
~ University of Colorado at BouJder

Department or Computer Science

ECOT 7 -7 Engineering Center
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-7514

TO APPEAR IN THE PROCEEDINGS OF THE ACM CONFERENCE ON
HUMAN FACTORS IN COMPUTING SYSTEMS (CHI '90), SEATTLE, WN, APRIL 1 - 5,1990

Using Critics to Empower Users

Gerhard Fischer, Andreas C. Lemke, and Thomas Mastaglia

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder, CO 80309-0430

303492-1502, gerhard@boulder.colorado.edu

Anders I. March

NYNEX Artificial Intelligence Laboratory
White Plains, NY 10604

914683-2209, anderS@nynex-ms.nynexst.com

Abstract
We describe the critiquing approach to building knowledge-based interactive systems. Critiquing supports computer users in
their problem solving and learning activities. The challenges for the next generation of knowledge-based systems provide a
context for the development of this paradigm. We discuss critics from the perspective of overcoming the problems of
high-functionality computer systems, of providing a new class of systems to support learning, of extending applications­
oriented construction kits to design environments, and of providing an alternative to traditional autonomous expert systems.
One of the critiquing systems we have built - JANUS, a critic for architectural design - is used as an example of the key
aspects of the critiquing process. We also survey additional critiquing systems developed in our and other research groups.

KEYWORDS: critics, critiquing, high-functionality computer systems, inteIJigent support systems, design environments,
cooperative problem solving systems.

Using Critics to Empower Users

Gerhard Fischer, Andreas C. Lemke, and Thomas Mastaglio

Department of Computer Science and Institute of Cognitive Science
University of Colorado. Boulder. CO 80309-0430

303 492-1502. gerhard@boulder.colorado.edu

Anders I. Morch

NYNEX Artificial Intelligence Laboratory
White Plains. NY 10604

914683-2209, anderS@nynex-ms.nynexst.com

ABSTRACT
We describe the critiquing approach to building
knowledge-based interactive systems. Critiquing supports
computer users in their problem solving and learning ac­
tivities. The challenges for the next generation of
knowledge-based systems provide a context for the
development of this paradigm. We discuss critics from the
perspective of overcoming the problems of high­
functionality computer systems, of providing a new class of
systems to support learning, of extending applications­
oriented construction kits to design environments, and of
providing an alternative to traditional autonomous expert
systems. One of the critiquing systems we have built -
JANUS, a critic for architectural design - is used as an
example of the key aspects of the critiquing process. We
also survey additional critiquing systems developed in our
and other research groups.

KEYWORDS: critics, critiquing, high-functionality com­
puter systems, intelligent support systems, design environ­
ments, cooperative problem solving systems.

INTRODUCTION
The critiquing approach is an effective way to make use of
computer knowledge bases to aid users in their work and to
support learning. Our experience with this approach in­
cludes several years of innovative system building efforts,
the integration of cognitive and design theories, empirical
observations and the evaluation of prototypes.

This paper combines our experience with the research ef­
forts of others to articulate foundations and characteristics
for the critiquing paradigm. We describe the rationale for
critiquing and illustrate the approach using one of our sys­
tems (JANUS) as an example. A general characterization of
the critiquing process is abstracted. Other systems are sur­
veyed in terms of this critiquing framework. This shows
the applicability and usefulness of critics across a variety of
domains.

CHALLENGES FOR THE NEXT GENERATION OF
KNOWLEDGE-BASED SYSTEMS
The next generation of knowledge-based systems will face
the following challenges:

• They will be high-functionality systems, and their com­
plete mastery will exceed most individual's cognitive
capabilities.

• They will need to support a broad spectrum of learning
and working activities.

• They should be integrated design environments.

• Rather than autonomous expert systems, they will often
be joint human-computer systems supporting cooperative
problem solving.

We will discuss how critics can meet each of these chal­
lenges in turn.

High-Functionality Computer Systems
As powerful computer hardware has become widely avail­
able, computers and computer-based systems for general
applications have an increased range of capabilities. Tech­
nical complexity and the associated human cognitive costs
to master these systems have both grown dramatically and
limit the ability of users to take full advantage of them.
One illustration of this situation is the Symbolics LISP
machine; it contains over 30,000 functions and 3300
flavors (or classes) accompanied by 12 books with 4400
pages of written documentation.

Systems that offer a rich functionality are a mixed blessing.
In a very large knowledge space, something related to what
we need is likely to exist, but may be difficult to fmd. It is
impossible and infeasible for anyone individual to know
such systems completely. Empirical studies [7] have
shown that even very experienced users know only a subset
of a large system. They encounter the following problems:
they often do not know about the existence of building
blocks and tools; they do not know how to access tools. or
when to use them; they do not understand the results that
tools produce. and they cannot combine. adapt, and modify
tools according to their specific needs. Our goal is to in­
crease the usability of high functionality computer systems.
not by • 'watering down" functionality or steering the user
toward only a subset of the systems' capabilities, but by
facilitating learning about. access to, and application of the
knowledge these systems contain. Critics contribute to
these goals by bringing knowledge to bear when it is
needed.

