
MINIMALIST EXPLANATIONS I
K OWLEDGE·BASED SYSTEMS

Gerhard Fischer
Thomas Ma tagUo

Brent Reeves
John Rieman

Reprinted from PROCEEDINGS OF THE TWENTY·THIRD ANNUAL
HAWAII INTERNATIONAL CONFERENCE ON SYSTEMS SCIENCES

Kallua·Kona. HI, January 2·5, 1990

Minimalist Explanations in Knowledge~Based Systems

Gerhard Fischer, Thomas Mastaglio, Brent Reeves, John Rieman

Department of Computer Science and
Institute of Cognitive Science

University of Colorado, Campus Box 430
Boulder, CO 80309

ABSTRACT

Research in discourse comprehension and human-computer
interaction indicates that good explanations are usually brief.
A system that provides brief explanations, however, must plan
for the case where brevity comes at the expense of under­
standing. Human to human dialog is, to a large part, con­
cerned with conversational repair and question-answer
episodes; computer systems need to provide similar fallback
techniques to their users. We have designed such an ex­
planation system in the context of a knowledge-based critiqu­
ing system, LlSP-CRITIC. The system provides several levels of
explanations, specifically tailored to the user. If the initial, brief
explanation is insufficient, the system positions the user at an
appropriate point within a more complete, hypertext-based
documentation system. Rather than attempting to design a
system that can generate a perfect, one-shot explanation for
any given situation, this approach concentrates on matching
the communication abilities provided by current computer tech­
nology to the cognitive needs of the human user.

INTRODUCTION

The goal of our research is to build cooperative knowledge­
based systems. By cooperative we mean specifically that a
user and a knowledge-based computer system collaborate to
create a design artifact or solve a problem. We want to recog­
nize and take advantage of the strength of each participant.
The computer system's role in this dyad must include the
capability to explain its actions or recommendations.

For a variety of reasons, current explanation systems often fail
to satisfy the user. Much of the work directed toward improv­
ing explanations has focused on natural language and human­
to-human communication paradigms. Even advanced sys­
tems are frequently based on an implicit assumption that a suf­
ficiently powerful computer system should be able to generate
an acceptable explanation as a "one-shot affair: Our ap­
proach is to provide multiple levels of explanation, accessible
under the user's control. Rather than emphasizing natural lan­
guabe, we emphasize natural communication, a concept that
involves choosing the most appropriate communication tech­
nique for the explanation at hand. The technique may be
natural language, but it may also involve capabilities unique to
computer-human communication, such as real-time computer
graphics, hypertext, and runnable examples.

0073-1129/90JOOOO/0309$Ol.OO © 1990 IEEE 309

The work described in this paper involves primarily the initial
levels of a multiple-level explanation approach, where we
provide what we call "minimalist" explanations. These are tex­
tual explanations that have been trimmed to a bare minimum,
both in terms of "chunks" of knowledge from the underlying
domain and length of the presented text. Where poSSible, new
concepts are described in terms of concepts the user already
understands. The theoretical foundations for this approach
are found in research in discourse comprehension and human­
computer interaction. Brief explanations will not always be
sufficient, so we address this problem by poSitioning users in
an extensive hypertext documentation system, where they can
find more detailed information on topics mentioned in the brief
text.

The next section is a description of the theoretical context for
this approach. The current design was prefaced by an ex­
amination of other research in explanations, which is
described next. The operational context for the actual system
is LlSP-CRITIC, a knowledge-based critiquing system used by
LISP programmers for code development. We describe the
functional modules, show an example of the system's opera­
tion in detail and discuss future plans.

THEORETICAL FOUNDATIONS

This work is founded on investigations of how to best imple­
ment the critiquing paradigm (10). Those investigations led to
attempts to provide explanation capabilities within the
LlSp·CRITIC system, a goal also motivated by empirical studies
of the attitudes of users of other expert systems. The identifi­
able shortcomings of existing explanation systems led to the
work described in this paper. This section treats each of these
topics, as well as the cognitive theory underlying the current
system.

The critiquing paradigm provides a way to make knowledge­
based systems more cooperative. Such systems are useful in
settings where there is no best solution, where it is easier to
evaluate solutions rather than to generate them. Users in
these situations should be familiar with the domain and
capable of generating at least partial solutions. There are
many applications where autonomous expert systems cannot
fulfill the needs of the user, sometimes because of their in­
herent limitations, and sometimes because ethical considera-

tions demand that the human user retain control and respon­
sibility for the ultimate product. Computer-based critics can
help in these situations by analyzing the activity of the user,
finding inconsistencies, and suggesting improvements. Es­
sentially, the spirit of computer critiquing is to provide the user
with context-sensitive advice in a particular domain. The user
faces the choice of accepting or rejecting that advice, a deci­
sion that may require an explanation of the advice.

