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ABSTRACT 

Reality is not user-friendly. To cope with, model, and 
comprehend a complex reality requires complex systems. Complex sys­
tems offer power, but they are not without problems. In our research, 
high functionality computer systems serve as prototypical examples for 
complex systems and are used to instantiate our framework of coopera­
tive problem solving in joint human-computer systems. 

Models play a crucial role in the creation and use of these sys­
tems and help to increase their comprehensibility. Three different types 
of models are discussed in this paper: the designers' models of users, 
the users' models of systems, and the systems' models of users. 

Innovative system designs supporting human problem-domain 
communication and providing design environments illustrate the 
relevance of these models in making complex systems comprehensible. 

Introduction 
We are interested in the design and understanding of high­

functionality computer systems. These systems contain thousands of 
objects, and they are not completely mastered even by expert users. An 
important question to ask is: What kind of models are needed for the 
design, comprehension, and use of such systems? 

High-functionality computer systems are designed systems. To 
comprehend designed systems, we have to understand the goals, func­
tions, and adaptive capabilities for which they are used. The models 
associated with these systems are part of the design (i.e., they must be 
designed too), and they can and should provide important requirements 
for the design. 
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Many high functionality computer systems (e.g., powerful pro­
gramming environments, knowledge-based systems) are used to support 
cooperative problem solving in joint human-computer systems. Models 
are of greater importance in cooperative problem solving systems than 
in autonomous systems because the problem solving activity is shared 
by the cooperating agents. In order to increase the comprehensibility of 
high-functionality computer systems, we are developing methodologies 
and systems which break the conservation law of complexity (Simon, 
1981). This law states that the description of a complex system does 
not need to be equally complex. 

This paper discusses and describes three types of models (extend-
ing a classification scheme presented in Fischer (1984)): 

M J : the designers' models (the models that designers have of users, 
tasks, and technologies relevant to the design of a system), 

M2 : the users' models (the models that users have of systems and 
tasks), and 

M3 : the systems' models (the models that systems have of users 
and tasks). 

The relevance of these models is demonstrated in the context of a 
number of system building efforts oriented towards making complex 
systems comprehensible. 

High-functionality computer systems - examples of com­
plex systems 

Our main research interest is how people understand and success­
fully use high-functionality computer systems that contain substrates of 
components used in the design of artifacts in a variety of domains. 
Symbolics Lisp machines and UNIX systems are examples of high­
functionality computer systems. Symbolics Lisp machines, for example, 
offer approximately 30,000 functions and 3,000 flavors (object-oriented 
classes) documented on 4,500 pages of manuals. They contain software 
objects which form substrates for many kinds of tasks. For example, the 
user interface substrate provides classes of windows, support for inter­
referential input/output, and screen layout design tools. Systems with 
such a rich functionality offer power as well as problems for designers 
and users. Even experts are unable to master all facilities of high-
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functionality computer systems (Draper, 1984). Designers using these 
systems can no longer be experts with respect to all existing tools, 
especially in a dynamic environment where new tools are being con­
tinuously added. High-functionality computer systems create a tool­
mastery burden (Brooks, 1987) that can outweigh the advantage of the 
broad functionality offered. 

The study and the understanding of complex objects and systems 
has been the major research goal for the Sciences of the Artificial 
(Simon, 1981). Dawkins (1987) claims that one major area for studying 
complex systems is biology, because biological objects give the appear­
ance of having been designed for a purpose. This is in contrast to phy­
sics which he sees as the study of simple things that do not tempt us to 
invoke design. From a design point of view, human-made artifacts 
(computers, airplanes, etc.) should be treated as biological objects 
despite the fact that they are not alive. 

Complex objects and systems in Simon's, Dawkin's, and our own 
thinking can be characterized by three major properties: 

(1) They have a heterogeneous structure, 

(2) their constituent parts are arranged in a way that it is unlikely to 
have arisen from chance alone, and 

(3) they have some quality which was specified in advance. 

There is a crucial difference between models for the Natural Sci­
ences (dealing with natural systems) and models for the Sciences of the 
Artificial (dealing with designed systems). In the Natural Sciences, 
models have to describe existing phenomena. We cannot change phy­
sics to make the construction of models easier for users. Models have 
to be based on reality. However, simplification may playa crucial role 
in achieving a high degree of cognitive comprehensibility (e.g., worlds 
without air resistance and without friction are widely used 
simplifications ). 

In the Sciences of the Artificial, models are an integral part of the 
design itself, and they can and should serve as important design criteria 
for systems. Previous research about models has been oriented mostly 
towards rather simple systems i.e., systems requiring operation only or 
systems which could be learned in a few hours or less (Kieras and 
Bovair, 1984). Norman (1986) claims that constructing models is easy 
for single tasks, used by one set of users (e.g., specialized tools such as 
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spreadsheets) whereas constructing models is difficult (perhaps impossi­
ble) for general purpose systems with an open-ended set of users and 
power. High-functionality computer systems pose a dilemma: On the 
one hand, these are systems where good models are most urgently 
needed - but on the other hand, it is unclear how these systems can be 
designed so users may successfully build models for them. Models for 
high-functionality computer systems cannot be deduced merely from 
experience because there are too many experiences to go through and 
they cannot be complete. Therefore future research efforts should be 
oriented not towards perfect models, but towards models which are 
"good enough". Learning complex systems is an incremental, indefinite 
process requiring an understanding of how models evolve in naturalistic 
settings over long periods of time. 