Systems to SUpport learning
The computational power of high functionality computer
systems can provide qualitatively new learning environ­
ments. Learning technologies of the future should be
multi-faceted, supporting a spectrum extending from open­
ended, user-centered environments such as LoGo [29] to
guided, teacher-centered tutoring environments [35].

Tutoring is one way to first learn a new system. One can
pre-design a sequence of microworlds and lead a user
through them [1]. However, tutoring is of little help in
supporting learning on demand when users are involved in
their "own doing." Tutoring is not task-driven, because
the total set of tasks cannot be anticipated. To support
user-centered learning activities. we must build computa­
tional environments that match individual needs and learn­
ing styles. Giving users control over their learning and
working requires that they become the initiators of actions
and set their own goals.

In open learning environments users have unlimited control
[29], but there are other problems. They do not support
situations where users get stuck during a problem solving
activity or settle at a suboptimal plateau of problem solving
behavior. To successfully cope with new problems, users
can benefit from a critic that points out shortcomings in
their solutions and suggests ways to improve them.

In contrast to passive help systems, critics do not require
users to formulate a question. Critics allow users to retain
control; they interrupt only when users' products or actions
could be improved. By integrating wooong and learning.
critics offer users unique opportunities: to understand the
purposes or uses for the knowledge they are learning; to
learn by actively using knowledge mther than passively
perceiving it, and to learn at least one condition under
which the knowledge can be applied. A strength of critiqu­
ing is that learning occurs as a natural byproduct of the
problem solving process.

Design Environments
To accomplish most things in this world, selective search,
means-ends analysis, and other weak methods are not suf­
ficient [32]; one needs to employ strong problem solving
techniques with knowledge about the task domain. Desig­
ners (e.g., architects, composers, user interface designers,
database experts. knowledge engineers) are experts in their
problem domain. But domain specialists are not interested
in learning the "languages of the computer;" they simply
want to use the computer to solve their problems and ac­
complish required tasks. To shape the computer into a
truly usable as well as useful medium, we have to make
low-level primitives invisible. We must "teach" the com­
puter the languages of experts by endowing it with the
abstmctions of application domains. This reduces the
transformation distance between the domain expert's
description of the task and its representation as a computer
program. Human problem-domain communication is our
term for this idea [13].

Design environments [25; 16] are tools that foster human
problem-domain communication by providing a set of
building blocks that model a problem domain. Design en­
vironments also incorporate knowledge about which com­
ponents fit together and how. These systems contain critics
that recognize suboptimal design choices and inefficient or
useless structures ...

Cooperative Problem Solving Systems
The goal of developing joint human-computer cognitive
systems in which the computer is considered a cognitive
amplifier has challenged the more widely understood goal
of Artificial Intelligence: the understanding and building of
autonomous, intelligent, thinking machines. A more im­
portant goal is to understand and build intemctive
knowledge media [34] or cooperative problem solving sys­
tems [11]. The major difference between classical expert
systems, such as MyCIN and R1, and cooperative problem
solving systems is in the respective roles of human and
computer. Tmditional expert systems ask the user for in­
put, make all decisions, and then return an answer.

In a cooperative problem solving system, the user is an
active agent and participates together with the system in the
problem solving and decision making process. The precise
roles played by the two parties depend on their different
strengths with respect to knowledge of the goals and task
domain. Critics are an important component of cooperative
problem solving systems, especially when they are em­
bedded in integrated design environments. These critics
detect inferior designs, provide explanations and argumen­
tation for their "opinion" and suggest alternative solutions.

Tmditional expert systems are inadequate in situations
where it is difficult to capture all necessary domain
knowledge. Because they often leave the human out of the
decision process, autonomous expert systems require a
comprehensive knowledge base covering all aspects of the
tasks to be performed; all "intelligent" decisions are made

(
Proposed

\ Solution

Domain

Domain
Knowledge

Expert ise J

{} "--. .s.
~

Goals

~ J
User Model

Critique

Figure 1: The Critiquing Approach

A critiquing system has two agents, a computer and a user, working in cooperation. Both agents contribute what

they know about the domain to solving some problem. The human's primary role is to generate and modify
solutions, while the computer's role is to analyze those solutions producing a critique for the human to apply in the

next iteration of this process.

by the computer. Some domains, such as user interface
design. are not sufficiently understood. Therefore. to create
a complete set of principles that adequately capture
knowledge in that domain is probably not possible. Other
domains are so vast that tremendous effort is required to
acquire all relevant knowledge. Critics are well suited to
these situations because they need not be complete domain
experts.

The traditional expert system approach is also inappropriate
when the problem is ill-defined, that is, the problem cannot
be precisely specified before a solution is attempted. In
contrast, critics are able to function with only a partial task
understanding.

THE CRmaUING APPROACH
Critiquing is a way to present a reasoned opinion about a
product or action (see Figure 1). The product may be a
computer program, a kitchen design, a medical treatment
plan; an action may be a sequence of keystrokes that cor­
rects a mistake in a word processor document or a sequence
of operating system commands. l An agent, human or
machine, that is capable of critiquing in this sense is clas­
sified as a critic. Critics can consist of a set of rules or

lIn the remainder of the paper the lenn product is ofun used in a
generic lense encompassing both product in a narrow sense and actions.

specialists for different issues; it is convenient to talk about
each individual system component that reasons about a
single issue as a critic.

