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Abstract. Designers deal with ill-defined and wicked problems characterized by fluctuating and 

conflicting requirements. Traditional design methodologies based on the separation between 

problem setting (analysis) and problem solving (synthesis) are inadequate to solve these problems. 

These types of problems require a cooperative problem-solving approach empowering designers 

with integrated, domain-oriented, knowledge-based design environments. 

In this paper, we describe the motivation for this approach and introduce an architecture for 

such design environments. We focus on the integration of specification, construction, and a catalog 

of prestored design objects in those environments for an illustration of how such integrated en­

vironments empower human designers. The system component described in detail (called 

CATALOGExpLORER) assists designers in locating examples in the catalog that are relevant to the 

task at hand as partially articulated by the current specification and construction, thereby relieving 

users of the task of forming queries for retrieval. 

INTRODUCTION 

Design is an ill-defined (Simon, 1973) or wicked (Rittel, 1984) problem with fluctuating 
and conflicting requirements. Early design methods, based on directionality, causality, and 
separation of analysis from synthesis, are inadequate to solve such problems (Cross, 1984). 

The research effort discussed in this paper is based on the assumption that these design 
problems are best solved by supporting a cooperative problem-solving approach between 
humans and integrated, domain-oriented, knowledge-based design environments (Fischer, 
1990). Combining knowledge-based systems and innovative human-computer com­
munication techniques empowers humans to produce "better" products by augmenting 
their intellectual capabilities and productivity rather than simply by using an automated 
system that may not be entirely appropriate (Stefik, 1986). 

Our approach is not to build another expert system. Expert systems require a rather 
complete understanding of a problem to start with - an assumption that does not hold for 
ill-defined problems. In order to produce a set of rules for an expert system, the relevant 



factors and the background knowledge need to be identified. However, we cannot fully 
articulate this information. What has been made explicit always sets a limit, and there 
exists the potential of breakdowns that call for moving beyond this limit (Winograd and 
Flores, 1986). 

In this paper, we will use the domain of architectural design of kitchen floor plans as 
an "object-to-think-with" for purposes of illustration. The simplicity of the domain helps 
in concentrating on the essential issues of our approach without being distracted by under­
standing the semantics of the domain itself. We first discuss issues with design environ­
ments and emphasize the importance of domain orientation and integration of those en­
vironments. Then we describe integrated, domain-oriented, knowledge-based design en­
vironments based on the multifaceted architecture as a theoretical framework. Next, an 
innovative system component, CATALOGExpLORER, is described as an illustration of how 
such an integrated environment empowers human designers. The system integrates 
specification, construction, and a catalog of prestored design objects. The synergy of in­
tegration enables the system to retrieve design objects that are relevant to the task at hand 
as articulated by a partial specification and construction, thereby relieving users of the task 
of forming queries for retrieval. We discuss related work and conclude with a discussion of 
achievements, limitations, and future directions. 

PROBLEMS 

Integration of problem setting and problem solving 

Integration of problem setting and problem solving is indispensable (Schoen, 1983). As 
Simon (1981) mentioned, complex designs are implemented over a long period of time and 
are continually modified during the whole design process. Simon stated that they have 
much in common with painting in oil, where current goals lead to new applications of 
paint, while the gradually changing pattern suggests new goals. One cannot gather infor­
mation meaningfully unless one has understood the problem, and one cannot understand 
the problem without information about it. Professional practitioners have at least as much 
to do with defining the problem as with solving the problem (Rittel, 1984). 

An empirical study by our research group, which analyzed human-human cooperative 
problem solving between customers and sales agents in a large hardware store (Reeves, 
1990), provided ample evidence that in many cases humans are initially unable to articu­
late complete requirements for ill-defined problems. Humans start from a partial specifica­
tion and refine it incrementally, based on the feedback they get from their environment. 

The integration of problem setting (analysis) and problem solving (synthesis) is not 
supported in first-generation design methodologies or in traditional approaches of software 
design (Sheil, 1983). Automated design methodologies fail because they assume that com­
plete requirement specification can be established before starting design. 

Retrieval of information relevant to the task at hand 

In supporting integration of problem setting and problem solving in design environments, 
supporting retrieval of information relevant to the task at hand is crucial. Every step made 
by a designer toward a solution determines a new space of related information, which can­
not be determined a priori due to its very nature. Integrated design environments are based 
on high-functionality systems (Lemke, 1989) containing a large number of design objects. 