To develop better design requirements for complex systems, we 
have studied usage patterns of complex systems as shown in figure 1. 
This qualitative analysis of users' knowledge about complex systems 
reveals two interesting findings: 

The users' model of the system contains concepts which do not 
belong to the system (the part of D3 which is not part of D4). 

There are system parts of which users are unaware (the part of D4 
which is not part of D3). 

The former issue requires facilities assisting users in incrementally 
bringing their Mrtype models closer in accordance with the actual sys­
tem. To address the latter issue, intelligent support systems (e.g., active 
help systems (Fischer, Lemke and Schwab, 1984) and critics (Fischer, 
1987)) are needed which rely on Mrtype models pointing out to users 
existing functionality that may be useful for their tasks. 

Cooperative problem solving systems 
The power of many high-functionality computer systems can best 

be exploited by users if the systems are designed to facilitate coopera­
tion between a human and a computer. Cooperation requires more from 
the system than having a nice user interface or supporting natural 
language dialogs. One needs a richer theory of problem solving, one 
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Figure 1. Levels of system usage. 

The different domains correspond to the following: 

- D\: the subset of concepts (and their associated commands) that 
users know and use without any problems. 

- D 2: the subset of concepts that users use only occasionally. They 
do not know details about the concepts contained in D2 and they 
are not too sure about their effects. 

- D3: the users' model of the system (i.e., M2, the set of concepts 
which they think exist in the system). 

- D4: the actual system. 

that analyzes the functions of shared representations (i.e., models of the 
communication partner and models of the task), mixed-initiative dia­
logs, argumentation, and management of trouble. 

In a cooperative problem solving system the users and the system 
share responsibility for the problem solving and decision making. 
Different role distributions may be chosen depending on the users' 
knowledge, the users' goals, and the task domain. A cooperative system 
requires richer communication facilities than the ones that were offered 
by traditional expert systems. Figure 2 shows the architecture for such a 
system. 

Cooperative problem solving requires that users have M2-type 
models of the systems with which they interact (see section "The users' 
model of systems") and that systems have Mrtype models of their users 
(see section "The systems' models of users"). Being unable to com­
pletely understand the actual system (see figure 1), users have to 
interact with a system based on their M2-type models. M3-type models 
are needed to provide explanations, e.g., by using differential 
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Figure 2. Architecture for a cooperative problem solving system. 

This diagram shows an architecture for cooperative problem solving. 
It is significant that the human user and the computer each possess 
domain knowledge that is brought to bear on the problem. 

descriptions. Explanations need to be given at the right level of detail 
and with the right level of assumed shared understanding about the 
other agent's knowledge. Differential descriptions are used to describe 
something new using terms that an individual user already understands. 
Assuming too much knowledge on the listener's part leads to informa­
tion overflow problems as illustrated in figure 3. 

Cooperative problem solving systems cannot be restricted to "one­
shot" affairs. One cannot always be right the first time, and one cannot 
guarantee that advice or criticism is understood. In order to obtain a 
deeper understanding of these issues, we conducted an empirical study 
of cooperative problem solving between customers and sales agents 
(including their use of models) in a very large hardware store (offering 
more than 300,000 items). Details of this study are contained in Reeves 
(1989), The most important findings are summarized here briefly: 

Incremental query specification: Frequently customers did not know 
what they really needed, and did not know how their problems 
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Drawing by Stevenson; © 1976 The New Yorker Magazine 

Figure 3. Mental models and mutual understanding. 

The picture characterizes a number of issues. The VISItor cannot 
build up a coherent model. More of the information provided should 
have been put in the world (e.g., by drawing a map). The structural 
model provided by the policeman is too detailed; it may be possible 
to avoid this by tailoring the explanations more to the goals and ob­
jectives of the visitor. The policeman could have reduced the com­
plexity of his description using layers of abstractions. 

could be mapped onto the items which the store offers. Their 
queries were constructed incrementally through a cooperative prob­
lem solving process between customers and sales agents. 

From natural language to natural communication: People rarely 
spoke in complete, grammatical sentences, yet managed to commun­
icate in a natural way. This observation indicates that the support of 
natural communication (which allows for breakdowns, follow-up 
questions, clarifying dialogs, explanations, etc.) is much more 
important than being able to parse complex syntactic sentences. 
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Mixed-initiative dialogs: People are flexible in the roles they play 
during a problem solving episode. They easily switch from asking 
to explaining, from learning to teaching. The structure of these dia­
logs were neither determined by the customer nor by the sales 
agent, but indicated mixed initiatives (Carbonell, 1970) determined 
by the specifics of the joint problem solving effort. 

Multiple specification techniques: A variety of different specification 
techniques were observed ranging from bringing in a broken part to 
very general request such as If I need a lock for my doors that will 
reduce my insurance rate." 

Management of trouble: Many breakdowns and misunderstandings 
occurred during the observed problem solving episodes. But in 
almost all cases, clarifying dialogs led to a recovery, illustrating the 
feature that problem solving among humans cannot be characterized 
by the absence of trouble, but by the identification and repair of 
breakdowns (Suchman, 1987). 