The need for good explanations was identified in a study
where physicians' attitudes towards expert systems were
evaluated:

Explanation. The system should be able to justify its ad­
vice In terms that are understandable and persuasive. In
addition, it is preferable that a system adapt its explanation
to the needs and characteristics of the user (e.g.,
demonstrated or assumed level of background knowledge
in the domain). A system that gives dogmatic advice is
Wkely to be rejected. [27, p. 681}

On-line documentation, the most common form of com­
puterized explanation, has generally used prewritten
paragraphs or sentences, sometimes referred to as "canned
text: This material has been criticized as difficult to under­
stand, incomplete. and hard to navigate [29). The insufficiency
of canned text in tutoring. a paradigm closely related to critiqu­
ing, was noted in the empirical studies described in (12). We
agree that the use of canned text alone is not an adequate ap­
proach to providing acceptable explanations.

At a superficial level. there are several shortcomings of ex­
planations based on canned text. Explanations are too long;
users get lost. bored or confused; they cannot afford the time
and effort to extract the information they need. This is charac­
teristic of many on-line help systems, such as the Unix "man"
command. Even long explanations are seldom entirely com­
plete. Moving among several on-line pages of documentation
is both time-consuming and difficult. Furthermore. systems do
not have the capability to respond to follow-up questions or en­
gage in a dialog with the user. Most systems have been
designed to treat the explanation of each topic as a one-shot
affair. Lack of appropriate examples is an additional
shortcoming. Where examples are prOVided, they are often in­
complete, and there is seldom a runnable version of the ex­
ample provided for modification or testing. Finally, the canned
text is written from the perspective of its author. It is based on
his or her conceptual model of the domain. and may not reflect
an in-depth investigation into the domain's conceptual struc­
ture or the user's perspective of that domain.

Theoretical results support the common-sense observations
noted in the previous paragraph. Short-term memory has
been identified as a fundamental limiting factor in reading and
understanding text [6; 2]. The best explanations are those that
contain no more information than absolutely necessary, since
every extra word increases the chances that the reader will
lose essential facts from memory before the explanation is
completely processed.

Recently, [16) and [7] have noted the importance of relating
written text to the reader's existing knowledge. This is related
to the idea that an expert's knowledge is stored as a collection
of 'chunks" [4). Remembering and understanding a new ex-

310

planation will be easier if much of it calls to mind existing
chunks of knowledge. One way to address these issues is to
provide differential explanations based on what the user al­
ready knows, I.e., to explain new concepts concisely by distin­
guishing them from known concepts.

Interestingly, similar guidelines have long been championed by
teachers of rhetoric. Since the 1930s, various formulae have
been proposed for evaluating the readability of written text
[17]. These formulae are frequently used to evaluate

documentation and instructional text. They generally rank
short sentences and known vocabulary as especially impor­
tant. Strunk and White's manual, familiar to most American
college students, contains similar advice. In a brief section
dealing specifically with explanatory text they state, "Don't ex­
plain too much" [24).

Observations of spoken language are another source of sup­
porting evidence. As an example of this, [23) describes a con­
versation fragment in which a customer asks a sales person,
'What's the code to get out on this phone?" The sales person
replies, "Nine -- sometimes the outside lines are all kind of
busy: From the customer's response it appears that this brief
explanation was sufficient. There was no need for a more
complete and detailed explanation, such as: 'Pick up the
handset. Listen for the dial tone. When you hear the dial
tone, press the 'nine' button " Yet similar explanations are
often produced by computer systems. By attempting to
provide complete information for every user, they fail to
provide a good explanation for anyone but the most atypical
novice.

RELATED WORK

Natural Language

Several research efforts attempt to provide computer-based
explanation facilities that generate unique strings of natural
language. Some of these programs rely on a user model for
tailored explanations [14) while others generate the same ex­
planation for any user [5; 28). Another approach, developed
by Moore, directly addresses the need for a system that can
respond to follow-up questions. Moore's "reactive" model
provides the user with a brief initial explanation, but is
prepared to expand on the initial text with increasingly infor­
mative fall-back explanations [20; 21). Her work emphasizes
natural-language generation and dialog analysis techniques,
coupled with a knowledge base that provides a detailed
description of the topic being explained. This is a powerful
technique which could supplement our work.

One shortcoming of the natural-language based systems is
their focus on human-to-human communication as the primary
model for human-computer communication. This fails to take
advantage of the unique capabilities of computers, such as
real-time animated graphics, runnable example code. and text­
search tools. It also fails to address the problem that tradi­
tional screen-and-keyboard computer interfaces fall short of
the communication bandwidth available between humans [15).
Longer natural language dialogs are further limited by the poor
readability of long texts on computer displays (13). To enable
natural communications between computers and users, the

designers of knowledge-based systems must respond to these
special capabilities and limitations. (9).

Explaining and understanding

It seems that the ability to explain a given concept depends
directly on one's ability to understand it. In order to build sys­
tems that do understand what they are are asked to explain,
Swartout proposed that we provide a "domain model," a
representation of deep knowledge, and "domain principles," a
representation of problem-solving domain control strategies.
Given these two components, a system could then be
automatically generated (26).

Chandrasekaran and colleagues propose that an explanation
system needs to be able to explain three different kinds of
things (3):

• Why specific desisions were made.

