
Decision Support Systems 7 (1991) 355- 378
North-Holland

355

A conceptual framework
for knowledge-based critic systems

Gerhard Fischer and Thomas Mastaglio *
Department of Compurer Science and lnsritute of Cognirive
Science. Universiry of Colorado. Boulder. CO 80309, USA

The critiquing paradigm is one approach to instantiating
the concept of intelligent support systems. Knowledge-based
systems that use the cri tiquing approach can support numerous
application domains. including: progranuning. design and deci­
sion making. Critiquing is an alternative to expert systems that
can support cooperative problem solving and aid user learning
in the application domain. As a result of empirical studies we
identified the requirements for critic systems. We have devel­
oped several knowledge-based critics to instantiate these ideas
and used them to identify new issues and theory. Our systems
have been revised to include approaches to addressing these
issues. As a result of these implementations we have developed
a general architecture for knowledge-based critics that fully
support cooperative problem solving. We describe the current
extension of one of our systems designed to incorporate these
findings.

Keywords: Cooperative problem solving. Critics, Design en­
vironments. User models. Explanation. LISP-CRITIC,

FRAMER. JANUS.

* Acknowledgments: Many people have contributed to the
development of LISP-CRITIC over the last few years. The
authors would like to thank especially; Heinz-Dieter Boecker.
who developed many of the original ideas, the original set of
rules and the rule interpreter; Andreas Lemke developed
FRAMER; Helga Nieper-Lemke developed KAESTLE ; Chris­
topher Morel, Bart Bums. and Catherine Cormack contrib­
uted to version 1 of LISP-CRITIC; Anders Morch developed
JANUS ; John Rieman, Paul Johl. and Patrick Lynn worked
on version 2 of LISP-CRITIC ; Hal Eden and Brent Reeves for
recent work on LISP-CRITIC. This research is partially sup­
ported by grants from: NYNEX, Software Research Associ­
ates (SRA). and the Colorado Institute of Artrticial Intelli­
gence (CIAI). The second author was supported during
graduate studies at the University of Colorado by the U.S.
Army.

1. Introduction

Our goal is to establish the conceptual founda­
tions for using the computational power that is or
will be available on computer systems. We believe
that artificial intelligence technologies can im­
prove productivity by addressing, rather than
ignoring, human needs and potential. In the spirit
of Einstein's remark" My pencil is cleverer than I"
we are building systems that augment and amplify
human intelligence. Winograd and Flores [63]
argue that the development of tools for conversa­
tion, the computer serving as a structured dynamic

Gerhard Fischer is professor of com­
puter science and a member of the
Institute of Cognitive Science at the
University of Colorado at Boulder. He
directs the university's "Knowledge­
Based Systems and Human-Computer
Communication" research group. Be­
fore joining the University of Col­
orado, he directed a similar group at
the University of Stuttgart, W­
Germany. Research interest include
artificial intelligence, human-com­
puter communication, cognitive sci­

ence and software engineering; he is especially interested in
bringing these research disciplines together to build cooper­
ative problem solving systems. His research group has con­
structed a rich variety of tools and a large number of applica­
tion systems to test the theories and methods guiding this
research. Dr. Fischer received a PhD in computer science from
the University of Hamburg. He can be contacted at Computer
Science Department. University of Colorado, CO 80309-0430;
CSnet: gerhard@boulder.colorado.edu.

'Thomas W. Mastaglio is an Army
Officer assigned to the U.S. Army
Training and Doctrine Command,
Fort Monroe, Virginia. He is responsi­
ble for integrating emerging technolo­
gies into future training and support
systems. He is native of Wisconsin
and received his B.S. and Commission
from the U.S. Military Academy in
1969. Lieutenant Colonel Mastaglio
holds Master of Science and Doctor of
Philosophy Degrees in Computer Sci­
ence from the University of Colorado.

His research interests include applying arti ficial intelligence
techniques to support computer based training, and decision
making. His specific research involves user modelling tech­
niques in critiquing systems. He can be contacted at
Headquarters US Army TRADOC. ATTN: ATTG-U, Fort
Monroe, VA 23651 . CSnet: mastaglt%monl @ leav­
emh.army.mil.

0167-9236/91/$03.50 (\') 1991 - Elsevier Science Publishers B.V. All rights reserved

356 G. Fischer. T Mastaglio / Knowledge·based criric svstems

medium for conversation in systematic domains, is
a more realistic and relevant way of exploiting
information and communication technologies than
is the most widely perceived goal of artificial
intelligence, "to understand and to build autono­
mous, intelligent, thinking machines" [57}. We
argue that intermediate approaches, ones that use
knowledge-based techniques to assist users in their
application domains, need to be investigated.

"Intelligent support systems" are used as a
generic name for systems that augment human
capabilities. The major application domain of our
intelligent support systems have been high func­
tionality computer systems, such as UNIX or LIsp
machines which contain tens of thousands of ob­
jects and tools. Developing intelligent support sys­
tems has as its goal making usable the total space
of functionality available in computational en­
vironments rather than diluting functionality or
orienting the user on only a subset of the system's
capabilities.

Intelligent support systems should facilitate
access, application of knowledge, and user learn­
ing. We have constructed a number of different
intelligent support systems: documentation sys­
tems [24}, active and passive help systems [17},
design environments [15;34}, and critics [11;22;18}.
All of these systems have two things in common:
they are knowledge-based and they use innovative
techniques in humancomputer communication. In
this paper we focus on knowledge-based critics.

The ultimate objective of our efforts is to evolve
intelligent support systems to cooperative problem
solving systems. Cooperative problem solving
characterizes situations in which intelligent agents
work together to produce a design, plan, product
or decision. Our work has focused on dyadic situa­
tions with a human problem solver and knowl­
edge-based computer system.

In this article we describe the conceptual
framework for knowledge-based critics and some
of the general principles we have learned from
building critics. Section 2 presents the general
framework for critics and section 3 presents their
specific requirements. Section 4 describes proto­
typical critic systems that we have constructed:
LISP-CRITIC, which critiques LISP programs, and
two design environments: FRAMER for interface
construction and JANUS kitchen design. Section 5
elaborates further the notion of cooperative prob­
lem solving and explains how the design which has

evolved for the latest version of LISP-CRITIC sup­
ports this idea.

2. A characterization of the critic paradigm

The critiquing approach tries to make use of
available computer knowledge bases to aid users
in their own work. A colleague can often, with
little time and effort, provide the missing link that
we, just on our own, cannot find after hours or
days of work. This happens in many problem
solving domains, for example, computer program­
ming and other design tasks.

Artificial intelligence research was initially di­
rected towards creating autonomous intelligent
agents. However, in many situations it is desirable
to keep a "human in the loop". There are several
reasons for this. Often the intelligent system does
not have the knowledge required to cover the
complete problem domain and interaction with
humans is inevitable. On the other hand, humans
should not be deskilled by their computer systems,
demoted to mere suppliers of data. Computer
systems should function in a cooperative mode
where the human and the machine collaborate in
working towards a common goaL Instead of au­
tonomous expert systems we want to develop in­
telligent support systems where the abilities of the
computer and the human are synergized to form a
"joint human-machine cognitive system" [65].

One source of information available to an intel­
ligent support system is the human's interaction
with the system. This interaction could be viewed
as a crude dialog and it along with the partial
products that are created during this interaction
can be used by the computer as insight into what
the human is doing. If the human's primary work
environment is a computer system, then these
actions are accessible to the system as sequences
of commands, menu selections, mouse operations,
and the like. Critic systems exploit those sources
available to the computer to facilitate cooperative
interaction with a user during problem solving.

Critics analyze a product produced by the user
and provide suggestions as to how the user can
improve that product. if the user so desires, in
some domains the system may be able to incorpo­
rate those suggestions directly in a revised version
of the product. The process is cyclical and con­
tinues until the user is satisfied with the solution.

G. Fischer. T. Mastaglio / Knowledge-hased critIC SVSlent~ 357

The roles played by the computer and the human
in this process are interactive and interdependent,
they are depicted in fig. 1.

I t is probably instructive to clarify the distinc­
tion between critics and constraints. A significant
aspect of critiquing is that the user remains in
control and is free to accept or reject advice from
the critic. Constraints are often .• hard coded" into
the working environment of systems or enforced
on the user by some other system process (e.g., My
file name extension in MSjDOS cannot be more
than 3 characters); they are narrowly focused
criteria that must be adhered to in order for
something to function properly. Critiquing focuses
on improving the functionality of a product that is
already usable. The expertise that critics possess is
based on soft constraints.

Critics also are a method for using knowledge­
based approaches to support ill-structured prob­
lem domains. Expert systems have generally at­
tacked problems in well defined and tightly con­
strained problem spaces. Attempts to develop au­
tonomous expert systems for ill structured do­
mains have not been as successful. The critiquing
paradigm allows the knowledge-based System to
contribute whatever knowledge it has to assist

users with their work in these "fuzzier" problem
domains.

2.1. Intelligent support systems

Empirical investigations [10; 17] have shown
that on the average only a small fraction of the
functionality of complex systems such as UNIX,
EMACS and LISP is used. Consequently it will be of
little use to equip modern computer systems with
more and more computational power and func­
tionality, unless we can help the user take ad­
vantage of them. The "intelligence" of a complex
computer system must contribute to its ease of use
and provide for effective communication. Intelli­
gent and knowledgeable human communicators,
for example, good teachers, have substantial
knowledge about how to explain their expertise to
others.

I t is not sufficient for intelligent support sys­
tems to just solve a problem or provide informa­
tion. Users must be able to understand these sys­
tems and question their advice. One of our as­
sumptions is that learners and practitioners will
not ask a computer program for advice if they
have no way to examine the program's expertise.