User Modeling: The study made it evident that user modeling plays 
a crucial role in identifying the right level of shared understanding 
and providing the appropriate level of explanation and help. 

A conclusion from this study was that without similar support 
structures as observed in the interaction between the sales agents and 
the customers, high-functionality computer systems will be underutil­
ized and are more of an obstacle than a source of power in solving 
problems. 

Comprehensible systems 
Informational systems pose specific problems with respect to 

comprehensibility. Comprehensibility cannot be defined abstractly 
without reference to users' knowledge and goals. In this section, a 
number of aspects are described that make systems difficult to under­
stand, requirements are enumerated that potentially increase comprehen­
sibility, and a theoretical framework is presented that contributes to the 
characterization of comprehensibility. Comprehension in the context of 
high-functionality computer systems is relevant because these systems 
change the nature of many tasks from problem solving to comprehen­
sion. Instead of constructing a solution to a problem from scratch, many 
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problems can be solved by a selection process followed by a customiza­
tion process. 

Difficulties in comprehending complex systems 

Unlike other engineered systems (e.g., mechanical systems), com­
puter systems are largely opaque, that is, their function cannot be per­
ceived from their structure (Brown, 1986). Beyond being opaque, the 
sheer size prohibits a complete understanding. Many of the situations 
that a user encounters in a high-functionality computer system are new 
and unfamiliar. The absence of a user-perceivable structure (such as a 
layered architecture or an "increasingly complex microworld" structure 
(Burton, Brown and Fischer, 1984» often makes it impossible for users 
to acquaint themselves with closed subparts of the system. 

The vocabulary problem (Furnas et al., 1987) limits comprehen­
sion, because people use a great variety of words in referring to the 
same thing. Empirical data show that no single access word, however 
carefully chosen, will cover more than a small portion of users' 
attempts. Even more serious than the vocabulary problem is the fact 
that people do not only choose different names for the same underlying 
concepts, but they decompose a complex system into different sets of 
concepts (Standish, 1984). Especially in new domains (e.g., modern 
user interfaces, object-oriented programming, mental models research), 
where the understanding of the field is in an early stage, different con­
ceptualizations compete with each other and limit the comprehensibility. 

System designers acknowledge the difficulty in comprehending 
complex computational systems by developing associated help systems. 
Many of those are limited in their usefulness because they are oriented 
toward the system rather than toward the user. That is, information is 
structured around a system description, not around an analysis of the 
problems users address when using the system. A shortcoming of many 
existing information stores is that access is by implementation unit (e.g., 
LISP function, UNIX command) rather than by application goal on the 
task level. 

A last issue to be mentioned in this short and incomplete enumera­
tion of factors that limit the comprehensibility of complex systems is 
the poor understanding of consistency. Grudin (1989) has shown that 
the role of consistency is much more problematic than most people 
assume and that predictability may be more important than consistency. 
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He identified a number of situations in which violations of principles 
caused no problems in practice, and he pointed out that there is no 
unique best strategy to achieve consistency. The dimension along which 
a system should behave consistently is dependent on the goals one 
wants to achieve. 

Techniques for making systerm comprehensible 

There is no "silver bullet" (Brooks, 1987) for making systems 
comprehensible, but there are a number of techniques that can contri­
bute to a higher degree of comprehension of a complex system. We 
briefly describe the ones that we have found most relevant in our own 
research. 

Cognitive fidelity versus physical fidelity 

Brown (Brown, 1986) argues for the separation of physical fidelity 
from cognitive fidelity, in order to recognize that an "accurate rendition 
of the system's inner workings does not necessarily provide the best 
resource for constructing a clear mental picture of its central abstrac­
tions." In the Natural Sciences, designers and teachers can only change 
the cognitive fidelity of a system. That is, incorrect models based on 
intentional simplifications may be more useful than technically correct 
ones. Simon (Simon, 1981) argues that in many situations, it is not the 
best or the correct model which is the desirable one, but the one which 
is understood by everyone and supports rather than paralyzes action. In 
the Sciences of the Artificial, designers have the freedom to shape the 
physical fidelity (as a product of our design), allowing users to construct 
efficient M 2-type models. 

Hwnan problem-domain communication and construction kits 

Many systems use knowledge representations at a too low level of 
abstraction. This makes both system design and explanation difficult, 
since system designers must transform the problem into a low-level 
implementation language, and explanation requires translating back to 
the problem level. When creating powerful tools for domain experts, we 
must teach the computer the languages of application domains. Systems 
with abstract operations and objects of a domain built into them give 
the impression of human problem-domain communication (Fischer and 
Lemke, 1988) rather than human-computer communication. Human 
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problem-domain communication reduces the cogmtIve transformation 
distance between problem-oriented and system-oriented descriptions 
(Hutchins, Hollan and Norman, 1986). 

Construction kits are tools that foster human problem-domain com­
munication by providing a set of building blocks that model a problem 
domain. The building blocks and the operations associated with them 
define a design space (the set of all possible designs that can be created 
by combining these blocks) and a design vocabulary. A construction kit 
makes the elements of a domain-oriented substrate readily available by 
displaying them in a menu or graphical palette (see figure 13). This 
kind of system eliminates the need for prerequisite, low-level skills 
such as knowing the names of software components and the formal 
syntax for combining them. 