• Elements in the knowledge base, and

• The problem solving strategy currently in use.

Our rationale for using LlSp·CRITIC was to make use of existing
work rather than build a system from scratch. The rule-base
for the critiquing component already existed; we were inter­
ested in adding components necessary to provide good ex­
planations about the source code transformations. The first
item mentioned above is the main focus of this work. We use
hypertext to address the second item. The problem solving
strategy is pattern-matching. Users know that the system
does not address domain-specific issues. e.g. how to write a
recursive-descent parser.

Tailoring

McKeown and colleagues motivate the need for tailoring by
showing that different users have different views of the same
problem (19). The explanation component needs to be aware
of the fact that there are different reasons for asking a given
question.

We suggest that not only should explanations be tailored to
the individual, they should also be constructed so that they ex­
plain new concepts in terms of already known concepts. We
call this differential explanations. Notice that having several
explanations for the same concept is not the same as having
an explanation that presents new concepts in terms of old
ones.

LlSP·CRITIC

LlSp·CRITIC is a system that has knowledge about a specific
domain (LISP programming) and a critiquing component that
analyzes LISP source code and suggests improvements [10).
The intended user is a programmer who writes LISP source
code and would like to improve that code, either for ease of
interpretation by other programmers (readability), or for ef­
ficiency of execution and memory use. LlSp·CRITIC operates
as part of the Symbolics 3600 Workstation environment. It is
directly accessible in the user's editing environment, an
EMACS-like editor called Zmacs. The user asks LlSP-CRITIC to
critique a block of code by pressing a control-key combination.

311

As part of the critique, the system might recommend source
code changes that are not understood by the user. The sys·
tem should be able to explain these recommendations.

PreviOUS explanation strategies used by LlSP-CRITIC involved
rule-traCing and prestored text descriptions for individual trans­
formations. Alternative canned text explanations of a rule
were provided, each intended to meet the needs of a particular
user expertise level. During the process of providing these ex­
planations, the system took into ;,ccount the user's level of
LISP knowledge as recorded in the user model. The user's
LISP knowledge was expressed using a simple claSSification
approach, where a particular user fit a novice, intermediate, or
expert programmer stereotype. A user's classification was
deduced from rules that had fired in the past. We found this
approach to be of limited success. Appropriate explanations
were difficult to construct, and users did not find the explana­
tions particularly helpful. It became clear that a better ap­
proach was needed, one that was somehow tailored to an in­
dividual user rather than to a level of expertise.

Our current approach to explanations is designed to meet the
requirements identified in the Teach and Shortliffe study
described above (27). The issue we address is how to provide
an explanation module for LlSp·CRITIC that adapts its explana­
tions to the needs and characteristics of the user. The module
generates explanations that aid the user in deciding whether to
accept LlSP·CRITIC'S suggestions. To improve the quality of the
explanations. the module determines the user's current
knowledge of LISP by checking the user model.

The user model is stored in a database of information the sys­
tem acquires and maintains of individual programmers. That
database contains information acquired about the user from
statistical analysis of his or her code. individual preference for
particular programming constructs. a record of which
LlSP·CRITIC rules have fired for this user in the past, and a his­
tory of previous explanation dialogs. This information is used
to acquire and perform consistency checks on a user model
that represents what the user knows about the domain of LISP.
The representation is based on a conceptual structure that we
have identified for the LISP language. As an example, a given
user model could record that the user knows the LISP concepts
conditional. expression evaluation, functions, symbols.
s·expressions and the cond function, but knows neither the if
function nor the concept predicates. For a more detailed
description of the user modelling component see [18).

OVERVIEW OF LlSP·CRITIC EXPLANATION SYSTEM

Figure 1 shows the user's decision-making process during in­
teraction with LlSp·CRITIC. The user begins this process by as­
king LlSP·CRITIC to critique a section of code. LlSP·CRITIC will
suggest transformations to improve the code. For each of
these transformations, the system can provide explanations at
several layers:

• the name of the rule and a preview of the sug­
gested change;

• a brief description of the operation of the trans­
formed code. focusing on how it performs the
same function as the Original;

• a brief explanation of why the transformed code is
an improvement over the original;

• several hypertext entry points into the Symbolics
on-line documentation, which is itself in hypertext
form.

LISP-Critic suggests
a Transformation

Read How the New
code works

Read Rationale for
this Rule

Hypertext access to Document
Examiner descriptons of
LISP Concepts and Functions

YES

Code replaced
In

Buffer

NO

Figure 1: Decision Making/Interaction Process in LISP-CRITIC

In LISP-CRiTIC's explanation system, the system does not
present the minimal explanations as though they were part of
a dialog generated by an interactive intelligence agent. In­
stead, explanations are combinations of straightforward, con­
cise, prewritten sentences, presented in a window. What dis­
tinguishes this approach from most standard canned-text sys­
tems is the use of a user model. The model is checked to

312

make sure that an explanation does not cover topics that the
user already understands, and to help select an explanation
that relates new topics to the user's existing knowledge .