(
Proposed

\ Solution

Domam

Domain
Knowledge

J Expertlse

1} ~ Problem .a Solvmg Critiqumg

(\
Goals

~-- J
User Model

Crltlque

Fig. 1. The critiquing process. This diagram shows the critiquing process. It is significant that the human user and the computer each
possess domain knowledge that is brought to bear on the problem. The user applies his or her domain expertise during problem
solving to generate a proposed solution that will potentially accomplish his or her goals. The knowledge-based critic applies domain
knowledge to critique that product. This process continues until the user is satisfied with the solution produced.

358 G. Fischer, T. Mastaglio / Knowledge-based critic systeml'

Users must be able to access the system's knowl­
edge and reasoning processes; domain knowledge
has to be explainable [59]. A system that possesses
domain knowledge has to be capable of sharing
that knowledge with the user at the application
level as well as at the conceptual leveL

2.2. Cooperative problem solving in critic systems

One model frequently used in human-computer
systems (e.g., MYCIN [4]) is the consultation model.
From an engineering point of view, it has the
advantage of being clear and simple: the program
controls the dialog, much as a human consultant
does, by asking for specific items of data about
the problem at hand. It precludes the user volun­
teering what he or she might think is relevant
data. The program is viewed as an "all-knowing
expert", and the user is left in the undesirable
position of asking a machine for help.

A more appealing model, one that more closely
approximates human to human collaboration, is
the cooperative problem solving approach [13].
Problem solving effectiveness is often enhanced by
cooperation - traditionally cooperation among
people, or more recently, cooperation between a
human and a computer. The emphasis of our work
is on creating computer systems to facilitate the
cooperation between a human and a knowledge­
based computer. Examination of these systems
provides evidence that learning and effective prob­
lem solving can be improved through the use of
cooperative systems. It also indicates the need for
a richer theory of problem solving, which analyzes
the function of shared representations [15],
mixed-initiative dialogues [25], and the manage­
ment of trouble [36].

Because there is an asymmetry between hu­
mans and computers, the design of cooperative
problem solving systems should not only simulate
human to human cooperation, but develop en­
gineering alternatives. For example, natural lan­
guage may not always be the preferred mode of
communication. We have studied situations in
which human to human cooperation naturally oc­
curs between customers and sales agents. In one of
these situations we recorded and analyzed prob­
lem solving dialogs that took place in a very large
hardware store [45]. This store - McGuckin
hardware - is reputed for its large inventory and
the ability of its sales agents to aid customers in

finding the items they need to accomplish a task,
i.e., to help customer's solve their problems. The
results of this study have provided insights into
the processes that are important for cooperative
problem solving.

Depending on the task and the knowledge which
the user has, different role distributions (e.g., tu­
tors [1], suggestors [15], advisors [S], or critics [IS])
should be supported. In our work, we have con­
centrated on the critic paradigm which will be
further discussed in the next section. The critiqu­
ing model supports cooperative problem solving.
When two agents (e.g., a learner and a critic)
communicate, much more goes on than just a
request for factual information. Learners may not
be able to articulate their questions without the
help of the critic; the advice given by the critic
may not be understood, and/or learners require
explanations. Each communication partner may
hypothesize that the other partner misunderstood
him/her, or the critics might give advice for which
they were not explicitly asked.

Beyond the domains which we have studied
(see section 4), decision support systems can also
be viewed as an instance of the class of cooper­
ative problem solving systems. They should aid
users by providing context sensitive advice about
how to improve the users' decision making or see
their problem from a different viewpoint. Expert
systems usually are based on a closed world as­
sumption, and are inadequate replacements for
human-oriented decision support systems that have
to be flexible and adaptive [60]. The cooperative
problem solving approach using a critiquing meth­
odology seems to be a more promising approach
for integrated decision support system.

2.3. Support for contextual learning

Critiquing can support the contextualization of
learning [37] by supporting user-centered learning,
incremental learning, and learning on demand.
User-centered learning. User-centered learning
allows individuals to follow different learning
paths. Forcing the same intellectual style on every
individual is possibly much more damaging than
forcing right-handedness upon a left-hander. To
support user-entered learning processes, computa­
tional environments have to adapt to individual
needs and learning styles. Giving users control

G. Fischer. T Maslaglio / Knowledge-based crilic svsterns 359

over their learning and work requires them to
initiate actions and set their own goals. Critics
require individualized representations of domain
knowledge to support explanations. They can use
them to present explanations which relate new
concepts to knowledge previously held by a specific
user.
Incremental learning. Not even experts can com­
pletely master complex, high-functionality sys­
tems. Support for incremental learning is required.
Incremental learning eliminates suboptimal behav­
ior (thereby increasing efficiency), enlarges possi­
bilities (thereby increasing functionality), supports
learning on demand by presentation of new infor­
mation when it is relevant, uses models of the user
to make systems more responsive to the needs of
individuals, and tailors explanations to the user's
conceptualization of the task.
Learning on Demand. The major justification for
learning on demand is that education is a distrib­
uted, lifelong process of learning material as it is
needed. Learning on demand has been successful
in human societies or organizations when learners
are afforded the luxury of a personal coach or
critic. Aided by a human coach or critic, learners
can articulate their problems in an infinite variety
of ways. Computerbased support systems should
be designed to conform to this metaphor.

On a broad scale, learning on demand is neither
practical nor economical without computers.
Learning on demand should include "learning to
learn," showing the user how to locate and utilize
information resources. I t should not be restricted
just to learning procedures but should help to
restructure the user's conceptual model of the
domain. It should not only provide access to fact­
ual information but also assist the user in under­
standing when that knowledge can be applied.

Learning on demand is a guided discovery ap­
proach to learning (see section 4.3 for a descrip­
tion of one of our systems that supports this idea.)
It is initiated when the user wants to do some­
thing, not learn about everything. Learning on
demand affords that learning occurs because
knowledge is actively used rather than passively
perceived, at least one condition under which
knowledge can be applied is learned and it can
make a crucial difference in motivating learning.

Learning on demand can be differentiated
according to whether the user or the system ini­
tiates the demand:

- Demands Originating with the User. The de­
mand to learn more can originate with the user.
I t can be triggered by a discrepancy between an
intended product and the actual product pro­
duced. Experimentation with a system may turn
up interesting phenomena that users find worth
exploring further. The user's mental model can
serve as a driving force towards learning more.
Users "feel" that there must be a better way of
doing things. Adequate tools to support learn­
ing on demand are crucially important in mak­
ing users willing to embark on an effort to
increase their knowledge.

- Suggestions from the Coach or the Critic. The
demand to learn cannot originate with users
when they are unaware that additional func­
tionality exists in the system. The system has to
take the initiative. To avoid the problem of
these systems becoming too intrusive, a metric
is necessary for judging the adequacy of a user's
action. Except for narrow problem domains
(e.g., simple games [6]), optimal behavior can­
not be uniquely defined. Therefore, the un­
derlying metric that determines the behavior of
a coach or a critic should not be a fixed entity
but a structure that users can inspect and mod­
ify according to their view of the world. This
increases the user's control over interaction with
the system. Adequate communication struc­
tures must exist to make this task manageable.

A major challenge for this class of systems is to
keep them quiet most of the time. A coach or a
critic must be capable of diagnosing the cause of a
student's misunderstanding and then judiciously
deciding, on its own, when to interrupt and what
to say. Interrupting too often can destroy motiva­
tion, but too few interruptions results in learning
experiences being missed or floundering on the
part of the user.

2.4. Related work

The critiquing approach was used in research
efforts on medical systems [40;41 ;33;48}. These
systems use domain knowledge to help physicians
perform diagnoses or develop patient treatment
plans. Techniques from expert systems research
were modified after researchers recognized the
need to assist physicians directly in their work,

360 G. Fischer. T Mastaglio / Knowledge-based critic systems

leaving them in control rather than attempting to
replace them with an autonomous system.

Critics have also been develop to support cir­
cuit design [31 ;56], to teach decision making to
managerial personnel [51], and to improve the
performance of decision makers, not through
training, but in the context of their actual work
[39]. Other widely differing applications include
teaching fundamentals of circuit design [28], cur­
riculum development [64], and improving written
compositions [27]-

Our research and system development efforts
have come from a perspective of human-computer
interaction. We ask how knowledge-based ap­
proaches can improve collaboration between a
computer and a user. We have built on research in
advice giving systems [8], explanation approaches
[58;43;52;46;42], and user modelling [49;7;54;30].

3. Requirements for critic systems

Design requirements for computer-based critics
should be based on empirical studies. As we have
studied human critics, it became obvious that
knowledge is the most important feature of a good
critic. This knowledge must be available in a form
useful for constructing critiques and for aiding
user understanding of those critiques.

3.1. Empirical studies

Cognitive scientists have studied human-to-hu­
man dyadic relationships. These studies empha­
sized psychological [9] and linguistic [26] aspects
of dyadic human cooperative efforts. In our own
work, we have investigated the problems users
encounter in dealing with high functionality com­
puter systems:

~ Users do not know about the existence of tools
and therefore are not able to ask for them;
passive help systems are of little use in such
situations [17].

~ Users do not know how to access tools; retri­
evability is a big problem in information-rich
societies and in complex, high-functionality sys­
tems [23].

~ Users do not know when to use these tools; that
is. they do not know the applicability condi-

tions under which a piece of knowledge can be
used successfully [14].

~ Users do not understand the results that tools
produce. Finding the information is in many
cases not the end but the beginning of difficul­
ties [3].

~ Users cannot combine, adapt, and modify a
tool to their specific needs; reuse and redesign
have to be supported [12].

~ Users encounter difficulty mapping their situa­
tion model into the available resources repre­
sented in terms of the system model. They need
either better techniques for accomplishing this
mapping or knowledgeable agents to assist them
[45].

A consequence of these problems is that many
systems are underused. We are convinced that
what is needed is not more information but new
ways to structure and present it. Presenting infor­
mation entails producing explanations appropriate
for each individual user's expertise which in turn
requires our systems to acquire and maintain indi­
vidual models of users. Another empirical study
(based on thinking-aloud protocols from experts)
[20] investigated how such a model of the exper­
tise of another user is acquired by a domain
expert. The analysis showed that human experts
look for certain cues that trigger inferences about
the user. Our systems are based on such an ap­
proach. but they are not able to use all the evi­
dence available in human to human interaction. It
is, however. our goal to take advantage of that
information which the computer can access and
use.

