
~ University of Colorado at Boulder

Department of Computer Science

ECOT 7-7 Engineering Center
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-7514, FAX: (303) 492-2844

Critics: An Emerging Approach
to Knowledge-Based Human Computer Interaction

Gerhard Fischer, Andreas C. Lemke and Thomas Mastaglio
Department of Computer Science and Institute for Cognitive Science

University of Colorado, Boulder, USA

Anders I. Morch
NYNEX Artificial Intelligence Laboratory

White Plains, NY, USA

To appear in: International Journal ofMan-Machine Studies (IJMMS)

Abstract: We describe the critiquing approach to building knowledge-based interactive systems. Critiquing
supports computer users in their problem solving and learning activities. The challenges for the next genera­
tion of knowledge-based systems provide a context for the development of this paradigm. We discuss critics
from the perspective of overcoming the problems of high-functionality computer systems, of providing a new
class of systems to support learning, of extending applications-oriented construction kits to design environ­
ments, and of providing an alternative to traditional autonomous expert systems. One of the critiquing systems
we have built - JANUS, a critic for architectural design - is used as an example for presenting the key aspects
of the critiquing process. V.Ie then survey additional critiquing systems developed in our and other reseaich
groups. The paper concludes with a discussion of experiences and extensions to the paradigm.

Acknowledgements. Many people have contributed to the development of our notion of the critiquing paradigm.
The authors would like to thank especially: the members of the Janus Design Project (Ray McCall, Kumiyo
Nakakoji, and Jonathan Ostwald), the members of the LISP-CRITIC project (Heinz-Dieter Boecker, Chris Morel,
Brent Reeves, and John Rieman), all the people who have participated in discussions about the general framework
for critiquing (Thomas Schwab, Helga Nieper-Lemke, Curt Stevens, Tom DiPersio, and Hal Eden), and the HCC
research group as a whole. This research was partially supported by grant No. IRI-8722792 from the National
Science Foundation, grant No. MDA903-86-C0143 from the Army Research Institute, and grants from the Intel­
ligent Interfaces Group at NYNEX and from Software Research Associates (SRA), Tokyo.

Critics: An Emerging Approach
to Knowledge-Based Human Computer Interaction

Gerhard Fischer, Andreas C. Lemke, and Thomas Mastaglio
Department of Computer Science and Institute for Cognitive Science

University of Colorado, Boulder, USA

Anders I. Morch
NYNEX Artificial Intelligence Laboratory

White Plains, NY, USA

Abstract
We describe the critiquing approach to building

knowledge-based interactive systems. Critiquing
supports computer users in their problem solving and
learning activities. The challenges for the next
generation of knowledge-based systems provide a
.context for the development of this paradigm. We
discuss critics from the perspective of overcoming the
problems of high-functionality computer systems, of
providing a new class of systems to support learning,
of extending applications-oriented construction kits to
design environments, and of providing an alternative
to traditional autonomous expert systems. One of the
critiquing systems we have built - JANUS, a critic
for architectural design - is used as an example for
presenting the key aspects of the critiquing process.
We then survey additional critiquing systems
developed in our and other research groups. The
paper concludes with a discussion of experiences and
extensions to the paradigm.

Keywords: critics, critiquing, high functionality
computer systems, intelligent support systems, design
environments, cooperative problem solving systems.

Introduction
A critic is a system that presents a reasoned opinion

about a product or action generated by a human. The
critiquing approach is an effective way to make use of
computer knowledge bases to aid users in their work and
to support learning. Our experience with this approach
includes several years of innovative system building ef­
forts, the integration of cognitive and design theories, em­
pirical observations, and the evaluation of prototypes.
This paper combines our experience with the research ef­
forts of others to articulate foundations and characteristics
for the critiquing paradigm. We describe the rationale for
critiquing (Section 2) and illustrate the approach using one
of our systems (JANUS) as an example (Section 4).
Section 5 gives a general characterization of the critiquing
process. Other critics are surveyed in terms of the critiqu­
ing framework, showing the applicability and usefulness
of critics in other domains (Section 6). We conclude with
a discussion of future directions for research on the
critiquing paradigm.

Challenges for the Next Generation of
Knowledge-Based Systems

The next generation of knowledge-based systems will
present the following challenges:
• They will be high functionality systems, and their com­

plete mastery will exceed the cognitive capabilities of
most individuals.

• They will need to support a broad spectrum of learning
and working activities.

• They should be integrated design environments.
• Rather than autonomous expert systems, they will often

be joint human-computer systems supporting coopera­
tive problem solving.

We will discuss how critics can meet each of these chal­
lenges.

High-Functionality Computer Systems
As powerful computer hardware has become widely

available, so have software systems for general applica­
tions with a large range of capabilities. Technical com­
plexity and the associated human cognitive costs to master
these systems have grown dramatically limiting the ability
of users to take full advantage of them. One illustration of
this situation is the Symbolics LISP machine; it contains
over 30,000 functions and 3300 flavors (or classes) ac­
companied by 12 books with 4400 pages of written
documentation. Even a modern microcomputer word
processor has more than 400 pages of documentation and
an amount of functionality that very few people master in
its entirety.

For systems to be useful and applicable to a wide range
of problems, they have to offer rich functionality. Modern
computer systems are best understood not in their capacity
to compute but to serve as knowledge stores. And because
the amount of knowledge is extensive, these systems will
not be small and simple, but will be large and complex.

"Reality is not user friendly," i.e., typical problems are
complex and cannot be easily solved using a small set of
general building blocks and tools. Such minimal tools are
not always useful even though, in principle, anything can
be computed with them. These tools force the user to
reinvent the wheel rather than supporting reuse and
redesign of existing components.

Systems that offer a rich functionality are a mixed bless-

ing. In a very large knowledge spacet something related to
what we need is likely to exist but may be difficult to find.
It is impossible and infeasible for anyone individual to
know such systems completely. Empirical studies
(Draper, 1984) have shown that even very experienced
users know only a subset of a large system. They en­
counter the following problems: They do not know about
the existence of building blocks and tools; they do not
know how to access tools, or when to use them; they do
not understand the results that tools producet and they can­
not combinet adapt, and modify tools according to their
specific needs. Our goal is to increase the usability of high
functionality computer systemst not by "watering downtt

functionality or steering the user toward only a subset of
the systems' capabilities, but by facilitating learning aboutt
access tOt and application of the knowledge these systems
contain. Critics contribute to these goals by providing the
user with selective information at the time it is needed.

Systems to Support Learning
The computational power of high functionality com­

puter systems can provide qualitatively new learning en­
vironments. Learning technologies of the future should be
multi-facetedt supporting a spectrum extending from open­
ended, user-centered environments such as LOGO (papert,
1980) to guided, teacher-centered tutoring environments
(Wengert 1987).

Tutoring is one way to support learning the basics of a
new system. One can pre-design a sequence of
microworlds and lead a user through them (Anderson &
Reiser, 1985). However, tutoring is of little help in sup­
porting learning on demand when users are involved in
their "own doing. tt Tutoring is not task-driven, because
the total set of tasks cannot be anticipated. To support
user-centered learning activities, we must build computa­
tional environments that match individual needs and learn­
ing styles. Giving users control over their learning and
working requires that they become the initiators of actions
and set their own goals.

In open learning environments users have unlimited
control (papertt 1980), but there are other problems. They
do not support situations where users get stuck during a
problem solving activity or settle at a suboptimal plateau
of problem solving behavior. To successfully cope with
new problems, users can benefit from a critic that points
out shortcomings in their solutions and suggests ways to
improve them.

In contrast to passive help systems, critics do not require
users to formulate a question. Critics allow users to retain
control; they interrupt only when users' products or ac­
tions could be improved. By integrating working and
learningt critics offer unique opportunities: users under­
stand the purposes or uses for the knowledge they are
learning; they learn by actively using knowledge rather
than passively perceiving it, and they learn at least one
condition under which the knowledge can be applied. A
strength of critiquing is that learning occurs as a natural
byproduct of the problem solving process.

Design Environments

To accomplish most things in this worldt selective
search, means-ends analysis, and other weak: methods are
not sufficient (Simon, 1986); one needs to employ strong
problem solving techniques with knowledge about the task
domain. Designers-architects, composerst user interface
designers, database experts, knowledge engineers-are ex­
perts in their problem domain and are not interested in
learning the "languages of the computert>; they simply
want to use the computer to solve their problems and ac­
complish required tasks. To shape the computer into a
truly usable as well as useful medium, we have to make
low-level primitives invisible. We must "teachtt the com­
puter the 13.t'1guages of experts by endowing it wiL~ L~e

abstractions of application domains. This reduces the
transformation distance between the domain experCs
description of the task and its representation as a computer
program. Human problem-domain communication is our
term for this idea (Fischer & Lemket 1988).