Human problem-domain communication redraws the borderline 
between the amount of knowledge coming from computer systems 
versus coming from the application domain. Systems supporting human 
problem-domain communication eliminate some of the opaqueness of 
computational systems by restricting them to specific application 
domains facilitating the model building and understanding process for 
all the models discussed in this paper. 

Layered architectures 

Layered architectures can enhance comprehensibility by hiding the 
lower levels of a complex system from the user. Dawkins (1987) 
describes this idea in connection with biological objects: 

I am a biologist I take the facts of physics, the facts of the world of sim­
plicity, for granted. If physicists still don't agree over whether those sim­
ple facts are yet understood, that is not my problem. My task is to 
explain elephants, and the world ot complex things, in terms of the sim­
ple things that physicists either understand, or are working on. The 
physicist's problem is the problem of ultimate origins and ultimate 
natural laws, the biologist's problem is the problem of complexity. 

In our own research (Lemke, 1989), we have built software 
environments with layered architectures providing tools at multiple lev­
els ranging from domain-independent to domain-specific (see figure 4). 
A hierarchy of increasingly powerful tools is based on low-level primi­
tives as offered by standard programming languages. Domain-oriented 
substrates are built on top of these primitives. Construction kits make 
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the elements of substrates readily available. Design environments use 
knowledge of the problem domain to judge the quality of a design. 

Knowledge-Based Design Environments 
e .. JANUS with its critics and the catalo of exam les 

Construction Kits 
e .. the alette in JANUS 

High-Functionality Computer Systems with many Substrates 
e. ., bitm editors to enerate icons 

Low-level Primitives 
e. . read-character write-character 

Figure 4. From low-level primitives to knowledge-based design environments. 

This figure shows a progression of increasingly higher levels of sup­
port tools beginning with low-level primitives up to knowledge­
based design environments. 

Layered architecture plays an important role for explanations. If 
there is a complex thing that we do not yet understand, we can come to 
understand it in terms of simpler parts that we already do understand. 
But these simpler parts should be as close as possible to the object 
under investigation. Complex organization should be constructed such 
that satisfying explanations may normally be attained if we peel the 
hierarchy down one or two more layers from the starting layer. This 
observation provides evidence for the success of information processing 
psychology in explaining intelligent behavior (Newell and Simon, 
1976). 

Main streets versus side streets 

An interesting analogy can be constructed by comparing the use of 
high-functionality computer systems with learning how to get around in 
a large city (Ehrlich and Walker, 1987) (similar approaches are "train­
ing wheels" (Carroll and Carrithers, 1984) and "increasing complex 
microworlds" (Burton, Brown and Fischer, 1984». Getting around in 
the city as well as doing something in a high-functionality computer 
system provides options: users can do things in more than one way, and 
they can express their tasks in the manner most comfortable to them. 
Main streets may not provide the shortest distance, but they require a 
smaller mental effort and they reduce the probability of getting lost (see 
the illustration in figure 3). 
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"How-to-do-it know/edge" versus "how-it-works knowledge" 

The relevance of these two types of knowledge is detennined by 
the users' goals and other contextual factors (e.g., if a device breaks, 
will there be someone around to help out?). Many aspects of the inter­
nal mechanism of a piece of equipment are irrelevant to most user 
tasks. What happens if a breakdown occurs? If our goals include the 
ability to fix something, then "how-it-works knowledge" is definitely 
important. It remains an open issue how many levels one has to des­
cend in a layered architecture (see figure 4) to comprehend the "how­
it-works knowledge" for a system. For a more detailed discussion see 
the contributions by Polson and Kieras (Turner, 1988). 

"Knowledge in the world" versus "knowledge in the head" 

Nonnan (1988) distinguishes between "knowledge in the world" 
and "knowledge in the head". One of the challenges for innovative 
design of computer systems is redrawing the borderline between the 
two. Techniques should be developed which put more "knowledge in 
the world" so we have to keep less "knowledge in our head". As men­
tioned before, infonnational systems are often opaque. But computer 
systems offer substantial power for making the invisible visible. In 
doing so, the real challenge is not making everything visible, but to 
make the infonnation visible which is of importance for understanding 
a system and for the goals of a specific user (the latter requiring that 
the system has a model of a user; see section "The systems' models of 
users"). Visualization techniques (such as our "software oscilloscope" 
(BOeker, Fischer and Nieper, 1986» provide automatically generated 
graphical representations which assist in understanding data and control 
structures by generating more "infonnation in the world". 

Applicability conditions 

Many complex systems are difficult to understand, because they 
represent building blocks, tools, and examples without applicability 
conditions describing the situations in which these objects can or should 
be used. The objects in the Palette or the designs in the Catalog (see 
figure 13) have no knowledge associated with them that would infonn 
users about situations in which they can be used. 
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Differential descriptions 

An economic dp:scription for many objects is an explanation of 
how they differ from some already known object. Object-oriented inher­
itance networks and case-based reasoning methods achieve economy in 
their representation by exploiting this principle. This approach requires 
systems having models of users and users having models of systems. 
Descriptions of concepts new to a particular user are generated by relat­
ing them to concepts already known to a user. These previously under­
stood concepts are contained in the system's model of the user. 