The design of our critic systems has been in­
fluenced by these empirical studies. Our approach
is based on two assumptions: that cooperative
work is a powerful approach to both improving
problem solving and learning. and that users need
to be encouraged to explore. Decision support
systems can benefit from our efforts to create such
environments because they share many of the same
goals as well as limitations that we have encoun­
tered in our studies and system building efforts.

3.2. Knowledge-based architectures

Knowledge-based systems are one promlsmg
approach to equipping machines with some hu­
man communication capabilities. Based on an

G, Fischer. T Mastaglio / Knowledge-based critic sl'slems 361

analysis of human communication, we have devel­
oped the model shown in fig. 2, and tried to
instantiate this general architecture in a variety of
systems.

The system architecture in fig. 2 contains two
major improvements over traditional approaches:

- The explicit communication channel is widened
(incorporating the use of windows, menus,
pointing devices, inter-referential input; output.
etc.). By representing systems in the world
model [29] (for examples see figs. 9 and 11),
Users can inspect and manipulate these models
directly.

- Information can be exchanged over the implicit
communication channel relying on shared
knowledge structures_ This eliminates the need
to specify operations in detail and reduces the
conceptual distance between the domain itself
and the way the users communicate about it.

Knowledge-based communication requires that
users and systems have knowledge in the following
domains (see fig. 2):
Knowledge about the problem domain. Expertise
cannot exist without domain knowledge. Intelli­
gent behavior builds upon large amounts of
knowledge about specific domains. This knowl­
edge constrains the number of possible actions

Knowledge about:
• pI'oblem domain

and describes reasonable goals and operations.
Most computer users are not interested in com­
puters per se but want to use the computer to
solve problems and accomplish tasks. To shape
the computer into a truly usable and useful
medium for them, we have to make it invisible and
let them work directly on their problems and their
tasks; that is, we must support human problem­
domain communication [15]. A representation of
domain knowledge is needed that can be used to
explain the underlying concepts of the domain
and model the user. For the applicable form of
domain knowledge we have used rule-based sys­
tems because they support the incremental accu­
mulation of domain knowledge and are efficient,
An ideal system would be able to generate the
applicable form of the domain knowledge, e.g.,
rules, from the more abstract conceptual represen­
tation [58]- Thus far we have not achieved that
goal but rather have incorporated dual representa­
tions into our systems.
Knowledge about communication processes. The
information structures that control communica­
tion should be made explicit, This will allow users
to refer to them (e.g., history lists of commands,
bookmarks of places visited before). Exploratory
approaches can be encouraged by supporting
UNDO and REDO commands.
Knowledge about the communication partner. The

• communication pI'ocesses

/

• communication pal'tnel'
• pI'oblems of tbe useI'

and tutol'iol intel'oention

41?Z22222222222!

Implicit
commuDlcatloA cbanel

explicit
commuhicatioA cbaADel

Fig. 2, Architecture for knowledge-based human-computer communication.

362 G. Fischer, T Masraglio / Knowledge-based aWe systems

user of a system does not exist; there are many
different kinds of users, and the requirements of
an individual user change with experience. Sys­
tems will be unable to interact with users intelli­
gently unless they have some means of finding out
what the user really knows; they must be able to
infer the state of the user's knowledge. To support
incremental learning and learning on demand, sys­
tems must possess knowledge about a specific
user, information about the user's conceptual un­
derstanding of a system, the set of tasks for which
the user uses the system, the user's way of accom­
plishing domain-specific tasks, the pieces of advice
given and whether they were remembered and
accepted, and the situations in which the user
asked for help. Our approach to modelling users is
to capture their expertise using implicit acquisi­
tion techniques and represent that expertise in
terms of the conceptual model for the domain.
These techniques are a set of methods that make
use of information about users which can be ex­
tracted in an unobtrusive way from the working
environment. Examples are the artifacts they have
developed in the application domain, and the re­
sults of previous explanation dialogs between the
user and the system [38].
Knowledge about the most common problems users
have in using a system and about instructional
strategies. This knowledge is required if someone
wants to be a good coach or teacher and not only
an expert. Explanations play a crucial role in
instructional strategies. To generate good explana­
tions is a more difficult problem in critic systems
than in tutoring systems, because critic systems do
not control the set of problems being addressed.
Users learn best when they are situated in the
actual context of their work and are able to re­
ceive explanations from an expert who can clear
up misconceptions and clarify understanding. This
helps users to restructure their own knowledge
[44].

4. Prototypical systems

We have developed computer-based critics for
several domains. By a careful analysis and detailed
comparison of these system-building efforts, we
developed general principles for designing critics
and other intelligent support system. In this sec­
tion, we describe one system, LISP-CRITIC, a sys-

tem that critiques LIsp code, in some detail and
briefly describe two two other systems: FRAMER, a
critic system for window based user interfaces,
and JANUS, a system for architectural design. These
three different systems were developed, because
they require different domain knowledge:
LISP-CRITIC" knows" about style in LISP program­
ming, FRAMER "knows" about window-based in­
terface design, and JANUS" knows about kitchen
design.

4.1. LISP-CRITIC

LISP-CRITIC has evolved over the past three
years from a knowledge-based program enhance­
ment tool to a working context that we believe
exemplifies the concept of a cooperative problem
solving system. This evolution has resulted the
development of four distinct systems (see fig. 3).
Each version addressed an increasing set of re­
search issues by building on what we learned from
the previous version. The first three systems will
be discussed in this section and the current version
(which is under active development) in the next
section.

CODE IMPROVE"R. The precursor to the LISP­
CRITIC systems was CODE IMPROVER [2]. CODE
IMPROVER functions as a knowledge-based post
compiler, taking as input an executable FRANZLISP
program and producing a version that either bet­
ter facilitates human understanding by increasing
cognitive efficiency or a version that executes more
quickly by improving machine efficiency. The
transformations the system used were captured in
a knowledge base that was elicited from interviews
with experienced LISP programmers. An example
of the sort of rules contained in that knowledge­
base is shown in fig. 4. CODE IMPROVER operated
in a batch mode in the UNIX operating system
environment.

CODE IMPROVER critiqued a user's code in the
following ways:

- replace compound calls of LISP functions by
simple calls to more powerful functions: (not
(evenp a» may be replaced by (oddp a);

- suggest the use of macros: (setq a (cons b a»
may be replaced by (push b a);

- find and eliminate' dead' code: (cond (...) (t . ..)
(dead code));

- replace a copying (garbage generating) function

G. Fischer, T. Mastaglio / Knowledge-based critic systems 363

Vers10ns of LlSP-Cr1tte

WUSP VerSion

LISP Ma¢hloe
Version ..

1985

1987

Fig. 3. The theoretical issues incorporated into versions of LISP-CRITIC. The versions of I.ISP-CRITIC are shown in the center of the
above figure. Each of these was designed to address the specific theoretical issues that are indicated in the ovals. Current work is
indicated by the objects that are grayed-out. The most recent fully operational version is the LISP Machine Version and the bottom
theoretical issues are being incorporated into the Cooperative Problem Solving Version.

with a destructive function: (append (explode
word) chars) may be replaced by (nconc (ex­
plode word) chars); see figs. 5 and 8;
specialized functions: replace equal by eq;
evaluate or partially evaluate expressions: (sum
a 3 b 4) may be simplified to (sum a b 7).

WLISP VERSION. The first version of LISP-CRITIC
[11] was designed to operate in the WLISP
windowing environment on Bitgraph terminals, it
is shown in fig. 4. It allows users to receive rudi­
mentary explanations of the critic's suggestions in
the form of rules that were invoked. Users can
choose the kind of suggestions in which they are
interested. This version was designed to take ad­
vantage of advances in human computer interac-

tion techniques and to allow the user to learn from
the system.

LISP MACHINE VERSION. In order to bring LISP­
CRITIC closer to the working environment of real
LIsp programmers, it was integrated into a LIsp
Machine environment, the Symbolics 3600 Work­
station. Fig. 6 shows the second version of
LISP-CRITIC running as an activity in the Sym­
bolies Genera Environment. The knowledge-base
of LISP-CRITIC was updated to process COMMON

LISP but the type of knowledge it contains and the
way it applies that knowledge have remained rela­
tively consistent.

The ideas incorporated into this version were
aimed at trying to make the environment more

364 G. Fischer, T Mastaglio / Knowledge-based crilic syslems

1 ~I" t II I(

Fig. 4. LISP-CRITIC in WlIsp. This figure shows the LISP-CRITIC interface running in the WlIsp windowing environment. The user can
initiate an action by clicking a button. The FUNCTION CODE pane displays the text of the program that the LISP-CRITIC is working on.
The other three windows show transfonnations suggested by LISP-CRITI C. The H?" in the title line of the windows is the button for
accessing the explanation system.

interactive for users. Some of these ideas were:
providing users the ability to view and compare
the two versions (their original code and the one
generated by LISP-CRITIC) of the program in dif­
ferent windows, to request explanation of those
differences, to access source code files in any local
or remote directory available via network access,
and to take advantage of many of the fea tures for
interreferential input! output provided by a Lisp
Machine environment. Explanations are provided
at the rule-tracing level [5] and, if further clarifica­
tion is required, pre-stored textual descriptions of
rules in the knowledge-base are displayed.

