real objects. To illustrate the concept of a construction
kit, we describe JANUS-CONSTRUCTION, a part of the JANUS system for the
domain of residential kitchen design.

JANUS-CONSTRUCTION is a construction kit for the domain of kitchen design.
The palette of the construction kit contains domain-oriented building blocks
called design units, such as sink, stove, and refrigerator (Figure 3). Designers
construct by obtaining design units from the palette and placing them into the
work area. They can thus see how different configurations fit the floor plan
and how requirements about storage space, work flow, and other consider-
ations can be satisfied-A situation is constructed that can talk back to a
skilled designer.

In addition to design by composition (using the palette and constructing an
artifact from scratch), JANUS-CONSTRUCTION also supports design by modifi-
cation. Existing designs can be modified by retrieving them from the catalog
and manipulating them in the work area. The catalog can also serve as a
learning tool. The user can copy both good and bad examples into the work
area. The system can critique such designs to show how they can be
improved, thus allowing users to learn from negative examples. Designers can
learn about the good features of prestored designs as well.

Designers using JANUS-CONSTRUCTION expressed a sense of accomplishment
in using the system because it enabled them to construct something quickly
without having detailed knowledge about computers. But construction kits do
not in themselves lead to the production of interesting artifacts (Fischer &
Lemke, 1988; Norman, 1986). Construction kits do not help designers
perceive the shortcomings of an artifact they are constructing. In that they
are passive representatives, constructions in the work area do not talk back
unless the designer has the skill and experience to form new appreciations
and understandings when constructing. Designers often do not see
characteristics that lead to breakdowns in later use situations. As Rittel put it:
"Buildings do not speak for themselves." Designers who are unaware of the
work triangle rule do not perceive a breakdown if that rule is violated (i.e., if
the total distance between stove, sink, and refrigerator is greater than about
23 ft).

406 FISCHER, LEMKE, McCALL, MORCH

Figure 3. JANUS-CONSTRUCTION: the work triangle critic. JANUS-CONSTRUCTION is the
construction part of jwus. Building blocks (design units) are selected from the
palette and are moved to desired locations inside the work area. Designers can
reuse and redesign complete floor plans Erom the catalog. The mesaages pane
displays critic messages automatically after each design change that triggers a
critic. Clicking with the mouse on a message activiates JANUS-IUU;UMENTATION and
displays the argumentation related to that message (see Figure 5).

Critics. Critics operationalize Schon's (1983) concept of a situation that
talks back. They use knowledge of design principles to detect and critique
suboptimal solutions constructed by the designer.

The critics in JANUS-CONSTRUCTION identify potential problems in the
artifact being designed. Their knowledge about kitchen design includes design
principles based on building codes, safety standards, and functional prefer-
ences. An example of a building code is, "the window area shall be at least
10% of the floor area"; an example of a safety standard is, "the stove should
be at least 12 in. away from a door"; and an example of a functional
preference is the work triangle rule (Jones & Kapple, 1984; Paradies, 1973).
Functional preferences may vary from designer to designer, whereas building
codes and safety standards should be violated only in exceptional cases.

Critics detect and critique partial solutions constructed by the designer
based on knowledge of design principles. Critics' knowledge is represented as
relationships between design units. The stove design unit, for example, has

MAKING ARGUMENTATION SERVE DESIGN 407

critics with the following relations: away-from stove door, away-from stove
window, near stove sink, near stove refrigerator, and not-immediately-
next-to stove refrigerator. These critics are implemented as condition-action
rules, which are tested whenever the design is changed. The changes that
trigger a critic are operations that modify the design in the work area. When
a design principle is violated, a critic will fire and display a critique in the
messages pane of Figure 3. In the figure, the work triangle critic fired telling
the designer that the "work triangle is greater than 23 feet." This identifies a
possibly problematic situation (a breakdown) and prompts the designer to
reflect on it. The designer has broken a rule of functional preference, perhaps
out of ignorance or by a temporary oversight.