High-functionality systems increase the likelihood that an object exists that is close to what 
is needed - but without adequate system support it is difficult to locate and understand 
the objects relevant to the task at hand (Figure 1) (Nielsen and Richards, 1989; Fischer and 
Girgensohn,1990). 

Low-Functionality Computer System High-Functionality Computer System 
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Figure 1: Trade-off Between Accessibility and Usefulness 

It is easier to locate existing objects in a low-functionality computer system, but the potential for 
finding an object closer to what is needed is higher in a higl1-functionality system. The length of 
lines represents the distance between desired objects and eXIsting objects. 

The task at hand cannot be articulated at the beginning of a design, leading to the in­
applicability of conventional information retrieval techniques (Fischer, Henninger, and 
Redmiles, 1991). In a conventional query-based search, a highly specific query has to be 
formulated. If users can articulate what they need, a query-based search takes away a lot of 
the burden of locating promising objects (Henninger, 1990). 

In navigational access provided by a browsing mechanism, users tend to get lost while 
wandering around in the space looking for some target information if the space is large and 
the structure is complex (Halasz, 1988). Navigational access requires that the information 
space has a fairly rigid and predetermined structure, making it impossible to tailor the 
structure according to the task at hand. Browsing mechanisms become useful once the 
space is narrowed by identifying a small set of relevant information. 

Design environments need additional other mechanisms (as discussed in this paper) 
that can identify small sets of objects relevant to the task at hand. Users must be able to 
incrementally articulate the task at hand. The information provided in response to these 
problem-solving activities based on partial specifications and constructions must assist 
users in refining the definition of their problem. 

Domain orientation 

To reduce the great transformation distance between a design substrate and an application 
domain (Hutchins, Hollan, and Norman, 1986), designers should perceive design as com­
munication with an application domain. The computer should become invisible by support­
ing human problem-domain communication, not just human-computer communication 
(Fischer and Lemke, 1988). Human problem-domain communication provides a new level 
of quality in human-computer communication by building the important abstract opera­
tions and objects in a given area directly into a computer-supported environment. Such an 
environment allows designers to design artifacts from application-oriented building blocks 
of various levels of abstractions, according to the principles of the domain. 



Integrated design environments 

Design should be an ongoing process of cycles of specification, construction, evaluation, 
and reuse in the working context. At each stage in the design process, the partial design 
embedded in the design environment serves as a stimulus for suggesting what users should 
attend to next. This direction to new subgoals permits new information to be extracted 
from memory and reference sources and another step to be taken toward the development 
of the design. Thus, the integration of various aspects of design enables the situation to 
"talk back" to users (Schoen, 1983) by providing them with immediate and clear feedback 
of the current problem context. 

By virtue of the synergy of integration, such environments can partially articulate the 
user's task at hand by a partial specification and construction. As a consequence, the users 
can be provided with the information relevant to the task at hand by the system without 
forming queries for the retrieval. The use of the information is also supported in the same 
environment; thereby the system can analyze usage patterns of the retrieved information 
and use them for refining the retrieval. 

A MULTIFACETED ARCHITECTURE FOR INTEGRATED DESIGN 
ENVIRONMENTS 

During the last five years, we have developed and evaluated several prototype systems of 
domain-oriented design environments (Fischer, McCall, and Morch, 1989; Lemke and Fis­
cher, 1990). Different system-building efforts led to the multifaceted architecture that will 
be described in the context of the JANUS system. The domain of JANUS is the architectural 
floor plan design of a kitchen. The system is implemented in Common Lisp, and runs on 
Symbolics Lisp machines. Currently JANUS consists of subsystems 
JANUS-CONSTRUCfION, JANUS-ARGUMENTATION, and CATALOGExpLORER. Each sub­
system supports different aspects of the architecture. 

Although we have emphasized the importance of domain orientation, this architecture 
should not be regarded as a specific framework for a certain domain. To the contrary, we 
assume that the architecture presented here serves as a generic framework for constructing 
a class of domain-specific environments. 

Components of the multifaceted architecture 

The multifaceted architecture for integrated design environments consists of the following 
five components (Figure 2). 

• A construction kit is the principal medium for implementing design. It provides a 
palette of domain abstractions and supports the construction of artifacts using direct 
manipulation and other interaction styles. A construction represents a concrete im­
plementation of a design and reflects a user's current problem situation. Figure 3 
shows the screen image of JANUS-CONSTRUCfION, which supports this role. 

