
Information Systems Vol. IS, No. I. pp. 21-36,1990
Printed in Great Britain. All rights reserved

0306-4379/90 $3.00 + 0.00
Copyright ,t 1990 Pergamon Press pic

COMMUNICATION REQUIREMENTS FOR COOPERATIVE
PROBLEM SOLVING SYSTEMS

GERHARD FISCHER
Department of Computer Science and Institute of Cognitive Science, University of Colorado, Boulder,

CO 80309, U.S.A.

(Reeeh'ed for publication 18 October 1989)

Abstract-Despite lip service that "most knowledge-based systems are intended to be of assistance to
human endeavor and are almost never intended to be autonomous agents", knowledge-based systems
research has not been focused enough on the nature and the requirements of cooperative problem solving
systems.

The emphasis of our work is on creating computer systems to facilitate the cooperation between a
human and a computer. Cooperation requires more from a system than having a nice user interface or
supporting natural language dialogs. One needs a richer theory of problem solving, which analyzes the
functions of shared representations, mixed-initiative dialogs, argumentation and management of trouble.

Our evolving theoretical framework for this approach has led to a number of prototypical systems
developments which serve as vehicles for future research. Examination of these systems provides evidence
that learning and effective problem solving can be improved through the use of cooperative problem
solving systems.

Key words: Cooperative problem solving, expert systems, mixed initiative dialogs, shared knowledge,
natural communication, speaker vs listener role, situation model vs system model, information access,
information volunteering, design environments, HELGON, SYSTEMS' ASSISTANT, JANUS.

1. THE NEW LOOK OF ARTIFICIAL
INTELLIGENCE

Our goal is to establish the conceptual foundations
for using the computational power that is or will be
available in computer systems towards the goal of
creating cooperative problem solving systems. We
believe that artificial intelligence methodologies and
technologies provide the unique opportunity to
improve productivity by addressing, rather than
ignoring, human needs and potentiaL In the spirit of
Einstein's remark" My pencil is clet'erer than [", we
are building systems which augment and amplify
human intelligence in problem solving, decision
making and information management rather than
replacing it.

Traditionally, the most widely understood goal of
artificial intelligence has been to understand and
build autonomous, intelligent, thinking machines. We
believe with a number of other researchers that a
more important goal is to understand and build
interactive knowledge media [l) or cooperative prob­
lem solving systems [2-4).

Cooperative problem solving in our approach
refers to the cooperation between a human and a
computer (see Fig. I). On the one hand, it shares a
large number of research issues with two related
research areas, namely Computer Supported Coopera­
tive Work (CSCW) (5), which refers to cooperation
between humans mediated by computer and
Distributed Arti{iciallntelligence (6), which refers to a

21

cooperation between computer systems. On the other
hand, it poses a number of unique challenging
problems as they occur in a large number of joint
human--computer systems (7).

This paper discusses the differences between tradi­
tional expert systems and cooperative problem solv­
ing systems, analyzes the special requirements of
cooperative problem solving systems and defines a
theoretical framework for these systems. It describes
a number of prototypical system developments, each
addressing a different aspect of cooperative problem
solving. HELGON is an information access tool which
supports cooperative problem solving by helping
users to specify their goals incrementally. The SyS­
TEMS' ASSISTANT allows users to volunteer informa­
tion in support of mixed-initiative dialogs. JANUS is a
design environment which integrates constructive and
argumentative design.

2. COOPERATIVE PROBLEM SOLVING
SYSTEMS vs EXPERT SYSTEMS

The major difference between classical expert sys­
tems (such as MYCIN and R-J) and cooperative prob­
lem solving systems is that the human is much more
an active agent and participant. Traditional expert
systems asked the user many questions and then
returned an answer. In a cooperative problem solving
system the user and the system share the problem
solving and decision making and different role distri­
butions may be chosen depending on the user's

22 GERHARD FISCHER

manual ,-----.

9

Fig. I. Cooperative systems. To achieve a task, different
systems' architecture are possible, ranging from manual
(everything is done by the human) to completely automatic
(everything is done by the computer). Cooperative systems
explore different role distributions between the two oppos-

ing ends.

knowledge, the user's goals and the task domain. A
cooperative system requires much richer communica­
tion facilities than the ones which were offered by
traditional expert systems. It raises two important
questions:

• What part of the responsibility still has to be
exercised by human beings?

• How do we organize things so that the intelligent
part of the automatic system can communicate
effectively with the human part of the intelligent
system?

The two types of systems can be characterized and
differentiated along the following issues:

Partial understanding and knowledge of complex
task domains·····The interaction paradigms for dealing
with complex infonnation stores (e,g. high-function­
ality computer systems such as LIsp machines con­
taining tens of thousands of objects and tools [8])
have often been based on the unfounded assumption
that people using these systems approach them with
a precisely described task. But in most problem-solv­
ing and information retrieval tasks, the articulation
of a precise task is the most difficult problem. Users
of such systems suffer from a lack of knowledge
about the interdependencies between problem articu­
lation and specification, and of knowledge about the
tools that exist for solving these problems. Ignorant
of these mappings. users are unable to develop a
complete specification of what they want; specifica­
tions must be constructed incrementally.

The communication requirements for these systems
must allow that a question can be phrased in a variety
of ways. Novices cannot ask questions about knowl-

edge that they do not know exists, and they may not
be able to articulate their questions without the help
of the expert. They ask many questions initially at a
very general level, and a good deal of dialogue must
occur before the communicators attain sufficient level
of specificity.

The failure of autonomous approaches-Coopera­
tive systems are based on a successful combination of
human skills and computing power in carrying out a
task which cannot be done either by the human or by
the computer alone. We illustrate our conception of
cooperative systems by giving examples in domains
where autonomous systems have failed:

• Computerized axial tomography (CAT scanning
[9]) is based on a cooperation between doctor
and computer. The necessary inverse Fourier
transfonnations involve an immense amount of
computation and cannot be done without the
help of a computer-and the interpretation of
the data requires discrimination between subtle
differences in density which is beyond current
capabilities in image processing.