Users can modify and extend JANUS-CONSTRUCTION by modifying or adding
design units, critic rules, and relationships (Fischer & Girgensohn, 1990).
This end-user modifiability allows for evolution of the environment as design
practice and requirements change. Designers can also modify critic rules
when they disagree with the critique given. Standard building codes (hard
rules) should not be changed, but functional preferences (soft rules) vary
from designer to designer and, thus, can and should be adapted. Designers
have the capability to express their preferences. For example, if designers
disagree with the design principle that the stove should be away from a door,
they can edit the stove-door rule by replacing the away-from relation between
stove and door with another relation (selected from a menu) such as near.
After this modification, they will not be critiqued when a stove is not away
from a door.

Lack of Argumentative Support. The advantage of constructing something
is that the constructed artifacts and situations can talk back to the designer.
The back-talk of the situation is enriched in our framework with the critics,
but the short messages the critics present to designers cannot reflect the
complex reasoning behind the corresponding design issues. To overcome this
shortcoming, we initially developed a static explanation component for the
critic messages (Lemke & Fischer, 1990; Neches, Swartout, & Moore, 1985).
The design of this component was based on the assumption that there is a
"rightn answer to a problem, but the explanation component proved to be
unable to account for the deliberative nature of design problems. Therefore,
argumentation about issues raised by critics must be supported, and argu-
mentation must be integrated into the context of construction.

5. INTEGRATED DESIGN ENVIRONMENTS

Separate systems for construction and argumentation have major deficien-
cies (as articulated in the previous sections and by Fischer et al., 1989a). If
argumentation is to serve design, it must do so by informing construction. If

408 FISCHER, LEMKE, McCALL, MORCH

construction acknowledges the nature of design processes (messy situations
that are characterized by uncertainty, conflict, and uniqueness), it must have
access to the argumentative component. This can happen only if construction
and argumentation are explicitly linked in an integrated design environment.

5.1. Reflection in Action

Our original attempt at integrating construction and argumentation was to
have construction take place within the framework of argumentation - in
other words, to raise an issue for each construction step (What should the
next step be?"), deliberate it, and turn the resolution into a constructive
action. Unfortunately, trials of this approach with design students showed
that it did not work (see Section 3). A reason for this failure can be found in
Schon's theory of design. Schon portrayed design as a continual alternation
between two radically different and mutually exclusive types of design
processes: knowing in action and reflection in action.

In a good process of design, this conversation with the situation is
reflective. In answer to the situation's back-talk, the designer reflects-
in-action on the construction of the problem, the strategies of action, or
the model of the phenomena, which have been implicit in his moves.
(Schon, 1983, p. 79)

Knowing in action is the unself-conscious, nonreflective doing that controls
the situated action of constructing the actual artifact. Re$ection in action is the
self-conscious, rational process of reflecting about this action within the
"action present," that is, the time period during which reflection can still make
a difference to what action is taken. Reflection is required when there is a
breakdown in knowing in action. Such a breakdown typically occurs when
action produces unforeseen consequences, either good or bad. When a
breakdown occurs, reflection can be used to repair the breakdown situation,
and then action can continue.

Schon's concepts do not in themselves tell us what the architecture of
design support environments should be. His concepts must be operationalized
further and augmented substantially if they are to provide a basis for
computer-based systems. In our work, we interpret action as "construction"
and refection as "argumentation." For argumentation to get used, it must be
part of reflection in action, implying that it should be brought to the designer's
attention only in breakdown situations. Construction cannot be done within
an argumentative framework because the former implies unself-conscious,
nonreflective engagement in creating the solution, whereas the latter implies
self-conscious, reflective thinking about the solution. Argumentation must
take place within the action present, that is, within the time period during
which it can still make a difference to what action is taken. If the time

MAKING ARGUMENTATION SERVE DESIGN 409

Figure 4. A multifaceted architecture. The links between the components are
crucial for exploiting the synergy of the integration.

provide
context "L\
Simulation /

reduce I....-
nentative

m-.. reduce
CatalogExplorer

3-v A r g u m d n
Catalog ZUustrator

illustrate

required to read and/or record the argumentation is greater than the action
present, design is disrupted and the required context is lost. Design rationale
can aid reflection by informing with design knowledge, principles, and ideas
and by triggering critical thought in the designer. Schon's theory, when
operationalized, can then be used as the basis for a system architecture.