Over the course of developing the three ver­
sions described above, the sys tem has been used
by two different user groups. One group consists
of intermediate users who want to learn how to
produce better LISP code. We have tested the
usefulness of LISP-CRITIC for this purpose by
gathering statistical data on the programs written
by students in an introductory Lisp course. The
other group consists of experienced users who
want to have their code "straightened out." In­
stead of refining their code by hand (which in
principle these users can do), they use LISP-CRITIC

to help them reconsider the code they have writ-

C. Fischer, T Mastaglio / Knowledge-based critic systems 365

Replace a Copying Function with a Destructive Function

(rule append/.l-new.cons.cells-to-nconc/.l ..•
(?foo:{append appendl}

(restrict ?expr
(cons-cell-generating-expr expr»

((compute-it:
(cdr (assq (get-binding fool

'«append. nconc)
(appendl • nconcl»»)

?expr ?b)
safe (machine»

Example:

(append (explode word) chars)
_a>
(nconc (explode word) chars)

;;; the name of the rule
;;; the ori}linal code
... condition
;;; (rule can only be applied
;;; if "?expr' generates
;;; cons cells)

;;; the replacement

;;; rule category

Fig. 5. Example of a rule in the LISP-CRITIC. The rule "append/.1-new.cons.cell-to-nconc" replaces the function APPEND which
generates a copy of the argument data structure in memory with the function NCONC which modifies the internal representation
instead. This transformation is preferred in cases where users would like to minimize the use of memory and the freshly generated
data structure is not used elsewhere in the program.

ten. The system has proven especially useful with
code that is under development or frequently
modified.

The architecture of LISP-CRITIC. The structure of
the overall system is given in fig. 7. The user's
code is analyzed and simplified according to the
transformation rules. They contain information
that is used to generate explanations. The user
model obtains information from the rules that
have fired, from the statistical analyzer, and from
specialized knowledge acquisition rules which look
for cues indicating that a specific concept of LISP

is either known or not known by the user. In
return, the user model determines which rules
should fire and what explanations should be gen­
erated.

Support for understanding the critique. The use of
LISP-CRITIC by students has shown that the cri­
tique given is often not understood. Therefore we
use additional system components to illustrate and
explain the LISP-CRITIC'S advice. KAESTLE, a visu­
alization tool that is part of our software oscillo­
scope [31, allows us to illustrate the functioning
and validity of certain rules. In fig. 8, we use
KAESTLE to show why the transformation

(append (explode word) chars)

= (nconc (explode word) chars)

is safe (because explode is a cons-generating func­
tion; see fig. 4), whereas the transformation

(append chars (explode word))

= (nconc chars (explode word))

is unsafe because the destructive change of the
value of the first argument by nconc may cause
undesirable side effects.

LISP-CRITIC has proven to be a useful tool as
well as an interesting environment in which to
address issues that are at the heart of our entire
research effort. LISP-CRITIC allows us to explore
cooperative problem solving in an environment
which is based on an available formalized repre­
sentation of the problem domain, the LISP pro­
gramming language.

4.2. FRAMER

FRAMER [34;16J is a design environment for the
construction of window-based user interfaces. De­
sign environments reduce the amount of knowl­
edge designers have to acquire before they can do
useful work. The FRAMER system (see fig. 9) is an
enhanced version of the Symbolics FRAME-UP tool.
These systems permit users to design their own
user interfaces without writing code.

Representation of design knowledge as critics.
FRAMER contains design knowledge represented as

366 G. Fischer, T Mastaglio / Knowledge-based critic systems

L/SP-Crit;ic [version 1.2]
g CODE PAJlE 1 C.UVIJ. YAlflJ. Z

I h4OOlFIEO CODE Will BE SHOWN IN CODE PANE 2 U$I'-Crltlc ruin ... felt flr~d
snololn in the follolJing forrtbt:

ORIGINAL VERSION OF YOUR CODE IS SHOWN BElOW .n ...-.xpr •• $ion fyClt your cod. ------------------------------------
H;- ttoct., i..lSPJ ~":1 ~lt.J P.ek89f'l lEER, Suet 1 - ...,.. of LISP-Critic ruZ. ulr.ich fir.d
HI ~r .. t bT. (1oV'l'tV1t _t.) ------------------------------------

tM trcl1$foy".cI s-.)(pr*$!ttcn
(a.f"I.n~" (.)

To ~~ an explan tion tor lWly of tno. ,...., .
«IW'bda (x v) rvle~~ u!Se nenu option .K~t4in rul.

(~(li.t(H.-t!()

(Npe <function -----------
(I...t'ld.tI (y) (~)0: y») v) «I~ (x v) (~ (Hst. (lin.)01») (fIIlaPCar' .'(1~ (y) (eon. x Vn v) v»

v)) (~ar .) ~r (~ .») -.
(e) t-u hn l..tlda-lo-l..-t -->
(~,. (eeI,- .-»») O .. t «x (c..,- .»

(o.1'1.k\ pe"M't (s r) (v (pow-r (cdr .»»
(cond «~, ,- 1) (~r (f\.l'lctton 11.-t.) C» (~ (lin (lin x» (MPCar .·(1.....tlda (yJ (QClN:)(yJ) v) u»

(t (~ (fU"\oCtfon -
(1f"1>da (><) (cord « ((1wngth tI) r) I'll 1)

(NP!." (funetiOft O..tJda (II) (eons)(y») (l (~ "OWlOde (y) (c:oow (c:er u) y») (COf'Ib (ed .. v) (1- 1'»»)
(poe"" (,.~)(.) (tFUbt r»H) !Aut ... C!Of'd-to--ww:t-3 -->

s»» (if (null « (1~ 1,1) 1'» (....pc., J' {lMbda (y) (eoN" (eM" u) V)} (ecNt (cd" v)

(dlrfun COI'Ib (-. ,.-) (1- 1'))

(c:ond «(- ,. 1) (NPC-"" (funoetfot'l Ibt) .»
(t (NpOOn (rU"\oCtf,on (cor.ct «- 1'1) nil) (t (CICIrV (ca,.- .) (MQ (cdr .) (1- r»»)

,'.aN::oda (1,,1) ~1'" ~o--Wld-a -->
(COI"'oCf «< (1l'f'1Qth u) ,..) ni I) (jf (null (. ,.. 8» (eoN' (cal' .) (-.q (OCr .) (1- 1'»»)

(l (rwpcar (func:Uon (1.....tlda (y) (~ (car v) y»)) ------------------
(c:OPIb (cdr u) (1- 1'»»») (cond «nul1 I) nIl) «null Slob) t) <\ (aut:r-wuch -.vb (cdr 1»»

.»» ful •• conct-.r rtd-t ->
(cond «null I) 1'\11) «,-..,11 SI.b» (t (....c-.. .,.ch ab (cell' I))

;.;; ..,. ~elect ru e to be exolamed fRul ... c:ond-tl')-()l'-l -> u; ., Lembde-To-Let (cond «null 1) nl I) (dot-flA"t .. Cond-To-l\nd-3
(if « (t (or (null ab)

(0 Cond-Erase-Pred-T (~ .. ,.ch .vb (edr I»))

(MfLrl « (ond-To-Or-3

~
(e<nj (ond-T 0-1\nd-2 lful •• c:ond-to--~2_~

Quit (If ,

~
(0,.. (r"LI11 ab)

CI~...- Oispl.y Expl.in Rul~ Optimiz~ Show Rulu F ir~d Simplify ril~
Oispl.y Oi",ctory Help Redisplay Code Simplify Expreuion

1LlSP-o.;r tic COlYl8nd: bi"p y nU""H: >t Or>8",,>pouer. sp."
i LISP-Critic cOrlf'land: SOO" Rule. Fired
I~~fsp-crltic co nd: E~pl.1n ~ule
,LISP-Critic corm8nd: Explain Rule
: LISP-Critic conr.end: E.xplain Rule:

Fig. 6. The LISP-CRITIC interface on the symbolics computer. 1bis figure shows the LISP-CRITIC version 2 interface on the Symbolics
3600. The user can request LISP-CRITIC critique a program code file or can enter any LISP expression and receive suggestions as to
How to improve it. To facilitate user understanding of LISP-CRITIC'S suggestions. explanations in the form of rule tracing are available
as are more specific explanations of those rules. In the figure shown above the user has submitted a program file for critiquing, is
being shown the trace of the rules that fired and is about to request an explanation for the rationale behind one of these rules from a
pop-up menu.

a set of cntIcs. The cntIcs can be invoked by
selecting the Suggest Improvements menu item or
by typing the Suggest Improvements command. In
the example of fig. 9, three critics fire and display
suggestions in text surrounded by a rectangle in
the dialog pane. Suggestions are active, mouse­
sensitive objects, and two operations, Explain and
Remedy, are available on them (see mouse docu­
mentation line at the bottom of the screen). One
of the critics suggested moving the title pane,
which was put at the bottom of the interface, to
the top of the window frame. By clicking the left
mouse button on this suggestion, the designer can
obtain an explanation for this suggestion.

For some suggestions, a Remedy operation is
available; that is, FRAMER itself can fix a problem
it has detected. For example, clicking the middle
mouse button on the suggestion about the title
pane would cause the system to move the pane to
the top of the frame. The Remedy operation can
be considered an expert system that implements
improvements that can be executed without ad­
ditional user intervention.

The system not only gives negative criticism
but can also describe positive features of the de­
sign with the Praise command (see last command
in fig. 9). This positive feedback reassures desig­
ners that they are on the right track and helps

G. Fischer, T Mastaglio / Knowledge-hased critic systems 367

LlSP-Critic

Know ledge-based EngInes
Components

User -- Statistical
J Model I Analyzer _ ...

.JIIriio.. I ,..... t
l~""hG '-:1 Critiquing

.Il10

Critic
...

Rules '--M I
LISP
Domain LIMI"L&I(~ I Explanation ...
Model ConoepttMIllSI'l{~ Generator .,..

Fig. 7. The architecture of LISP-CRITIC. This figure shows the internal components of LISP-CRITIC and the information flow between
them.

them preserve the good characteristics in ongoing
modifications_

The critic knowledge base contains rules about

(setq result
(append (explode word) chars» -->

I this VIZI "word" I

~

(setq result
(append chars (explode word») -->

naming the program, arranging window panes,
specific knowledge about title panes, dialog panes,
and menu panes, and knowledge about invoking a

(setq result
(nconc (explode word) chars»

rs"

(setq result
(nconc chars (explode word»)

Fig. 8. Illustration of the validity of a rule using Kaestle. The KAESTLE system is showing the user the effects of the applying the
APPEND and the NCONC functions to the same data structure. The motivation behind this display is to demonstrate that although
these two functions return the same result they have different internal effects on the stored data structures. In the example shown, the
variable word is bound to the value this and the variable chars is bound to the list (i s).