• Kay (10) proposes a symbiotic machine transla­
tion system that is always under the tight control
of translators. The system is there to help in­
crease their productivity and not to supplant
them. The fully automatic approach has failed
badly in the past.

• In aircraft automation [II) two different models
are under investigation: the pilot's assistant and
the electronic copilot which can be differentiated
along the separation of tasks and control be­
tween humans and machine.

Two agents can achieve more than one-Coopera­
tive problem solving systems consisting of a human
and a computer can exploit the asymmetry of the two
communication partners. Humans can contribute
what they can do best (e.g. use of common sense, goal
definition, decomposition into subproblems, etc.),
whereas the computer should be used for what it is
good for (e.g. external memory support, consistency
maintenance, hiding irrelevant infonnation, intelli­
gent summarizing, visualization support, etc.).

Breakdowns in cooperative problem solving systems
are not as detrimental as in expert systems-Effective
assistance is a collaborative effort in which advisor
and client work together to detect and repair troubles
that arise.

One can never anticipate or "design away" all of
the misunderstandings and problems that might arise
during the use of these systems. We need to recognize
and develop system resources for dealing with the
unexpected. The problem is not that communicative
trouble arises that does not arise in human-to-human
communication, but rather than when these in­
evitable troubles do arise, there are not the same
resources available for their detection and repair. A
cooperative agent needs to understand the nature of
open problems, the intentions of the problem solver,

Cooperative problem solving systems 23

and the fact that goals are often modified during a
problem solving process.

Background assumptions do not need to be fully
articulated---We need a better understanding of the
possibilities and limitations of expert systems re­
search. We have to define the characteristics for
problems which are suitable for expert systems re­
search to generate realistic expectations. When we
talk of a human expert, we mean someone whose
depth of understanding serves not only to solve
specific well-formulated problems, but also to put
them in a larger context. The nature of expertise
consists not only in solving a problem or explaining
the results (which some expert systems can do to
some extent), but of learning incrementally and re­
structuring one's knowledge, of breaking rules, of
determining the relevance of something and of de­
grading gracefully if a problem is not within the core
of the expertise.

Semi~formal system architectures are appropriate­
Semi-formal systems do not require that the com­
puter can interpret all information structures, but it
may serve only as a delivery system of information to
be read and interpreted by the human. Semi-formal
systems (which are also studied in computer-sup­
ported cooperative work) can be used more exten­
sively in cooperative systems than in expert systems
and will play a large role in the design of effective
joint human-computer systems.

Humans enjoy "doing" and "deciding"-In many
situations, humans enjoy the process-not just the
product: they want to take part in something. This is
why they build model trains, why they plan their
vacation and why they design their own kitchen.
Automation is a two-sided sword. At one extreme, it
can be regarded as a servant, relieving humans of the
tedium of low-level control operations, freeing them
for higher cognitive functions. At the other extreme
it is viewed as reducing the status of humans to
"button pushers." and stripping work of its meaning
and satisfaction.

3. REQUIREMENTS FOR COOPERATIVE
PROBLEM SOLVING SYSTEMS

3.1. Beyond user interfaces

Effective human-computer communication is more
than creating attractive displays on a computer
screen: it requires providing the computer with a
considerable body of knowledge about the world,
about users and about communication processes.
This is not to say that the user interface is not of
crucial importance to knowledge-based systems.
Analysis of expert systems, e.g. of the DIPMETER
advisor [12), has shown that that the acceptance and
real use of expert systems depends on far more than
a knowledge base and an inference engine. The
developers examined the relative amount of code
devoted to different functions of DIPMETER and found

that the user interface portion was 42% compared to
8% for the inference engine and 22% for the knowl­
edge base. Similar data is reported for commercial
knowledge-based system tools (e.g. in Intellicorp's
tools, 55-60% of the code is interface related [13)). A
good user interface is important for two groups: for
the developers of knowledge-based systems and for
the end-user of these systems.

The communication requirements are even more
important for cooperative problem solving systems.
Because the user is actively involved in the problem
solving and decision making process, there is an
increased necessity for the interface to support the
task at a level that is comprehensible by the user. In
order for a knowledge-based system to support coop­
erative problem solving, the following components
dependent critically on each other:

• The structure of the knowledge and problem
solving system itself-how does a system repre­
sent its problem solving activity and retrieves the
relevant portion appropriately in response to
user queries.

• The generation of views of this knowledge which
corresponds to the needs and the knowledge of
the user; in order to do so, a system must contain
a model of the user.

• The external presentation of this knowledge on
the screen; it is this part which is mostly (ex­
plicitly or implicitly) associated with user inter­
face research.

3.2. Mixed-initiative dialogs

Despite the fact that communication capabilities
such as mixed-initiath'e dialogs [14) have been found
to be crucial for intelligent systems, the progress to
achieve them has been rather modest.

One model frequently used in human-computer
systems (e.g. MYCIN) is the consultation model. From
an engineering point of view, it has the advantage of
being clear and simple: the program controls the
dialog (much as a human consultant does) by asking
for specific items of data about the problem at hand.
The disadvantages are that it prevents the user from
volunteering relevant data and it sets up the program
as an "expert", leaving the user in the undesirable
position of asking a machine for help. Mixed-initia­
tive dialogs must support information volunteering
by the system as well as by the user.

Information t'Olunteering by the user---Real users of
expert systems are not data entry clerks. Being able
to volunteer information, users of a knowledge-based
system are no longer at the mercy of an unseen
reasoning component that dictates the order in which
information is absorbed by the system. When com­
bined with a data-driven rule base, users are offered
an opportunity to actirely use a system and direct it
according to their goals. The SYSTEMS' ASSISTANT (see
Section 5.2) is a system which allows the user to
volunteer information [42).