5.2. An Architecture for Integrated Design Environments

Over the last few years, we have developed an integrated, multifaceted
architecture for design environments (see Figure 4). The multifaceted
architecture consists of the following five components:

A construction kit is the principal medium for implementing design.
It provides a palette of domain-specific building blocks and supports
the construction of artifacts using direct manipulation and form
filling.

An argumentative hypertext system contains issues, answers, and
arguments about the design domain. Users can annotate and add
argumentation as it emerges during design processes.

A catalog provides a collection of prestored design examples illus-

FISCHER, LEMKE, McCALL, MORCH

trating the space of possible designs in the domain and supporting
reuse and case-based reasoning.

A specification component allows designers to describe some charac-
teristics of the design they have in mind. The specifications are
expected to be modified and augmented during the design process,
rather than to be articulated fully at the beginning. They are used to
retrieve design objects from the catalog and to filter information in
the hypertext.

A simulation component allows designers to carry out "what-if' games
simulating usage scenarios with the artifact being designed.

Intaption. The multifaceted architecture derives its essential value from
the integration of its components and the links between the components. Used
individually, the components are unable to achieve their full potential. Used
in combination, however, each component augments the value of the others,
forming a synergistic whole. At each stage in the design process, the partial
design embedded in the design environment serves as a stimulus to users for
suggesting what they should attend to next.

Links among the components of the architecture are supported by various
mechanisms (see Figure 4):

CONSTRUCTION ANALYZER Users need support for construction, argu-
mentation, and perceiving breakdowns. Experience with our early
systems has shown that users too often fail to hear the situation talk
back; breakdowns do not occur that trigger reflection in action.
Additional system components are needed to signal breakdowns. This
is the role of the CONSTRUCTION ANALYZER in the multifaceted archi-
tecture. The CONSTRUCTION ANALYZER is a version of the critics
described in Section 4 enhanced with pointers into the argumentation
issue base. The firing of a critic signals a breakdown to users and
provides them with entry into the exact place in the argumentative
hypertext system at which the corresponding argumentation is lo-
cated.

ARGUMENTATION ILLUSTRATOR The explanation given in argumentation
is often highly abstract and very conceptual. Concrete design exarn-
ples that match the explanation help users to understand the concept.
The ARGUMENTATION ILLUSTRATOR helps users to understand the
information given in the argumentative hypertext by finding a
catalog example that realizes the concept (Fischer, 1990).

CATALOG EXPLORER This helps users to search the catalog space
according to the task at hand (Fischer & Nakakoji, 1991). It retrieves

MAKING ARGUMENTATION SERVE DESIGN

design examples similar to the current construction situation and
orders a set of examples by their appropriateness to the current
specification.

A typical cycle of events supported by the multifaceted architecture is: (a)
users create and refine a partial specification or construction; (b) breakdowns
occur; (c) users switch and consult other components in the system made
relevant by the system to the partially articulated task at hand; and (d) users
refine their understanding based on the back-talk of the situation. As users go
back and forth among these components, the problem space is narrowed, a
shared understanding between users and the system evolves, and the artifact
is refined incrementally. This article focuses on the integration of construc-
tion and argumentation. Other components of the multifaceted architecture
are described elsewhere (see Fischer, 1990; Fischer & Nakakoji, 1991).