Design environments (Lemke, 1989; Fischert McCall, &
Morcht 1989a) are tools that foster human problem­
domain communication by providing a set of building
blocks that model a problem domain. Design environ­
ments also incorporate knowledge about which com­
ponents fit together and how. These systems contain
critics that recognize suboptimal design choices and in­
efficient or useless structures.

Cooperative Problem Solving Systems
The goal of developing joint human-computer cognitive

systems in which the computer is considered a cognitive
amplifier has challenged the more widely understood goal
of artificial intelligence: The understanding and building
of autonomous, intelligentt thinking machines. For us, a
more important goal is to understand and build interactive
knowledge media (Stefik, 1986) or cooperative problem
solving systems (Fischer, 1990). The major difference be­
tween classical expert systemst such as MYCIN and R 1t
and cooperative problem solving systems is in the respec­
tive roles of human and computer.

Traditional expert systems ask the user for input, make
all decisions, and then return an answer. In a cooperative
problem solving systemt the user is an active agent and
participates together with the system in the problem solv­
ing and decision making process. The precise roles played
by the two parties may be chosen depending on their dif­
ferent strengths with respect to knowledge of goals and
task domain. Critics are an important component of
cooperative problem solving systems, especially when
they are embedded in integrated design environments.
These critics detect inferior designst provide explanations
and argumentation for their "opiniontt and suggest alter­
native solutions.

Cooperative problem solving refers in our work to the
cooperation between a human and a computer. It shares
some research issues with two related but different
research areas: Computer Supported Cooperative Work

User Model

Domain
Knowledge

J

Critique

Proposed
Solution

"--.
('

Goals

Domain
Expertise

Figure 1: The Critiquing Approach

A critiquing system has two agents, a computer and a user, working in cooperation. Both agents contribute what they know
about the domain to solving some problem. The human's primary role is to generate and modify solutions, while the
computer's role is to analyze those solutions producing a critique for the human to apply in the next iteration of this process.

(esew) (Greif, 1988), which describes the cooperation
between humans mediated by computer, and Distributed
Artificial Intelligence (Bond & Grasser, 1988), which
refers to cooperation between computer systems.

Traditional expert systems are inadequate in situations
where it is difficult to capture all necessary domain
knowledge. Leaving the human out of the decision
process, autonomous expert systems require a comprehen­
sive knowledge base covering all aspects of the tasks to be
performed; all "intelligent" decisions are made by the
computer. Some domains, such as user interface design,
are not sufficiently understood, and creating a complete set
of principles that adequately captures the domain
knowledge is not possible. Other domains are so vast that
tremendous effort is required to acquire all relevant
knowledge. Critics are well suited to these situations be­
cause they need not be complete domain experts.

The traditional expert system approach is also in­
appropriate when the problem is ill-defined, that is, the
problem cannot be precisely specified before a solution is
attempted. In contrast, critics are able to function with
only a partial task understanding.

rects a mistake in a word processor document or a se­
quence of operating system commands.1 An agent, human
or machine, that is capable of critiquing in this sense is
classified as a critic. Critics often consist of a set of rules
or specialists for individual aspects of a product; we some­
times refer to such an individual rule or specialist as a
critic, not only to the complete critiquing system as a
whole.

Critics do not necessarily solve problems for users. The
core task of critics is the recognition and communication
of deficiencies in a product to the user. Critics point out
errors and suboptimal conditions that might otherwise
remain undetected. Most critics make suggestions on how
to improve the product. With this information users can
fix the problems or seek additional advice or explanations.

Advisors (Carroll & McKendree, 1987) perform a func­
tion similar to critics except that they are the primary
source for the solution. Users describe a problem, and
they obtain a proposed solution from the advisor. In con­
trast to critics, advisors do not require users to present a
partial or proposed solution to the problem.

Critiquing systems are particularly well suited for
design tasks and for complex problem domains. In most

The Critiquing Approach
Critiquing is a way to present a reasoned opinion about

a product or action (see Figure 1). The product may be a
computer program, a kitchen design, a medical treatment
plan; an action may be a sequence of keystrokes that cor-

lIn the remainder of the paper the term product is often used in
a generic sense encompassing both product in a narrow sense and
actions.

;; Stove should be away from a door
(define-crack-rule stove-door-rule stove

"is not away from a door"
"is away from a door"
:argumentation-topic "answer (stove, door)"
:apply-to (all door)
:applicability

(has-design-unit 'door)
:condition

(not (away-from du-l du-2 threshold)))

; defined on design unit STOVE
; critic message
; praiser message
; access to JANUS-VIEWPOINTS
; test all doors (if any)
; test only if there is
; a door in the work area

; du-l is stove, du-2 is door

Figure 4: Definition of the stove-door critic rule

cases design tasks are ill-structured problems for which no
optimal solution exists. Complex problem domains re­
quire a team of cooperating specialists rather than a single
expert. Not all problems fit this description; for example,
there are problems in engineering design and operations
research, where one can precisely specify problems and
generate optimal solutions. Those types of problems yield
to more algorithmic solutions and are not good candidates
for the critiquing approach.

The term "critic" has been used to describe several
closely related, yet different ideas. It was used first in
planning systems to describe internal demons that check
for consistency during plan generation. For example,
critics in the HACKER system (Sussman. 1975) discover
errors in blocks world programs. When a critic discovers
a problem. it notifies the planner, which edits the program
as directed by the critic. The NOAH system (Sacerdoti.
1975) contains critics that recognize planning problems
and modify general plans into more specific ones that con­
sider the interactions of multiple subgoals. Critics in plan­
ners interact with the internal components of the planning
system; critics in the sense of this paper interact with
human users.

JANUS: An Example
To illustrate the critiquing approach and to provide an

example for the subsequent theoretical discussion of
critiquing, we present in this section the JANUS design en­
vironment. JANUS is based on the critiquing approach and
allows a designer to construct residential kitchen floor plan
layouts and to learn general principles underlying such
constructions (Fischer, McCall & Morch. 1989a; Fischer,
McCall & Morch. 1989b). JANUS is an integrated design
environment addressing the challenges of human problem­
domain communication and testing the feasibility of ap­
plying relevant information from large information stores
to a designer's task.

JANUS contains two integrated subsystems:
JANUS-CRACK and JANUS-VIEWPOINTs. JANUS-CRACK is
a knowledge-based design environment supporting the
construction of kitchens using domain-oriented building
blocks called design units (Figure 2). JANUS-VIEWPOINTS
is an issue-based hypertext system containing general prin-

ciples of kitchen design (Figure 3). The integration of
JANUS-CRACK and JANUS-VIEWPOINTS allows argumen­
tation to resolve problematic (breakdown) situations that
occur when critics detect design rule violations.

Knowledge Representation in JANUS

The critics in JANUS-CRACK know how to distinguish
"good" designs from "bad" designs and can explain that
knowledge. This knowledge includes design principles
from Jones & Kapple (1984). These principles fall into
three categories: building codes. such as ({The window
area shall be at least 10% of the floor area." , safety stan­
dards. such as({The stove should be at least 12 inches
away from a door.". and functional preferences, such as
({The work triangle should be less than 23 feet." Func­
tional preferences are soft rules and may vary from desig­
ner to designer. Building codes and safety standards are
harder rules and should be violated only in exceptional
cases.

The critics are implemented as condition-action rules,
which are tested whenever the design is changed. The
changes that trigger a critic are operations that modify the
construction situation in the work area: move. rotate. and
scale. Each type of design unit has a set of critic rules
whose condition parts are relationships between design
units that capture the design principles discussed above.
Protocol studies have shown that they are important prin­
ciples that professionals use during the design process
(Fischer & Morch, 1988). The stove design unit. for ex­
ample. has critic rules with the following condition parts:
(away-from stove door). (away-from stove window). (near
stove sink), (near stove refrigerator).
(not-immediately-next-to stove refrigerator). The code for
one of the stove critic rules is shown in Figure 4.