• An issue-based argumentative hypermedia system captures the design rationale. 
Information fragments in the hypermedia issue base are based on an issue-based in­
formation system (IBIS; McCall, 1986), and are linked according to what infor­
mation serves to resolve an issue relevant to a partial construction. The issues, 
answers, and arguments held in JANUs-ARGUMENTATION (see Figure 4) can be ac­
cessed via links from the domain knowledge in other components. 



Figure 2: A Multifaceted Architecture 

The components of the multifaceted architecture for an integrated design environment. Support for 
links between the components are crucial for synergy of integration. 

• A catalog (see Figures 3 and 6) provides a collection of prestored design objects 
illustrating the space of possible designs in the domain. Catalog examples support 
reuse and case-based reasoning (Kolodner, 1990; Riesbeck and Schank, 1989). 

• A specification component (see Figure 7) allows designers to describe some 
characteristics of the design they have in mind. The specifications are expected to 
be modified and augmented during the whole design process, rather than to be fully 
articulated before starting the design. CATALOGExPLORER provides this mechanism. 
After specification, users are asked to weigh the importance of each item (Figure 8). 

• A simulation component allows one to carry out "what-if" games to let designers 
simulate usage scenarios with the artifact being designed. Simulation complements 
the argumentative component. 

Links among the components 

The architecture derives its essential value from the integration of its components and links 
between the components. Used individually, the components cannot achieve their full 
potential. Used in combination, however, each component augments the value of the 
others, forming a synergistic whole. 

Links among the components of the architecture are supported by various mechanisms 
(see Figure 2). The integration enables the system to incrementally understand the task at 
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Figure 3: Screen Image of JANUS-CONSTRUCTION 
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This screen image shows JANUS-CONSTRUCTION, the construction component of JANUS. Building 
blocks (design units) are selected from the Palette and moved to desireo locations inside the Work 
Area. Designers can reuse and redesign complete floor plans from the Catalog. The Messages 
pane displays critiques automatically after each design change that triggers such a critic message 
(done by CONSTRUCTION ANALYZER). Clicking with tbe mouse on a message activates 
JANUS-ARGUMENTATION and displays die argumentation related to that message (see Figure 4). 

hand, thereby providing users with the information relevant to the task at hand. The major 
mechanisms to achieve this are: 

• CONSTRUCTION ANALYZER is a critiquing component (Fischer et aI., 1990) that 
detects and critiques partial solutions constructed by users based on domain 
knowledge of design principles. The firing of a critic signals a breakdown to desig­
ners (Winograd and Flores, 1986), warning them of potential problems in the current 
construction, and providing them with an immediate entry into the exact place in the 
argumentative hypermedia system where the corresponding argumentation lies (see 
Figures 3 and 4). 

• ARGUMENTATION ILLUSTRATOR helps users to understand the information given in an 
argumentative hypermedia by using a catalog design example as a source of concrete 
realization (see Figure 4). The explanation given as an argumentation is often highly 
abstract and very conceptual. Concrete design examples that match the explanation 
help users to understand the concept. 

• CATALOGEXPLORER, described later in detail, helps users to search the catalog space 
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Figure 4: Screen Image of JANUs-ARGUMENTATION 
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This screen image of JANus-ARGUMENTATION shows an answer to the issue of where to locate the 
kitchen stove wIth respect to a door, and graphically indicates the desirable relative positions of the 
two design units. Below this is a list of arguments for and against the answer. The examI?le in the 
upper right comer (activated by the "Show Example" command in the Commands pane) contex­
tualizes an argumentative principle in relation to a specific design (done by ARGUMENTATION 
ILLUSTRATOR). 

according to the task at hand. It retrieves design examples similar to the current con­
struction situation and orders a set of design examples by their appropriateness to the 
current specification. 

Design within the multifaceted architecture 

Figure 5 illustrates the coevolution of specification and construction in an environment 
based on the multifaceted architecture. A typical cycle of events in the environments in­
cludes: (1) designers create a partial specification or a partial construction; (2) they do not 
know how to continue with this process; (3) they switch and consult other components in 
the system, being provided with information relevant to the partially articulated task at 
hand; and (4) they are able to refine their understanding based on the back talk of the 
situation. As designers go back and forth among these components, the problem space is 
narrowed and all facets of the artifact are refined. A completed design artifact consisting 
of specification and construction may be stored into the catalog for later reuse. Thus, the 
environment gradually evolves itself by being continually used. 