368 G. Fischer. T. Mastuglio / Know/edge·based critic SVSlem.~

CiAoU'HICS

D
TIll • 4NE-1

I'''''"''''''

Add To Catalog Pr'ais~ Rt:9~t
Edit Options Preview Code: SU9~e5t Irnpravemt-nts
IM:nerau Co&!. in ZHACS Prt:vit:w r t"&mt:work U$agt:

Fig. 9. FRAMER. In the figure, the following components can be seen (clockwise from the top left); a palette of parts, a work area. a
menu, a dialog pane, and a catalog. An interface is built in a direct-manipulation interaction style. Parts are obtained from the palette
and combined in the work area. An interface can be built from the parts in the palette or. alternately, it can be created by selecting
and modifying an existing interface in the catalog. The catalog is a scrollable window that contains typical designs.

program and selecting interaction modes. This set
of rules is based on a study of existing systems in
our computing environment. Some of the rules
represent system constraints, for example, that a
window frame must be completely divided up into
panes. Other rules are concerned with the con­
sistency between different applications and func­
tional grouping.

Fig. 10 shows a typical critic rule. This rule
contains knowledge about the relationship of the
interaction mode and the configuration of window
panes in the interface. If the mouse-and-keyboard
interaction mode is selected, then the rule suggests
adding a dialog pane. A Remedy action is also
defined. Invoking the Remedy operation associ­
ated with this rule causes the system to add a
listener pane at the bottom of the window frame.

Critics also operate on the designs stored in the

CATALOG. These designs can be praised and cri­
tiqued, and when brought into the work area, they
can be modified and used as a starting point for
redesign. This feature is important for educational
settings where students can study the critique the
system generates for learning examples.

4.3. JANUS: A cooperative ,wstemfor kitchen deSign

JANUS [22;21] allows designers to construct
artifacts in the domain of architectural design and
at the same time informs them about principles of
design and their underlying rationale by integrat­
ing two design activities: construction and argu­
mentation. Construction is supported by a knowl­
edge-based graphical design environment (see Fig.
11) and argumentation is supported by a hypertext
system (see fig. 12).

G. Fischer, T Mastaglio / Knowledge-based critic systems 369

;; A critic rule named need-dialog-pane. The rule applies to program frameworks.

(define-critic-rule need-dialog-pane program-framework
;; Applicability condition. This rule is applicable if the
;; interaction mode is mouse-and-keyboard.
:applicability (eq (interaction-mode self) :mouse-and-keyboard)

;; The rule is violated if there is no pane of type dialog-pane in
;; the set on inferiors of a program framework.
:condition (null (find-if (pane-of-type 'dialog-pane) inferiors»

;; The Remedy operation adds a listener-pane.
:remedy (let «pane (make-instance 'listener-pane :x (+ x 20) Iy (+ Y 184)

:superior self»)
(add-inferior self pane)
(display-icon pane»

" Text of the suggestion made to the user if critic is applicable.
:suggestion "Add a listener or interactor pane, or set the interaction
mode to mouse-only."

;; Text for Praise command.
Ipraise "There is a listener or interactor pane."

;; Text for Explain command.
:explanation "Since the interaction mode is mouse-and-keyboard, a dialog pane is

required for typing in commands.")

Fig. 10. An example of a critic rule. The rule "need-dialog-pane" applies to program frameworks. The rule suggests adding a listener
or interactor pane if an interaction mode mouse-and-keyboard was specified.

In a fashion similar to FRAMER, JANUS provides
a set of domain-specific building blocks and has
knowledge about how to combine them into useful
designs. With this knowledge it "looks over the
shoulder" of users carrying out a specific design.
If it discovers a shortcoming in the users' designs,
it provides a critique, suggestions, and explana­
tions, and assists users in improving their designs.
JANUS is not an expert system that dominates the
process by generating new designs from high-level
goals or resolving design conflicts automatically.
Users control the behavior of the system at all
times (e.g., the critiquing can be "turned on and
off'), and if users disagree with JANUS, they can
modify its knowledge base.

Critics in JANUS are procedures for detecting
non-satisficing partial designs. JANUS' concept for
integrating the constructive and argumentative
component originated from the observation that
the critiques are a limited type of argumentation.
The construction actions can be seen as attempts
to resolve design issues. For example, when a
designer is positioning the sink in the kitchen, the

issue being resolved is "Where should the sink be
located"?

The knowledge-based critiquing mechanism in
JANUS bridges the gap between construction and
argumentation. This means that critiquing and
argumentation can be coupled by using JANUS'

critics to provide the designer with immediate
entry into the place in the hypertext network
containing the argumentation relevant to the cur­
rent construction task. Such a combined system
provides argumentative information for construc­
tion effectively, efficiently, and designers do not
have to realize before hand that information will
be required, anticipate what information is in the
system or know how to retrieve it.

JANUS' construction component. The construc­
tive part of JANUS supports the building of an
artifact either" from scratch" or by modifying an
existing design. To construct from scratch, the
designer chooses building blocks from a design
units" Palette" and positions them in the" Work
area" (see fig. 11).

370 G. Fischer, T Masraglio / Knowledge-hased critic srSlems

DOD
f.--elrel
~~

DD
rl!tri9~raton:

EJ

reel
~

Ares

•• •

Del<t.e Design Unit THREE-ELEMENT -STOVE-3
Descri~ Design Unit THREE-ELEMENT-STOVE-3
Move Design Unit THREE-ELEMENT-STOVE-3
Praise Design Unit THREE-ELEMENT-STOVE-3
Rotate Design Unit THREE -ELEMENT -STOVE - 3
Scale Design Unit THREE-ELEMENT -STOVE-3
Harking and yanking menu
Pr~'~nt.Jtion d~bugging m~nu
;,ystem menu
Window operation menu

horizontal-WAII-1
window-'

F.,.,-=------------------ll 'Il!rtfcaf-wa.ll-2
horlloot.l-waH-2
doub-le-bowl-$-lnk-4
right-hinged-door-3

doub-le-door-r-e:trige:ra tor-:)

Fig. II. JANUS construction interface The interface of JANUS'S construction component is based on the world modeL Design units are
selected from the Palette. and moved into the work area. Operations on design units are available through menus. The screen image
shown displays a message from the WORK-TRIANGLE-CRITIC.

To construct by modifying an existing design,
the designer uses the "CATALOG" (lower left in fig.
11), which contains several example designs. The
designer can browse through this catalog of exam­
ples until an interesting one is found. This design
can then be selected and brought into the "Work
Area", where it can be modified.

The CATALOG contains both "good" designs
and "poor" designs. The former satisfy all the
rules of kitchen design and will not generate a
critique. People who want to design without hav­
ing to bother with knowing the underlying princi­
ples might want to select one of these, since minor
modifications of them will be probably result in
few or no suggestions from the critics. The" poor"
designs in the CATALOG support learning the de­
sign principles. By bringing these into the " Work
Area", users can subject them to critiquing and

thereby illustrate those principles of kitchen de­
sign that are known to the system.

The "good" designs in the CATALOG can also
be used to learn design principles and explore
their argumentative background. This can be done
by bringing them into the "Work Area" then
using the "Praise all" command. This command
causes the system to display all of the rules that
the selected example satisfies. This positive feed­
back also provides entry points into the hypertext
argumentation.

JANUS' argumentation component. The hypertext
component of Janus is implemented using Sym­
bolics Concordia and Document Examiner soft­
ware. Concordia is a hypertext editor [62] with
which the issue base is implemented. The Docu­
ment Examiner [61] provides functionality for on-

G. Fischer, T. Mastaglio / Knowledge-based crilic systems 371

o
" I,

" I'
"
"
" , ,

I

I ,
I,
I,

"
" II
II

"
"

"
"

" :1
:1
"
"
"

Janus-ViewPoints

Description (Work Triangle)

The work triangle Is an Important concept In kitchen design. TM work
triangle denotes the center front distance between the three appli­
a.nces: a inA, stove and refri~rtl.tor. This I@!ngth should ba less than 23
feet to' avoid unnecessary walking and to ensure an efficient work
flO'W In the kitchen.

~truction Situation

I

Via/ted N0d6&
An~loIer- (Stove, Sink) Section
IS5~ (Stove) Se:ction
Rnsw.r (Sink. U1ndoY) Section

I, '~" ~::=.:~~:;~::=~:,:::~ .::'~:,,~~-,---.- .. -,,- "",,-, .. ~~
The refrigerator should be near a 9ink, but not next to the sink.

"

• Deo:'5cription (Work Triangle) Section
An:'5~r (Refrigerator, Sink) Section

I I

"
" , I

"
" t:J Innl

Viswer: Default VIBw9r

Command. o ... ShciI RrgU1't#ntation Ducriptiol'l (/Jork Tri$,ngl.)
If" Show Outl in. Subi~~u. (Equipl'tent flr.a)
~ ~.ShO'" COlUtruction

1·1011· •• ·-1 • -H :~how tilt' Cilli ('fit O(",jU" lJrltl\~1 COli .111i(t lOll

10 ~.(~P. othpi cOlnlnand '. P'"f''>', ~.llItt. Conti or. f1ptil.-~.llItt. 01" :'UpPI.

Show OutHne
Search ForT opics:

Show Argumentation
Show COf1UXt

Done
Show Example

Show Counter Exi!@le
fShow (onstroctlo

Fig. 12. JANUS argumentation interface. JANUS'S argumentation component uses the Symbolics Document Examiner as a delivery
interface. The construction situation can be displayed in one of the panes to allow users to inspect the constructive and argumentative
context simultaneously.

line presentation and browsing of the issue base
by users.