Since our system tries not to "explain too much: some ex­
planations will fail to satisfy a given user. To manage this
problem, we take advantage of a unique capability of com­
puters: hypertext. Mouse-selectable words within each ex­
planation give immediate access to more detailed explanations
of important topics. These detailed explanations are contained
in the Symbolics Document Examiner system, a hypertext sys­
tem that contains the entire Symbolics system documentation
as well as complete descriptions of most COMMON liSP func­
tions and underlying language concepts. The transition be­
tween the initial minimalist explanation and the entire Docu­
ment Examiner system is transparent to the user, who sees
only a hypertext system that starts with a brief explanation of
the current LISP-CRITIC transformation and continues along
whatever path the user chooses.

Several components of LISP-CRITIC are important to the
process of providing good explanations: the user model, the
module that builds explanations appropriate to a user's in­
dividual needs, the fall-back access to additional explanatory
information, and the user interface. We have touched on the
user model; in the following paragraphs we will discuss the
other three components.

Explanation Module

The explanation module constructs custom explanation se­
quences from short explanations of low-level concepts and
functions. Low-level means they are fundamental concepts of
the programming language LISP. The module's knowledge
base consists of the following:

• for each LISP-CRITIC rule, a list of Simple concepts
and functions that the user must know to under­
stand the rule;

• several possible explanations for each LISP con­
cept and function;

• for each explanation, an associated list of back­
ground knowledge indicating which concepts and
functions a user must know in order to understand
the explanation.

The explanation module receives a rule name -- concHo-if, for
example. The module checks its knowledge base to deter­
mine what knowledge is required to understand that rule. For
cond-to-if, the user must understand language concepts
Predicates and Functions as well as LISP functions Cond and
If. The module queries the user mode to see which of these
the user already understands. As an example, if the user un­
derstands Functions and Condo then the module will generate
an explanation sequence describing the remaining items.
Predicates and If.

For most concepts and functions, several explanations are
available. The If function could be explained differentially in
terms of a similar construct in another programming language,
such as Pascal:

IF is like Pascal's IF, but it doesn't require THEN or
ELSE keywords.

It could also be explained in terms of the LISP function Cond:

IF is fike COND but it only has one <predicate> <action>
pair and an optional <else-action>. Also, it uses fewer
parentheses.

Another way to explain this is descriptively ("from scratCh") to
the user who has inadequate background knowledge. The ex­
planation module queries the user model about the user's
background knowledge and selects the explanation that
should be most easily understood by that user. The system
can also function adequately with no user model at all. In the
case of a new user, the explanations will be based on a default
model. In this case the fall-back capability of the hypertext
system becomes even more important, since we are more
likely to miss the mark with a new user than one who has used
the system extensively in the past.

Fall-Back Explanations

In order to provide information that the brief explanations omit,
important words are mouse sensitive. Selecting them provides
access to the full Symbolics documentation on the topic. That
documentation itself is in hypertext form, with mouse­
selectable items throughout. (The Symbolics documentation is
generally quite lengthy, making it unsuitable as our initial min­
imalist explanation.) Notice that this fall-back is not like hand­
ing someone a thick manual and saying, "Here, look it up'" It
is more like turning to the appropriate page and saying, "Start
here and browse around if you'd like."

User Interlace

The goal of the user interface to our explanation component
was to allow the user complete control over code transfor­
mations and explanations, while maintaining simplicity. The
LISP-CRITIC interface provides a single window and a single
menu, described in the next section. Any menu item can be
selected whenever the LlSp·CRITIC window is showing, and
previously selected options can be reselected, or the window
can be scrolled back to display earlier interactions. This al­
lows the user to dynamically react to the situatiotl, rather than
forcing adherence to a predetermined plan (see [25] for dis­
cussion of this approach). The user is in charge at all times
and can exit at any point in the interaction. Except for the
mouse-selectable items, there are no hidden options, modes,
or submenus. So the user can operate the interface using
recognition memory alone.

SCENARIO

We describe here the program in interaction with a user. The
basic unit of critique is a LISP function definition.

Asking for criticism. When the user wants a critique from
LISP-CRITIC, he or she places the text-cursor anywhere in the
context of a function definition and presses the key combina­
tion Super-C. In this scenario, the user asks for a critique of
the function combine.

Initial display. When Super-C is pressed, LlSP·CRITIC ex·
amines code in the Zmacs buffer and looks for possible im­
provements. Figure 2 shows the screen when the LlSP-CRITIC

313

window first appears. LlSP·CRITIC has found a COND state­
ment that it suggests should be changed to an IF for
readability. The name of the transformation rule, the user's
original code, and the suggested transformation are displayed
in the window. This is the first layer of explanation in the sys­
tem, a simple abstract reference to the chunk of domain
knowledge applied by the critic. A user who already has a
general understanding of the functions used in the transformed
cOde might not be interested in any further explanation.