Problem analysis and synthesis are thus integrated in such an environment, following 
Schoen's (1983) characterization of design activities: 
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Figure 5: Coevolution of Construction and Specification of Design in 
Multifaceted Architecture 

Starting with a vague design goal, designers go back and forth among the components in the 
environment. During the process, a desi,gner and the system cooperatively evolve a specification 
and a construction incrementally, by utilizing the available information in an argumentation com­
ponent and a catalog and feedback from a simulation component. In the end, the outcome is a 
matching pair of specification and construction. 

Sometimes modification of a specification leads a designer directly to modify a construction, 
or vice versa. Instead of evolving them, a designer may replace the current construction or 
specification by reusable design objects. A cycle ends when a designer commits the completion of 
the development. 

The designer shapes the situation in accordance with his initial apprecIatIOn of it 
[construction], the situation "talks back" [critics], and he responds to the situation's 
back-talk. In a good process of design, this conversation with the situation is reflective. 
In answer to the situation's back-talk, the designer reflects-in-action on the construction 
of the problem [argumentation]. 

Schoen's work provides interesting insights into design processes, but it does not 
provide any mechanisms to support the approach. Our system-building efforts (McCall, 
Fischer, and Morch, 1990; Fischer, 1989) are oriented toward the goal of creating these 
support mechanisms for the theory. 

CATALOGEXPLORER 

In this section, we describe CATALOG EXPLORER, which links the specification and con­
struction components with the catalog (see Figure 2), followed by a scenario that illustrates 
a typical use of the system. In the following two sections, we describe the underlying 

mechanisms used in the scenario in more detail, including the mechanisms of retrieval 
from specification and retrieval from construction, respectively. 



System description 

Design objects stored in a catalog can be used for (1) providing a solution to a new 
problem, (2) warning of possible failures, and (3) evaluating and justifying the decision 
(Kolodner, 1990; Rissland and Skalak, 1989). The catalog provides a source for different 
ideas such as commercial catalogs shown by a professional kitchen designer to customers 
to help them understand their needs and make decisions. For large catalogs, identifying 
design examples relevant to the task at hand becomes a challenging and time-consuming 
task. 

By integrating specification, construction, and a catalog, CATALOGExpLORER helps 
users to retrieve information relevant to the task at hand and, as a result, helps users to 
refine their partial specification and partial construction. Users need not form queries for 
retrieving design objects from a catalog because their task at hand is partially articulated 
by a partial specification and construction. 

The design examples in the catalog are stored as objects in a knowledge base. Each 
design example consists of a floor layout and a set of slot values. The examples are 
automatically classified according to their explicitly specified features, the slot values 
provided by a user. Each design example can be (1) critiqued and praised by 
CONSTRUCfION ANALYZER, and (2) marked with a bookmark, which provides users with 
control in selecting design examples and forming a personalized small subset of the 
catalog. 

CATALOGExpLORER is based on the HELGON system (Fischer and Nieper-Lemke, 
1989), which instantiates the retrieval by reformulation paradigm (Williams, 1984). It al­
lows users to incrementally improve a query by critiquing the results of previous queries. 
Reformulation allows users to iteratively search for more appropriate design information 
and to refine their specification, rather than being constrained to their specified query in 
the first place (Fischer, Henninger, and Redmiles, 1991). 

Based on the retrieval by reformulation paradigm, CATALOGEXPLORER retrieves 
design objects relevant to the task at hand by using the following mechanisms: 

• It provides a specification sheet and a mechanism to differentiate the importance of 
each specification item by assigning weights to them. It orders design examples by 
computed appropriateness values based on the specification. 

• It analyzes the current construction and retrieves similar examples from the catalog. 

A scenario using CATALOGExpLORER 

CATALOG EXPLORER (Figure 6) is invoked by the Catalog command from 
JANUS-CONSTRUCIlON (Figure 3). The Specify command provides a specification sheet 
(Figure 7) in the form of a questionnaire. After specification, users are asked to assign a 
weight to each specified item in a weighting sheet (Figure 8). 