Learning on demand 

The fact that high functionality computer systems are never com­
pletely mastered implies that support for learning on demand is not a 
luxury but a necessity. The support of learning on demand sets 
computer-based systems apart from other media such as paper. Paper is 
passive and can only serve as a repository for information, whereas 
computer systems can be active and assist us in searching, understand­
ing, and creating knowledge in the course of cooperative problem solv­
ing processes. Users are often unwilling to learn more about a system 
or a tool than is necessary for the immediate solution of their current 
problem (i.e., they remain in D) in figure 1). To be able to successfully 
cope with new problems as they arise, learning on demand is necessary. 
It provides new information in a relevant context and it eliminates the 
burden of learning things in neutral settings when users do not know 
whether the information will ever be used and when it is difficult for 
them to imagine an application. 

Learning on demand can be differentiated according to whether the 
user or the system initiates the demand. Demands originating from the 
user can be triggered either by a discrepancy between an intended pro­
duct and the actual product produced or by experimentation with a sys­
tem turning up interesting phenomena that users find worth further 
exploration. Demands to learn cannot originate from users if users are 
unaware that additional functionality exists in the system (e.g., the func­
tionality contained in D4 but not in D3 in figure 1). In this situation, the 
system must take the initiative. To prevent active systems from becom-
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ing too intrusive, a metric is required for judging the adequacy of a 
user's action, and the advice must be based on information structures 
accumulated in the system's model of the user (Fischer, Lemke and 
Schwab, 1984). Breaking the "Conservation Law of Complexity" 

Complex systems do not necessarily require equally complex 
descriptions. There is no "conservation law of complexity" (Simon, 
1981), and the overall goal of making systems more comprehensible is 
the development of representations, techniques, and tools which allow 
us to break this conservation law. The following list summarizes some 
of the major approaches achieving this goal: 

exploit what people already know (e.g., support "human problem­
domain communication"), 

use familiar representations, based on previous knowledge and 
analogous to known situations (e.g., take advantage of differential 
descriptions), 

exploit the strengths of human information processing (e.g., the 
power of our visual system) by putting more information into the 
world using technology which makes visible what would otherwise 
be invisible, 

segment information into microworlds (e.g., allow beginners to stay 
on "main streets"), 

enhance learning by supporting learning on demand. 

Narrowing the gap between situation models and system model 

Many systems fail because their designs and descriptions do not 
relate to users' problems. The discrepancy between a user's and a 
system's view of the world and approaches to overcoming this gap are 
briefly described in this section. 

The situation model (Dijk and Kintsch, 1983; Fischer, Kintsch et 
aI., 1989) is a mental representation of the situation as the user sees it, 
including the problems motivating a task, general ideas for finding a 
solution, and a characterization of the desired goal state. The system 
model consists of a set of operations that, when invoked, would result 
in the desired solution. These operations must all be within the reper­
tory of the system; that is, for each operation there must exist one or 
more commands, depending upon context, which executes. At the level 
of the situation model, goals refer to actions and states in the users' 
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problem space and are arriculated in terms of what they want. Goals 
may be precise or imprecise, but the important point is that they are not 
necessarily structured or named according to the system. They are sub­
jective and vary among individuals. 

Figure 5 outlines several different approaches to bridging the gap 
between the situation and system model. Which of the five approaches 
illustrated in this diagram is the most promising one depends on the 
specific situation and the ability of designers to construct the system 
components that make a specific approach possible. 

Models 
Models are ubiquitous. In this section, we will take a closer look 

at the role of the three models MJ> M2, and M3 (as introduced in the first 
section). 

M\ : The designers' models of users 

Design for users 

The times when designers of computer systems were their only 
users belong to the past. "Arm-chair" design, in which designers choose 
themselves as models for the user population of their systems must be 
replaced by models of the intended user community of the system. Fig­
ure 6 illustrates this situation. These models can be formed by studying 
task domains, (e.g., office work (Malone, 1983), cooperative problem 
solving (Reeves, 1989», interviewing users (Lewis, 1982), and evaluat­
ing users working with similar systems. It remains to be seen for 
specific designs, which parts of the designers' models are descriptive 
(based on the mentioned information sources) and which parts are 
prescriptive (based on their ideas of how the system should operate). 

Design with users 

The Scandinavian approach to system design (Bodker et aI., 1988) 
is based on an even more cooperative approach between designers and 
prospective users. Instead of "design for users", one should "design with 
users" as illustrated in figure 7. Design with users supports cooperative 
design as a process of mutual learning; it allows users to participate in 
the design process as lay designers. Users probably have no particular 
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Figure 5. 

Situation System 
Model Model 

J Q 
Jg restructuring 

• 
reformulation f Q ~ 

J. agent 

Q ~ 

training J Q ~ 

Different approaches in relating situation and system models. 

The first row illustrates the normal situation, where there is no 
support for bridging the gap. In this case, people frequently have 
difficulties solving problems or finding information, because they 
are unable to generate an effective system model, even if they 
have a clear understanding of the situation involved. 

The second row shows the approach in which a new system 
model is constructed that is closer to an individual's situation 
model and hence easier to understand. 