Critics do not necessarily solve problems for users. The
core task of critics is the recognition of deficiencies in a
product and communication of those observations to users.
Critics point out errors and suboptimal conditions that
might otherwise remain undetected. Most critics make sug­
gestions on how to improve the product. With this infor­
mation users can fix the problems, seek additional advice or
explanations.

Advisors [3] perform a function similar to critics except
that they are the primary source for the solution. Users
describe a problem, and they obtain a proposed solution
from the advisor. In contrast to critics, advisors do not
require users to present a partial or proposed solution to the
problem.

JANUS: AN EXAMPLE
JANUS is a design environment based on the critiquing ap­
proach that allows designers to construct residential
kitchens [16; 17]. The system enriches traditional design
practice by augmenting the designer's creative and analyti­
cal skills. JANUS was developed as an integrated design
environment to address some of the challenges of human
problem-<lomain communication as previously discussed.

window,

000
sink<

reel iii reel
~~~ 

DD 
ret~ratl)(s 

H 

DO 

windo ...... -1 

~:-----------------I1ll vertical-wall-2 

•• •• 

horilontal-waH-2 
.. liouble-bowl-sink.-1 

Figure 2: JANUS-CRACK: the SINK-CRITIC 

JANUS-CRACK is the construction part of JANUS. Building blocks (design units) are selected from the Palette and 
moved to desired locations inside the Work Area Designers can also reuse and redesign complete floor plans 
from the Catalog. The Messages pane displays critic messages automatically after each design change that 

triggers a critic. Clicking with the mouse on a message activates JANUS-VIEWPOINTS and displays the argumen­

tation related to that message. 

JANUS contains two subsystems: JANUs-CRACK and 
JANUs-VIEWPoINTS. JANUs-CRACK is a knowledge-based 
system supporting the construction of kitchens from 
domain-oriented building blocks called design units (Figure 
2). JANUS-VIEWPoINTS is an issue-based hypertext system 
containing general principles of design to support argumen­
tation about design. Integration of JANUs-CRACK and 
JANUS-VIEWPoINTS allows argumentation to resolve the 
problems that designers encounter during construction. 
JANUS is both a learning environment for design students 
and a tool for skilled designers. 

JANUS-CRACK contains knowledge about how to distin­
guish "good" designs from "bad" designs and can explain 
that knowledge. The system knows how to combine build­
ing blocks into functional kitchens. Its knowledge includes 
three types of design principles [21]: building codes, such 
as "the window area shall be at least 10% of the floor 
area.", safety standards, such as"the stove should not be 
installed under a window or within 12 inches of a 
window.", and functional preferences, such as "the work 
triangle should be less than 23 feet." 

Critics in JANUS-CRACK apply their design knowledge to 
critique the designer's partial solutions. They are imple­
mented as condition-action rules, which are tested when­
ever the design is changed. The critics display messages, 
such as: "sink not infront of a window" in a critic window 
(see the Messages pane in Figure 2). 

JANUS supports two design methodologies: design by com­
position (using the Palette) and design by modification 
(using the catalog). Examples in the catalog facilitate the 
redesign approach and can also be used to support learning. 
The user can copy both good and bad examples into the 
work area. One learning example is shown in Figure 3. 
The system can critique such designs to show how they can 
be improved, thus allowing users to learn from negative 
examples. To learn about good features of prestored 
designs, designers can run the Praise All command, 
thus getting positive feedback as well. Users can add their 
own designs to the catalog for future reuse or as additional 
learning examples. In addition to allowing changes to the 
design within the design environment, JANUS supports end 
user modification of the design environment itself [12]. 



-
~ ~ 

'---

ow I: • DD • 
Figure 3: JANUS-CRACK: A Learning Example from the Catalog 

The critics in JANUS detect the following suboptimal features of the kitchen shown in this figure: The width of the 

door is less than 36 inches, the dishwasher is not next to a sink, the stove is next to a refrigerator, the refrigerator 

is next to a sink, and the sink is not in front of a window. 

THE PROCESS OF CRITIQUING 
Figw-e 4 illustrates the subprocesses of critiquing: goal 
acquisition, product analysis, applying a critiquing strategy, 
explanation and advice giving. Not all of these processes 
are present in every critiquing system. This section 
describes these subprocesses and illustrates them with ex­
amples. JANUS does not illustrate all of the issues; there­
fore, we will refer occasionally to systems that are 
described in the Section DESCRIPTIONS OF CR.TI1CS. 

Goal Acquisition 
Critiquing a product requires at least a limited understand­
ing of the intended purpose of the product That is problem 
knowledge which can further be separated into domain 
knowledge and goal knowledge. Just having domain 
knowledge without any understanding of the particular 
goals of the user, a critic can reason only about charac­
teristics that pertain to all products in the domain. For 
example, domain knowledge allows JANUS to point out that 
stoves should not be placed in front of a window, because 
this arrangement constitutes a fIre hazard For a more ex­