Minimal explanations. If the user doesn't understand the
transformation, he or she can select the Explain New Code
menu item to get a brief explanation of the functions and con­
cepts on which the transformation is based. This is shown in
Figure 3. The explanation module has determined that this
user needs explanations for If and Predicates. A differential
description of If and a descriptive explanation for Predicates
are chosen and displayed in the window. This text explains
how the transformed code performs the same function as the
original.

Justification. So far, the explanations described how the
transformed code operates. To understand why the new code
is an improvement, the user can choose the menu item
Explain this Rule. The resulting display is shown in Figure 4.

Extended explanations. The user who wants more infor·
mation on a topic addressed in either minimal explanation can
choose one of the mouse·selectable words to access the
Document Examiner text covering that item. The idea is not
only to provide the user easy access to an extensive on-line
resource, but to position him or her within that information
space at a logical point. Another approach that uses the PHI
methodology to explain critiquing advice in terms of design
issues and answers for a kitchen design critic, JANUS, is
presented in [11]. In Figure 5 the user has selected the word
Predicates in the text of a minimal explanation, and the system
has brought up the Document Examiner entry on predicates.

Accept or Reject. At several junctures in this process the
user might decide to accept or reject LlSP·CRITIC'S recommen­
dation. To change the original code to the improved form, the
user can click the Accept menu item. To retain the original
code, the Reject item is selected. Again, either option can be
selected at any time during the interaction between the user
and LlSP-CRITIC; it is not necessary for the user to first view any
of the explanations. In fact. we expect that the most common
mode of operation will be for programmers to quickly go
through their code with LlSP·CRITlC, deciding whether to accept
or reject recommended transformations after seeing only the
rule name and the transformed code. This is similar to the
way a spelling checker is used -- only rarely does an author go
beyond the usual spelling checker's display to confirm that the
corrected word has the intended meaning.

Replacement of Original code. Once a decision is made to
accept or reject a transformation, LlSP·CRITIC continues to
process the remainder of the code (since a Single block of
code may trigger several LlSP·CRITIC suggestions.) If ad­
ditional transformations are possible, they are displayed one at
a time to the user in the LlSp·CRITIC window and the process
described above is repeated. When all possible transfor­
mations have been accepted or rejected, the resulting code

i 1 (defun power (8-)
, (af'ld-e.

'(ll5l'1bd& (x v)
(llIJ)pC!tnd (liet (list ,.;)}

(l"IflPC.&r «(unction
(lanb-da (y) (cons x y)) v}

d
I

II

v))
(car- s)
(p-o~ (cdr s»}»

i :(d(~~~dP«:Q~:,r~ 1) ("4PC~ (function list) 5»
I (t ("~can (functiOf'l

\ (1~~4;x~rvnction (h""bda (y) (eon4 x y»)
(per" (re-nove)(s) (sub1 d»»

.»))

.»))
;; ~ub~eq'5 s r Rult'!: COND-TO-IF-ElS-E Rule&et; standard

411 con~ecut. ive 5ub:sequence

(cond «< (length u) r) nil)
(t (flapcar J'(lanbd4 (y) {coos (car u) y» {conbine (cdr u) 0- r));) ,(dt'!fun !\ub!;eQs (S r)

I; (if ~~o~!e(:;~ :> r» (~~~se~ (c

:(dt'!fur'\ seq (s r)
<Cond «:<0 r 0) nil)

1 (t (cons (car s) (seq (cd

I 1 (defun sub-search (sub 1)
1 I (cond «null 1) nil)
i: «null ~ub) t}
j (t (sub-search sub (cdr 1

Abort Check Rules Status Rejt:ct Show New Code
Accept Explain New Code Set Parametus Show Original C6de

ZMC"!I' LISP Font-lock 11c-sil1y-co Acct-pt Rest Explain Thii" Rule Show Current Function
Nov. point L---~------~----------------------------------rc~~----~------------~

Figure 2: LlSp·CRITIC display of the Rule name, original code and new code

I,;;; pO<.ler set of s w/null "I!!:t.

, :(defun pol,.ler (s)
(Md :5

{(hMbd.es (x v)
(eppend (lht (lht x»

(l"Iapcar (function
(lal"lbda (y) (conl!l I'< y») v)

v))
(cor 5)
(pouer (cdr IS»»)

. :(defun per-I"I (s r-)
(cond «equal,.. 1) (Mopcar (function lil5t) ~)}

(t (l'Iapcan (function
(laf'l.bda (x)

it
(Mapcar (function (lal"lbd.s (y) (cons x y»)

(pern (rf!'novl!!: x e;) (subl r»»} .»)))
! ,'(defun cOMbine ($ r)

{cor'ld «= ,..11) (l"Iapcar (function list) s»
(t (l"Ililpeon {funct i on

(laf'\bdb (u)
(cond «< (length u) r} nil)

(t (~~-L~~ __ ~~~~~ __ ~ ____ ~~~~~ ____ ~~~~ __ ~~~ ____ ~--,
f

I;;; SUb5~Q:'J e ,..
I ;;; ~ 11 Cofll5ecut 1 Vii:' !5ubaequeoca

I(defuf\ :$ub5eQ5 ($ r-)
(If « (length 5) r-) nil

(con5 (seQ s r) {e;vbse~:5 (c

(defun !;eQ ('5 r-)
(cof1d «'" r e) nil}

(t {con$ (car s) ($eQ: {cd

, I (defun ~ub-~el!!rch (sub 1)
(cond «!'"lull 1) nil)