The third row illustrates the possibility of making the system 
model more transparent, allowing users to express their situation 
model incrementally within the system model (an approach sup­
ported by HELGON, an information manipulation system based 
on query by reformulation (Fischer and Nieper-Lemke, 1989». 
HELGON supports multiple specification techniques allowing 
users to access complex information spaces from different start­
ing points. 

The fourth row shows how an agent can help in translating a 
query from the situation into the system model (e.g., a role 
played by sales agents, travel agents; see the description of the 
hardware store study in section "Cooperative problem solving 
systems"). 

The last row illustrates the training approach, where users are 
trained to express themselves in the system model. 
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X Designer 

~ User 

t + At 

Figure 6. Design for users. 

The designer uses models of users and tasks in construcling systems 
for an anticipated user community. 

X Designer 

~ User 

t + flt 

Figure 7. Design with users. 

In "design with users", designers do not only use models of the po­
tential user community, but collaborate with users in the design. 

expertise as designers, but they have expertise within the work domain. 
This cooperation can potentially eliminate one of the major problems of 
software development: the thin spread of application knowledge (Curtis, 
Krasner and Iscoe, 1988). 

Design with users requires having prototypes and supporting 
human problem-domain communication. Through the utilization of 
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prototypes users experience the future operation of a system within a 
simulated application. The needs and demands of the prospective users 
are essential to good design, but are hard to express (even by the users) 
before the future situation has been experienced. With prototypes, 
designers can share early design ideas with the target users. Prototyping 
is most beneficial if the design model used is articulated at the 
problem-domain level. A description at this level will be comprehensi­
ble to users familiar only with the problem domain. 

Design for redesign 

Pre-designed systems are too encapsulated for problems whose 
nature and specifications change and evolve. A useful system must 
accommodate changing needs. Domain experts must have some control 
over the system because they understand the semantics of the problem 
domain best. End-user modifiability (Fischer and Girgensohn, 1990) is 
not a luxury but a necessity in cases where the systems do not fit a par­
ticular task, a particular style of working, or a personal sense of 
aesthetics. Lack of modifiability creates systems whose software is not 
soft, prohibits evolution of systems over time, and makes users depen­
dent on specialists for help. 

M 2: The users' models of systems 

A user's model of a complex system is a cognitive construct that 
describes a user's understanding of a particular content domain in the 
world. These models are formed by experience, self-exploration, train­
ing, instruction, observation, and accidental encounters. In systems that 
operate at the "human computer-communication" level, the model will 
be centered around the properties of a computer system (see figure 8). 
An advantage of this type of model (representing a general computa­
tional environment) is that it is uniform across domains. 

In systems that operate at the "human problem-domain communi­
cation" level (such as the JANUS system; see section "Innovative sys­
tem design"), users are able to form models using concepts much more 
closely related to an application domain (see figure 9). One basic work­
ing assumption of our research is that it is easier for users to develop a 
model at this level because it can be articulated in their domain of 
expertise. Another advantage of these types of models is that they 
reduce the gap between system and task domain. 
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Figure 8. A user's model of a system at the "human-computer communication" 
level. 

• • • 

Figure 9. A user's model of system at the "human problem-domain communi­
cation" level. 

Criteria for evaluating the usefulness of users' models of systems 
are (for a more complete list see Turner (1988»): 

familiarity (do they draw upon familiar domains?), 

scope (how much of the total system does the model cover?), 

derivational length (how long is the derivational length associated 
with any particular explanation), 

accuracy and consistency (see prevIous remarks In section 
"Comprehensive systems"), 

~ " ,? " "~ >"...",', ", ~ " "" " .' , • ~ <,,' , ... ,.' " 
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extensibility, generalizability, task-orientation, 

predictive and explanatory power. 
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Systems that operate at the "human problem-domain communica­
tion" level have many advantages with respect to these evaluation cri­
teria, e.g., they achieve short derivational paths by taking advantage of 
higher level of abstraction. 

Two other aspects of complex systems are important with respect 
to the users' models: evolution of a system and tai/orability. Users' 
knowledge of systems and their perspective of what they can and want 
to do with systems changes over time. What happens to their models of 
the system in such a process? Individuals change their understanding of 
a system as they continue working with it (see figure 10). 

t I 

Figure 10. Evolution of a system over time for the same user. 

Evolution can occur in adaptable systems (the users are changing the 
system) as well as in adaptive systems (where the system changes its 
appearance by itself). 

Users want to tailor a system to their specific needs (see 
figure 11). Sometimes the need for a different model of the system may 
be the driving force behind these changes. 

M3: The systems' models of users 

There are a number of efforts to incorporate models of users into 
knowledge-based systems (Rich, 1983; Clancey, 1986; Kass and Finin, 
1987; Fain-Lehman and Carbonell, 1987; Reiser, Anderson and Farrell, 
1985; Wahlster and Kobsa, 1988; VanLehn, 1988). In our own 
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User 1 User 2 

Figure 11. Tailorability of a system to the needs of different uscrs. 

research, we have investigated systems' models of users (see figure 12) 
in connection with active help systems (Fischer, Lemke and Schwab, 
1984) and critics (Fischer, 1987; Fischer and Mastaglio, 1989). 

Figure 12. A system's model of users. 

M 3-type models for critic systems pose specific demands. Unlike tutorial 
systems, which can track a user's expertise over a path of instruction, 
computer-based critics must work with users having a variety of back­
ground experiences. To operate effectively, critics must acquire an indi­
vidual, persistent model of each user. 