tensive evaluation of a product, some understanding of the 
user's specifIc goals and situation is required. 

A critic can acquire an understanding of the user's goals in 
several ways. Using an implicit goal acquisition approach, 
a general goal is built into the system. For example, JANUS 
is built for the problem domain of residential kitchen 
design, and the user's goal is assumed to be to design a 
"good" residential kitchen. Another approach is for the 
system to recognize goals by observing the evolving 
product constructed by users; this is goal recognition. A 
kitchen with a table and chairs located in the center of the 
kitchen suggests that the user intends to eat meals in the 
kitchen. Goal recognition presupposes solutions that ap­
proximate a solution to the user's problem. If the product 
fails to come close to the user's goal, the critic either can­
not infer that goal or might infer one that is different from 

the user's. A critic may also have access to an explicit 
representation of the problem to be solved, for example 
users would communicate to the system that they need a 
kitchen for a large family. 

Product Analysis 
There are two general approaches to critiquing: dijferemiai 
and analytical critiquing. In the former approach, the sys­
tem generates its own solution and compares it with the 
user's solution pointing out the differences. An advantage 
of differential critiquing is that all differences can be found. 
Some domains allow radically different, but equally valid 
solutions. This is a potential problem if the system 
generates its solution without regard to the user's solution 
approach. If user and system solutions differ fundamen­
tally, the critic can only say that the system solution ach­
ieves good results but cannot explain why the user's solu­
tion is less than optimal. 

Different solution attempts fulfIll the goals to different 
degrees or are associated with different undesirable effects. 
In such situations, metrics are needed to measure the 
quality of alternative solutions [14]. Based on the con­
troversial nature of design problems, alternative. conflicting 
metrics can be defIned and have to be reconciled by 
negotiation and argumentation. 

An analytical critic checks products with respect to 
predefIned features and effects. Analytical critics identify 
suboptimal features using pattern matching [10], and 
expectation-based parsers [9]. In analytical approaches, 
critics do not need a complete understanding of the product 
JANUS is an analytical critic that uses a set of rules to iden­
tify undesirable spatial relationships between kitchen 
design units. JANUS does not identify all possible problems 
within a kitchen design. Its rule base allows it to critique 
kitchens without knowing exact requirements and 
preferences of the kitchen user. 



System 
~-----1 Solution 

Legend 

e 
E1 

Figure 4: The Critiquing Process 

Users initiate the critiquing process by presenting a product to the critic. In order to evaluate the product, the critic 
needs to obtain the user's goals either by recognizing them or from explicit user input. The product analyzer 

evaluates the product against the goal specification. Some critics do this by generating their own solution and 

comparing it to the user's. A presentation component uses the product analysis to formulate a critique, to give 
advice on how to make improvements, and to provide explanations. Critiquing strategies and a user model 

control the kind of critique, its form and timing. Based on the critique, the user generates a new version of the 

product, and the cycle repeats,integrating the new insight. 

Critiquing Strategies 
Critiquing strategies and a user model control the presen­
tation component of a critic. The critiquing strategies 
determine what aspects to critique and when and how to 
intervene in the working process of the user. Critiquing 
strategies differ depending on the predominant use of the 
system, either to help users solve their problems or as a 
learning environment. 

The user's perception of critics. Like recommendations 
from colleagues or co-workers, messages from a critic can 
be seen as helpful or hindering, as supportive of or inter-

fering with the accomplishment of goals. Critiquing 
strategies should consider intrusiveness and the emotional 
impact on the user. Intrusiveness is the users' perception of 
how much the critiquing process is interfering with their 
work. Critics can either interfere too much or fail to 
provide sufficient help, depending on the frequency of 
feedback, the complexity of the tasks, and the sophistica­
tion of the user. Emotional impact relates to how users feel 
about having a computer as an intelligent assistant. 
Critiquing from a computer might be more tolerable than 
critiquing from humans if it is handled as a private matter 
between the human and the computer. 



What should be critiqued? Educational critics, whose 
prime objective is to support learning, and performance 
critics, whose prime objective is to help produce better 
products, have different requirements for their critiquing 
strategies. A perfonnance critic should help users create 
high-quality products in the least amount of time using as 
few resources as possible. Learning is not the primary 
concern of performance systems but can occur as a by­
product of the interaction between user and critic. Educa­
tional critics should maximize the information users retain 
to improve their future performance. 

Most performance critics (e.g., FRAMER, JANUS, 
ROUNDSMAN, KATE; see Section DESCRIPTIONS OFCRTI1CS) 