24 GERHARD FISCHER

Information t'Olunteering by the system-Humans
often learn by receiving answers to questions which
they have never posed or which they were unable to
pose. To ask a question, one must know how to ask
it, and one cannot ask questions about knowledge
whose existence is unknown. We have developed
programs (e.g. the active help system ACTIVIST [15)
and critic systems (see Section 5.3», which volunteer
information and support the acquisition of informa­
tion by chance. ACTIVIST looks a user (working with
an editor) "over the shoulder", infers from user
actions the plan which the user wants to achieve and
compares it with its own plan. Information about the
conjectured knowledge is stored in the model of the
user. A separate tutoring module decides when to
offer to help and advice.

3.3. Knowledge requirements

Shared understanding-To increase the mutual in­
telligibility between agents in cooperative problem
solving requires a deeper understanding of the recip­
rocal recognizability of plans, enabled by common
conventions for the expression of intent, and shared
knowledge about typical situations and appropriate
actions [16). For example, taking aviation as an
example [17): the notion that human operators should
inform the system of their intentions, or goals, may
seem simple, but it is a capability noticeably and
perhaps dangerously lacking in most present-day
automatic systems. Goal sharing (also called "intent­
driven systems") would first require that the crew
make its intentions known ("here's what we want to
do"), and then allow the computer to check crew
inputs and system outputs to see if they are logically
consistent with the overall (strategic) plan. The au­
tomation (e.g. the digital flight guidance system or
long-range navigators) uncritically accepts inputs and
has no capability for checking their overall consis­
tency with any understood goal (a capability such as
this might have saved KAL Flight 0007). Likewise,
goal sharing may have prevented some of the dra­
matic fuel incidences that have occurred in recent
years.

The relerance of human problem -domain communi­
cation~--Many current knowledge-based systems use
knowledge representations at a too low level of
abstraction. This makes both system design and
explanation difficult, since the system designer has to
transform the problem into a low-level implementa­
tion language and explanation requires translating
back to the problem level. Cooperative problem
solving systems must have knowledge about
task domains. To create powerful tools for the
humans, we must "teach" the computer the
languages of application domains. Systems with
abstract operations and objects of a domain built into
them give the impression of human problem-domain
communication [18) rather than human--computer
communication. Human problem-domain com­
munication reduces the cognitive transformation

distance between problem-oriented and system­
oriented descriptions [19).

3.4. Beyond natural language: natural communication

Natural communication is more than the ability to
communicate in natural language. It is the ability to
engage in a dialog and when humans (e.g. a novice
and an expert) communicate much more goes on than
just the request for factual information. Novices may
not be able to articulate their questions without the
help of the expert, the advice given by the expert may
not be understood and/or the advisee may request an
explanation of it; each communication partner may
hypothesize that the other partner misunderstood
him/her or they may provide information which they
were not explicitly asked for.

Responsible proponents of natural language inter­
action acknowledge that current programs cannot
understand language in a significant sense [20). This
does not rule out the use of natural language inter­
faces because many practical applications (e.g. access
to databases) do not demand deep understanding.
The practicality of limited natural language systems
is still an open question. Since the nature of the
queries is limited by the formal structure of the data
base, it may well be more efficient for a person to
learn a specialized formal language designed for that
purpose, rather than learning through experience just
which natural language sentences are and are not
accepted. The habitability [21) of a system (which
measures how quickly and comfortably a user can
recognize and adapt to the system's limitation) is a
critical issue which needs to be studied empirically in
realistic situations.

These dynamics of cooperative problem solving
indicate why natural language interfaces to databases
do not solve the critical problem of access to informa­
tion. Studies (e.g. [4)) have provided evidence that a
natural language front-end is a fallacy. Current natu­
ral language interfaces support the translation of a
fully articulated query from natural language into a
formal query language, but they do not assist users
who are unable to describe precisely what they want
at the beginning of an information-seeking process.

Based on the fact that there exists an asymmetry
between human and computer, the design of the
interface is not only a problem of simulating human­
to-human communication but of engineering alterna­
tives to interaction related properties. We do not have
to use natural language for every application; some
researchers claim that, in many cases, it is not the
preferred mode of communication [21, 22). In natural
language interfaces, the computer is the listener and
the human the speaker. The listener's role is always
more difficult, because he/she has to understand a
problem based on the speaker's description. Our
work has been primarily guided by the belief, that it
is the user that is more intelligent and can be directed
into a particular context. This implies that the essence
of user-interface design is to provide users with

Cooperative problem solving systems 25

appropriate cues. Windows, menus, spreadsheets and
so on provide a context (making the machine the
speaker and the human the listener) that allows the
user's intelligence to keep choosing the next step.

3.5. Models of the communication partner

Cooperative problem solving systems require that
users have models of the systems with which they
interact and systems have models of their users. The
later model is needed to provide explanations and
differential descriptions. Explanations need to be
given at the right level of detail and with the right
level of assumed shared understanding about the
other agent's knowledge. Differential descriptions
(describing something by relying on the basic
paradigm "x is equal to y, except. ... ") is a powerful
paradigm (demonstrated in the programming world
with object-oriented inheritance hierarchies).

3.6. Beyond "one-shot" affairs

Even with good models of users, cooperative prob­
lem solving systems cannot be restricted to "one­
shot" affairs. One cannot always be right the first
time and one cannot guarantee that an advice or
criticism is understood. The HELGON system (see
Section 5.1) is built on the basic assumption that
users do not always have well-formulated goals to
start with, but that these goals are constructed incre­
mentally in a cooperative fashion.

Cooperative problem solving systems support the
incremental construction of queries and goals,
whereas expert systems require a complete specifica­
tion in order that they are able to solve a problem.