When users enter the argumentative part of
JANUS, they are brought into a section of the issue
base relevant to their current construction situa­
tion. Their point of entry into the hypertext net­
work should contain the infonnation required to
understand the issue of interest. But argumenta­
tion on an issue can be large and complex so they
can use this initial display of relevant information
as a starting place for a navigational journey
through the issue base, following links that will
lead them to additional information. Upon com­
pletion of the examination of the argumentative
information the designer can return to construc­
tion and complete the current task.

Critics as Hypertext Activation Agents. JANUS'

knowledge-based critics serve as the mechanism to
link construction with argumentation. They
"Watch over the shoulders" of designers, display­
ing their critique in the "Messages" pane (center
bottom in fig_ 11) when design principles are
violated. In doing so they also identify the
argumentative context which is appropriate to the
current construction situation.

For example, when a designer has designed the
kitchen shown in fig. 11, the "Work-Triangle­
Critic" fires and detects that the work triangle is
too large. To see the arguments surrounding this
issue, the designer has only to click on the text of
this criticism with the mouse. The argumentative
context shown in fig 12 is then displayed.

372 C. Fischer, T Mastaglio / Knowledge-based critic systems

5. Extending the critiquing paradigm to support
cooperative problem solving

The long-term goal of this effort is to develop
the full potential of the critic paradigm and to
make it a prototype for designing cooperative
problem solving systems. In this section, we will
first discuss the evaluations of the systems de­
scribed in the previous section. The results of
these evaluations have led to the articulation of
additional requirements for critic systems and de­
sign environments which bring them one step
closer acting as cooperative problem solving sys­
tems.

5.1. Evaluation

We have tested our critics systems with real
users over extended periods of time. Various
evaluation methods (e.g., thinking-aloud protocols
[35] and questionnaires) showed that a strictly
quantitative evaluation is not feasible because
many important factors are only qualitative.

Results of evaluation of LISP-CRITIC. The results
of our evaluations of LISP-CRITIC showed its
strengths and weaknesses.

Some of the strengths of LISP-CRITIC are:

- It supports users in doing their own tasks and it
supports intermediate users, not just beginners;

- It enhances incremental learning;
- It fosters reusability by pointing out operations

that exist in the system;
- It can be applied to every program (in the worst

case the system does not find anything to com­
plain about);

- It is not just a toy system because users have
used it in the context of their everyday work;

- Using it does not require users to provide infor­
mation in addition to the code.

Some of the weaknesses of LISP-CRITIC are:

It use only low-level transformations (i.e., it
operates primarily at the level of s-expressions);

- It has no understanding of the problem the user
is trying to solve; this limits analysis because
LISP-CRITIC cannot distinguish between con­
structs the user does not know and those not
required to solve the problem.

- The rules are not tied to higher-level conceptual
units;

- The explanations should be generated more dy-
namically [43J.

Evaluation of FRAMER and JANUS. The evalua­
tion of FRAMER (which provided the design ra­
tionale for several different versions of the system)
is described in detail in [34].

In our evaluation of JANUS we accumulated
feedback about its strengths and shortcomings.
One of our colleagues who is not a professional
kitchen designer, had just remodeled his kitchen.
He considered JANUS a valuable tool. The critiques
generated by the system during his design process
illustrated several design concepts of which he was
not aware. In addition to generating a specific
design for his kitchen, our colleague increased his
general knowledge about kitchen design.

The system was also used by a design method­
ologist who considered the cooperative, user­
dominated approach of JANUS its most important
feature. He felt that this feature set JANUS apart
from expert system oriented design tools that users
have little control over and that often reduce users
to spectators of the system's operations. We have
deliberately avoided equipping the current version
of JANUS with independent design capabilities.
Too much assistance and too many automatic
procedures can reduce the users' motivation by
not providing sufficient challenge.

In contrast to most current CAD systems, that
are merely drafting tools rather than design tools,
JANUS has some "understanding" of the design
space. This knowledge allows the system to cri­
tique a design during the design process - a
capability absent in CAD systems.

5.2. Additional requirements

As a result of building multiple versions of
LISP-CRITIC, the FRAMER and JANUS systems we
have developed a general schema for the architec­
ture of a knowledge-based critic. Here we describe
the role of and general requirements for each
component of that architecture: the domain
knowledge base, the user model, and the explana­
tion component.

Domain knowledge. Initial versions of our critics
incorporated a rule-based representation of do­
main knowledge. These rules analyzed the user's
product (or partial product). This representation is
both efficient to implement and apply. However,

G. Fischer. T Mastaglio / Knowledge-based critic systems 373

when we sought to improve our systems in order
to provide explanations, fundamental limitations
were recognized. In order to extend the cooper­
ative behavior of the system, a representation of
domain knowledge based upon a conceptual struc­
ture of that particular domain is needed. In the
case of LISP-CRITIC that representation follows the
notation for conceptual graphs [53] and is imple­
mented using an object oriented paradigm, the
COMMON LISP OBJECTS SYSTEM. This conceptual
structure is used by the explanation component to
determine which fundamental concepts have to be
described to explain a new concept to the user or
to find related concepts to use in a differential
description approach.

Model of the user. In order to extend our com­
puter-based critics toward cooperative problem
solving, they must contain a user model. It is
possible to develop a usable system without an
underlying user modelling component but instead
use a default user model that is "designed-into"
the systems. The default model causes the system
to treat all users the same. The specific questions
that have to be solved in order to achieve a usable
user model are how to represent the knowledge of
each user and how to acquire and update that
knowledge over time.

Representation of the user model. Our first at­
tempts to model the user were classification ap­
proaches based on observations of the users' pro­
gramming habits. This approach turned out to be
inadequate. In order to model domain expertise,
knowledge needs to be represented in the user
model as a collection of concepts that each indi­
vidual knows. A whole class of users will not
know the same set of concepts just because they
have the same background or experience. A survey
of experienced LISP programmers in our depart­
ment confirmed this intuition. Our test of exper­
tise was the programmers' understanding of gener­
alized variables in COMMON LIsp [55] and their
preference for using and teaching the "setq" and
"setf' special forms. We discovered a significant
variability not only in these experts' preferences
but also in their understanding of the concept.
These insights have led uS to represent users as a
collection of concepts that they know or do not
know about LISP along with an associated confi­
dence factor.

Acquisition of the user model. We attempt to

acquire the user model with implicit acquiSitIOn
techniques. These are represented as a collection
of methods that operate on the user model making
use of information available in the environment
(e.g., the programmer's code) and the domain
model. The entire system is based on an object­
oriented approach allowing these methods to be
defined for classes of domain objects and the user
model. Some of our methods are based on the
results of analysis of the code, some track the
explanations the user has requested and received
in the past, some infer the users' preference by
tracking the suggestions they have rejected and
others periodically check the model for internal
consistency.

Some of the methods incorporated into our
acquisition methodology are the result of an em­
pirical study of how expert human programmers
accomplish the same task. Experts were provided
samples of code from student programmers and
asked to make inferences about the expertise level
of each student. The protocols were analyzed with
an eye toward what cues human experts look for
in the code and what inference they make when
they find a particular cue [20]. One approach that
we attempted to incorporate was the use of stereo­
typing [50]. We experienced fundamental limita­
tions with this approach because no prescribed
stereotypes of LISP programmers exist, nor are
there guaranteed techniques for acquiring stereo­
types from statistical analysis of a sample popula­
tion. The primary source for cues is LISP-CRITIC
rules that fire when a pattern is found in the user's
code. Collections of rules that have fired imply
that the programmer knows a particular concept.

Explanations. The focus of our explanations is to
overcome any misunderstanding the user might
have about the critic's suggestions. Our research
efforts have determined that these explanations
should meet three criteria:

~ Explanations should be tailored to the expertise
of the individual.

~ A good metric keeps explanations as concise as
possible.

~ Explanation strategies should plan for the all to
likely case where the initial attempt fails to
satisfy a user. Backup techniques are needed.

We achieve the first criterion using the
concept-based domain model to determine what

374 G. Fischer, T. Mastaglio / Knowledge-based critic systems

concepts need to be explained to understand a
particular suggestion and then consulting the user
model to determine which of those concepts the
user requesting the explanation already knows.
This helps to achieve a concise explanation. The
conciseness metric results from applying the the­
ory of discourse comprehension to our explana­
tion task [321- In the case where the system pro­
vides an inadequate explanation, the need for a
backup technique is fulfilled by presenting ex­
planations in a hypertext format that provides the
user access to a rich on-line database of documen­
tation about the application domain. We have

I
, (CGr 5)

(power (cdr 5»»)

j(defu.erl'l (. r) I (COM ~ ~ (~~c:n 1 ~ f~~:~~~ (function 1 i~t) 5»

I (l bde (x)
, (.. apc (function (l_bd. (y) (con. x y»)

(perl'l (rel'lOve x .) (subl r»»)
, .»»
l(defUn conb (s r)
I (cond «: r 1) (""pear (function list) .»
I (t (",apcon (f(~:~: (u)

termed our overall strategy "minimalist explana­
tions" [19).

The capability of the user to access the ra­
tionale behind the suggestions of a critic has de­
veloped into one of our central issues. We have or
are in the process of incorporating several tech­
niques to improve explanations, these include hy­
pertext, the argumentation methodology, and the
'minimalist approach'. Whether one or some com­
bination of these stands out as an ideal solution
remains an open question, one that can only be
answered through an empirical evaluation of the
implemented systems. In addition we have ideas

I
, (cond «, (length u) rl n11)

(t (...apeer (function (lol'lbda (y) (COM
(col'lb (cdr u) (1- r»»»)

(car u) y»)

I 0»»
!
I;;; ~ubseQ8i ~ r !; ; ; 411 eon5ecut i ve 8iubsequence~ of 1 ength ,...
I (defun oub ... q. (. r)

I (if « (length .) r) n11
(can. (""q • r) (sub •• "" (cdr .) r»»

I(defun seq (s r)

I
(cond (m r II) n11)

(t (cons (c.,... .) (•• q

!(rktun ~ub-s~arch (sub 1)
(cond (null 1) n11)

((null sub) t)
(t (sub-u.,.ch sub (cdr ===)

(jf (""",,1 r 1)
(napcelr 1*' 1 i&t a)
(napcon #'(lal'lbda (x)

(ru.pcllr a' (1 a"bd.
s»

lisp-CRITIC

(cons MY) (perri (r~l"Iove H ~) (~bl r»)

Explanation (Wtty-cond-to-If-else)

IF I. <nOr .. r""dabl .. than COHO b"cau"" It use. fewer p .. r .. nthe
and because IF ha ... common English meaning.