JANUS-ARGUMENTATION: The Argumentation Component of JANUS. JANUS-

ARGUMENTATION is the argumentation component of JANUS (see Figure 5). It is
an argumentative hypertext system based on the PHI method and imple-
mented using the SYMBOLICS DOCUMENT EXAMINER (Walker, 1987). JANUS-

ARGUMENTATION offers a domain-oriented, generic issue base about how to
construct residential kitchens. This design knowledge has been acquired from
protocol studies (Fischer et al., 1989b) and from kitchen design books (Jones
& Kapple, 1984). In JANUS-ARGUMENTATION, designers explore issues, an-
swers, and arguments by navigating through the issue base. The starting
point for the navigation is the argumentative context triggered by a critic
message in JANUS-CONSTRUCTION. Clicking with the mouse on a critique in
JANUS-CONSTRUCTION (see Figure 3) activates JANUS-CONSTRUCTION and ac-
cesses the issue and answer corresponding to the critique. At any place in the
issue base, designers can invoke the ARGUMENTATION ILLUSTRATOR to obtain an
example from the catalog that implements the current issue answer.

5.3. Zvaluation, Shortcomings, and Limitations of JANUS

Evaluation. We have informally evaluated JANUS with subjects ranging
from neophyte to expert designers and from neophyte to expert computer
users (Fischer et al., 198913). The subjects were tested in an experiment
consisting of two tasks: a learning task and a design task. The learning task
consisted of improving a "badn kitchen design from the catalog (see Figure 3),
and the design task consisted of designing a "goodn kitchen, given a set of
constraints. The constraints were imposed to test the various operations of the
system. Users unfamiliar with the computer system were given help by the
experimenter during an initial learning task. A final questionnaire was given
to the subjects after the experiment.

FISCHER, LEMKE, McCALL, MORCH

Figure 5. JANUS-ARGUMENTATION: Rationale for the work triangle rule. JANUS-

ARGUMENTATION is an argumentative hypertext system baaed on the PHI method.
The Viewer pane shows a diagram illustrating the work triangle concept and
arguments for and against the work triangle answer. The top right pane shows an
example illustrating this answer generated by the ARGUMENTATION ILLUSTRATOR.

The Visited Nodes pane lists in sequential order the previously visited argumen-
tation topics. By clicking with the mouse on one of these items, or on any bold
or italicized item in the argumentation text itself, the user can navigate to related
issues, answers, and arguments. Hypertext access and navigation are made
possible using this feature, inherited from the smnoms DOCUMENT EXAMINER.

Answer (R e ~ r l g a r e t a r . Sink. Stove)

The dtstance between sink, stove and refrtgarator, the v.w+ trrangle.
should be less than 23 feat.

Figure 10: the work tr iangle
I

Argumlrnt (Walking Distance)
The work trlangle Is an Important concept In kitchen design. The
work triangle denotes the center front dmance between the

three main applianses: alnh, atove and refrigernfor. Th~s length
should be lees then 23 feat to avoid unnecessary walking and :o
ensure an efficient work flow m the katchenl

A r g m s n t (Small Room)
In small kntchens whsra the work tnanale I S less than 16 feet

Designers with limited domain knowledge were able to understand the
critics and learn from them to create reasonable kitchen designs. For example,
several students did not know that building codes require at least one of the
entrances into a kitchen to be at least 36 in. wide. One user also learned that
the stove should be away from a door, based on safety requirements with
respect to fire and burn hazard. He found this to be especially relevant to his
own home where small children are constantly running in and out of the
kitchen.

The critics were appreciated but were often ignored when they actively
critiqued the user during construction. One user replied to this by saying that
too much information was presented and that she could give attention to only
one thing at a time. She preferred to complete some part of the design and

MAKING ARGUMENTATION SERVE DESIGN

then ask the system for a critique by using the Critique All command. Other
users explained that they ignored critics because they already had been aware
of them, either by a previous critique or by the fact that they already knew
about them (such as that the sink should be in front of a window). In the
questionnaire, all users found that critiquing was helpful in reminding them
about design rules they did not think about while they were designing.