3.7. Empirical studies

A careful assessment of the systems that we have
built over the last decade (e.g. critics [23] and active
and passive help system [IS]) has shown that they fall
short of supporting real cooperative problem solving.
In order to obtain a deeper understanding of cooper­
ative problem solving, we have designed and carried
out an empirical study of a high-functionality system,
namely the McGuckin hardware store in Boulder
(which offers more than 300,000 items) and the
cooperative problem solving between customers and
sales agents. Details of these studies are contained in
[24]-the most important findings are summarized
here briefly.

• Incremental query specification-Frequently cus­
tomers did not know what they really needed
and did not know how their problems could be
mapped onto the items which the store offers.
Their queries were constructed incrementally
through a cooperative problem solving process
between a customer and a sales agent.

• From natural language to natural communica­
lion--PeopJe rarely spoke in complete, gram­
matical sentences, yet managed to communicate
in a natural way. This observation clearly indi-

f S, 15,1---C

cates that the support of natural communication
(which allows for breakdowns, follow-up ques­
tions, clarifying dialogues, explanations, etc.) is
much more important than being able to parse
complex syntactic sentences.

• Mixed-initiatit'e dialogs-People are flexible in
the roles they play during a problem solving
episode. They easily switch from asking to ex­
plaining, from learning to teaching. The struc­
ture of these dialogs were neither determined by
the customer nor by the sales agent, but clearly
indicated mixed initiatives [25] determined by the
specifics of the joint problem solving effort.

• Multiple specification techniques-We observed
a great variety of different specification tech­
niques ranging from bringing in a broken part to
very general request such as "I need a lock for
my doors that reduces my insurance rate".

• Management of trouble-Many breakdowns and
misunderstandings occurred during the observed
problem solving episodes. But in almost all
cases, clarifying dialogs allowed their recovery,
illustrating the important feature that problem
solving among humans cannot be characterized
by the absence of trouble, but by the identifica­
tion and repair of breakdowns (the major contri­
bution of the research work of [16] was to clearly
identify this issue).

• User modeling-The study made it evident that
user modeling plays a crucial role in identifying
the right level of shared understanding and
providing the appropriate level of explanation
and help.

The state of the art with respect to complex
computer systems can be characterized by saying
"High-functionality computer systems offer the same
broad functionality as large hardware stores, but they
are operated like department stores", i.e. what is
missing for them is the cooperative support of know­
ledgeable sales agents.

4. A THEORETICAL FRAMEWORK FOR
COOPERATIVE PROBLEM

SOL VING SYSTEMS

4. J. A taxonomy of cooperative problem solving
systems

Humans and computers play different roles in
cooperative problem solving processes. Within a co­
operative problem solving system, the computer can
play different roles. It can be a tutor [26], a suggestor
[18], an advisor [27] or a critic [28,29, 43J.

In our work we have concentrated on critics [23].
Computer-based critics are a paradigm for intelligent
human-computer communication which overcomes a
number of limitations of other approaches (such as
tutoring and advising). Critics are much more user­
centered and support users in their own doing. They
allow users to do whatever they want and interrupt

26 GERHARD FISCHER

only when the user's plans, actions or products are
considered significantly inferior. They are applicable
in situations where users have some basic competence
in carrying out a task, because users must be able to
generate a plan, action or product by themselves.
They are most useful in domains where no unique
best solution exists but where trade-offs have to be
carefully balanced.

4.2. Speaker us listener role

Based on the asymmetry between human and com­
puter, the design of the communication between
humans and computers is a problem not only of
simulating human-to-human communication but of
engineering alternatives in the domain of interaction­
related properties [30). Natural language should not
be used for every application; in many cases it is not
the preferred mode of communication (21).

Communication can be described in terms of the
speaker and the listener roles. The speaker presents
information (e.g. in the form of a question or as a
request for action) which the listener tries to under­
stand. It is often difficult to determine which role suits
which agent best. We have argued that the listener
role is always the more difficult one, because the
listener has to understand the problem based on the
speaker's description.

Natural language interfaces are desirable, because
the human is the speaker and can talk in her/his terms
about a problem. Unfortunately this kind of natural
language interface does not exist. The user is either
forced to answer questions in simple terms or to learn
to adapt to the limited natural language understand­
ing capabilities of the system. In form-based systems,
the system has the role of the speaker and it shows
its understanding of the world to the user. Our work
has been primarily guided by the belief that the user
is more intelligent and can be directed into a partic­
ular context; this is why most of our interfaces are
based on a world-model of computation rather than
on a conversational model (19).

The different role distributions are illustrated in the
context of the HELGON system (see Section 5.1).
Specifying retrieval cues is often difficult because
users don't know exactly the term which is to be used.
Using examples as cues is one way in which informa­
tion can be retrieved. But if the users know exactly
what they want, they can ask for it directly, and there
is no need to bother with examples. HELGON thus
supports two modes of operation: users can be in the

User in listener role:

listener role, learning from the system what sort of
questions they can ask, or in the speaker role, asking
the system for what they want. Figure 2 lists some of
the advantages and disadvantages associated with
either role.

4.3. Situation us system model

The situation model (31) is a mental representation
of the situation as the user sees it, including the
problems motivating a task. general ideas for finding
a solution, and a characterization of the desired goal
state. The system model consists of a set of operations
that, when invoked, will result in the desired solution.
These operations must all be within the repertory of
the system; that is, for each operation there must exist
one or more commands, depending upon context, to
execute it. At the level of the situation model, goals
refer to actions and states in the user's problem space
and are articulated in terms of what we want. Goals
may be precise or imprecise, but the important point
is that they are not necessarily structured or named
according to the system. It is subjective and varies
somewhat among individuals.