JANUS as a Design/Learning Tool
JANUS supports two design methodologies: design by

composition (using the Palette) and design by modifica­
tion (using the Catalog). In addition. examples in the
catalog can be used to support learning. The user can copy
both good and bad examples into the work area. One
learning example is shown in Figure 5. The system can
critique such designs to show how they can be improved,

Janus-CRACK Worl< Area

Palette Context: Appliances

walls

doors

\JD
windows

[Sat 17 Feb 11:09:51] Keyboard

Catalog

Design State
~ vertical-wall-1
!! vertical-wall-2
!! horizontal-wall-2

right-hinged-door-1
window-1
double-bowl-sink-1
single-door-refrigera tor-1
base-cabinet-1
base-cabinet-2
right-hinged-door-2
corner-cabinet-l
base-cabinet-3

.. four-element-stove-1
dishwasher-1

New Class New Rule New Relation

.. HEWSIGI:/sigi/ai.tfischer/! ibl'hardcopiesl'janusl'shoY-exal'l" 13

Praise All

User InputCL USER:

Learning-Example-S

sinks

[]J][J
stoves

I: :11.-.11: ~11·icr~"'1

n'n
I!
II
D

Figure 2: JANUS-CRACK: the STOVE-CRITIC

JANUs-CRACK is the construction part of JANUS. Building blocks (design units) are selected from the Palette and moved to
desired locations inside the Work Area. Designers can reuse and redesign complete floor plans from the Catalog. The
Messages pane displays critic messages automatically after each design change that triggers a critic. Clicking with the mouse
on a message activates JANUS-VIEWPOINrS and displays the argumentation related to that message (Figure 3).

thus allowing users to learn from negative examples. To
learn about good features of prestored designs, designers
can run the Praise All command, thus getting positive
feedback as well. V sers can add their own designs to the
catalog for future reuse or as additional learning examples.

V sers can modify and extend the JANUS-CRACK design
environment by modifying or adding design units, critic
rules, relationships (Fischer & Girgensohn, 1990). The
ability to modify critic rules is important if a designer
disagrees with the critique given. Standard building codes
(hard rules) cannot be changed, but functional preferences
(soft rules) vary from designer to designer and thus can
and should be adapted. In this way, users have the
capability to express their preferences. For example, if
users disagree with the design principle that the stove
should be away from a door, they can edit the stove door

rule by replacing the away-from relation between STOVE

and DOOR with another relation (selected from a menu).
After this modification, they will not be critiqued when a
stove is not away from a door.

We have found JANUS to be a useful environment for
design students. It teaches them about design principles.
JANUS is also an efficient tool for skilled designers as it
enhances their cognitive abilities for storing and remem­
bering principles of good design such as the required
building codes.

A User Scenario with JANUS

In the following scenario, the designer has selected an
L-shaped kitchen from the catalog for reuse. The goal is
to modify this kitchen into a V-shaped kitchen by rear-

II! ! Argument (Dining Room)
: i If the door leads into a dining room, it will be easy to bring hot
:I food from the stove into the dining area!

I j "' " " ,..
1 ~

9

II
II
i I
i!

II
iI
; !

II
! ~

i i
! !

II
if

Janus-ViewPoints

Answer (Stove. Door)

The stove should be away from a door.

~~r
dist > 12 inches

Figure 5: stove-door

Argument (Fire Hazard)
By placing the stove too close to a door It will be a fire and
burn hazard to unsuspected passers by (such as small children)!

the stove ;s away from a door

Visited Nodes
Answer (Refrigerator, ~indow) Section
Description (~ork Triangle) Section
Answer (Refrigerator, Stove) Section
Answer (Stove, Sink) Section

• Answer (Stove, Door) Section

Viewer: Default Viewer

Commands
q
! \Show ExaMp1e: "Answer (Stove, Door) IIld Show Exa.n.ple Rnswer (Stove, lJoor)
o
Mouse-R: Menu.
To see other commands, press Shift, Control. Meta-Shift. 01' Super.

Show Outline
Search For Topics
Show Argumentation

Show Context

Done
Show Example

Show Counter Example
Show Construction

[Sat 17 Feb 11:09:04] Keyboard CL USER: User Input

Figure 3: JANUS-VIEWPOINTs: Rationale for the stove-door rule

The JANUS argumentation component is a hypertext system implemented using the SYMBOUCS DOCUMENf EXAMINER. Clicking
with the mouse on a critique in the JANUS construction mode (Figure 2) activates JANUS-VIEWPOINfS. The Viewer pane shows
the arguments for and against the answer relating a stove and a door. The top right pane shows an example illustrating this
answer. The Visited Nodes pane lists in sequential order the argumentation topics previously discussed. By clicking with the
mouse on one of these items, or on any bold or italicized item in the argumentation text itself, the user can navigate to related
issues, answers, and arguments.

ranging some of the appliances and cabinets. Figure 2
shows the construction situation just after the stove
(FOUR-ELEMENT-STOVE-l) was moved to the lower right
corner of the kitchen floor plan.

Moving the stove triggers the stove critic, which tests
the stove's location relative to the doors, sink, and
refrigerator currently in the work area. Critic messages
displayed in the messages pane tell the designer that the
stove is not proper!y located relative to the door and the
sink, and that the WORK TRIANGLE is greater than 23 feet.
This identifies a problematic situation, and prompts the
designer to reflect on it. The designer has broken a
kitchen safety rule: The stove should be at least 12 inches
away from a door.

The user may not have known the safety rule or may not
understand the rationale for the rule, in which case an
explanation is desirable. Instead of providing the designer
with prestored text reflecting one expert's opinion, it is
preferable to acquaint the designer with multiple perspec­
tives. This is supported by JANUS-VIEWPOINTS, which is
activated by clicking with the mouse on the critique in the
messages pane. The designer enters JANUS-VIEWPOINTS

automatically in the context relevant to the critique
(Figure 3). This argumentative context shows an answer
to the issue the designer is implicitly raising: ({What
should be the location of the stove?" The answer states
how the stove should be positioned relative to a door and
lists arguments for and against this answer. This argumen-

...

...

D
\ D

D
r--

DW • • DD• •lUI

Figure 5: JANUS-CRACK: A learning example from the Catalog

The critics in JANUS detect the following suboptimal features of the kitchen shown in this figure: The width of the door is less
than 36 inches, the dishwasher is not next to a sink, the stove is next to a refrigerator, the refrigerator is next to a sink, and the
sink is not in front of a window.

tative context also shows an example of how this design
rule was successfully applied in another design (shown in
the upper right comer of Figure 3). The example is taken
from the catalog of prestored designs in JANUS-CRACK.

All bold and italicized words in the Viewer pane (the
largest pane in JANUS-VIEWPOINTS) and all topics in the
Bookmarks pane allow further exploration with a mouse
click. Hypertext access and navigation is made possible
using this feature inherited from the SYMBOUCS
DOCUMENT EXAMINER. After finishing the search for re­
lated infonnation in JANUS-VIEWPOINTS, the designer
resumes construction in JANUS-CRACK by selecting the
Done command.

The Process of Critiquing
Figure 6 illustrates the component processes of critiqu­

ing: goal acquisition, product analysis, critiquing strategy,
explanation and advice giving. Not all of these processes
are present in every critiquing system. This section
describes these subprocesses and illustrates them with ex­
amples. JANUS does not illustrate all of the issues, and we
will refer occasionally to systems that are described in
Section 6.

Goal Acquisition
Critiquing a product is enhanced if the system has an

understanding of the intended purpose of the product
(problem knowledge). Problem knowledge can be
separated into domain knowledge and goal knowledge.
Domain knowledge without any understanding of the par­
ticular goals of the user restricts a critic to reasoning about
characteristics that pertain to all products in the domain.
For example, domain knowledge allows JANUS to point

out that stoves should not be placed close to doors, be­
cause this arrangement constitutes a fire hazard. For a
more extensive evaluation of a product, some understand­
ing of the user's specific goals and situation is necessary.
JANUS, like most critics, does not have that understanding.
The user's goal is assumed to be to design a functional
residential kitchen; the critic does not take into account
any individual requirements such as size of the kitchen or
number of people in the family.

Critics that work with specific goal knowledge can ac­
quire it by asking the user (external goal specification) or
by analyzing the product the user has generated so far
(goal recognition). A kitchen with a table and chairs lo­
cated in the center of the kitchen suggests that the user
intends to eat meals in the kitchen. The table and chairs
allow a kitchen critic to recognize the goal of providing an
eating area. Goal recognition is only possible if the cur­
rent version of the artifact approximates a solution to the
goal to be recognized. If the product fails to come close to
the user's goal, the critic cannot infer that goal or might
infer a goal different from the user's goal. Goal recog­
nition is related to task-oriented parsing (Hoppe,
1988) and plan recognition, a research area in artificial
intelligence (Schmidt, Sridharan & Goodson, 1978; Lon­
don & Clancey, 1982; Carver, Lesser & McCue, 1984).
Tutorial systems define a goal structure for the user.
Critics, however, allow users to set their own goals and do
not restrict the space of possible goals. This complicates
the problem of goal recognition. A critic that implements
goal recognition is ACTIVIST (Section 6.3).