Users uncertain about a critique from the system or interested in more
background information about design principles entered the hypertext system
by clicking on the critique message. No users got lost in the hyperdocument,
but one found that some of the arguments were not justified from his point
of view. He would have liked to add his own counterarguments to it.
Currently end-user modifications of the issue base are not supported. Another
user found that some arguments did not go into enough depth in order to be
persuasive. For example, he would have liked to know why a building code
requires that a kitchen entrance should be greater than 36 in. wide.

Shortcomings and Limitations. Our integrated design environments in
their current form still suffer from a number of major limitations:

Design environments need to evolve for the following reasons: (a)
The world modeled in these design environments changes (Curtis,
Krasner, & Iscoe, 1988), and (b) the background knowledge for a
design domain cannot be articulated fully-It is tacit and requires
breakdown situations to be activated (Ehn, 1988; Winograd & Flores,
1986). End-user modifiability is a prerequisite for evolution because
the breakdown situations are experienced by the domain experts
using these systems, not by the knowledge engineers who built them
originally. Fischer and Girgensohn (1990) described a mechanism to
make JANUS-CONSTRUCTION end-user modifiable. REFLACT (described
in the next section) is an effort to make the argumentative component
adaptive. One reason that JANUS-ARGUMENTATION failed to achieve
this goal is that the DOCUMENT EXAMINER (Walker, 1987) is only a
reader's interface to the hypertext system and requires a different
writer's interface (Walker, 1988). Therefore, JANUS-ARGUMENTATION

primarily serves as a design information system and does not allow
the addition of new design rationale in a contextualized manner.

The back-talk of the situation must be enhanced further with a
simulation component providing us with insights that argumentation
does not capture. This requirement became obvious in our experi-
ments with professional kitchen designers who tested their designs by
running mental simulations of specific situations (e.g., preparing a
fancy dinner, imagining work-flow patterns with more than one
person in the kitchen).

414 FISCHER, LEMKE, McCALL, MORCH

The issue base of JANUS-ARGUMENTATION is generic; that is, it is used
for any kitchen design project. The issue base is also static in that i t
does not adapt to the individual design projects. Some issues are only
relevant to some of the design projects addressed by the issue base.
For example, if the kitchen has no eating area, then issues relating to
the eating area in the kitchen are irrelevant. Structures in the issue
base irrelevant to the task at hand make the issue base unwieldy and
make it difficult to find the relevant information. To filter out
irrelevant information from a generic issue base, the serves reiation-
ship must be computed dynamically from the task at hand. The
exploratory nature of design makes any static argumentative
hypertext system, such as JANUS-ARGUMENTATION, inadequate. A
dynamic hypertext system adapts to design decisions such as adding
or removing an eating area.

6. CURBENT AND FUTURE WORK

Our current and future work is focused on four ways to make argumen-
tation better serve design: (a) Static issue bases are being made extensible and
dynamic, (b) the reusability of issue bases is being improved, (c) design
rationale is being added to the examples in the catalog, and (d) a system
component for articulating and representing the task at hand is being
developed. Some of these extensions are being carried out as separate efforts
later to be integrated into the overall environment.

Adapt& Issue Bases. In response to the problems caused by the static
nature of JANUS-ARGUMENTATION, we are exploring ways to make reusable
issue bases more active and responsive to the situation, thus increasing the
immediate benefit of issue bases. We have implemented these methods in
REFLACT, a PHI-based hypertext system (Lemke, 1990). In REFLACT, the
designer not only consults the issue base but also indicates design decisions-
whether deliberated or not - by selecting one or more answers. The selected
answers determine which issues the system raises from its issue base. This is
done with the help of the PHI subissue relationship. In REFLACT, issue bases
are fully modifiable and extensible by end users. Designers can add, modify,
or delete issues, answers, and arguments without leaving REFLACT

Reusable Domain-Otimted Issue h s . A design rationale is a large
additional product of the design process. Creating and representing a design
rationale is a great effort. Reuse of existing issue bases has the potential to
reduce dramatically this effort. Every project is unique in some respects; few
if any projects are unique in all respects. Therefore, the contents of a project
issue base is not entirely unique to that project. Similar projects overlap

MAKING ARGUMENTATION SERVE DESIGN 41 5

substantially in issues, answers, and arguments. This is not to say that the
issues are resolved in the same way, but merely that a great deal of the
reasoning is shared by projects.