In order to get something done on a computer
system, however, the user's situation model must be
transformed into a system model, which is normative
and system specific. Our question has been, how, for
a variety of tasks in which information management
plays a central role this transformation from situation
model to system model is achieved, and what system
support can be provided for it.

In Fig. 3 several different approaches to bridging
the gap between the situation and system model are
outlined:

• (I) illustrates the normal situation, where there
is no support to bridging this gap. In this case,
people frequently have difficulties in solving
problems or finding information, because they
are unable to generate an effective system model,
even if they have a clear understanding of the
situation involved.

• In (2), a new system model is constructed which
is closer to an individual's situation model and
hence easier to understand (44).

• In (3) (which represents the HELGON approach
(32)), we attempt to let users bring their situation
model closer to the system model by making the
relevant features of the latter more transparent:
e.g. in HELGON information retrieval starts with

• Specification of information: Clicking at information displayed on the screen.
• Advantage: Only terms that the system knows can be used.
• Disadvantage: The information has to be on the screen.

User in speaker role:
• Specification of information: Keyboard input.
• Advantage: Users can type in values they know right from the beginning.
• Disadvantage: Users may use terms the system does not know.

Fig. 2. Speaker vs listener role.

Cooperative problem solving systems 27

Situation System -normal-
Hodel Model

J g no intelligent
support system

f g resb1Jcturirtg
NewScope.
InfoScope

reformulation T g Helgon.
Retrieve

i
agent g » Network

f training g CS course,
tutor,
etc.

Fig. 3. Situation vs system model.

a query which is fonnulated at the level of the
situation model, but is then incrementally refor­
mulated into the system model. How an initial
query stated in situation model tenns is trans­
formed into a query the system can actually
understand in HELGON is illustrated in Section
5.l.

• In (4), a knowledge-based agent translates a
request in the situation model into the system
model [45].

• Finally, (5) is another nonnal case, where users
are trained to express themselves in the system
model. This is the expert case, where the user's
situation model already takes into account the
constraints of the system.

5. PROTOTYPICAL SYSTEM
DEVELOPMENTS TOWARDS COOPERATIVE

PROBLEM SOLVING SYSTEMS

5.1. HELGON: nell' approaches to information access

People who attempt to use a complex infonnation
store on a computer encounter a number of prob­
lems. They do not know what infonnation exists or
how to find information. they get no support in
articulating a question. and they are unable to phrase
their question in tenns that the system understands.
HELGON. an intelligent environment that supports
limited cooperative problem solving. helps people
deal with complex information stores. HELGON sup­
ports retrieval and editing by refonnulation with
multiple specification techniques. and it acquaints the
user with the system model of the infonnation store.
HELGON can also be seen as a new tool for knowledge
utili=ation which also knowledge editing.

5.1.1. The conceptual framework behind HELGON.

Retrieral by reformulation··-··HELGON [32J is based on
the paradigm of retrieval by refonnulation [33],

which was derived from a theory of human remem­
bering. This theory postulates that people naturally
think about categories of things not in tenns of
fonnal attributes but in tenns of examples. HELGON
supports the incremental description of a desired
object with multiple specification techniques. Systems
that support retrieval by refonnulation are coopera­
tive in the sense that after users give an initial
description, the system responds with an indication of
its understanding by displaying example items from
the knowledge base that match this description. Users
then refine their description based on this feedback
until a suitable item is found or until the absence of
such an item is established.

Situation model and system model in HELGON­

Many current infonnation stores (e.g. help systems)
are oriented toward the system rather than toward
the user. That is, infonnation is structured around a
description of the system, not around an analysis of
the problems users address when using the system.
For example, a shortcoming of many existing
infonnation stores is that access is by implementation
unit (e.g. LISP function, UNIX command) rather than
by application goal on the task level.

The successful use of a complex infonnation store
requires that the goals expressed in the situation
model be translated in tenns of the system model (see
Fig. 4). HELGON'S approach to solving this problem
is to make the system model more obvious to the user
by providing support tools for easy access to the
'"world" of the system.

5.1.2. Retrieval by reformulation in HELGON. The
query is initialized with the root node of the category
hierarchy. The list of items matching the query is
shown in the Matching Items pane, and one of the
matching items is shown in the Example of the
Matching Items pane (see Fig. 5). The query consists
of categories and attribute restrictions associated
with the categories. Categories as weIJ as attribute
values can be either "required" or "prohibited." The
user does this by selecting them from the screen or a
menu of alternative values or by typing them in on
the keyboard. When the user makes additions to the
query through input on the keyboard, only useful
values, that is, values that exist in the knowledge
base, are accepted. This prevents the user from
imposing a restriction that would by itself lead to no
matching items (e.g. because of a typographical
error). The system gives help by completing partial
input automatically if it is unique or by listing all
possibilities that contain the current input as a sub­
string.

Users can create the query top-down by selecting
from the category hierarchy display the category that
is expected to contain the desired information. But
users may not know in what category the infonnation
is stored. Therefore, they can also work bottom-up by
criticizing the example. A problem of this approach
is that, in a large infonnation space, the example
given might be too far away from the desired

28 GERHARD FISCHER

Query •• ... pr ted In • apec:IfIc u tltuatlon model:

"Rnd the reference for the final ONA project report from CU:

A coneapondlng query In ayatem-undefatandable t ... ma:

n:cmun>~
DlS'rl:'fon:OII: Deput.ent of ~r Sci_,

UniYeZa1ty of Colorado
nu.a: lUI

Fig. 4. Situation model vs system model.

information. MUltiple specification techniques, e.g.
first narrowing down the information space by select­
ing catego ries, then continuing by criticizing exam­
ples, are therefore important in dealing with complex
info rmati on stores.