A critic may also have access to an external specifica­
tion of the problem to be solved. For example, users may
communicate to the system that they need a kitchen with
an eating area for informal meals. This can be done with

User
Model

Legend

e
Figure 6: The Critiquing Process

Users initiate the critiquing process by presenting a product to the critic. In order to evaluate the product, the critic needs to
obtain the user's goals either by recognizing them or from explicit user input. The product analyzer evaluates the product
against the goal specification. Some critics do this by generating their own solution and comparing it to the user's. A
presentation component uses the product analysis to formulate a critique, to give advice on how to make improvements, and to
provide explanations. Critiquing strategies and a user model control the kind of critique, its form and timing. Based on the
critique, the user generates a new version of the product, and the cycle repeats, integrating the new insight.

electronic questionnaires as well as with more sophis­
ticated techniques such as natural language communica­
tion.

Product Analysis
There are two general approaches to crItiquing:

differential and analytical critiquing. In the former ap­
proach, the system generates its own solution and com­
pares it with the user's solution pointing out the dif­
ferences. An advantage of differential critiquing is that all
differences can be found. Some domains allow radically

different, but equally valid solutions, which is a potential
problem if the system generates its solution without regard
to the user's solution approach. If user and system solu­
tions differ fundamentally, the critic can only say that the
system solution achieves good results but cannot explain
why the user's solution is less than optimal.

Different solution attempts fulfill the goals to different
degrees or are associated with different undesirable ef­
fects. In such situations, metrics are needed to measure
the quality of alternative solutions (Fischer, Lemke &
Schwab, 1985). Based on the controversial nature of

design problems, alternative, conflicting metrics can be
defined and may have to be reconciled by negotiation and
argumentation.

An analytical critic checks products with respect to
predefined features and effects. Analytical critics identify
suboptimal features using pattern matching (e.g., Fischer,
1987), and expectation-based parsers (e.g., Finin, 1983).
In analytical approaches, critics do not need a complete
understanding of the product. JANUS is an analytical critic
that uses a set of rules to identify undesirable spatial
relationships between kitchen design units. JANUS does
not identify all possible problems within a kitchen design.
Its rule base allows it to critique kitchens without knowing
exact requirements and preferences of the kitchen user.

Critics for large designs must operate on intermediate
states and not only on complete products. A design rule in
the domain of kitchen design specifies a certain minimum
window area. The critiquing component of JANUS must be
able to deal with temporary violations to avoid bothering
users when they have not yet included all the windows in
their design.

Some critics receive a stream of information that is not
yet separated into individual products or actions.
ACTIVIST (Fischer, Lemke & Schwab, 1985) is a critic for
a text editor, which critiques keystroke sequences and, if
possible, proposes shorter alternatives. Systems such as
ACTIVIST face several problems: action sequences are hard
to delineate; sequences of actions may constitute a useful
plan but may also be the beginning of a different, larger,
not yet complete plan, and different plans may overlap or
be included within each other. For example, users may
delete a word at one place in a text, then correct a spelling
mistake, and finally paste the word at a different place.
This composite action sequence needs to be recognized as
an interleaved execution of a correct-spelling plan and an
exchange-words plan. A critic capable of task-oriented
parsing must decide how long to wait for later parts of a
plan and whether interspersed actions interfere with the
interrupted plan.

Critiquing Strategies
Critiquing strategies and an optional user model control

the presentation component of a critic. The critiquing
strategies determine what aspects of a design to critique
and when and how to intervene in the working process of
the user. Critiquing strategies differ depending on the
predominant use of the system, either to help users solve
their problems or as a learning environment.

The user's perception of critics. Like recommen­
dations from colleagues or co-workers, messages from a
critic can be seen as helpful or hindering, as supportive of
or interfering with work or the accomplishment of goals.
Critiquing strategies should consider intrusiveness and
emotional impact on the user. Intrusiveness is the users'
perception of how much the critiquing process is inter­
fering with their work. Critics can either interfere too
much or fail to provide sufficient help, depending on the
frequency of feedback, the complexity of the tasks, and the

sophistication of the user. Emotional impact relates to
how users feel about having a computer as an intelligent
assistant. Critiquing from a computer might be more
tolerable than critiquing from humans if it is handled as a
private matter between the human and the computer.

What should be critiqued? Educational critics, whose
prime objective is to support learning, and performance
critics, whose primary objective is to help produce better
products, have different requirements for their critiquing
strategies. A performance critic should help users create
high-quality products in the least amount of time using as
few resources as possible. Learning is not the primary
concern of performance systems but can occur as a by­
product of the interaction between user and critic. Educa­
tional critics should maximize the information users retain
to improve their future performance.

Most performance critics (e.g., FRAMER, JANUS,
ROUNDSMAN, KATE; see Section 6) do not select specific
aspects of a product to critique. They evaluate the product
as a whole to achieve the highest possible quality. Some
critics selectively critique based on a policy specified by
the user. LISP-CRITIC, for,. example, operates differently
depending on whether cognitive efficiency or machine ef­
ficiency is specified as the primary concern for writing
LISP programs.

Educational critics, such as the WEST system by Burton
& Brown, 1982 (see Section 6) usually employ a more
complex intervention strategy that is designed to maximize
information retention and motivation. For example, an
educational critic may forego an opportunity to critique
when it occurs directly after a previous critiquing episode.

Most existing critics operate in the negative mode, that
is, they point out suboptimal aspects of the user's product
or solution. A positive critic recognizes the good parts of a
solution and informs users about them (the Praise All
command in JANUS-CRACK). For performance critics, a
positive critic helps users retain the good aspects of a
product in further revisions; a positive educational critic
reinforces the desired behavior and aids learning.

Intervention strategies. Intervention strategies deter­
mine when a critic should interrupt and how. Active
critics exercise control over the intervention strategy by
critiquing a product or action at an appropriate time. They
function like active agents continuously monitoring users
and responding to individual user actions. Passive critics
are explicitly invoked by users when they desire an
evaluation. Passive critics usually evaluate the (partial)
product of a design process, not the individual user actions
that resulted in the product.

For active critics the intervention strategy must specify
when to send messages to the user. Intervening im­
mediately after a suboptimal or unsatisfactory action has
occurred (an immediate intervention strategy) has the ad­
vantage that the problem context is still active in the users'
mind, and they remember how they arrived at the solution.
The problem can often be corrected immediately. A dis­
advantage of active critics is that they may disrupt a cog­
nitive process causing short term memory loss. Users then

need to reconstruct the goal structure that existed before
the intervention. Delayed critic messages may appear out
of context and hence come too late to prevent the user
from heading towards an undesirable state.

Critics can use any of various intervention modes that
differ in the degree to which users' attention is attracted.
A critic can force users to attend to the critique by not
allowing them to continue with their work. A less in­
trusive mode is the display of messages in a separate critic
window on the screen. This gives users a choice whether
to read and process the message immediately or first com­
plete an action in progress. The messages should be dis­
played in such a way that they do not go unnoticed. Those
messages that pertain to users' current focus of attention
should be easy to find rather than being hidden among a
large set of messages related to other aspects of the
product.

Adaptation Capability
To avoid repetitive messages and to accommodate dif­

ferent user preferences and users with different skills, a
critiquing system needs an adaptation capability. A critic
that persistently critiques the user on a position with which
the user disagrees is unacceptable, especially if the critique
is intrusive. A critic that constantly repeats an explanation
that the user already knows is also unacceptable.

Critics can be adaptable or adaptive. Systems are called
adaptable if the user can change the behavior of the sys­
tem. An adaptive system is one that automatically changes
its behavior based on information observed or inferred.
An adaptation capability can be implemented by simply
disabling or enabling the firing of particular critic rules, by
allowing the user to modify or add rules, and by making
the critiquing strategy dependent on an explicit. dynami­
cally maintained user model.

User modeling in critics (Fischer, Lemke & Schwab,
1985) shares ideas and goals with student modeling in in­
telligent tutoring systems (Clancey, 1986) and advice
giving natural language dialogue systems (Kobsa &
Wahlster, 1989). Computer critics require dynamic, per­
sistent user models that can change over time but are ac­
cessible to the human user for inspection and modification.
How to acquire and represent individual user models is a
topic of ongoing research (Mastaglio, 1990).

Explanation Capability
Critics have to be able to explain the reasons for their

interventions. This provides users with an opportunity to
assess the critique and then to decide whether to accept it.
Knowing why a product was critiqued helps users to learn
the underlying principles and avoid similar problems in the
future. In a critiquing system, explanations can be focused
on the specific differences between the system's and the
user's solutions, or on violations of general guidelines.
Critics can either give detailed explanations spontaneously
or provide them on demand. When users can indicate the
issues they are interested in, the system can provide en­
hanced explanations on demand. One particular approach

uses argumentation as the fundamental structuring
mechanism for explanations; this is illustrated in the
JANUS-VIEWPOINTS system (Fischer, McCall & Morch,
1989).