There are a number of different goals for which systems' models 
of users are important: customizing explanations so they cover exactly 
what users need to know; providing differential descriptions of new 
concepts in relationship to known concepts as indicated by an M3 model 
of an individual user; presenting information through user-specific 
filters focusing on the parts which seem to be most relevant for a user, 
and keeping active systems quiet most of the time. 

- - -
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A major problem in putting Mrtype models to work is the 
knowledge acquisition process for these models. In our work, we have 
used four techniques in acquiring knowledge about users: explicit ques­
tions, testing, tracking tutorial episodes, and implicit approaches. In 
implicit approaches, the system observes users and makes inferences 
regarding their expertise. The methods incorporated into our acquisition 
methodology are the result of an empirical study of how human experts 
accomplish the same task (Fischer, Mastaglio and Rieman, 1989). 

Making M3-type models a reality for widely used systems is a 
challenging research goal. Having persistent models that undergo evolu­
tionary changes and that can deal with conflicting information (i.e., new 
information inferred about a user contradicts information contained in 
the model of the user) are research issues that need further explanation. 
Another challenge is making Mrtype models inspectable and modifiable 
by users. 

Innovative system design efforts in making complex 
systems comprehensible 

Design environments give support that is not offered by simple 
construction kits. In addition to presenting the designer with the avail­
able parts and the operations for putting them together, they 

incorporate knowledge about which components fit together and 
how they do so, 

contain cooperative critics that recognize suboptimal design choices 
and inefficient or useless structures, 

allow mUltiple specification techniques in creating a program and 
understanding a system, 

link internal objects with their external behavior and appearance, 

provide animated examples and guided tours (techniques supporting 
the incremental development of models in a high-functionality com­
puter system), and 

support end-user modifiability. 
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JANUS: An example of an integrated, knowledge-based design 
environment 

JANUS (Fischer, McCall and Morch, 1989) allows designers to 
construct artifacts in the domain of architectural design and at the same 
time informs them about principles of design and their underlying 
rationale by integrating two design activities: construction and argumen­
tation. Construction is supported by a knowledge-based graphical 
design environment (see figure 13), and argumentation is supported by 
a hypertext system (see figure 14). 

wfndo-w-1 
F:-:--'-------------II vtrtle&l-wafl-2 

Figure 13. JANUS construction interface. 

horizontal-wall-2 
doubjt-bowl-~,ok-'" 

doublt-door-rttr1gltrator-3 

The interface of JANUS' construction component is based on the 
world model. Design units are selected from the Palette, and moved 
into the Work Area. Operations on design units are available 
through menus. The screen image shown displays a message from 
the Work-Triangle-Critic. 
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Figure 14. JANUS argumentation interface 

JANUS' argumentation component uses the Symbolics Document 
Examiner as a delivery interface. The construction situation can be 
displayed in one of the panes to allow users to inspect the construc­
tive and argumentative context simultaneously. 

JANUS provides a set of domain-specific building blocks and has 
knowledge about combining them into useful designs. With this 
knowledge it "looks over the shoulder" of users carrying out a specific 
design. If it discovers a shortcoming in the users' designs, it provides a 
critique, suggestions, and explanations, and assists users in improving 
their designs. JANUS is not an expert system that dominates the pro­
cess by generating new designs from high-level goals or resolving 
design conflicts automatically. Users control the behavior of the system 
at all times (e.g., the critiquing can be "turned on and off'), and if users 
disagree with JANUS, they can modify its knowledge base . 

. '" /,' /." ' , , "..., ... , 
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Critics in JANUS are procedures for detecting non-satisficing par­
tial designs. The knowledge-based critiquing mechanism in JANUS 
bridges the gap between construction and argumentation. This means 
that critiquing and argumentation can be coupled by using JANUS' cri­
tics to provide the designer with immediate entry into the place in a 
hypermedia network containing the argumentation relevant to the 
current construction task. Such a combined system provides argumenta­
tive information for construction effectively and efficiently. Designers 
are not forced to realize beforehand that information will be required, 
anticipate what information is in the system, or know how to retrieve it. 

JANUS' construction component 

The constructive part of JANUS supports building an artifact 
either from scratch or by modifying an existing design. To construct 
from scratch, the designer chooses building blocks from the design 
units Palette and positions them in the Work-Area (see figure 13). 

In construction by modification of an existing design, the designer 
uses the Catalog (lower left in figure 13), which contains several exam­
ple designs. The designer can browse through this catalog of examples 
until an interesting one is found. This design can then be selected and 
brought into the Work-Area, where it can be modified. The Catalog 
contains both good designs and poor designs. The former satisfy all the 
rules of kitchen design and will not generate a critique. People, who 
want to design without having to bother with knowing the underlying 
principles, might want to select one of these, since minor modifications 
of them will probably result in few or no suggestions from the critics. 
The poor designs in the Catalog support learning the design principles. 
By bringing these into the Work-Area, users can subject them to criti­
quing and thereby illustrate those principles of kitchen design that are 
known to the system. 