Abort Explain ~'" Co<k Sho", ~'" Co<k
Acc~t R.jf!ct Show Or;~inal Cod"
Acc~t All S.t Pantnv;ur. phv ts I " Ekt@

po~er.11sp >brentr>:rlc I'IJNCH: 2 •

Fig. 13. The LISP-CRITIC in ZMACS on the Symbolics computer. This figure shows LISP-CRITIC running within the ZMACS editor on
a Symbolics 3600. The user invokes LISP-CRITIC by positioning the cursor within the context of a function definition that he or she
would like to have critiqued. LISP-CRITIC displays its suggestions to the user one transformation at a time. The user can accept. reject
or request an explanation for each transformation. In the screen image above the user has asked LISP-CRITIC to explain why the
COND-TO-IF transformation is suggested. The explanation is displayed in a hypertext form, the user can select IF or COND with the
mouse and access additional information stored in the Document Examiner's on-line documentation.

G. Fischer, T Maslaglio / Knowledge-based critic svstem~ 375

for still other approaches to enhance explanatory
capabilities that have not yet been fully developed.

~ Differential descriptions is an approach that de-
pends heavily on the user model and on main­
taining a record of the user's work. Descrip­
tions of concepts new to a particular user will
be generated by relating them to concepts al­
ready known to a user; these are contained in
the user model.

~ Graphical techniques can help the user to see
how his work relates to the entire product and
likewise how the critic's suggestions are in­
tegrated. Other systems use graphical tech­
niques to conceptualize the program develop­
ment process and integrate this with explana­
tory capabilities [47;46]. This type of additional
capability could integrate nicely into the en­
vironment in which our critics now operate.

5.3. A new version of the LISP-CRITIC

The components discussed in the previous sec­
tion and the results of our evaluations are being
used in the most recent implementation of
LISP-CRITIC. However, simply adding functionality
to LISP-CRITIC is not a sufficient condition to
achieve our goal of developing a cooperative prob­
lem solving system, the manner in which that
functionality is achieved also plays a major role.
We will describe the current version of LISP-CRITIC
and some of the ideas that will be tested in that
implementation.

The most recent version of LISP-CRITIC also
runs on Symbolics LIsp Machines, however it has
been integrated into the programming develop­
ment environment, ZMACS. Having to use
LISP-CRITIC as an activity separate from the pro­
grammers working context was considered one of
the major shortcomings of the previous versions.
Fig. 13 shows a screen image of the system in­
voked from the ZMACS editing environment. The
general idea is that programmers working on LISP
program code reaches a point where they would
appreciate an "outsider" looking it over and giv­
ing suggestions as to how it might be improved.
The granularity of the critique was reduced from
the file level to the scope of a function definition.

Users decide whether to accept or reject the
transformation for each particular suggestion of
the critic. If they choose to accept the transforma-

tion then the system automatically replaces that
piece of code in the users' buffer, similar to the
Remedv option in FRAMER. Previously users had to
either accept the version of the program created
by LISP-CRITIC or individually make changes to
the original version of the program. This version
of LISP-CRITIC has been designed to include repre­
sentations of domain knowledge for use in critiqu­
ing and' in explanation-giving/user modelling, a
model of individual users, and an explanation
component.

6. Conclusions

Computer-based cntIcs incorporate powerful
ideas from human computer communication and
artificial intelligence research into a system that
combines the best aspects of human and computa­
tional cognition. Critics have the potential to fos­
ter a cooperative relationship in support of learn­
ing and working between a user and a knowledge­
based system.

Implementation of this concept requires that
critics contain domain knowledge represented in a
form that is applicable both to problem solving
and to explanations. An explanation component
uses the knowledge base and information con­
tained in the user model to generate explanations.
The system must be able to share its domain
knowledge with the user, and it must construct an
individual user model to support this sharing pro­
cess.

We have developed several critic systems that
incorporate these ideas. The successes and failures
of these efforts is helping us to define the char­
acteristics and design considerations for critic sys­
tems as well as to gauge their potential. These
results are applicable to the entire class of cooper­
ative problem solving systems.

References

[1 J 1.R. Anderson. B.l. Reiser. The LiSP Tutor. BYTE 10(4):
159-175. April. 1985.

[2J H.-D. Boecker. Softwareerstellung als wissensbasierter
Kommunikations- und Designprozess. Dissertation. Uni­
versitaet Stuttgart, Fakultaet fuer Mathematik und Infor­
matik. April. 1984.

[3J H.-D. Boecker. G. Fischer, H. Nieper. The Enhancement
of Understanding Through Visual Representations. In

376 G. Fischer, T Mastaglio / Knowledge-based critic system,

Human Factors in Computing Systems. CHI'86 Con­
ference Proceedings (Boston, MA), pages 44~50. ACM,
New York, April, 1986.

[4J B.G. Buchanan, E.H. Shortliffe. Human Engineering of
Medical Expert Systems. Rule-Based Expert Systems: The
MYClN Experiments of the Stanford Heuristic Program­
ming Project. Addison-Wesley Publishing Company.
Reading, MA, 1984. pages 599-612, Chapter 32.

[5J B.G. Buchanan, EH. Shortliffe. Rule-Based Expert Sys­
tems: The MYClN Experiments of the Stanford Heuristic
Programming Project. Addison-Wesley Publishing Com­
pany, Reading, MA, 1984.

[61 R.R. Burton, J.S. Brown. An Investigation of CDmputer
Coaching for Informal Learning Activities. In D.H. Slee­
man, J5. Brown (editors), Intelligent Tutoring Systems,
chapter 4, pages 79-98. Academic Press, London-New
York, 1982.

[7J J.G. Carbonell. User Modeling and Natural Language
Interface Design. In H. Balzert (editor), Software-Ergono­
mie. Tagung 1/1983 des German Chapter of. the ACM,
April 1983, Nuernberg, pages 21-29. Teubner Verlag,
Stuttgart, 1983.

[8J J.M. Carroll, J. McKendree. Interface Design Issues for
Advice-Giving Expert Systems. Communications of the
ACM 30(1): 14-31, January, 1987.

[9J D.F. Dansereau. Cooperative Learning Strategies. Learn­
ing and Study Strategies: Issues in Assessment, Instruc­
tion and Evaluation. Academic Press, New York, 1988,
pages 103-120, Chapter 7.

[lOJ S.W. Draper. The Nature of Expertise in UNIX. In Pro­
ceedings of INTERACT'84, IFIP Conference on Human­
Computer Interaction, pages 182-186. Elsevier Science
Publishers, Amsterdam, September, 1984.

[llJ G. Fischer. A Critic for LISP. In J. McDermott (editor),
Proceedings of the 10th International Joint Conference on
Artificial Intelligence (Milan, Italy), pages 177-184.
Morgan Kaufmann Publishers, Los Altos, CA, August,
1987.

[12J G. Fischer. Cognitive View of Reuse and Redesign. IEEE
Software, Special Issue on Reusability 4(4): 60-72, July,
1987.

[13J G. Fischer. Cooperative Problem Solving Systems. In Pro­
ceedings of the 1st Simposium Internacional de Inteli­
gencia Artificial (Monterrey, Mexico), pages 127-132. Oc­
tober. 1988.

[14J G. Fischer, W. Kintsch, P.W. Foltz, S.M. Mannes, H.
Nieper-Lemke, C Stevens. Theories, Methods, and Tools
for the Design of User-Centered Systems (Interim Project
Report, September 1986-February 1989). Technical Re­
pDrt, Department of Computer Science, University of
Colorado, Boulder, CO, March, 1989.

[15J G. Fischer, A,C Lemke. Construction Kits and Design
Environments: Steps Toward Human Problem-Domain
Communication. Human-Computer Interaction 3(3):
179-222, 1988.

[16J G. Fischer, A,C Lemke. Knowledge-Based Design En­
vironments for User Interface Design. Technical Report,
Department of Computer Science, University of Col­
orado, Boulder, CO, March, 1989.

[17J G. Fischer, A.C Lemke, T Schwab. Knowledge-Based

Help Systems. In Human Factors in Computing Systems,
CHI'85 Conference Proceedings (San Francisco, CAl,
pages 161-167. ACM, New York, April, 1985.

[18J G. Fischer, T. Mastaglio. Computer-Based Critics. In Pro­
ceedings of the 22nd Annual Hawaii Conference on Sys­
tem Sciences, VoL III: Decision Support and Knowledge
Based Systems Track, pages 427-436. IEEE Computer
Society, January, 1989.

[19J G. Fischer, T Mastaglio, B. Reeves, J. Rieman. Minima­
list Explanations in Knowledge-Based Systems. In Jay F.
Nunamaker, Jf (editor), Proceedings of the 23rd Hawaii
International Conference on System Sciences, Vol III:
Decision Support and Knowledge Based Systems Track.
pages 309-317. IEEE Computer Society, 1990.

[20J G. Fischer, T Mastaglio, J. Rieman. User Modeling in
Critics Based on a Study of Human Experts. In Proceed­
ings of the Fourth Annual Rocky Mountain Conference
on Artificial Intelligence, pages 217-225. RMSAI, Den­
ver, CO, June, 1989.