Advisory Capability
All critics detect suboptimal aspects of the user's

product (problem detection mode). Some critics require
the user to determine how to improve the product by
making changes to address the problems pointed out by
the critic. Other critics, however, are capable of suggest­
ing alternatives to the user's solution. We call these
solution-generating critics. In the JANUS system, a simple
problem detecting critic points out that there is a stove
close to a door. A solution-generating critic would, in
addition, suggest a better location.

Descriptions of Critics
The purpose of this section is to provide an overview of

critiquing systems that have influenced the development of
the paradigm or that illustrate an interesting aspect of it.
We first describe in some detail two critic systems
developed in our laboratory: LISP-CRITIC and FRAMER.
After that, we survey systems developed by others.

LISP-CRITIC

LISP-CRITIC is a system designed to support program­
mers (Fischer, 1987; Fischer & Mastaglio, 1989). It helps
its users to both improve the program they are creating and
to acquire programming knowledge on demand. Program­
mers ask LISP-CRITIC for suggestions on how to improve
their code. The system then suggests transformations that
make the code more cognitively efficient (i.e., easier to
read and maintain) or more machine efficient (i.e., faster
or requiring less memory).

When LISP-CRITIC finds pieces of code that could be
improved, it shows the user its recommendation
(Figure 7). Users can accept the critic's suggestion, reject
it or ask for an explanation to aid in making that decision.
In Figure 7, LISP-CRITIC suggests that the user replace a
conditional expression using cond with an expression
using if. The.user can request an explanation of why if is
preferable to condo The system develops an appropriate
explanation, consulting a user model, and displays the ex­
planation in hypertext form. The user can use the explana­
tion to access more detailed information available about
LISP in an on-line documentation system (the Symbolics
Document Examiner). To adequately support a wide
range of user expertise, LISP-CRITIC incorporates a user
modeling component (Mastaglio, 1990). LISP-CRmc
uses the model to customize explanations so that they
cover exactly what the user needs to know.

FRAMER

FRAMER (Lemke, 1989) is an innovative design en­
vironment for the design of program frameworks, com­
ponents of window-based user interfaces on Symbolics

Lisp-CRITIC

(car u) y»)

(cond «equal r 1) (Mapcar #'list s»
(t (Mapcan #'(laMbda (x)

(Mapcar #'(laMbda (y) (cons x y» (perM (reMove x s) (sub1 r»»
s»)

v»
(car s)
(power (cdr s»»)~

II

i i(defunlperM (s r)
!! (cond «equal r 1) (Mapcar (function list) s»
! ! (t (Mapcan (function
II (laMbda (x)
I I (Mapcar (function (laMbda (y) (cons x y»)

II s»» (perM (reMove x s) (sub1 r»»)

II (defun cOMb (s r)
i I (cond «= r 1) (Mapcar (function list) s»
I I (t (Mapcon (function
! ! (laMbda (u)
II (cond « < (length u) r) ni 1)
! ! (t (Mapcar (function (laMbda (y) (cons
i I (coMb (cdr u) (1- r»»»)
i i s»»

Iliii subseqs 5 r
i liii all consecutive subsequences of length r
I I(defun subseqs (s r)
I i (if « (length 5) r) nil
! ! (cons (seq 5 r) (subseqs (cdr s) r»»
II(defun seq (s r)
!! (cond «= r e) nil)
i I (t (cons (car s) (seq

i I(d(~~~ds(~~~~~r~~ ~~~~ 1) A
«null sub) t) Ii
(t (sub-search sub (cdr ===>

(if (equal r 1)
(Mapcar »'list s)
(Mapcan #'(laMbda (x)

(Mapcar #'(laMbda (y) (cons x y» (perM (reMove x s) (subl r»»
s»

Explanation (Why-cond-to-if-else)

IF Is more readable than COND because It uses fewer parentheses
and because IF has a common English meaning.

Abort Explain New Code Show New Code
Accept Reject Show Original Code
Accept All Set Parameters IWhy Is IhIS Betterl

ZMacs (LISP Font-lock) power. lisp >brentr>zlc MUNCH: (2) * More above]
Nove point

Figure 7: The User Interface of LISP-CRITIC

The large editor window shows a program that a user is working on. The LISP-CRITIC window on top of it displays a cond-to-if
transformation and an explanation of why LISP-CRITIC recommended changing the cond function to an if.

LISP machines (Figure 8). The purpose of the FRAMER
design environment is to enable designers to make use of a
high-level abstraction - program frameworks - with lit­
tle prior training.

FRAMER contains a knowledge base of design rules for
program frameworks. The rules evaluate the completeness
and syntactic correctness of the design as well as its con­
sistency with the interface style used on Symbolics Lisp
machines. The critics are either mandatory or optional.
Mandatory critics represent absolute constraints that must
be satisfied for program frameworks to function properly.
Optional critics inform the user of issues that typically are
dealt with differently. The critics are active, and the sys­
tem displays the messages relevant to the currently
selected checklist item in the window entitled Things to
take care of. Each message is accompanied by up to three

buttons: Explain, Reject, and Execute. The Explain button
displays an explanation of the reasons why the designer
should consider this critic suggestion; it also describes
ways to achieve the desired effect. Optional suggestions
have a Reject or Unreject button depending on the state of
the suggestion. The Execute button accesses the advisory
capability of FRAMER, which is available for issues that
have a reasonable default solution.

A previous version of FRAMER employed a passive
critiquing strategy. Experimental evidence (Lemke,
1989) showed that users often invoked the critic too late
when a major incorrect decision had already been made.
The active strategy with continuous display of messages
used in the newest version of FRAMER solved this
problem. FRAMER prevents its users from permanently
ignoring the critics by using the checklist. Checklist items

Frarner2 Version 5.0

Arrange the panes as desired in your prograM fraMework shown in the work area. Choose frOM
the following Mouse cOMnands.

-Move the title pane to the top of the fraMe. (Explain) (Reject) (Ex~ute)

-ReMOVe the overlap of DATA and TITLE. (Explain)
(Requ.ired)

Palette
Nouse Button Operation

Left Get pane of this type.
Middle Describe this type.

-Fill the eMpty space inside the prograM
fraMework. (Required)

hlngs to take care of:
-Add a Menu bar.

hat you can do:
Check list iteR: Rrrangeftent of panes

Work Area
Nouse Button Operation

Left Move pane.
Middle Resize pane.
Right Menu of all possible operations.
Shift-Left Edit pane options.
Shift-Middle Delete pane.

t:jc:.:.:.::.;.:.::.:.:.;:....:.:..:.:.::.:.:.::.;.:.;:.;.:.::.:.:.::.:.;.;;.:.;.:;.;.:.:;.::.::.:.;.;;.;.;.::.;,;,;:,:,:,:;,;;,::':.:.:1

o (Code Generat ion)

IZJ (PrOgraM nane)

IZJ (In it i 0 1 progrlllM frlllMework)

o (Invoking this prograM)

=>[] t Rrrangeftent of panes j

o (CoMMand loop funct ion)

o (Col'lI"land def ; n i ng nacro)

o (Types of input)

D~

o (CoMMand tab1es)

Check List

Work Area Palette

display-pane named DATA

title-pane named TITLE

I~tl=tle=-~pa=ne==:::-_--,I [listener-pane

display-pane .

lacoopt-valu.. -pano

Mouse-L: Select this item; Mouse-R: Menu.
To see other' commands, pr'ess Shift, Control, Meta-Shift, or Super.
[Fri 15 Sep 5:14:26] Screen Hardcopy CL USER: User Input

Figure 8: FRAMER

This figure shows a screen image of a session with FRAMER. The system has the following components. The checklist
describes the elements of the task of designing a program framework. The What you can do window shows the detailed options
pertaining to a checklist item. The window entitled Things to take care ofdisplays the critic messages. The work area is the
place were frameworks are assembled in a direct manipulation interaction style. A palette contains title panes, display panes,
and other primitive parts for constructing program frameworks. FRAMER also offers a catalog (not shown) for design by
modification.

cannot be checked off until all suggestions are either
resolved or rejected.

Short Descriptions of Critics
What makes the critiquing approach attractive is that it

has generality across a wide range of domains. The ap­
proach has been applied to the domains of medical diag­
nosis and patient management, electronic circuit design,
learning environments, support of education programs,
writing, programming, and text editing. This section of­
fers short descriptions of critiquing systems from these
domains. Most critics have been developed as research
vehicles, but a few are successful commercial applications.
We have tried to select those systems that have had sig-

nificant impact on the development of the CrItiquing
paradigm and ones that have interesting features or address
unique applications. We begin this section with a discus­
sion of the WEST system because it pioneered fundamental
ideas that the critiquing paradigm incorporates.