{(!'"lull sub) t)
(t (sub-search ~ub (cdt' 1

ZI"II!!C!S (LISP Font-lock 1:1c-silly-co

lisp-CRITIC

(cond « ((length u) r) (\i 1)
(t (napear tI'(l&flhda (y) (COf"l$ (clJ;r u) y» (col"lbiol!: (cdr u) (1- r)))))

E)(planation (If-dlff-cond)

IF is !ike CONO, but It only ha£ one (predicate> (action) pair and an
optional (else-action>. Also, ~t uses fewe-r parentheses.

Explanation (Predlcates-are-tests)

Predicates are testing functions. For 'false' they return nil. For 'true'
thev r~turn t 0(an othe-r va.l~ that isn't nIl.

Abort Check Rulu 5tatu$ R~j~ct Show New Cod~
Accept Explain New Code Set Par~teN Show Original Co-de
Accept. Rest Explain This Rule: Show C~nt Funct.ion

Figure 3: User has selected Explain New Code

314

"

; ;; po er Ii~t of

;(defvn po.,~r (:5)
(and s

{(16nbd.a (x v)
(.~ppend (list (11!!t x)}

(!'Ib-pcar (function
(l&nbd& (y) (COO$ x y») v)

II
!

v»
(cat" !!)
{po-wer (cdr 8»»)

i(defun per'" (5 !")
(eNid «equal r 1) (~ar (function list) s)}

(t (n&peen (function
(l&l"'Ibde (x)

(r"lepcer {fvnction (lanbda (y) (C(lr"IS x y»)
{~rt"l (rerlOv~ x $) (~ubl d)})}

on))

,{deful'1 CCll'\bine (s r)
I (cond «'" rIl) (!'lapeer (function Hst) a)}

(t (1'I40CO,.. (fvnct'lor"l
(lM'lbda (v)

(cond «< (length u) r) ntl)
(t (~--~~--~~~~~~~--~--~~~~~~------~------~--------------,

lisp-CRITIC
.»))

IRule" COND-TO-IF-ELSE Rule~et: stitnd.erd
;;; :5ub$eQ!i e r I

~ 11 coni$e-cut 1 ve subsequ~nce I (cond « ((length u) r) n fl) , () I! (t (.... apea(' 1I'(lbl"lbda (y) (cons (c4r u) y» (col'\bine (cdr u) (1- r»))
(de-fuft $ubseQ!I sri"'''''''>

(if « (len9th $) r} nil

I (cons (seq s r) (subseQ-s (c! ('if « (length u) r) nil (,.,apcer 1I'(lal'lbd.., (y) (cons (eM u) y)} (co b1ne (cdr u) (1- r»»

(d(~~~/«(=(~ ~~ nil) I
(t (conl5 (car 15) {seq (cd I

(defun ~ub-:H':-'lrr.;h (sub 1) I'
(cond «null l) nil)

«null :sub) t)
(t {sub-sf-arch sub (cdl'" 1

Explanation (Why-cond-to-If-else)

IF Is mor~ readable than COND because It uses f~wer parentheses
and because IF has a common En9!lsh meaning.

Abort Check Rules Status R~ject Show N~w Code

Z"'?JC~ (LISP Font-lock z-lc-l5i l1y-co
Accept Explain New Code Set Parameters Show Original Code
Accept Rest Explain This: Rule Show Current Function

U; ;; po,,~r ~<e:t or It (.... /nu 11 e<e:t

,(defun pO\.l/,:r (s)
, (and:s

«lMbd<!l (x v)
(append (list (list ""»

(,.,..,pc~r (fvnction

Figure 4: User has selected Explain this Rule

......

(141"1bd4 (y) (cons x y») v)
v)) (car s)

(power (cdr s»)))

? '(defun pern (15 r-)
i {cond «equ<!Il r 1) (Mapcar (function 1115t) s»

(t (r.apc<'Io (function
(l~l"Ibda ex)

(.... aPcer (function (1!1l'1bda (y) (cone: x y»)
(per (rel'lo\,le x 5) (subl r»))) •• .»)))

(jefvl'l conbint" (s d
(cot1d «= rl1) (n&pC6r (function HlSt) s»

(t (.... ~pcon (function
..

(lel'lbdo (u)
(cond (< (len9th u) r} nil)

(t (~~~~~--~--~~----~----~~~~=-----~~----~--------------,

0») IE
; ;; 'Sl)bSeQ5 1'1 r ~
, , , & 11 COI'l:lecut; \,Ie': $obsequence !I ! ;1

'(defun subseQj5: (~ r)

, (If « (length~) r) nll i I',

(cons (seq ~ r) (sub:5eQs (c

'(defun !leo (5 r)
, (cond «oo r 13) ,..,i1)

(t (co""s (car s) (seq (cd

(def un ~ub- se"r'ch (~ub 1)
{cond «null 1) nil)

(null cSub) t)
!