do not select specific aspects of a product to critique. They 
evaluate the product as a whole to achieve the highest pos­
sible quality. Some critics critique selectively based on a 
policy specified by the user. LISP-CRmc (described in 
Section DESCRIPTIONS OF CRTI1CS), for example, operates 
differently depending on whether readability or machine 
efficiency is specified as the primary concern for writing 
LISP programs. 

Educational critics (e.g., the WEST system [2]; also 
described in Section DESCRIPTIONS OF CRTI1CS) usually 
employ a more complex intervention strategy that is 
designed to maximize information retention and motivation 
by users. For example, an educational critic may forego an 
opportunity to critique when it occurs directly after a pre­
vious critiqUing episode. 

Most existing critics operate in the negative mode by point­
ing out suboptimal aspects of the user's product or solution. 
A positive critic recognizes the good parts of a solution and 
informs users about them. For performance critics, a posi­
tive critic helps users retain the good aspects of a product in 
further revisions, for educational critics, it reinforces the 
desired behavior and aids learning. 

Intervention strategies. Intervention strategies determine 
when a critic should interrupt and how. Active critics ex­
ercise control over the intervention strategy by critiquing a 
product or action at an appropriate time. They function like 
active agents by continuously monitoring users, responding 
to individual user actions. Passive critics are explicitly 
invoked by users when they desire an evaluation. Passive 
critics usually evaluate the (partial) product of a design 
process, not the individual user actions that resulted in the 
product 

For active critics the intervention strategy must specify 
when to send messages to the user. Intervening im­
mediately after a suboptimal or unsatisfactory action has 
occurred (an immediate intervention strategy) has the ad­
vantage that the problem context is still active in the users' 
mind, and they should remember how they arrived at the 
solution. The problem can be corrected immediately. A 
disadvantage of active critics is that they may disrupt cog­
nitive processing and cause short term memory loss. Users 

then need to recQ9Struct the goal structure that existed be­
fore the intervention. Delayed critic messages may appear 
out of context and hence come too late to prevent the user 
from heading towards an undesirable state. 

Critics can use any of various intervention modes that dif­
fer in the degree to which users' attention is attracted. A 
critic can force users to attend to the critique by not allow­
ing them to continue with their work. A less intrusive 
mode is the display of messages in a separate critic window 
on the screen. This gives users a choice whether to read 
and process the message immediately or first complete an 
action in progress. The messages should be displayed in 
such a way that they do not go unnoticed. Those messages 
that pertain to users' current focus of attention should be 
easy to find rather than being hidden among a large set of 
messages related to other aspects of the product 

Adaptation capability 
To avoid repetitive messages and to accommodate different 
user preferences and users with different skills, a critiquing 
system needs an adaptation capability. A critic that persis­
tently critiques the user on a position with which the user 
disagrees is ooacceptable, especially if the critique is in­
trusive. A critic that constantly repeats an explanation that 
the user already knows is also unacceptable. 

Critics can be adaptable or adaptive. Systems are called 
adaptable if the user can change the behavior of the system. 
An adaptive system is one that automatically changes its 
behavior based on information observed or inferred. An 
adaptation capability can be implemented by simply dis­
abling or enabling the firing of particular critic rules, by 
allowing the user to modify or add rules, and by making the 
critiquing strategy dependent on an explicit, dynamically 
maintained user model. 

User models in critics [14] share ideas and goals with stu­
dent modeling in intelligent tutoring systems [4] and with 
similar efforts in advice giving natural language dialogue 
systems [23]. Computer critics require dynamic, persistent 
user models that can change over time but are accessible to 
the human user for inspection and modification. How to 
acquire and represent individual user models is a topic of 
ongoing research [26]. 

explanation Capability 
Critics have to be able to explain the reasons for their inter­
ventions. This provides users with an opportunity to assess 
the critique and then to decide whether to accept it. Know­
ing why a product was critiqued helps users to learn the 
Wlderlying principles and avoid similar problems in the fu­
ture. In a critiquing system, explanations can be focused on 
the specific differences between the system's and the user's 
solutions, or on violations of general guidelines. One par­
ticular approach that uses argumentation as the fundamen­
tal structuring mechanism for explanations in hypermedia 
format, is illustrated in the JANUS-VIEWPoINTS system 
[17]. 



Advisory Capability 
All critics detect suboptimal aspects of the user's product 
(problem detection mode). Some critics require the user to 
determine how to improve the product by making changes 
to address the problems pointed out by the critic. Other 
critics, however, are capable of suggesting alternatives to 