VisualizaTion of The informaTion s(()re- It is well­
kn own tha t users become disoriented in la rge infor­
mation stores [34]. HELGON allows therefore to
display the structure of the underlying information
store, i.e. a hierarchy of categories, graphically. Once
users have found a category that seems likely to hold
the information they are looking for, they can add it
to the query with a mouse click. They can also use the
gra phical display to edit the underlying structure of
the informa tion store (e.g. new subcategories can be
created).

8rmrsinR ,--ln addition to assisting the user in
defining a query. HELGON supports browsing in the
information store. The graphical category hierarchy
display can be used to browse categories. Links

within the information units can be followed , that is,
items that appear as attribute values of other items
(displayed in bold face) can be inspected. And items
tha t users looked up previously are added to the
Bookmarks of Items and allow users to return easily
to previous states of their information search.

Editing by reformulation-HELGON is not just a
tool for viewing information- one of the sho rt­
comings we identified with the RABBIT and ARGON
systems. It allows users to edit information and
integrates the creation of new knowledge base items
with the retrieval by reformulation paradigm. Users
can thereby take advantage of the context created by
an information search to editing without having to
switch to the KANDOR level. They first use retrieval by
reformula tion to find an item tha t is similar to the
new one, copy it , and use it as a template. [n this way,
they know which categories and attributes are reason­
a ble to use; and because they see examples, they
better understand what a category or attribute means.
Va lues can often be reused , or they can be selected
from a list of alternative values. They ca n also be
typed in on the keyboard, a feature providing the
same support (automatic completion , etc.) as it does
in the formulation of a query. The query specification
itself, which contains concepts used in the description
of the information store, can also be transformed into
a new item.

Evaluation-HELGON has been a joint research
effort combining innovative system design and

Fig. 5. Literature references in H ElGO!'> .

Cooperative problem solving systems 29

cognitive theory. An empirical evaluation of the
infonnation retrieval component of an earlier version
of HELGOl'> showed (for details see [35)) that:

• Subjects wanted to directly enter information
they knew from the beginning because finding
the right example to be criticized can be tedious.
This capability was therefore incorporated in a
later version of HELGON.

• Subjects had problems understanding the terms
used in the information store.

• Subjects had problems with the hierarchical or­
ganization of the information store.

These findings suggest extensions for future ver­
sions of HELGO!'>. An explanation component describ­
ing the terms used can be added to increase users'
understanding of the system model. We are also
experimenting with an inducth'e retrieval algorithm,
which returns a set of items that match the query to
varying degrees [36). Including spreading activation
in the system implies that a larger portion of the task
is shifted to the system.

5.2. SYSTEMS' ASSISTANT: supporting mixed initiative
dialogs

One of the major stumbling blocks in the successful
use of knowledge-based systems is the general feeling
of apathy with which many of these systems are met
by the users. Much of the refusal to utilize systems
such as MYCIN stems from the fact that users, who
often think of themselves as experts, feel that the
system is telling them what to do. The system asks
questions which the user answers. The system then
decides, by some hidden mechanism, if it needs more
information or is going to give the user advice. At no
time are the users afforded the opportunity to make
their observations known to the computer. They are
simply allowed to answer the questions put to them­
a role which most humans do not experience as very
satisfying. An expert who is knowledgeable about a
domain wants to take an actil'e role in the process of
deciding what actions should be taken. While cooper­
ative advice or criticism from a computer is welcome,
the typical knowledge-based system that forces a
particular format of discussion upon the user is not.
In this section, we will describe several versions of
a knowledge-based system which assist users in
rebooting a computer [42). The initial version, called
REBOOTER was a MYCIN-style expert system which
turned out to be behaviorally unacceptable and led to
the development of SYSTEMS' ASSISTANT.

5.2.1. REBOOTER. Problem description-REBooTER
is a knowledge-based system which allows users to
reboot a PYRAMID 90x computer after it has crashed.
It has a set of predetermined tasks which drive it to
ask for certain pertinent information. If the user-goal
is to reboot the machine, REBOOTER first tries to get
the machine running. When a certain state has been
reached, the system will instantiate the task to boot
the machine into single-user mode, and finally into

multi-user mode. This process consists of five major
tasks which are the initial status check (is the power
on and can you log in), error recording, booting,
file-system checking and bringing the machine into
multi-user mode. A sample session with REBOOTER is
described in Fig. 6.

The initial status, error recording, file-system
checking and multi-user tasks are rule sets that ask
basic questions (e.g. are there any error messages on
the console?) or require simple actions (e.g. please
record any error messages in the log book). Inside the
booting task are a number of sub-tasks. This is where
the interesting rules reside and the data-driven
paradigm is put to the test. The rules here help users
determine what causes the failure. While automatic
rebooting options are available, they are not able to
deal with problems like hardware failures and seri­
ous file system errors. In these cases the machine will
fail its attempts at reboot or will simply tell the
operator that file system checking must be done
manually. Unfortunately, experience shows that these
conditions occur more often than we would like.
Rebooting a computer, especially if the person is not
totally familiar with it, is a non-trivial problem. This
is demonstrated by the fact that 2-6 months of
on-the-job training are done by our novice systems
administrators before they are confident enough to
reboot machines on their own. The rebooting process
ranges from the trivial pressing of a couple of keys on
the console to the complicated task of diagnosing
hardware failures. REBOOTER, designed specifically to
help with this process, can significantly reduce the
complexity of this task. At the same time, it allows
users to slowly incorporate this intuitive knowledge
into their own knowledge structures by making them
familiar with the types of actions necessary to per­
form this task.