Ii
(t (~ub-:5~.rch sub (cdr

1~

LIsp-CRITIC

Explanation (Predlcates-are-tests)

Predicates are te$ting tunct!on~" For 'false' they return nil. For 'true'
they r~turn t or any othQr valu~ that ~5n't nil.

Predicates

A predic(Jt~ Is a function that tests for some condition Involving Its
arguments and returns some non-nit yalue If the condition jg tru(r, or
the symbol nil If It is not true. Predicates such as and, member and
spaclal-form-p flaturn non-nil valoos when th~ condition Is trut:,
while predicates such as numberp. IIstp and functlonp return the­
symbol t if the condition Is true. An example of the non-nil return
valu@; fs the predicate speclal-form-p. It retums a function that can
be used to evaluate the special form.

Figure 5: User has clicked on Predicates

315

replaces the original in the edited file. The LlSp·CRITIC window
then goes into the background. and the Zmacs window comes
to the front.

FUTURE DEVELOPMENTS

We encountered two stumbling blocks in the development of a
working explanation component. and future work will be
needed to overcome both. First. when the LISP-CRITIC was first
written. no attempt was made to capture the concepts under·
lying the transformation rules [8j. The metrics used to define a
transformation that produces ·cognitively Simpler" code were
not specified. The knowledge base was built using traditional
knowledge acqUisition methods. i.e. interviewing expert LISP

programmers. Some principles based on theories of cognitive
psychology. software engineering. and programming language
should be identified. One example is that "English words
make better function names than made·up words: Even·
tually. only rules that can be shown to support one of these
principles should be contained in the knowledge base.

Second. no well-defined taxonomy of what concepts and func·
tions underlie the LISP forms used in the rules is available. We
have developed a model of the conceptual structure of LISP

based on a study of popular LISP texts. This model appears to
be sufficient to serve our needs. but we need to verify that
model. This model is the key to linking the rule-base. set of
minimal explanations. and the user model representation of
the user's understanding of LISP.

An unanswered issue is how well this approach will scale up.
The LiSP·CRITIC rule base contains about 100 rules for which
explanations would be useful. Providing a few different dif·
ferential explanations for each of these is time consuming. yet
possible. The problem becomes difficult when there is no
clear way of identifying how to differentiate given new con·
cepts in terms of old concepts. By choosing artificial lan­
guages as a basis (such as C and Pascal). we have shown
here how it is possible to generate differential explanations. A
long term approach is to build a knowledge-base that is large
enough and fine-grained enough to allow an explanation com­
ponent to describe how two given concepts differ.

There are a number of ways to improve the system's minimal
explanations and fallback capabilities. Graphical explanations.
similar to those provided in the KAESTLE system [22; 1j. are
particularly appropriate to explanations of LISP data structures.
Since the explanations are stored in the Symbolics Document­
Examiner. which relies on the Concordia hypermedia system.
graphics couid easily be integrated. Runnable code examples
are another option in Concordia. Finally. natural-language
generation might be used to produce the minimal explanations
themselves. or to provide a dialog fallback capability like that
described by [20j.

SUMMARY

The problems with current on-line explanation systems are
widely recognized. and are in large part due to attempts to
provide complete explanations as one-shot affairs. Many of

316

the efforts to improve these systems have concentrated on
emulating the natural-language dialogs observed in human-to­
human communication. However. theoretical results in dis­
course comprehension and human-computer interaction in­
dicate that human-to-human communication techniques are
not entirely appropriate to computer-based explanations. This
paper has identified an approach to explanation giving that ap­
plies those theoretical ideas while taking advantage of existing
capabilities and resources in a workstation computing environ­
ment.

The approach provides several layers of explanation for the
advice provided to a user by a knowledge-based critiquing
system. The most fundamental layer is simply the name of the
transformation rule and its result. The next layers supply a
brief textual description and the underlying rationale for the
critic's recommendation. The usual problems with canned text
are minimized by accessing a user model to tailor these ex·
planations. The final layer. supplementing the minimal ex­
planations. is a rich hypertext information space in which the
user can explore further details and concepts.

Acknowledgements We thank our colleages in the Human­
Computer Communication group for feedback and ideas. especially
Andreas Girgensohn and Scott Henninger. The research was par­
tially supported by NSF grant CDA 8420944 and by a grant from the
Colorado Institute for Artificial Intelligence. The CIAI is sponsored in
part by the Colorado Advanced Technology Institute (CATI). an
agency of the State of Colorado. CATI promotes advanced tech­
nology education and research at universities in Colorado for the
purpose of economic development.

References

1. H.-D. Boecker. G. Fischer. H. Nieper. The Enhancement of
Understanding Through Visual Representations. Human Fac­
tors in Computing Systems. CHI'86 Conference Proceedings
(Boston. MA). ACM. New York. April. 1986. pp. 44-50.