the user's solution. We call these solution-generating 
critics. In the JANUS system, a simple problem detecting 
critic points out that there is a stove in front of a window. 
A solution-generating critic would, in addition, suggest a 
better location. 

DESCRlP110NS OF CRITICS 
The purpose of this section is to provide an overview of 
critiquing systems that have influenced the development of 
the paradigm or that illustrate an interesting aspect of it. 
We first describe two critic systems developed in our 
laboratory (LISP-CRITIc and FRAMER). After that, we sur­
vey systems developed by others. 

USP-CRITIC 
USP-CRITIc [10; 151 is a system designed to support 
programmers. It helps its users to both improve the 
program they are creating and to acquire programming 
know ledge on demand. Programmers ask USP-CRITIc for 
suggestions on how to improve their code. The system 
then suggests transformations that make the code more cog­
nitively effIcient (Le., easier to read and maintain) or more 
machine effIcient (Le., faster or requiring less memory). 

When USP-CRITIc finds pieces of code that could be im­
proved, it shows the user its recommendation. Users can 
accept the critic's suggestion, reject it, or ask for an ex­
planation to aid in making that decision. For example, 
LISP-CRmc suggests that the user replace a single con­
ditional cond function with an if function. The user can 
request an explanation of why if is preferable to cond 
The system develops an appropriate explanation, consulting 
a user model, and displaying the explanation in hypertext 
form. The user can use the explanation to access more 
detailed information available about USP in an on-line 
documentation system (the Symbolics Document 
Examiner). To adequately support a wide range of user 
expertise, the system incorporates a user modeling com­
ponent [26]. LISP-CRITIc uses that model to customize 
explanations so that they cover only what the user needs to 
know. 

FRAMER 
FRAMER. [25] is an innovative design environment for 
developing program frameworks, components of window­
based user interfaces on Symbolics LISP machines. The 
purpose of the FRAMER design environment is to enable 
designers to make use of a high-level abstraction -
program frameworks - with little prior training. 

FRAMER. contains a knowledge base of design rules for 
program frameworks. The rules evaluate the completeness 
and syntactic correctness of the design as well as its consis­
tency with the interface style used on Symbolics Lisp 
machines. The critics are either mandatory ones that 

represent absolute constraints that must be satisfied for 
program frameworks to function properly and optional 
critics that inform the user of issues that typically are dealt 
with differently. The critics are active, and the system 
displays the messages relevant to the currently selected 
checklist item in the window entitled Things to take care of 
(Figure 5). Each message is accompanied by up to three 
buttons: Explain, Reject, and Execute. The Bltplain but­
ton displays an explanation of the reasons why the designer 
should consider this critic suggestion; it also descn"bes 
ways to achieve the desired effect Optional suggestions 
have a Reject or Unreject button depending on the 
state of the suggestion. The Zzecute button accesses the 
advisory capability of FRAMER, which is available for 
issues that have a reasonable default solution. 

A previous version of FRAMER employed a passive critiqu­
ing strategy. Experimental evidence [25] showed that users 
often invoked the critic too late when a major incorrect 
decision had already been made. The active strategy with 
continoous display of messages used in the newest version 
of FRAMER solved this problem. FRAMER prevents its users 
from permanently ignoring the critics by using the check­
list Checklist items cannot be checked off until all sugges­
tions are either resolved or rejected. 

Short Descriptions of Critics 
What makes the critiquing approach attractive is that it has 
generality across a wide range of domains. Most critics 
have been developed as research vehicles, but a few are 
successful commercial applications. Critic or critic-like 
systems have been developed for the following application 
domains. 

• Education. The WEST system, an early effort to build a 
computer coach' [2], pioneered fundamental ideas that the 
critiquing paradigm incorporates. WEST builds a bridge 
between open learning environments and tutoring. Ex­
plicit intervention and teaching strategies are represented 
in the system and operate using information contained in 
a model of the user. WEST provided an early demonstra­
tion of how to construct an intelligent learning environ­
ment Another system, that pioneered many current 
ideas in simulation-based learning environments, 
STEAMER, was later augmented with a critic. 
STEAMER/Feedback Mini-Lab [18] is an environment in 
which simulated devices, such as steam plant controllers, 
can be assembled and tested. After students have con­
structed a device, they may request a critique from the 
system. 

• Medical applications. Researchers in the domain of 
medicine developed several of the early crit1quing sys­
tems. These systems were developed to aid the 
physician in diagnosis and planning of plUient treatment. 
Miller and colleagues at Yale Medical School have done 
the majority of the work in this area [28]. A version of 
ONCOCIN, an expert system for cancer therapy [24], also 
uses the critiquing approach. The ROUNDSMAN system 
[30] is a critic in the domain of breast cancer treatment. 