Reusable issue bases can serve as seeds that grow with each new design
project. Each project extends and enhances the reusable issue base. The issue
base being reused provides information about how to decompose the task,
possible answers to issues, and principles of design. The issue base also warns
designers of potential dead ends and unproductive solution directions. This is
important because designers need better access to domain-oriented informa-
tion (Curtis et al., 1988). Even expert designers can no longer master all the
relevant knowledge, especially in technologically oriented design, where
growth and change of the knowledge base are incessant (Draper, 1984;
Norman, 1988).

Domain-oriented issue bases also amplify the designer's ability to reflect on
issues. Recurring design issues could be researched intensively, and the
results of this could then be stored at the appropriate location in the issue base
for use by future designers encountering similar decisions in the future. This
would, for example, allow the "folk theoriesn of designers to be subjected to
rigorous scentific scrutiny. Cumulative domain-oriented issue bases could
also foster communication among designers, researchers, and users about
recurring matters of design.

The PHI subissue relationship is crucial to making issue bases reusable.
The hierarchical grouping of issues allows argumentation systems to be built
that filter issue bases according to the specifics of the new task. REFLACT filters
issue bases using its mechanism of issue conditions. The system provides a
common issue base for all projects in a domain such as kitchen design. This
issue base includes issues, answers, and arguments at all levels of generality.
As pointed out before, not every issue applies in each design project, even if
it falls into one general domain.

Enriched Catalogs. The JANUS catalog currently does not contain the
design rationale for the designs it contains. By adding the rationale to each
catalog example, designers can better understand the examples, can more
easily find examples that are similar to the kitchens they are designing, and
can reuse the rationale.

Representation of the Task at Hand. More support to capture incremen-
tally the task at hand is needed. Beyond the information contained in the
construction situation, our specification component needs to be developed
further to let designers articulate the specifics of their design efforts. This
knowledge can be used by REFLACT to filter out irrelevant information from
a reusable issue base. An initial effort in this direction is described by Fischer
and Nakakoji (1991).

416 FISCHER, LEMKE, McCALL, MORCH

7. CONCLUSIONS

The title of this article, "Making Argumentation Serve Design," indicates
that it is a challenge to make the use of design rationale feasible. We have
identified major obstacles for meeting this challenge. Creating and using
design rationale is a time-consuming process that must be carried out in
addition to standard design activities, and there is little immediate reward.
Recording and accessing design rationale can disrupt design and interfere
with reflection in action. Argumentation that is removed from construction
loses relevance to the task at hand. Without tight integration of argumenta-
tion and construction, designers fail to apply argumentation in the construc-
tion activity.

We have analyzed these problems within the design theories of Schon
(1983) and Rittel(1984). These analyses gave us a constructive understanding
that suggested the following solution approaches. First, the IBIS method had
to be modified to emphasize relevance to the task at hand. This resulted in the
development of the PHI method. Second, the PHI hypertext systems reduce
the amount of secretarial work involved in managing issue bases. Third,
support for reuse of issue bases reduces the conceptual work in creating
project rationale and creates an issue base whose visible content and form
correspond to the designer's changing understanding of the problem. Fourth,
we developed tools for construction that support human problem-domain
communication and integrated them with tools for argumentation via critics.
These integrated design environments form a synergistic whole by causing the
construction situation to talk back to the designer.

A final word on the generality of our approach is needed. JANUS was used
as an "object to think with" in this article. We have used the same basic
approach for user interface design (Lemke & Fischer, 1990), development
and maintenance of Cobol programs (Atwood et al., 1991), river basin
planning and operations (Lemke & Gance, 1990), computer network design
(Fischer et al., 1991), knowledge editing, and design and planning of lunar
habitation. As these systems get used in realistic work environments, we will
get valuable feedback about the viability, the strengths, and the weaknesses of
this approach.