The specified items are shown in the Specification window in Figure 6. By clicking on 
one of the specified items, users are provided with physical necessary condition rules 
(specification-linking rules) for a kitchen design to satisfy the specified item, as seen in the 
two lines in the middle of the Specification window in Figure 6. With this information, 
users can explore the arguments behind the rules. The shown condition rules are mouse­
sensitive, and clicking on one of them will activate JANUS-ARGUMENTATION providing 
more detailed information. Figure 4 illustrates the rationale behind the rule "the stove 
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Figure 6: Screen Image of CATALOG EXPLORER 
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The leftmost Matching Desig,ns window lists the names of all matching design examples in the 
catalog. The numbers followmg the names represent the appropriateness values of each design. 
The Bookmarks window stores some of the previously visited catalog items. The two panes in the 
middle show one of the matching examples in detail (the top pane shows a set of slot values and the 
bottom pane a floor layout). Toe Category Hierarchy window shows the hierarchical structure of 
the catalog. The Specification window shows the specified items with assigned weights (see 
Figures 7 and 8). 

should be away from a door if a user wants a kitchen to be safe." By invoking the 
Retrieve From Specification command, the design examples of the catalog are ordered (see 
the Matching Designs window in Figure 6) by appropriateness values to the specified 
items. 

Users can then retrieve design examples similar to their current construction. When 
invoking the Retrieve From Construction command, users are asked to choose a criterion 
(parsing topic) for defining the similarity between the current construction and design ex­
amples in the catalog. When users choose "Design Unit Types" as a parsing topic, a menu 
comes up as shown in Figure 9, allowing the user to select all or some of the design unit 
types being used in the current construction. In Figure 9, a user has selected all appliances 
that were used in the construction of Figure 3. The system then retrieves examples that 
contain the specified design unit types. 

The above interactions gradually narrow the catalog space, providing users with a 
small set of examples relevant to the current construction and ordered by the appropriate­
ness to their specification. Users can examine them one by one with a reasonable amount 
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Figure 7: Specification Sheet 

The Specify command in CATALOG EXPLORER provides a specification sheet in the form of a ques­
tionnaire. -the questions are derived by analyzing questionnaires being used by professional kitchen 
designers. 

What is the siEe of the kitchen? s .. all 
Do you spend a long tl .. e In a kitchen? Yes 
Do you spend a long ti"e for cooking? Yes 
Do you usually use a dlshuasher? No 
Is safety Inportant to you? Ves 
Are you Interested in an efficient kitchen? Ves 
Are you i nterested in energy saving kitchens? Ves 

Do It 

Figure 8: Weighting Sheet for the Specification 
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After specification, users are asked to weight the importance of each specified item. 
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The Retrieve From Construction command with a parsing topic "Design Unit Types" analyzes the 
current construction and provides a list of all the design umt types beIng used In the construction. 
Users can then select which design unit types they consider to be most important for locating 
prestored designs in the catalog. 

of effort. If no relevant objects are found, they can modify the specification by either 
selecting other answers in the specification sheet, or changing the weights in the weighting 
sheet, or both. After this is done, the Retrieval from Specification command will reorder 
the examples. Users can also use the Retrieval from Construction command and choose 
other criteria for defining the similarity, which will retrieve another set of examples. 



Finally, they can decide which example they want to use by bringing it into the One of the 
Matching Design Examples window, and go back to JANUS-CONSTRUCTION with the 
Resume Construction command. JANUS-CONSTRUCTION automatically will show their 
selected example in the Catalog window of JANUS-CONSTRUCTION (Figure 3). Users can 
refer to this example for getting new ideas on how to proceed with their construction, or 
they may replace the current construction with the example found. 

RETRIEVAL FROM SPECIFICATION 

Issues related to specification 

In order to use a partial specification for identifying a relevant design object, one must 
consider the following issues: types of specifications, weighting importance, and multiple 
contradictory features. 

Types of specifications. We have observed that there exist two types of specifications 
for a design: surface features and hidden features. For example, the specification "a 
kitchen that has a dishwasher" is a surface feature that explicitly describes the design, 
whereas "a kitchen that has less than 100 square feet," or "a kitchen good for a large 
family" are hidden features of the design that are not explicitly expressed in the final 
design artifact (Kolodner, 1990). Surface features are determined by the structure of a 
design, whereas hidden features are related to functions of the design rather than to the 
structure (Gero, 1990). Hidden features can be computed or inferred only by using domain 
knowledge. There are two types of specifications in hidden features, per se. Features such 
as "a kitchen that has less than 100 square feet" are objective or judgmental, whereas 
features such as "a kitchen good for a large family" are subjective. A set of formal rules 
can be defined for deriving objective hidden features. In contrast, SUbjective hidden fea­
tures can be inferred only relative to one's viewpoint. An inference of whether a kitchen 
design is good for a large family is subject to dispute and may vary across time and 
society. 