2. Bruce K. Britton. John B. Black (Ed.). Understanding Ex­
pository Text. Lawrence Erlbaum Associates. London. 1985.

3. B. Chandrasekaran. C. Tanner. J.R. Josephson.
"Explaining Control Strategies in Problem Solving". IEEE Ex­
pert 4. 1 (Spring 1989).9-23.

4. W.G. Chase. H.A. Simon. "Perception in Chess".
Cognitive Psychology 4 (1973). 55-81.

5. L. Danlos. The Linguistic Basis of Text Generation.
University of Cambridge Press. Cambridge. 1987.

6. T.A. van Dijk. W. Kintsch. Strategies of Discourse
Comprehension. Academic Press. New York. 1983.

7. R. Fincher-Kiefer. T.A. Post. T.R. Greene. J.F. Voss. "On
the role of prior knowledge and task demands in the process­
ing of text". Journal of Memory and Language 27 (1988).
416-428.

8. G. Fischer. A Critic for LISP. Proceedings of the 10th In­
ternational Joint Conference on Artificial Intelligence (Milan.
Italy). Los Altos. CA. August. 1987. pp. 177-184.

9. G. Fischer. Cooperative Problem Solving Systems. First
International Symposium on Artificial Intelligence, Monterry,
Mexico, October 1988, 1988. to be published.

10. G. Fischer, T. Mastaglio. Computer-Based Critics.
Proceedings of the Twenty-Second Annual Hawaii Conference
on System SCiences, Vol. III: Decision Support and Knowledge
Based Systems Track, IEEE Computer Society, January,
1989, pp. 427-436.

11. G. Fischer, R. McCall, A. Morch. Design Environments for
Constructive and Argumentative Design. Human Factors in
Computing Systems, CH/'89 Conference Proceedings (Austin,
TX), ACM, New York, May, 1989, pp. 269-275.

12. B.A. Fox. Robust learning environments -- the issue of
canned text. Institute of Cognitive Science, University of
Colorado, Boulder, Colorado, 1988.

13. W.J. Hansen, C. Haas. "Reading and writing with com­
puters: a framework for explaining differences in
performance". Communications ACM 31 (September 1988),
1081-1089.

14. R. Kass. Modelling User Beliefs for Good Explanations.
MIS-CIS-87-77, LlNC LAB 82, University of Pennsylvania,
1987.

15. A. Kennedy, A. Wildes, L. Elder, W.S. Murray. "Dialogue
with machines". Cognition 30 (1988),37-72.

16. W. Kintsch. The Representation of Knowledge and the
Use of Knowledge in Discourse Comprehension. In Language
Processing in Social Context, North Holland, Amsterdam,
1989, pp. 185-209. also published as Technical Report No.
152, Institute of Cognitive Science, University of Colorado,
Boulder, CO.

17. George R. Klare. The Measurement of Readability. Iowa
State Press, Ames, Iowa, 1963.

18. T. Mastaglio. User Modelling in Computer-Based Critics.
Proceedings of the 23rd Hawaii International Conference on
the System Sciences, IEEE Computer Society, 1990. to be
published.

19. K. McKeown, M. Wish, K. Matthews. Tailoring Explana­
tions for the User. Proceedings of the Ninth International Joint
Conference on Artificial Intelligence (18-23 August 1985, Los
Angeles, CAl, August, 1985, pp. 794-798.

20. J. Moore. Explanations in Expert Systems.
USC/Information Sciences Institute, 9 December 1987.

21. J. Moore. Responding to 'Huh': Answering Vaguely Ar­
ticulated Follow-Up Questions. Proceedings CHI '89 Human
Factors in Computing Systems, New York, May, 1989, pp.
91-96.

22. H. Nieper. KAESTLE: Ein graphischer Editor fuer LlSP­
Datenstrukturen. Studienarbeit 347, Institut fuer Informatik,
Universitaet Stuttgart, 1983.

23. B. Reeves. Finding and Choosing the Right Object in a
Large Hardware Store -- An Empirical Study of Cooperative
Problem Solving among Humans. Department of Computer
Science, University of Colorado, Boulder, CO, 1989. forthcom­
ing.

24. W. Strunk, E.B. White. The Elements of Style, 2nd ed.
Macmillan, New York, 1972.

317

25. L.A. Suchman. Plans and Situated Actions. Cambridge
University Press, New York, 1987.

26. W. R. Swartout. "XPLAIN: A system for creating and ex­
plaining expert consulting programs". Artificial Intelligence 21,
3 (1983), 285-325.

27. Randy L. Teach, Edward H. Shortliffe. An Analysis of
Physicians' Attitudes. In Rule-Based Expert Systems,
Addison-Wesley, Reading, Massachusetts, 1984, pp. 635-652.

28. D.A. Waterman, J. Paul, B. Florman, J.R. Kipps. An Ex­
planation Facility for the ROSIE Knowledge Engineering
Language. RAND Corporation, Santa Monica, Calif., 1986.

29. E.H. Weiss. "Breaking the grip of user manualS". Asterisk
-- Journal of ACM SIGDOC 14 (Summer 1988), 4-11.