WEST. WEST was an early effort to build a computer
coach or critic (Burton & Brown, 1982). WEST teaches
arithmetic skill in a gaming environment (a game called
"How the West was won"). Burton and Brown's goal
was to augment an informal learning activity with a com­
puter coach that would retain the engagement and excite­
ment of a student directed activity. At the same time, the
system was to provide context-sensitive advice on how to
play better so students wouldn't get stuck at suboptimal

levels of playing.
Burton and Brown pioneered several important ideas in

WEST. The computer coach builds a bridge between open
learning environments and tutoring in order to support
guided discovery learning. To prevent the coach from
being too intrusive, the system constructs a model of each
individual user. The system has diagnostic modeling
strategies for inferring student problems from student be­
havior. WEST determines the causes of suboptimal be­
havior by comparing the concepts used in the solution of a
built-in expert and those used in the user's solution. Ex­
plicit intervention and tutoring strategies (the most impor­
tant one being "tutoring by issue and example") are ex­
plicitly represented in the system and operate based on the
information contained in the model of the user. These
knowledge structures enable the coach "to say the right
thing at the right time' , and to provide an overall
coherence to the coach's comments.

Although WEST provides an early demonstration of how
to construct an intelligent learning environment, its
development pointed out certain limitations of the ap­
proach. The WEST system was a success in demonstrating
the value of a computer coach in an informal learning
activity. But the domain chosen for the system has a num­
ber of properties which do not hold for other domains in
which critics are needed. The computer expert can play an
optimal game (i.e., there is a best solution), and it can
determine the complete range of alternative behaviors. In
WEST one can speak of "bugs" whereas for many other
domains one can only speak of "suboptimal" behavior.
The metric to compute the best move is simple, whereas
metrics in domains such as kitchen or software design in­
volve a potentially large number of controversial issues.
The set of issues for the game is closed whereas it is open­
ended in many other domains. The goal of the user is
obvious in WEST - to win the game while obeying its
rules. This is another simplifying assumption which does
not apply to many other domains. The explanation
strategy in WEST relies on the assumption that the advice
given is self-explanatory because it contains a good il­
lustrating example. The existence of a best solution and
no need for modifying the rlies in the domain eliminates
the need for an argumentation component such as the one
found in JANUS.

Medical applications of the critiquing approach.
Researchers in the domain of medicine developed several
of the early critiquing systems. In general, these systems
are designed to aid the physician in diagnosis and planning
of patient treatment. Miller and colleagues at Yale Medi­
cal School have done a majority of the work in this area.
Their systems assist a physician or nurse by analyzing
plans for prescribing medication, managing the ad­
ministration of medication, ventilator management, and
administration of anesthetics (Miller, 1986).

Miller's ATTENDING system (Miller, 1986) uses the dif­
ferential critiquing approach. ATTENDING parses the
physician's plan into a hierarchical form. Starting from
the top-level decisions, the system evaluates each step of

the physician's plan by trying to find alternatives as­
sociated with lower or equal risks to the patient. This
method provides a more reasonable critique than one that
discards the physician's solution and proposes a com­
pletely new solution developed by the system expert. By
working from the physician's solution, the system's solu­
tion is as close to the physician's solution as possible, and
the critique is more helpful and easier to understand.

The differential critiquing approach is also used in one
version of ONCOCIN, an expert system for cancer therapy
(Langlotz & Shortliffe, 1983). The critiquing approach
was chosen because it eliminates the need for the
physician to override the system solution when minor
deviations in the therapy are desired for the convenience
of the patient.

The ROUNDSMAN system (Rennels, 1987; Rennels,
Shortliffe, Stockdale & Miller, 1989) is a critic in the
domain of breast cancer treatment. ROUNDSMAN ex­
plicitly bases its critique on studies from the medical
literature. It is a passive critic with explicit goal specifica­
tion. ROUNDSMAN automatically provides a detailed ex­
planation of its reasoning and suggests improvements to
the physicians therapy proposal. It does not use a user or
dialog model and, therefore, repeats similar explanations.

Circuit design. CRITTER (Kelly, 1985) is a design aid
in the domain of digital circuit design. CRITTER requires a
schematic diagram of the circuit and a set of specifications
that the circuit must satisfy. Given this information, Crit­
ter produces a report about the circuit, which can be used
in a subsequent design cycle to revise the design. CRITTER
evaluates the circuit using various circuit analysis tech­
niques and knowledge of the primitive components. The
results of this evaluation include general information about
whether the circuit will work and by what margins, its
weaknesses, and performance limits.

NCR developed the Design Advisor (TM) (Steele,
1988), a commercial expert system that provides advice on
application-specific, integrated circuit designs. The sys­
tem uses a logic-based rule mechanism (Hom clauses) in­
cluding both forward and backward chaining rules with a
frame based representation and a truth maintenance sys­
tem. The Design Advisor analyzes the performance, tes­
tability, manufacturability, and overall quality of CMOS
semi-custom VLSI designs. The knowledge it applies is a
hierarchy of design attributes compiled by studying major
problems from several years of commercial VLSI design.
The designer submits a proposed design to the system for
analysis and critiquing using a batch type approach. The
system returns its analysis to the designer who is respon­
sible for actually modifying the proposed design.

Discovery learning. A suite of three computer-based
coaching systems for discovery learning developed at
LRDC, University of Pittsburgh, are based on critics.
These systems each address a different domain: Smith­
town - microeconomics (Raghaven, Schultz, Glaser &
Schauble), Voltaville - direct current electricity (Glaser,
Raghavan & Schauble, 1988), and Refract - geometrical
optics (Reimann, Raghaven, GlaserI988). These dis-

covery environments are designed to build scientific in­
quiry skills. Active critics judge the efficiency of the
processes used to build scientific theory and inform users
about errors that characteristically trap less successful stu­
dents as well as guide them to effective strategies.

Decision making. The DecisionLab system from the
European Computer Industry Research Center (Schiff &
Kandler, 1988) applies the critiquing approach to coach
users in managerial decision making. DecisionLab
promotes "learning while doing" by providing construc­
tive feedback on a user developed management plan in a
simulated management game. The system critiques deci­
sions and informs users when they pursue a non optimal
approach. This system is of interest because it attempts to
integrate a critic with a simulation exercise in a computa­
tional environment designed to support learning.

Another direction of research is investigating how to
apply the critiquing approach to improve the performance
of decision makers, not through training, but in the context
of their actual work. Mili (1988) has proposed a system
called DECAD, which watches over the shoulder of the
decision maker, interjecting advice or a critique when ap­
propriate. Critiquing is one of the approaches under inves­
tigation for a class of knowledge-based systems called
"active and symbiotic decision support systems" (Mili &
Manheim, 1988).

Curriculum development. The Alberta Research
Council (Canada) and a company called Computer Based
Training Systems have developed a knowledge-based sys­
tem which provides assistance to teachers who do cur­
riculum and course development (Wipond & Jones, 1988).
The system includes an Expert monitor module that
monitors the curriculum and course development process,
intervening when necessary or when the teacher asks for
assistance. It provides a critique which the user can accept
or reject. The expert monitor is also capable of suggesting
what the user should do next, where to look for relevant
examples or how to get more help. Computer Based
Training Systems is now marketing the product as part of
their Computer Managed Learning software package.

Writing. WANDAH (Friedman, 1987) is a system that
assists authors in all phases of writing. This system is
commercially available for personal computers as 'HBJ
Writer." WANDAH has heuristics to help the user design
and prepare a document. Once a writer has created some
text (it need not be a completed document), it can be sub­
jected to one of four sets of reviewing and revising aids.
These aids go over the written work, provide feedback on
structural problems, and recommend revisions. Testing of
WANDAH showed that users find it easy to use and learn to
write better.

Text editing. ACTIVIST (Fischer, Lemke & Schwab,
1985) is an active help system for a screen-oriented editor.
ACTIVIST continuously monitors the editing actions of the
user. By doing this, it recognizes, using finite state
machines, sequences of actions that achieve some goal
known to the system. ACTIVIST understands twenty dif­
ferent goals, such as deleting a word or moving the cursor

to the end of the current line. The system evaluates each
recognized action sequence to update a user model.
ACTIVIST uses the following critiquing strategy: After
three suboptimal executions of a task type (measured by
the number of keystrokes), ACTIVIST infonns the user of a
better procedure for the task. After a certain number of
correct executions, the plan will no longer be watched. In
order to be less intrusive, ACTIVIST ceases to critique ac­
tions when the user ignores its suggestions.