In practice, initial customer questionnaires that professional kitchen designers give to 
their customers often ask questions relating to subjective hidden feature specifications. 
The experts map these specifications to concrete structural features by using their domain 
knowledge and experience. 

Mechanisms for retrieval of design objects from specifications should, therefore, be 
different according to their types. Retrieving design examples from the catalog by surface 
feature specification can be done with a conventional query mechanism. In contrast, for 
retrieving design examples by hidden feature specifications, the system must have the 
domain knowledge to infer those features. 

Weighting importance. Sometimes specified items contradict each other. If those 
contradictions are among hidden features, users may not notice the occurrence of the con­
tradictions. Consequently, the system cannot retrieve design examples from the catalog 
that satisfy their specification because there do not exist such examples. For example, 
consider the two specifications "a safe kitchen" and "a kitchen that provides easy access 
to the dining area." Although they seem not to contradict each other, they do so in terms 
of hidden features. As seen in Figure 4, a stove should be away from a door for the first 
specification, whereas a stove should be close to a door for the second one. 

To resolve the contradiction, users must prioritize the specifications and make trade-



offs. They have to differentiate importance of the specifications by assigning a weight to 
each specification item. If users specify that "a safe kitchen" is more important to them, 
kitchen designs in which the stove is away from a door are more appropriate to the user's 
specification than others. 

Multiple contradictory features. One design object may have multiple contradictory 
features; that is, hidden features that semantically contradict each other. For example, 
there can be a kitchen design in which some relationships of appliances in the example are 
good for a large family, whereas other relationships in the design are bad for a large 
family. In practice, some part of a design may serve contradictory purposes to other parts 
of the same design. 

Mechanisms 

Specification-linking rules. CATALOGExPLORER dynamically infers subjective hidden 
features of design examples in the catalog by using domain knowledge in the form of 
specification-linking rules. The specification-linking rules link each subjective hidden fea­
ture specification item to a set of physical condition rules. For example, in the middle of 
the Specification window in Figure 6 two rules are shown (stove away from a door and a 
stove away from a window), which are conditions for a kitchen to have a hidden feature "a 
safe kitchen. " 

Previous versions of CATALOGExPLORER required design examples to have explicitly 
specified values for good-for and bad-for slots to represent subjective hidden features. 
This approach relied on the questionable assumption that one could determine a priori that 
these features will become relevant later. Such features may become obsolete under new 
circumstances (e.g., an inefficient kitchen design may become efficient by introducing new 
appliances such as a microwave). Designers cannot articulate all the subjective features of 
a design, and even if they could do so, such features may be difficult to understand. 

The most important aspect of the specification-linking rules is that they can be 
dynamically derived from the content of JANUS-ARGUMENTATION. Suppose the system 
has the following internal representation for the "(Fire Hazard)" argument shown in 
Figure 4 . 

... (Away-from-p STOVE DOOR) -+ 'FIRE-HAZARDOUS l (1) 

And the system has the domain knowledge: 

'SAFETY -+ ..... 'FIRE-HAZAROOUS2 (2) 

When users specify that they are concerned about safety, the system infers that design ex­
amples with a stove away from a door are appropriate to their need by the following in­
ference. First, (1) is equivalent to the following: 

ISymbols such as "FIRE-HAZARDOUS" and "SAFETY" represent concepts as constant values, whereas "STOVE" 
and "DOOR" represent classes of design units. "Away-from-p" is a predefined predicate computing a distance between 
two design units and returns true if it exceeds a certain amount. 

2This should read as "For a kitchen to be safe, it needs to be not fire-hazardous." 



.., 'FIRE-HAZARDOUS - (Away-from-p STOVE DOOR) (3) 

Therefore, by using (2) and (3), 

(2) A (3) - ( 'SAFETY - (Away-from-p STOVE DOOR» (4) 

Appropriateness to a set of specifications. To deal with some of the issues men­
tioned earlier, CATALOGEXPLORER provides a mechanism for assigning a weight to each 
specification item and uses the concept of appropriateness of a design example to a set of 
specification items. The appropriateness of a design in terms of a set of specification items 
is defined as in Figure 10. 