AcknowZeaIgnunts. The authors thank the members of the Human-Computer
Communication group at the University of Colorado who contributed to the
conceptual framework and the systems discussed in this article.

Support. The research was supported by the National Science Foundation under
Grant Nos. CDA-8420944, IRI-8722792, and IRI-9015441; by the Army Research
Institute under Grant No. MDA903-86-C0143; and by grants from the Intelligent
Interfaces Group at NYNEX and from Software Research Associates (SRA) in
Tokyo.

MAKING ARGUMENTATION SERVE DESIGN

REFERENCES

Akin, 0 . (1978). How do architects design? In J. Latombe (Ed.), Artificial intelligence
andpattern recognition in computer aided design (pp. 65-1 19). New York: North-Holland.

Atwood, M. E., Bums, B., Gray, W. D., Morch, A. I. , Radlinski, E. R. , &Turner,
A. (1991). The GRACE integrated learning environment -A progress report. Proceed-
ings of the Fourth International Conference on Industrial tY Engineering Applications of
Artificial Intelligence tY Exput Systrms (IEAIAIE 91; pp. 741-745). Tennessee:
University of Tennessee Space Institute (UTSI).

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computn; 20(9),
17-41.

Conklin, J., & Begeman, M. (1988). gIBIS: A hypertext tool for exploratory policy
discussion. Proceedings of the Confmce on Computcr Supported Cooperative Work, 140- 152.
New York: ACM.

Cross, N. (1984). Developments in design methodology. New York: Wiley.
Curtis, B., Krasner, H. , & Iscoe, N. (1988). A field study of the software design

process for large systems. Communications of the ACM, 31, 1268-1287.
Draper, S. W. (1984). The nature of expertise in UNIX. Proceedings of INTERACT '84,

IFIP Conference on Human-Computer Interaction, 182- 186. Amsterdam: Elsevier Sci-
ence Publishers.

Ehn, P. (1988). Work-oriented design of computer artifacts. Almquist & Wiksell Interna-
tional.

Fischer, G. (1990). Cooperative knowledge-based design environments for the design,
use, and maintenance of software. Proceedings of the Software Symposium '90, 2-22.
Kyoto, Japan.

Fischer, G., & Girgensohn, A. (1990). End-user modifiability in design environments.
Proceedings of the CHI '90 Confmce on Human Factors in Computing Sysems, 183-191.
New York: ACM.

Fischer, G., Grudin, J . , Lemke, A. C., McCall, R . , Ostwald, J . , & Shipman, F.
(1991). Supporting colkaborative design with integrated knowledge-based design environments
(Technical Report). Boulder: University of Colorado, Department of Computer
Science.

Fischer, G., & Lemke, A. C. (1988). Construction kits and design environments:
Steps toward human problem-domain communication. Human-Computer Interaction,
3, 179-222.

Fischer, G. , McCall, R. , & Morch, A. (1989a). Design environments for constructive
and argumentative design. Proceedings of the CHI '89 Confmce on Human Factors in
Computing Systems, 269-275. New York: ACM.

Fischer, G., McCall, R., & Morch, A. (1989b). JANUS: Integrating hypertext with a
knowledge-based design environment. Proceedings of Hypertext '89, 105- 1 17. New
York: ACM.

Fischer, G., & Nakakoji, K. (1991). Empowering designers with integrated design
environments. Proceedings of the First International Conference on ArtifiGial Intelligence in
Design, 191-209. Edinburgh, UK: Royal Museum of Scotland.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation
interfaces. In D. A. Norman & S. W. Draper (Eds.), User centered system design, new
perspectives on human-computer interaction (pp. 87-124). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

418 FISCHER, LEMKE, McCALL, MORCH

Jones, R. J . , & Kapple, W. H . (1984). Kitchen planningprinciples-equipment-appliances.
Urbana-Champaign: University of Illinois, Small Homes Council-Building Re-
search Council.