The knowledge base-The knowledge base of the
REBOOTER, which excludes the user-interface, consists
of a set of OPS5 production rules [37]. The interfer­
ence mechanism used is forward chaining which leads
the structure of the rules to be in a task-based,
data-driven paradigm. The rules themselves decide
when it is appropriate to switch from one task to
another. Tasks are instantiated based on what the
previous tasks were able to find out or accomplish.
The program has two main modules, domain knowl­
edge and explanation. Each module consists of sev­
eral tasks, and tasks consist of several rules related
through the domain knowledge they analyze, and
they comprise a question and answer session that
guide both the user and REBOOTER through the prob­
lem space. A limited explanation module performs a
post-analysis on the working memory elements left by
the session and outputs its results, in the form of
canned text, to a file which the user can then consult.

Communication capabilities of REBOOTER-RE­
BOOTER'S user interface is a text-based dialog session
that runs on traditional CRT terminals. REBOOTER
presents a series of questions that lead the user

30 GERHARD FISCHER

INITIAlOUERY: Is the machine's power turned on? «yes/no» yes
Can you loq on to the machine that is down across the network? «yes/no»no
Can you loq on to the machine that is down at the console? «yes/no»no

ERROR RECORDING: Record any error messages that appear on the console. Go to the
E_Frame by pressing HOME then E. Are there any flashing error codes?
«yes/no» no

9OOTING: Go to the System Confiquration Frame (Frame 1) by pressing HOME then
1. Press b then z to boot the machine and start the CPU. Do the two windows
at the bottom right corner of the console report that the machine is BOOTED?
«yes/no» yes
that the CPU is RUNNING? «yes/no»yes

SINGlE USER MODE: ••••••

SET THE DATE: ••••••

ALE SYSTEM CHECK: ••••••

MULTI USER MODE: To go into multi_user mode press "0 (control_D)

Execution halted by rule: multi_user_mode. Would you like an explanation of
the session? «yes/no»yes

IF YOU GENERATED AN EXPLANATION IT WILL BE FOUND IN:
/staff/system/stevens/rebooter/RULETRACE
THANKS FOR USING REBooTER. MAIL ANY COMMENTS TO CURT.

Fig. 6. A partial session with REBOOTER.

through the five major tasks necessary to reboot the
computer. As the dialogue session progresses, RE­
BooTER' knowledge base evolves through states which
fire the necessary tasks in each of these five categories.
A typical session with REBooTER that represents a
trouble-free reboot is shown in Fig. 6.

Shortcomings of REBOOTER~REBooTER was put in­
to use by the systems staff for a short period of time
during which shortcomings in its design became ap­
parent. Observations and discussions with users of the
system yielded interesting results. While novice users
are quite comfortable with the system-driven dialog
paradigm, expert users are quite irritated by it. In
fact, expert users refused to use the system after their
first or second experience with it. Discussions with the
various users clearly indicated that experts do not
want to be forced into a particular format of discus­
sion with a system, while novices gain confidence in
their actions through this very same mechanism.

Similar reactions were observed when the MYCIN
(38) program was introduced into the medical
establishment. When experts in a field use a knowl­
edge-based system they need to feel that they have an
active role in the process of deciding what actions
should be taken. In REBOOTER, the dialog is com­
pletely system-driven. Users are delegated the tasks of
answering questions and pushing buttons. MYCIN has
the very same problem. Users are put in a passive role
throughout their interaction with the system.

5.2.2. THE SYSTEMS' ASSISTANT: incorporating
in/ormation wlunteering. Our solution to this prob-

lem of inflexibility in the communication paradigm is
the introduction of a mechanism through which the
user can volunteer information to the system. By
volunteering information we mean that the user can
make statements about the domain which are out of
context with respect to the current conversation
between user and system. Information volunteering
allows users to be in the speaker role and focus the
attention of the system on the information which they
feel is relevant. The user is no longer just answering
questions, but taking an active role in deciding what
the knowledge-based system is reasoning about. The
system now plays the role of assisting users as
opposed to directing users and therefore this new
version of our knowledge-based system is called the
SYSTEMS' ASSISTANT.

When a user first starts up a session with the
SYSTEMS' ASSISTANT the system will always begin by
asking some basic information about thc PYRAMID in
question. This information must be known to the
SYSTEMS' ASSISTANT for it to do any diagnosis or offer
any assistance. Beyond that point, however, the
actions which the SYSTEMS' ASSISTANT will take are
mostly dependent upon the data which the user
supplies in response to its inquiries. The SYSTEMS'
ASSISTANT asks a question after which the user re­
sponds with some new data. After reviewing the
modified state of the data at hand the SYSTEMS'
ASSISTANT proceeds to suggest some course of
action which is then carried out by the user. This
loop continues until the SYSTEMS' ASSISTANT has

Cooperative problem solving systems 31

successfully helped the user reboot the computer.
However, an experienced systems administrator will
be able to notice pertinent information long before
the SYSTEMS' ASSISTANT asks about it. For instance,
these types of users might quickly notice that the
ethernet board is sticking an inch further out than the
rest of the boards in the machine. They would
certainly come to the conclusion that this might have
something to do with the machine's problem, and
therefore want to focus the attention of the SYSTEMS'
ASSISTANT on that fact. This type of information is
considered out of context since the SYSTEMS' AssIs­
T ANT is asking questions like IS THE MACHINE'S POWER
TURNED ON? or DOES THE CONSOLE SA Y THAT THE CPU IS
RUNNING? If users know something about the system,
then they should be able to present that information
to the SYSTEMS' ASSISTANT as soon as it becomes
apparent.

The system's knowledge is explicitly represented in
a world model (see Fig. 7) with which the user
interacts in a direct manipulation style [19].

Users can either ask for general information about
each of these components or volunteer information
about them. If users are confused about what an icon
represents they can ask the system about that icon by
clicking the mouse on it. At that point the system
presents the user with a text based explanation about
the component in question. It also explains some of
the most common indications that this component is
damaged and common methods of determining the
functional state of it. These possibilities give the user
a window into the "mind" of the SYSTEMS' ASSISTANT
and provide a well-defined and common basis for
communication between the user and the system. To
volunteer information (and change the context in
which the icons are understood), the users click with
the mouse on the volunteer information icon. At this
point a click on any of the machine component icons
yields a menu of possible facts about that particular
component.