S1,52' ... ,sn is a set of specification items with weights wl'w2, ... ,wn' 
respectively. For each specification item S,., let RJj=l ... m) be a set of physi­
cal necessary conditions specified by a specification-linking rule. Let E be an 
example deSIgn, and define E(R) as follows: 

E(R)= { 1 if the c?ndition R is satisfied in E 
o otherwIse 

_ Then, the appropriateness ~f des~gn E in terms. of a set of specifications 
S-{(Sl,w1),(S2'W2), ... ,(Sn'Wn)} IS defmed as follows. 

m. n , 

2: {(2:E(Rij)/mi)xwi} 
i=l j=l 

Figure 10: Definition of the Appropriateness of a Design 

As a simple example, suppose a user specified one item: "Is safety important to you? 
YES" with a weight 0.8. The physical necessary conditions of this item are "a stove is 
away from a door" and "a stove is away from a window," as seen in the Specification 
window in Figure 6. Therefore, a kitchen that has a stove away from a door but close to a 
window gets the appropriateness value of 0.4=(1 +0)/2xO.8. 

RETRIEVAL FROM CONSTRUCTION 

For retrieving design examples related to a partial construction, one must deal with the 
issues of matching design examples in terms of surface features of a design, namely, at a 
structural level. The issues discussed in the previous section, such as partial matching and 
factor of importance, also hold here. 

Domain-specific parsers analyze the design under construction. They represent the 
user's criteria for the articulation of the task at hand from a partial construction. In other 
words, they determine how to define similarities between the partial construction and a 
design example in the catalog for retrieval of design examples from the catalog. 

CATALOaExPLORER supports the following two parsers. Users have a mechanism to 
choose which parser they want to use. 



• Design unit types: Search for examples that have the same design unit types as the 
current construction. The system first analyzes the current construction, finds which 
design unit types are used, and provides the user with a menu to select some of them 
(see Figure 9). 

• Configuration of design units: Search for examples that have the same configuration 
of design units. For example, if the current construction has a dishwasher next to a 
sink, the examples matching this configuration element will be retrieved. 

RELATED WORK 

Using catalogs in design raises many problems in case-based reasoning. Retrieval tech­
niques used in case-based reasoning systems, however, are often applicable only for 
domains in which problems can be clearly articulated, such as word pronunciation (Stanfill 
and Waltz, 1988). Such systems do not support dealing with fluctuation of the problem 
specification and are inadequate for ill-defined problems. 

In JULIA (Kolodner, 1988), problem and solution structures must be articulated in 
frame representations before starting a retrieval process. Value Frames used in JULIA 

provide the rationale behind a design decision, which can be used for the retrieval of cases. 
CATALOGExpLORER needs to integrate mechanisms to support recording of the design 
rationale for this purpose (Fischer et aI., 1991). 

Most of case-based reasoning systems require representations of cases to be predeter­
mined, and therefore are not feasible. The approach presented in this paper addresses an 
indexing problem (Kolodner, 1990) by using more than surface representation of a case 
and enables the match at more abstract levels of representations. Use of the specification­
linking rules can be regarded as a type of analogical matching such as systematicity-based 
match in CYCLOPS (Navinchandra, 1988). In CYCLOPS, however, the explanations as­
sociated with cases must be predetermined and cannot be dynamically computed. 

The INTERFACE system (Riesbeck, 1988) provides interesting mechanisms for address­
ing some of the issues relating to matching rules. One of them is the use of abstraction 
hierarchies for dealing with the issue of partial matching, which could be used in 
CATALOGExpLORER to support retrieval from construction. Another mechanism is to dif­
ferentiate the importance of design features. This is similar to the weighting sheet in 
CATALOG EXPLORER, but it requires the features to be linearly ordered. Assigned impor­
tance values in our system enable users to deal with more complex contradictory features. 
Being built for the purpose of constructing a case-based library, the INTERFACE system 
supported these mechanisms only while storing cases in the library. In our work, the 
retrieval processes are driven by the user's task at hand, requiring that the weights are 
determined at the retrieval time rather than at the time when cases are stored. The 
INTERFACE system supports the creation of such matching rules only in an ad hoc manner. 
The integrated architecture of CATALOGExpLORER enables the specification-linking rules 
to be derived from the argumentation component associating the rules with a clearly stated 
rationale. 