Operating system usage. WIZARD (Finin, 1983) is an
active help system for users of the VMS operating system
command language. Like ACTIVIST, WIZARD has to
recognize sequences of commands that, taken together,
form a plan to achieve a goal known to the system. The
expectation-based parser used for this purpose allows non­
contiguous command sequences that contain interspersed
commands from other goals. Metrics such as amount of
typing and use of system resources are implicit in the
representations of the plans. Advice is given using text
templates.

Programming. PROLOG Explaining (Coombs & Alty,
1984) critiques a user's explanation of PROLOG code.
The system uses the critiquing approach to guide the user
toward a better understanding of the PROLOG language.
Users construct an explanation of what they believe the
code will do. The system's job is to critique that explana­
tion. The user may request a critique at any point during
the process of the explanation building. Also, the system
automatically critiques the explanation at the end of a
program run.

The GRACE Project at the NYNEX Artificial Intel­
ligence Laboratory (Dews, 1989; Atwood, Gray, Burns &
Morch, 1990) has developed an integrated learning en­
vironment for COBOL programming. The GRACE sys­
tem combines a tutor, a critic, and a hypertext system to
support a spectrum of teaching methods ranging from
guided teaching by the tutor, to integrating working and
learning with the critic, and to exploratory browsing in
hypertext. While the system is functioning as a critic, it
can decide to adopt the tutoring mode to give remedial
problems; conversely, while functioning as a tutor, the sys­
tem may decide to let the student explore in the critiquing
mode. In either case the system provides directly acces­
sible hypermedia documentation with text, graphics, and
other presentation media.

Software engineering. KATE (Fickas & Nagarajan,
1988) critiques software specifications (for automated
library systems) represented in an extended Petri net nota­
tion. The knowledge of the critic is represented as
"cases" that consist of a pattern describing a behavior in a
specification, links to one or more goals, simulation
scenarios, and canned text descriptions. The critic
evaluates the specification with respect to goals or policy
values given by the user. The simulation scenarios back
up the system's critique and are designed to approximate
the rich set of examples that software professionals have
been found to use.

Mechanical design. STEAMER/Feedback Mini-Lab

(Forbus, 1984) is an environment in which simulated
devices, such as steam plant controllers, can be assembled
and tested. A device is assembled from simple building
blocks such as actuators and comparators. The Mini-Lab
is able to generate code from the building block specifica­
tions to produce a simulation program for the device.
After students have constructed their device, they can ask
for a critique by the system. This critique identifies com­
mon bugs and recognizes some instances of known
devices.

Conclusion
The systems described in this paper show that critiquing

is an emerging paradigm for knowledge-based systems.
Building a knowledge-based system is a major effort, and
critics are no exception. Realistic systems that provide
broad functionality and support tools are needed to test the
usefulness of critics in actual settings. Critics are often
embedded systems; for example, they constitute only one
part of the JANUS and FRAMER environments.

The strengths of critics are that they support users who
are involved in their own work and that they integrate
learning with that work. As noted in several recent
research efforts (e.g., Schoen, 1983; Suchman, 1987; Bod­
ker, Knudsen, Kyng, Ehn & Madsen, 1988; McCall, Fis­
cher & Morch, 1989), professional practice in design is
both action and reflection. The basis for design is a com­
bination of personal involvement and rational understand­
ing, rather than detached reflection. Systems such as
JANUS and FRAMER allow "the situation to talk back"
through critics that point out breakdowns. By showing
th~~ the artifact under construction has shortcomings,
cnttcs cause users to pause for a moment, to reflect on the
situation, and to apply new knowledge to the problem as
well as to explore alternative designs. By serving as skill­
enhancing tools, critics support the ' 'Scandinavian ap­
proach to system design" (Bodker et al., 1988). Critics
help inexperienced users to become lay designers; for ex­
perienced users, they serve as reminders of the principles
of good design.

One of the features that contributes to the strengths of
critics is at the same time a potential weakness. Support­
i?g users in their own doing means that detailed assump­
ttons about what a user might do cannot be built into the
system. Our critic systems have only a limited under­
standing of the goals that users pursue. This limitation
re~tricts the amount of assistance and detailed goal­
onented analysis that critics can provide, in contrast to
systems that have a deep understanding of a very small set
of problems (for example, Johnson & Soloway, 1984).

Critics need inspectable knowledge structures so that
users can understand, modify, and augment them (Fischer
& Girgensohn, 1990). This modification should not re­
quire users to possess detailed programming knowledge.
Users should be able to deactivate and reactivate in­
dividual critics according to their needs and their goals.
With sufficient inference and user modeling capabilities,
systems can adapt themselves dynamically (ACTIVIST con-

tains a mechanism to support this).
Observing users of JANUS and FRAMER showed that

users do not always notice the critique generated by the
system or that they ignore the advice. A more detailed
analysis of attention and intervention is required to devel­
op critiquing strategies that insure that users do not miss
important information, but at the same time are not inter­
rupted in situations where they should focus on other
issues.

Currently, most critics support only "one-shot dialogs"
(Aaronson & Carroll, 1987). They respond to actions
taken by the user; they give suggestions and provide ex­
planations and argumentation. But human critiquing is a
more cooperative problem solving activity, during which
an increased understanding of the problem develops.

We have attempted to provide answers to some of these
issues by presenting the critiquing paradigm as an alter­
native approach to using knowledge-based computer sys­
tems to support human work and learning. Existing
critiquing systems were surveyed. Critics are not the only
solution to building better knowledge-based systems, but
we believe that a growing number of them will contain a
critiquing component. Some of these systems will have
elaborate problem understanding, but more commonly
they will have limited yet helpful capabilities. Critics are
an important step towards the creation of more useful and
more usable computer systems for the future.

Acknowledgments
Many people have contributed to the development of

our notion of the critiquing paradigm. The authors would
like to thank especially: the members of the Janus Design
Project (Ray McCall, Kumiyo Nakakoji, and Jonathan
Ostwald), the members of the LISP-CRITIC project (Heinz­
Dieter Boecker, Chris Morel, Brent Reeves, and John
Rieman), all the people who have participated in discus­
sions about the general framework for critiquing (Thomas
Schwab, Helga Nieper-Lemke, Curt Stevens, Tom DiPer­
sio, and Hal Eden), and the HCC research group as a
whole. This research was partially supported by grant No.
IRI-8722792 from the National Science Foundation, grant
No. MDA903-86-C0143 from the Army Research In­
stitute, and grants from the Intelligent Interfaces Group at
NYNEX and from Software Research Associates (SRA),
Tokyo.

References
Aaronson, A. & Carroll, J. M. (1987). Intelligent Help in

a One-Shot Dialog: A Protocol Study. Human Factors
in Computing Systems and Graphics Interface,
CHI+GI'87 Conference Proceedings (Toronto,
Canada), 163-168. New York: ACM.

Anderson, J. R. & Reiser, B. J. (1985). The LISP Tutor.
BYTE, 10(4), 159-175.

Atwood, M. E., Gray, W. D., Bums, B., Morch, A. 1. &
Radlinski, B. (1990). Cooperative Learning and
Cooperative Problem Solving: The Case of Grace.

Working Notes, 1990 AAAl Spring Symposium on
Knowledge-Based Human-Computer Communication,
6-10. Menlo Park, CA: AAAL

Bodker, S., Knudsen, J. L., Kyng, M., Ehn, P. & Madsen,
K. H. (1988). Computer Support for Cooperative
Design. Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW'88),
377-394. New York: ACM.

Bond, A. H. & Gasser, L. (Eds.). (1988). Readings in
Distributed Artificial Intelligence. San Mateo, CA:
Morgan Kaufmann Publishers.

Burton, R. R. & Brown, J. S. (1982). An Investigation of
Computer Coaching for Informal Learning Activities:
In Sleeman, D. H. & Brown, J. S. (Eds.), Intelligent
Tutoring Systems (pp. 79-98). London - New York:
Academic Press.

Carroll, J. M. & McKendree, J. (1987). Interface Design
Issues for Advice-Giving Expert Systems.
Communications of the ACM, 30(1), 14-31.

Carver, N. F., Lesser, V. R. & McCue, D. L. (1984).
Focusing in Plan Recognition. Proceedings of
AAAl-84, Forth National Conference on Artificial
Intelligence (Austin, TX), 42-48. Los Altos, CA:
William Kaufmann.

Clancey, W. J. (1986). Qualitative Student Models.
Annual Review ofComputing Science, 1,381-450.

Coombs, M. J. & Alty, J. L. (1984). Expert Systems: An
Alternative Paradigm. International Journal of
Man-Machine Studies, 20.

Dews, S. (1989). Developing an ITS in a Corporate
Setting. Proceedings of the 33rd Annual Meeting of
the Human Factors Society, 1339-1342.