It bases its critique on studies in the medical literature. 



Verslon 5.0 

o (Initial progral"l rr&ftelJOrk ) 

121 (PrOV"" na"" ) 

Arr-.nge ~h.e panes a~ desired inc vovr j)rogr~ (re~\.IOrk $houn in tM loJork area. Choose frol"l 
th~ (allolJir'JQ MU1Se COf'\,...,nds. 

Work Area Palette 
[] ( Invoking this .,.-09"" ) 11(>U!1f. Bu~toll Op*"lJ~tfYlt N6iJ.!u iJutt:on 0P4Y4tia" 

Lf!(t ~ Pltf'\le:. L~(t Get p.ene or this typ~. 

f1idd1e ~e5h4!: P4tle. Middle D~scribe this type. 

o C CO"",...,,; loop f unct 1 on ) 
Right t1uwJ of all po5~'ible opet"-.tions. 

Shift.--Lcft Edit ~t'\e actions. 

o (C<i-..nd defining "acro) 
Sh1ft~iddlt Delett p,tne. 

o ( Typu of input) 
cars 

D~ -t1ove the title P6n1t to the top of t~ frant. (b,pl,.,,.,) (rt.Jrtt.) (E~.Jh) 

o (Conn6<>d tabl .. ) "R~l"Wve the!: overlap of DATA .nd TITLE. 
(R#qu.ir*d) 

o (COrn. C;;""r.t ion) ·l=i11 the ~l"Ipty ~p.ae~ ir'l5i~ the: progrM\ 
fr~uork. (R.qui r~d) 

I"'''''' 1 

Figure 5: FRAMER 

This figure shows a screen image of a session with FRAMER. The system has the following components. The 

checklist describes the elements of the task of designing a program framework. The What you can do window 

shows the detailed options pertaining to a checklist item. The window entitled Things to take care of displays the 

critic messages. The work area is the place were frameworks are assembled in a direct manipulation interaction 

style. A palette contains title panes, display panes, and other primitive parts for constructing program frameworks. 

FRAMER also offers a catalog (not shown) for design by modification. 

• Circuit design. An early digital circuit design system 
that incorporated a critiquing approach is CRrrrER [22]. 
The Design Advisor TM [33], is a successful commercial 
system developed at NCR that provides advice on 
application-specific, integrated circuit designs. Vol­
taville. developed at LROC. University of Pittsburgh 
[20J, is a prototype discovery environment for circuits. 

It is designed to build scientiftc inquiry skills. 

• Decision-making. DecisionLab [31] applies the critiqu­
ing approach to coach users in managerial decision 
making. DEeAD [27] watches over the shoulder of the 
decision maker, interjecting advice or a critique when 
appropriate. 

• Authoring. Critiquing has proven to be a successful ap­
proach to providing assistance to those users engaged in 

authoring tasks: WANDAH [19] uses critiquing to assist 
authors in all phases of writing; it is now commercially 
available for personal computers as "HBJ Writer. to 

ACITVIST [14] is an active help system for a screen­
oriented editor. One knowledge-based system provides 
assistance to teachers doing curriculum development 
[36], 

• Computer usage. WIZARD is an active help system for 
users of the VMS operating system [9]. PROLOG Ex­
plaining [5] critiques a user's explanation of PROLOO 
code to guide the user toward a better understanding of 
the PROLOG language. The GRACE Project at the 
NYNEX Artificial Intelligence Laboratory [6] is 
developing a multi-faceted integrated learning environ­
ment for COBOL programming. It consists of a critic, a 
tutor, and a hypertext system. KATE [8] critiques 
software specifications for automated library systems. 



CONCLUSION 
Critiquing is an emerging approach to building knowledge­
based systems. Critics are a major component of coopera­
tive problem solving systems, which can serve both as per­
formance systems that help users solve real-world problems 
and as learning environments that support incremental 
learning. A strength of critics is that they draw on the 
potential of hwnan problem solvers where appropriate. 
Critics can operate with various degrees of domain 
knowledge. and can be upgraded gradually to give more 
and more comprehensive support. However, critiquing is 
not without its limitations. Supporting users in their own 
doing means that details of user goals are often not avail­
able to the system, limiting the speciftcity of the critique 
the system can provide. Overall, the critiquing paradigm is 
an effective approach for applying knowledge-based sys­
tem technology to empower users of computer-based sys­
tems in a broad range of domains. 

ACKNOWLEDGMENTS 
Many J>eOP1e have contributed over the last decade to the develop­
ment of our notion of the critiquing paradigm. The authors would 
like to thank especially: the members of the Janus Design Project 
(Ray McCall, Kumiyo Nakakoji, and Johnathan Ostwald), the 
members of the USP-CRmc projeCt (Heinz-Dieter Boecker, Chris 
Morel, Brent Reeves, and John Rieman), all the people who have 
participated in discussions about the general f'nimework for 
critiq~~ (Thomas Schwab, Helga Ni~r-Lemke, Curt Stevens, 
Tom DiPersio, and Hal Eden), and the HCC research group as a 
whole. This research was partially suJ>POrted by grant No. 
00-8722792 from the National Science Foundation, grant No. 
MDA903-86-C0143 from the Army Research Institute, and grants 
from the Intelligent Interfaces Group at NYNEX and from 
Software Research Associates (SRA), Tokyo .. 

REFERENCES 

1. J.R. Anderson, BJ. Reiser. "The LISP Tutor". BITE 
10,4 (April 1985), 159-175. 

2. R.R. Burton, J .S. Brown. An Investigation of Computer 
Coaching for Informal Learning Activities. In Intelligent 
Tutoring Systems, D.H. Sleeman, J.S. Brown, Eds., 
Academic Press, London - New York, 1982, ch. 4, pp. 
79-98. 

3. J .M. Carroll, J. McKendree. "Interface Design Issues 
for Advice-Giving Expert Systems". Communications of 
the ACM 30,1 (January 1987), 14-31. 

4. W J. Clancey. "Qualitative Student Models". Annual 