Kunz, W., & Rittel, H. (1970). Issues as elments of information systems (Working Paper
No. 131). Berkeley: University of California, Center for Planning and Develop-
ment Research.

Lemke, A. C. (1990). Framer-hypertext: An active issue-based hypertext system.
Proceedings of the Workshop on ZnteZligent Access to Information Systems, 34-38. Darmstadt,
Germany: GMD-IPSI.

Lemke, A. C., & Fischer, G. (1990). A cooperative problem solving system for user
interface design. Proceedings of AAAZ-90, Eighth National Conference on Artijcial
IntcIIignrce, 479-484. Cambridge, MA: AAAI Press/MIT Press.

Lemke, A. C., & Gance, S. (1990). End-user modtjtability in a water managmunt application
(Tech. Rep. No. CU-CS-541-9). Boulder: University of Colorado, Department of
Computer Science.

McCall, R. (1979). On the strzuture and use of issue systems in design (Doctoral Dissertation,
University of California, Berkeley, 1978). University Microfilms.

McCall, R. (1991). PHI: A conceptual foundation for design hypermedia. Design
Studies, 12, 30-41.

McCall, R. , Bennett, P., d'oronzio, P., Ostwald, J . , Shipman, F., & Wallace, N.
(1990). PHIDIAS: A PHI-based design environment integrating CAD graphics into
dynamic hypertext. In A. Rizk, N. Streitz, & J. AndrC (Eds.), Hypertext: Concepts,
systems and applications: Proceedings of the European Conference on Hypertext, INRIA (pp.
152-165). Cambridge, England: Cambridge University Press.

McCall, R., Mistrik, I . , & Schuler, W. (1981). An integrated information and
communication system for problem solving. In H. S. Glaeser (Ed.), Data for science
and technology-Proceedings of the Seventh International C ~ D A T A Conference 1980 (pp.
51 2-5 16). London: Pergamon.

Neches, R. , Swartout, W. R., & Moore, J. D. (1985). Enhanced maintenance and
explanation of expert systems through explicit models of their development. I E E E
Transactions on Sojware Engineering, SE-11, 1337-1 351.

Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper
(Eds.), User centered system design, new perspectives on human-computer interaction (pp.
31-62). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.
Paradies, K. (1973). The kitchen book. New York: Wyden.
Reuter, W., & Werner, H. (1983). Thesen und Empfclllungen zur Anwendung uon

Arpmentatiuen In&nnatiomsystnnen [Theses and recommendations about the use of
argumentative information systems] (Working Paper). Stuttgart: University of
Stuttgart, Institute for Foundations of Planning. (To be published in English in D.
Noble (Ed.), Issue-based information systems, Prentice-Hall)

Rittel, H. W. J. (1972). On the planning crisis: Systems analysis of the first and
second generations. &drt@okonomm, 8, 390-396.

Rittel, H. W. J. (1984). Second-generation design methods. In N. Cross (Ed.),
Developments in design methodolo@ (pp. 317-327). New York: Wiley.

Schon, D. A. (1983). The rejlectiveprwtitionn: How professional think in action. New York:
Basic Books.

Simon, H. A. (1981). The sciences of the artificial. Cambridge, MA: MIT Press.

MAKING ARGUMENTATION SERVE DESIGN 419

Stefik, M. J. (1986, Spring). The next knowledge medium. AZ Magazine, pp. 34-46.
Walker, J. H. (1987). Document examiner: Delivery interface for hypertext docu-

ments. Hypertext '87 Papers, 307-323. Chapel Hill: University of North Carolina.
Walker, J. H. (1988). Supporting document development with Concordia. ZEEE

Computer, 21(1), 48-59.
Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new foundation

for design. Norwood, NJ: Ablex.

HCZ Editorial Record. First manuscript received July 3, 1990. Revisions received
February 14, 1991, and May 6, 1991. Accepted by John M. Carroll. -Editor