The good designs in the Catalog can also be used to learn design 
principles and exploring their argumentative background. This is done 
by bringing them into the Work-Area then using the "Praise all" com­
mand. This command causes the system to generate positive feedback 
by displaying messages from all of the rules that the selected example 
satisfies. The messages also provide entry points into the hypertext 
argumentation. 
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JANUS' argumentation component 

JANUS' knowledge-based critics serve as the mechanism for link­
ing construction with argumentation. They "watch over the shoulders" 
of designers, displaying their critique in the Messages pane (center bot­
tom in figure 13) when design principles are violated. In doing so they 
also identify the argumentative context which is appropriate to the 
current construction situation. For example, when a designer has 
designed the kitchen shown in figure 13, the Work-Triangle-Critic 
fires and detects that the work triangle is too large. To see the argu­
ments surrounding this issue, the designer clicks the mouse on the text 
of this criticism with the mouse. The argumentative context shown in 
figure 14 is then displayed. The argumentation component is imple­
mented as a hypermedia system (Fischer, McCall and Morch, 1989). 

Ml-type models in JANUS 

In the context of JANUS, the designer is creating the design 
environment, whereas the user is working with the design environment 
to design kitchens. Within the JANUS project, all methodologies 
relevant for M1-type models (as described in section "The designers' 
models of users") were employed: 

Design for users: Domain-specific design knowledge represented in 
JANUS has been acquired from kitchen design books. The architec­
ture for a knowledge-based design environment was developed from 
the evaluation of earlier systems (Fischer and Lemke, 1988), indi­
cating that construction kits were insufficient. 

Design with users: In the first phase, we worked together with 
kitchen designers using protocol analysis and questionnaires to cap­
ture the professional knowledge. The designers were given typical 
scenarios that included a sample floor plan and a hypothetical client 
with certain needs and desires. They were asked to plan a kitchen 
for this client in the space provided. In order to capture all the steps 
involved, including the ones which designers normally do not com­
municate, they were asked to think aloud during the design process. 
Among many other things, the interviews showed that professional 
kitchen designers design at different levels of abstraction. To sup­
port this requirement, we introduced intermediate abstractions into 
JANUS called "work centers". For example, a sink and a 
dishwasher can be combined into a cleanup center. Designers start 
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designing a kitchen with work centers and replace them later with 
their components (as illustrated in figure 15). 

Design for redesign: Experimental use of JANUS by professional 
and amateur kitchen designers indicated that situations arise that 
require the modification of the design environment itself. To support 
end-user modifiability in JANUS (Fischer and Girgensohn, 1990), 
the system was extended with knowledge-based components to sup­
port the several types of modifications by the user (e.g., introducing 
new classes of objects into the palette (e.g., a "microwave"), adding 
new critic rules to the system, and supporting the creation of com­
posite objects (e.g., a "cleanup center"). 

-fO~d Pr~p -:; C;J~;;U~ -C~~t~; :: - -C~~K1n9 - -
Center '\ " Center 'I I. 

:' :' - - - - - - - - _,~_ - - - - - _,I _______ _ 

Figure 15. Work centers. 

Composite objects allow designers to design at different levels of 
abstractions. After having completed the design of a kitchen at the 
work center level, users can proceed to the detailed design of the 
centers. The figure shows how the cleanup center is expanded to its 
components sink and dishwasher. 

M2-type models in JANUS 

JANUS as a knowledge-based design environment supports 
human-problem communication and therefore the development of 
M 2-type models at the level of the problem domain (see figure 9) el~lll­
inating the need to understand the system at a programming language 
level (see figure 8). Designs can be represented at a level of abstraction 
with which the user is familiar. The development of an operational M 2-

type model is enhanced further by: 
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the critics giving users an opportunity for learning on demand and 
allowing "the situation to talk back" (Schoen, 1983), which supports 
the incremental construction of a model, 

the availability of the Catalog allowing users to get an overview of 
existing designs and giving them a feeling of what kinds of artifacts 
can be constructed, 

the existence of the argumentation component allowing users to 
inspect the design rationale behind the critics and making the under­
lying model open, discussable, and defendable, 

the support of multiple interaction techniques in creating a design, 
i.e., using construction, specification, argumentation, and the Cata­
log synergistically to create an understanding of the possibilities and 
the limitations of the system. 

M3-type models in JANUS 

JANUS is a system supporting different classes of users ranging 
from neophyte kitchen designers to experts. JANUS also supports 
different kinds of tasks, e.g. learning tasks (such as improving a "bad" 
kitchen example from the Catalog) and design tasks (such as designing 
a "dream" kitchen given a set of constraints). Mrtype models are 
needed to support these different users and tasks. The information con­
tained in these models is used for 

activating and deactivating sets of critics depending on the specific 
user and the specific task, 

supporting the level and detail provided by the argumentation, 

supporting stereotypes of users (e.g., users with a large family or 
users who only want to prepare TV-dinners), influencing the 
behavior of the system to present itself in a more cooperate fashion. 

Conclusions 
Reality is not user-friendly. To cope, model, and comprehend a 

complex reality requires complex systems. Complex systems offer 
power, but they are not without problems. Part of this power is the rich 
functionality which these systems offer in principle. But without inno­
vative system designs (including methodologies and techniques to sup­
port all three types of models discussed in this paper), these systems 
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will not live up to their potential. Integrated knowledge-based design 
environments are promising systems which lead to the design of more 
comprehensible complex systems. 
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