Draper, S. W. (1984). The Nature of Expertise in UNIX.
Proceedings ofINTERACT'84, IFIP Conference on
Human-Computer Interaction, 182-186. Amsterdam:
Elsevier Science Publishers.

Fickas, S. & Nagarajan, P. (1988). Critiquing Software
Specifications. IEEE Software, 5(6),37-47.

Finin, T. W. (1983). Providing Help and Advice in Task
Oriented Systems. Proceedings of the Eighth
International Joint Conference on Artificial
Intelligence, 176-178.

Fischer, G. (1987). A Critic for LISP. Proceedings of the
10th International Joint Conference on Artificial
Intelligence (Milan, Italy), 177-184. Los Altos, CA:
Morgan Kaufmann Publishers.

Fischer, G. (1990). Communications Requirements for
Cooperative Problem Solving Systems. The
International Journal ofInformation Systems (Special
Issue on Knowledge Engineering).

Fischer, G. & Girgensohn, A. (1990). End-User
Modifiability in Design Environments. Human
Factors in Computing Systems, CHI'90 Conference
Proceedings (Seattle, WA), 183-191. New York:
ACM.

Fischer, G. & Lemke, A. C. (1988). Construction Kits and
Design Environments: Steps Toward Human
Problem-Domain Communication. Human-Computer
Interaction, 3(3), 179-222.

Fischer, G., Lemke, A. C. & Schwab, T. (1985).
Knowledge-Based Help Systems. Human Factors in
Computing Systems, CHI'85 Conference Proceedings
(San Francisco, CA), 161-167. New York: ACM.

Fischer, G. & Mastaglio, T. (1989). Computer-Based
Critics. Proceedings of the 22nd Annual Hawaii
Conference on System Sciences, Vol. III: Decision
Support and Knowledge Based Systems Track,
427-436. IEEE Computer Society.

Fischer, G., McCall, R. & March, A. (l989a). Design
Environments for Constructive and Argumentative
Design. Human Factors in Computing Systems,
CHI'89 Conference Proceedings (Austin, TX),
269-275. New York: ACM.

Fischer, G., McCall, R. & Morch, A. (1989b). JANUS:
Integrating Hypertext with a Knowledge-Based Design
Environment. Proceedings ofHypertext' 89, 105-117.
New York: ACM.

Fischer, G. & Morch, A. (1988). CRACK: A Critiquing
Approach to Cooperative Kitchen Design.
Proceedings of the International Conference on
Intelligent Tutoring Systems (Montreal, Canada),
176-185. New York: ACM.

Forbus, K. (1984). An Interactive Laboratory for
Teaching Control System Concepts (Report 5511).
Cambridge, MA: BBN.

Friedman, M. P. (1987). WANDAH - A Computerized
Writer's Aid: In Berger, D. E., Pezdek, K. & Banks,
W. P. (Eds.), Applications ofCognitive Psychology,
Problem Solving, Education and Computing (pp.
219-225). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Glaser, R., Raghavan, K. & Schauble, L. (1988).
Voltaville: A Discovery Environment to Explore the
Laws of DC Circuits. Proceedings of the International
Conference on Intelligent Tutoring Systems (Montreal,
Canada),61-66.

Greif, 1. (Ed.). (1988). Computer-Supported Cooperative
Work: A Book ofReadings. San Mateo, CA: Morgan
Kaufmann Publishers.

Hoppe, H. U. (1988). Task-Oriented Parsing: A
Diagnostic Method to be Used by Adaptive Systems.
Human Factors in Computing Systems, CHI' 88
Conference Proceedings (Washington, DC), 241-247.
New York: ACM.

Johnson, W. L. & Soloway, E. (1984). PROUST:
Knowledge-Based Program Understanding.
Proceedings of the 7th International Conference on
Software Engineering (Orlando, FL), 369-380. Los
Angeles, CA: IEEE Computer Society.

Jones, R. J. & Kapple, W. H. (1984). Kitchen Planning
Principles - Equipment - Appliances.

Urbana-Champaign, IL: Small Homes Council ­
Building Research Council, University of Illinois.

Kelly, V. E. (1985). The CRITTER System: Automated
Critiquing of Digital Circuit Designs. Proceedings of
the 21 st Design Automation Conference, 419-425.

Kobsa, A. & Wahlster, W. (Eds.). (1989). User Models in
Dialog Systems. New York: Springer-Verlag.

Langlotz, C. P. & Shortliffe, E. H. (1983). Adapting a
Consultation System to Critique User Plans. Int.
J. Man-Machine Studies, 19, 479-496.

Lemke, A. C. (1989). Design Environmentsfor
High-Functionality Computer Systems. Unpublished
doctoral dissertation, Boulder, CO: Department of
Computer Science, University of Colorado.

London, B. & Clancey, W. J. (1982). Plan Recognition
Strategies in Student Modeling: Prediction and
Description. Proceedings ofAAAI-82, Second
National Conference on Artificial Intelligence
(Pittsburgh, PA), 335-338.

Mastaglio, T. (1990). User Modelling in Computer-Based
Critics. Proceedings of the 23rd Hawaii International
Conference on System Sciences, Vol III: Decision
Support and Knowledge Based Systems Track,
403-412. IEEE Computer Society.

McCall, R., Fischer, G. & Morch, A. (1989). Supporting
Reflection-in-Action in the Janus Design Environment.
Proceedings of the CAAD Futures'89 Conference.
Cambridge: Havard University.Pre-Publication
Edition.

Mili, F. (1988). A Framework for a Decision Critic and
Advisor. Proceedings of the 21 st Hawaii International
Conference on System Sciences, 381-386.

Mili, F. & M:anheim, M. L. (1988). And What Did Your
DSS Have to Say About That: Intoduction to the DSS
Minitrack on Active and Symbiotic Systems.
Proceedings of the 21st Hawaii International
Conference on System Sciences, 1-2.

Miller, P. (1986). Expert Critiquing Systems:
Practice-Based Medical Consultation by Computer.
New York - Berlin: Springer-Verlag.

Papert, S. (1980). Mindstorms: Children, Computers and
Powerful Ideas. New York: Basic Books.

Raghaven, K., Schultz, J., Glaser, R. & Schauble,
L. (1990). A Computer Coachfor Inquiry Skills.
Unpublished.draft submission to Intelligent Learning
Environments Journal.

Rennels, G. D. (1987). A computational model of
reasoning from the clinical literature. Springer

Verlag.

Rennels, G. D., Shortliffe, E. H., Stockdale, F. E. &
Miller, P. L. (1989). A computational model of
reasoning from the clinical literature. AI Magazine,
10(1),49-56.

Riemann, P., Raghaven, K. & Glaser, R. (1988). Refract,
a Discovery Environment for Geometrical Optics
(Technical Report). Learning Research &
Development Center, University of Pittsburgh.

Sacerdoti, E. D. (1975). A Structure for Plans and
Behavior (Technical Note 109). Stanford, CA:
Stanford Research Institiute.

Schiff, J. & Kandler, J. (1988). Decisionlab: A System
Designed for User Coaching in Managerial Decision
Support. Proceedings of the International Conference
on Intelligent Tutoring Systems (Montreal, Canada),
154-161.

Schmidt, C. F., Sridharan, N. S. & Goodson, J. L. (1978).
The Plan Recognition Problem: An Intersection of
Psychology and Artificial Intelligence. Artificial
Intelligence, 11,45-83.

Schoen, D. A. (1983). The Reflective Practitioner: How
Professionals Think in Action. New York: Basic
Books.

Simon, H. A. (1986). Whether Software Engineering
Needs to Be Artificially Intelligent. IEEE
Transactions on Software Engineering, SE-12(7),
726-732.

Steele, R. L. (1988). Cell-Based VLSI Design Advice
Using Default Reasoning. Proceedings of3rd Annual
Rocky Mountain Conference on AI, 66-74. Denver,
CO: Rocky Mountain Society for Artificial
Intelligence.

Stefik, M. J. (1986). The Next Knowledge Medium. AI
Magazine, 7(1), 34-46.

Suchman, L. A. (1987). Plans and Situated Actions. New
York: Cambridge University Press.

Sussman, G. J. (1975). A Computer Model ofSkill
Acquisition. New York: American Elsevier.

Wenger, E. (1987). Artificial Intelligence and Tutoring
Systems. Los Altos, CA: Morgan Kaufmann
Publishers.

Wipond, K. & Jones, M. (1988). Curriculum and
Knowledge Representation in a Knowledge-Based
System for Curriculum Development. Proceedings of
the International Conference on Intelligent Tutoring
Systems (Montreal, Canada), 97-102.