[21J G. Fischer, R. McCall, A. Morch. Design Environments
for CDnstructive and Argumentative Design. In Human
Factors in Computing Systems, CH1'89 Conference Pro­
ceedings (Austin, TX), pages 269-275. ACM, New York,
May, 1989.

[22J G. Fischer, A. Morch. CRACK: A Critiquing Approach
to Cooperative Kitchen Design. In Proceedings of the
International Conference on Intelligent Tutoring Systems
(Montreal, Canada), pages 176-185. ACM, New York,
June, 1988.

[23J G. Fischer, H. Nieper-Lemke. HELGON: Extending the
Retrieval by Reformulation Paradigm. In Human Factors
in Computing Systems, CHI'89 Conference Proceedings
(Austin, TX), pages 357-362. ACM, New York, May,
1989.

[24J G. Fischer, M. Schneider. Knowledge-Based Communica­
tion Processes in Software Engineering. In Proceedings of
the 7th International Conference on Software Engineering
(Orlando, FL), pages 358-368. IEEE Computer Society,
Los Angeles, CA, March, 1984.

[25J G. Fischer, C Stevens. Volunteering Information - En­
hancing the Communication Capabilities of Knowledge­
Based Systems. In H.-J. Bullinger, B. Shackel (editors).
Proceedings of INTERACT'87, 2nd IFIP Conference on
Human-Computer Interaction (Stuttgart, FRG), pages
965-971. North-Holland, Amsterdam, September, 1987.

[26J B. Fox, L Karen. Collaborative Cognition. In Proceedings
of the 10th Annual Conference of the Cognitive Science
Society (Montreal, Canada). Cognitive Science Society,
August, 1988.

[27J M.P. Friedman. W ANDAH - A Computerized Writer's
Aid. Applications of Cognitive Psychology, Problem Solv­
ing, Education and Computing. Lawrence Erlbaum Asso­
ciates, Hillsdale, NJ, 1987, pages 219-225, Chapter 15.

[28J R. Glaser, K. Raghavan, L Schauble. Voltaville: A Dis­
covery Environment to Explore the Laws of DC Circuits.
In Proceedings of the International Conference on Intelli­
gent Tutoring Systems (Montreal, Canada), pages 61-66.
June, 1988.

[29J EL Hutchins, J.D. Hollan, D.A. Norman. Direct Mani­
pulation Interfaces. User Centered System Design, New

G. Fischer, T Mastaglio j Knowledge-based critic jystems 377

Perspectives on Human-Computer Interaction. Lawrence
Erlbaum Associates. Hillsdale. N J, 1986. pages 87-124.
Chapter 5.

[30J K Kass, T. Finin. The Need for User Models in Gener­
ating Expert System Explanations. International Journal
of Expert Systems 4: 345-375, 1988.

[31J VE Kelly. The CRITTER System: Automated Critiquing
of Digital Circuit Designs. In Proceedings of the 21st
Design Automation Conference, pages 419-425. 1985.

[32J W. Kintsch. The Representation of Knowledge and the
Use of Knowledge in Discourse Comprehension. Lan­
guage Processing in Social Context. North Holland,
Amsterdam, 1989, pages 185-209. also published as Tech­
nical Report No. 152, Institute of Cognitive Science, Uni­
versity of Colorado, Boulder, CO.

[33J CP. Langlotz, E.H. Shortliffe. Adapting a Consultation
System to Critique User Plans. InL J. Man-Machine Stud­
ies 19: 479-496, 1983.

[34J A.C Lemke. Design Environments for High-Functionality
Computer Systems. PhD thesis, Department of Computer
Science, University of Colorado, July, 1989.

[35J CH. Lewis. Using the 'Thinking-Aloud' Method in Cog­
nitive Interface Design. Technical Report RC 9265, IBM.
Yorktown Heights, NY, 1982.

[36J CH. Lewis, D.A. Norman. Designing for Error. User
Centered System Design, New Perspectives on Human­
Computer Interaction. Lawrence Erlbaum Associates, Hil­
lsdale. NJ, 1986, pages 411-432, Chapter 20.

[37J T. Mastaglio. Computer-based Critiquing: A Foundation
for Learning Environments. In Linda Wiekhorst (editor).
Proceedings TITE '89, 1989 Conference on Technology
and Innovations in Training and Education, March 6-9,
1989, Atlanta. GA, pages 125-136. 1989.

[38J T. Mastaglio. User Modelling in Computer-Based Critics.
In Jay F. Nunamaker, Jr (editor), Proceedings of the 23rd
Hawaii International Conference on System Sciences, Vol
Ill: Decision Support and Knowledge Based Systems
Track. pages 403-412. IEEE Computer Society, 1990.

[39J F. Mili. A Framework for a Decision Critic and Advisor.
In Proceedings of the 21st Hawaii International Con­
ference on System Sciences, pages 381-386. Jan, 1988.

[40J P. Miller. A Critiquing Approach to Expert Computer
Advice: ATTENDING. Pittman, London - Boston, 1984.

[41 J P. Miller. Expert Critiquing Systems: Practice-Based
Medical Consultation by Computer. Springer-Verlag, New
York - Berlin, 1986.

[42J J. Moore. A Reactive Approach to Explanation. Technical
Report, USC jlnformation Sciences Institute, 1988.

[43J R. Neches, W.K Swartout, J.D. Moore. Enhanced Main­
tenance and Explanation of Expert Systems Through Ex­
plicit Models of Their Development. IEEE Transactions
on Software Engineering SE-11(l1): 1337-1351, Novem­
ber, 1985.

[44J 1. Psotka, LD. Massey. S. Mutter. Intelligent Instruc­
tional Design. Intelligent Tutoring Systems: Lessons
Learned. Lawrence Erlbaum Associates, Hillsdale. NJ,
1988, pages 113-118.

[45J B. Reeves. Finding and Choosing the Right Object in a

Large Hardware Store - An Empirical Study of Cooper­
ative Problem Solving among Humans. Technical Report,
Department of Computer Science, University of Col­
orado, Boulder. CO, 1990. forthcoming.

[46J 8.J. Reiser. P. Friedmann, D.Y. Kimberg. M. Ranney.
Constructing Explanations from Problem Solving Rules to
Guide the Planning of Programs. In Proceedings of the
International Conference on Intelligent Tutoring Systems
(Montreal. Canada), pages 222-229. June, 1988.

[47J 8.J. Reiser, P. Friedmann, J. Gevins. D.Y. Kimberg, M.
Ranney. A. Romero. A Graphical Programming Language
Interface for an Intelligent Lisp Tutor. In Human Factors
in Computing Systems, CHI'88 Conference Proceedings
(Washington. DC). pages 39-44. ACM. New York, May.
1988.

[48] G.D. Rennels. Lecture notes in medical informatics: A
computational model of reasoning from the clinical litera­
ture. Springer Verlag, 1987.

[491 E Rich. Building and Exploiting User Models. PhD the­
sis, Carnegie-Mellon University. 1979.

[50J E. Rich. Users are Individuals: Individualizing User Mod­
els. International Journal of Man-Machine Studies 18:
199-214, 1983.

[51J J. Schiff, J. Kandler. Decisionlab: A System Designed for
User Coaching in Managerial Decision Support. In Pro­
ceedings of the International Conference on Intelligent
Tutoring Systems (Montreal. Canada), pages 154-161.
June, 1988.

[52J E. Soloway. Learning to Program = Learning to Construct
Mechanisms and Explanations. Communications of ACM
29(9): 850-858, September, 1986.

[53] J.F. Sowa. Conceptual Structures: Information Processing
in Mind and Machine. Addison-Wesley. Reading. MA,
1984.

[54J K. Sparck Jones. Issues in User Modeling for Expert
Systems. Artificial Intelligence and its Applications. John
Wiley & Sons, New York, 1986, pages 183-195.

[55J G.L Steele. Common LISP: The Language. Digital Press,
Burlington. MA. 1984.

[56J R.L Steele. Cell-Based VLSI Design Advice Using De­
fault Reasoning. In Proceedings of 3rd Annual Rocky
Mountain Conference on AI, pages 66-74. Rocky Moun­
tain Society for Artificial Intelligence, Denver, CO, 1988.

[57J MJ. Stefik. The Next Knowledge Medium. Al Magazine
7(1): 34-46, Spring, 1986.

[58J W.R. Swartout Explaining and Justifying Expert Consult­
ing Programs. In A. Drinan (editor), Proceedings of the
Seventh International Joint Conference on Artificial Intel­
ligence. pages 815-822. 1981

[59J KL Teach, E.H. Shortliffe. An Analysis of Physicians'
Attitudes. Rule-Based Expert Systems: The MYCIN Ex­
periments of the Stanford Heuristic Programming Project
Addison-Wesley Publishing Company. Reading, MA.
1984. pages 635-652, Chapter 34.

[60J E. Turban. P.R. Watkins. Integrating Expert Systems and
Decision Support Systems. MIS Quarterly: 120-136, June,
1986.

[61J J.H. Walker. Document Examiner: Delivery Interface for

378 G. Fischer, T. Mastaglio / Knowledge-based crilic systems

Hypertext Documents. In Hypertext'87 Papers, pages
307-323. University of North Carolina, Chapel Hill, NC,
November, 1987.

[62J J.H. Walker. Supporting Document Development with
Concordia. IEEE Computer 21(1): 48-59, January, 1988.

[63J T. Winograd, F. Flores. Understanding Computers and
Cognition: A New Foundation for Design. Ablex Publish­
ing Corporation, Norwood, NJ, 1986.

[64J K. Wipond, M. Jones. Curriculum and Knowledge Repre­
sentation in a Knowledge-Based System for Curriculum
Development. In Proceedings of the International Con­
ference on Intelligent Tutoring Systems (Montreal,
Canada), pages 97-102. June, 1988.

[65] D.O. Woods. Cognitive Technologies: The Design of Joint
Human-Machine Cognitive Systems. Al Magazine 6(4):
86-92, Winter, 1986.