Review of Computing Science 1 (1986),381450. 

5. MJ. Coombs, JL. Alty. "Expert Systems: An Alter­
native Paradigm". International Journal of Man-Machine 
Studies 20 (1984). 

6. S. Dews. Developing an ITS in a Corporate Setting. 
Proceedingsof the Human Factors Society 33rd Annual 
Meeting, Volume 2, Human Factors Society, 1989, pp. 
1339-1342. 

7. S.W. Draper. The Nature of Expertise in UNIX. 
Proceedings of INTERACf'84, IFIP Conference on 
Human-Computer Interaction, Amsterdam, September, 
1984, pp. 182-186. 

8. S. Fickas, P. Nagarajan. "Critiquing Software 
Speciftcations". IEEE Software 5,6 (November 1988), 
3747. 

9. T.W. Finin. Providing Help and Advice in Task 
Oriented Systems. Proceedings of the Eighth International 
Joint Conference on Artiftcial Intelligence, 1983, pp. 
176-178. 

10. G. Fischer. A Critic for LISP. Proceedings of the 10th 
International Joint Conference on Artiflcial Intelligence 
(Milan, Italy), Los Altos, CA, August, 1987, pp. 177-184. 

11. G. Fischer. "Communications Requirements for 
Cooperative Problem Solving Systems". The International 
Journal of Information Systems Special Issue on 
KfWwledge Engineering (1990). to be published. 

12. G. Fischer, A. Girgensohn. End-User Modiftability in 
Design Environments. Human Factors in Computing Sys­
tems, CHI'90 Conference Proceedings (Seattle, W A), 
ACM, New York, April, 1990. 

13. G. Fischer, AC. Lemke. "Construction Kits and 
Design Environments: Steps Toward Human Problem­
Domain Communication". Human-Computer Interaction 
3, 3 (1988), 179-222. 

14. G. Fischer, A.C. Lemke, T. Schwab. Knowledge­
Based Help Systems. Human Factors in Computing Sys­
tems, CHI'85 Conference Proceedings (San Francisco, 
CA), ACM, New York, April, 1985, pp. 161-167. 

15. G. Fischer, T. Mastaglio. Computer-Based Critics. 
Proceedings of the 22nd Annual Hawaii Conference on 
System Sciences, Vol. III: Decision Support and 
Knowledge Based Systems Track, IEEE Computer Society, 
January, 1989, pp. 427436. 

16. G. Fischer, R. McCall, A Morch. Design Environ­
ments for Constructive and Argumentative Design. Human 
Factors in Computing Systems, CHI'89 Conference 
Proceedings (Austin, TX), ACM, New York, May, 1989, 
pp. 269-275. 

17. G. Fischer, R. McCall, A Morch. JANUS: Integrating 
Hypertext With a Knowledge-Based Design. Proceedings 
of Hypertext' 89, ACM,November, 1989,pp. 105-117. 

18. K. Forbus. An Interactive Laboratory for Teaching 
Control System Concepts. Report 5511, BBN, Cambridge, 
MA,1984. 

19. M.P. Friedman. W ANDAH - A Computerized 
Writer's Aid. In Applications of Cognitive Psychology, 
Problem Solving. Education and Computing, Lawrence 
Erlbaum Associates, Hillsdale. NJ, 1987, Chap. 15, pp. 
219-225. 

20. R. Glaser, K. Raghavan, L. Schauble. Voltaville: A 
Discovery Environment to Explore the Laws of DC Cir­
cuits. Proceedings of the International Conference on Intel­
ligent Tutoring Systems (Montreal, Canada), June, 1988, 
pp.61-66. 



21. RJ. Jones, W.H. Kapple. Kitchen Planning Principles 
- Equipment - Appliances. Small Homes Council - Build­
ing Research Council, University of Illinois, Urbana­
Champaign, IL. 1984. 

22. V.E. Kelly. The CRITIER System: Automated 
Critiquing of Digital Circuit Designs. Proceedings of the 
21st Design Automation Conference, 1985, pp. 419-425. 

23. A. Kobsa, W. Wahlster (Ed.). User Models in Dialog 
Systems. Springer-Verlag, New York, 1989. 

24. C. Langlotz, E. Shortliffe. "Adapting a Consultation 
System to Critique User Plans". International Journal of 
Man-Machine Studies 19 (1983), 479-496. 

25. A.C. Lemke. Design Environmentsfor High­
Functionality Computer Systems. Ph.D. Th., Department of 
Computer Science, University of Colorado, Boulder, CO, 
July 1989. 

26. T. Mastaglio. User Modelling in Computer-Based 
Critics. Proceedings of the 23rd Hawaii International Con­
ference on the System Sciences, IEEE Computer Society, 
1990. to be published. 

27. F. Mili. A Framework for a Decision Critic and Ad­
visor. Proceedings of the 21st Hawaii International Con­
ference on System Sciences, Vol Ill, Kailu-Kona, Hawaii, 
January 5-8,1988, Jan, 1988, pp. 381-386. 

28. P. Miller. Expert Critiquing Systems: Practice-Based 
Medical Consultation by Computer. Springer-Verlag, New 
York - Berlin, 1986. 

29. S. Papert. Mindstorms: Children, Computers and 
Powerful Ideas. Basic Books, New York, 1980. 

30. G.D. Rennels. Lecture Notes in Medical Informatics. 
Volume 32: A computational model of reasoning from the 
clinical literature. Springer Verlag, 1987. 

31. J. Schiff, J. Kandler. Decisionlab: A System Designed 
for User Coaching in Managerial Decision Support. 
PrOCeedings of the International Conference on Intelligent 
Tutoring Systems (Montreal, Canada), June, 1988, pp. 
154-161. 

32. H.A. Simon. "Whether Software Engineering Needs to 
Be Artificially Intelligent". IEEE Transactions on 
Software Engineering SE-12, 7 (July 1986), 726-732. 

33. R.L. Steele. Cell-Based VLSI Design Advice Using 
Default Reasoning. Proceedings of 3rd Annual Rocky 
Mountain Conference on AI, Rocky Mountain Society for 
Artificial Intelligence, Denver, CO, 1988, pp. 66-74. 

34. MJ. SterIle. "The Next Knowledge Medium". AI 
Magazine 7, 1 (Spring 1986),34-46. 

35. E. Wenger. Artificial Intelligence and Tutoring 
Systems. Morgan Kaufmann Publishers, Los Altos, CA, 
1987. 

36. K. Wipond, M. Jones. Curriculum and Knowledge 
Representation in a Knowledge-Based System for Cur­
riculum Development Proceedings of the International 
Conference on Intelligent Tutoring Systems (Montreal, 
Canada), June, 1988.pp.97-102. 