The system allows users to store design examples in the catalog without checking for 
duplications and redundancies. Other systems store only prototypes (Gero, 1990), or 
prototypes and a small number of examples that are a variation of them (Riesbeck, 1988). 



These approaches allow users to access good examples easily and prevent the chaotic 
growth of the size of the catalog. However, by not including failure cases, these catalogs 
prevent users from learning what went wrong in the past. 

Many case-based reasoning systems support comprehension and adaptation of cases 
(Kolodner, 1990). CATALOGExPLORER supports the comprehension of examples by al­
lowing users to evaluate them with CONSTRUCTION ANALYZER. Adaptation is done by the 
users by bringing an example into the Work Area in JANUS-CONSTRUCfION. No efforts 
have been made toward automating adaptation in our approach. 

DISCUSSION 

Achievements 

By integrating knowledge-based construction, hypermedia argumentation, catalogs of pre­
stored design objects, and specification components, several crucial design activities can 
be supported, such as relevance to the task at hand, the situation talking back, reflection-in­
action (Schoen, 1983), and integration of problem analysis and synthesis. 

In CATALOGExpLORER, users gradually narrow a catalog space. The system can 
dynamically infer subjective hidden features and provide users with an explanation for the 
inference mechanism. The system retrieves examples similar to the current construction, 
providing users further directions in proceeding the design or warning them of potential 
failures. Using the retrieved information they can incrementally evolve a specification and 
a construction in JANUS. The retrieval mechanisms of the system allow users to access 
information relevant to the task at hand in a more effective and accurate way without re­
quiring the users to form queries. Control and responsibility of retrieval of information is 
shared between the user and the system (Fischer, 1990). 

Limitations 

A major limitation of the current system is the relatively small size of the catalog (less than 
a hundred examples). Many problems of managing large spaces effectively have not been 
dealt with. A lack of mechanisms for associating formal representations to arguments 
forces us to manually derive the specification-linking rules. The definition of appropriate­
ness is limited and needs a more sophisticated mechanism such as connectionist networks 
(Henninger, 1990). The parsers for analyzing partial constructions should be extended to 
deal with more abstract levels, such as an emerging shape (e.g., L-shape or U-shape) that 
currently requires to be specified by the user. A combinatorial use of the parsers should be 
explored. 

Future work 

Future extensions of integrated design environments based on the multifaceted architecture 
include: 

• Level of Assembly. The use of JANUS by kitchen designers has illustrated that the 
designers work not only with design units, but with higher level abstractions such as 
cooking centers and clean-up centers. These centers should be integrated into the 
palette, eliminating clear distinction between the elements in the palette and the 
catalog. The catalog should contain not only completed designs, but also important 
partial designs. These extensions will require further consideration on issues such as 
how to focus on a solution (Kolodner, 1990). 



• Support for Other Transition Links. A partial specification can be used to determine 
the set of relevant arguments in the argumentation component, enabling us to 
dynamically rearrange argumentation space. A link between construction and 
specification can reduce the set of relevant units displayed in the palette. 

• Extensions of the Architecture. Our design environment for user interface design 
(Lemke, 1989; Lemke and Fischer, 1990) has been improved greatly in its effec­
tiveness by having a checklist component to help users to structure and organize 
their design activities. The integration of the checklist into the multifaceted architec­
ture has to be explored further. 

• End-User Modifiability. In developing design environments, domain knowledge 
should be built into a seed. As users use the environment continually, this seed 
should be extended. Sophisticated mechanisms for end-user modifiability (Fischer 
and Girgensohn, 1990) are crucial for this evolution of seeded environments. 

CONCLUSION 

Design activities incorporate many cognitive issues such as recognizing and framing a 
problem, understanding given information, and adapting the information to the situation. 
Integration of problem setting and problem solving is crucial in dealing with ill-defined 
problems. In this paper we have described mechanisms relating partial specifications and 
partial constructions to a catalog of prestored designs, thereby retrieving design objects 
stored in a catalog relevant to the task at hand without asking users to form queries. The 
system demonstrates the synergy of integrated design environments empowering human 
designers. The multifaceted architecture developed in the context of these research efforts 
is a promising architecture for building a great variety of integrated design environments in 
different domains. 
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