The interface, however, is not the most crucial
modification that is necessary. To bring information
volunteering to fruition it is not sufficient to change
the external appearance of the system on the screen.
This new mechanism requires the restructuring of the
knowledge base to accommodate the incoming "out­
of-context" information. In REBOOTER, an analysis of
the structure of tasks was carried out to determine
which task should in turn instantiate successive tasks.
The original design was far too rigid for the informa­
tion volunteering mechanism. What is needed is a
more general methodology for determining the cur­
rent task selection. This problem is being solved by
removing the task selection criterion from the tasks
themselves and creating an autonomous collection of
rules whose only function is to recognize situations in
which particular tasks should be instantiated. To
operate in this mode the system needs more informa­
tion about the machine components and its own rule
groups than before to allow the SYSTEMS' ASSISTANT

to resolve conflicts when more than one task is
simultaneously instantiated due to some volunteered
information. This extra knowledge allows the SyS­
TEMS' AssiSTANT to be much more powerful in its
ability to handle the inevitable context switches that
occur due to the incoming out of context informa­
tion. In addition, a mechanism is needed through
which the system can determine what information is
inplicit in the volunteered information. For instance,
this instantiation of tasks might be altered if users
volunteer information that implies they have already
tried to reboot the machine. A related problem is
the decision of whether to ask a previously posed
question again. The volunteered information might
have implied an answer to this earlier question and
the rule base has to be general enough to handle these
cases.

Experiences with the SYSTEMS' ASSISTANT have
demonstrated that the system provides the right kind
of mixture between highly structured dialogs (which
are useful for the novice) and the possibility to
volunteer information to get to the point quickly,
which is a necessary requirement to make a system
acceptable to the expert.

5.3. JANUS: design environments

Design environments provide a framework in
which the domain experts can themselves articulate
their relevant knowledge precisely enough that it can
then be used by the computer not only to aid in
problem solving in the domain but also made subject
to peer review and revision.

JANUS [46,39] allows designers to construct
artifacts in the domain of architectural design and at
the same time informs them about principles of
design and the reasoning underlying them. This
process, which we call Informed Design, integrates
two design activities: construction and argumenta­
tion. Construction is supported by a knowledge­
based graphical design environment (see Fig. 8) and
argumentation is supported by a hypertext system
(see Fig. 9).

JANUS provides a set of domain-specific building
blocks and has knowledge about how to combine
them into useful designs. With this knowledge it
"Iooks over the shoulder" of users carrying out a
specific design. If it discovers a shortcoming in users'
designs, it offers criticism, suggestions and explana­
tions and assists users in improving their designs
through cooperative problem solving. JANUS is not an
expert system that dominates the design process by
generating new designs from high-level goals or re­
solving design conflicts automatically. Users control
the behavior of the system at all times (e.g. the
critiquing can be "turned on and off"), and if users
disagree with JANUS, they can modify its knowledge
base. An objective of JANUS is to blend the designer
and the computer into a problem-solving team to
produce cooperatively better designs than each of
them can by working alone.

32 GERHARD FISCHER

E_ t"- _ ","," .. 1 I'D
.edlln!! _ : TUT " ,, 1-,_'_ ...

,,,,.,-~ "'flU .. -,_.
~ I .. I t"- _1-' 1'1:1

,..., I .. In ..r-. u. .. a-iIf ItO t~ : 'yr •• fd •• X

d1u~ : FuJt Eegl1 411D

o~r : C .. putlr Sc t .nc.

-,-.. ... ----- ... _1_' 1._ u._ . __ _ __ ·'1 .. ' _ _ tal..... '_I. _ __ I. ___ ~

_ 1-.--.

&.2 -""

condI tIon : CIUtSHED

Fig. 7. The SYSTEM'S ASSISTANT in operation.

Critics in JANUS are procedures for detecting non­
satisfying partial designs. JANUS' concept for integrat­
ing the constructive and argumentative component
originated from the observation that the criticism
generated by the critics is a limited type of argumen­
tation. In particular, the construction actions can be
seen as attempts to resolve design issues. For exam­
ple, when a designer is positioning the sink in the
kitchen, the issue being resolved is "Where should the
sink be located"'?

The knowledge-based critiquing mechanism in
JANUS bridges the gap between construction and
argumentation. This means means that critiquing and
argumentation can be coupled by using JANUS' critics
to provide the designer with immediate entry into the
exact place in the hypertext network where the argu­
mentation relevant to the current construction task
lay. Such a combined system provides argumentative
information for construction effectively, efficiently
and without designers' having to realize they need
information, suspect that needed information is in the
system or know how to retrieve it.

JANUS' construction component-The constructive
part of JANUS supports the construction of an artifact
either "from scratch" or by modifying an already
constructed artifact. To contruct from scratch, the
designer chooses building blocks from a design units
"Palette" and positions them in the "Work area" (see
Fig. 8).

To construct by modifying an existing artifact, the
designer uses the "CATALOG" (lower left in Fig. 8),
which contains many previously designed kitchens.
The designer can browse through this catalog of
examples until an interesting design is found. This
design can then be selected and brought into the
"Work Area", where it can be modified to the
designer's liking.

The CATALOG contains two types of examples:
"good" designs and "bad" designs. The former
satisfy all the rules of kitchen design and will
receive no negative criticism from the system's
critics. People who want to design without knowing
the underlying principles might want to select one of
these, since minor modifications of these will be

•

Cooperative problem solving systems 33

D
f""i""il
~

-

•• •

__ I _.
~;:~;:~------------------------------11 ~~. I __ I __ .1_ ..

J __ .~-arnco -* .. - ,
' .. _·1,._&1,·, ___ • ""'"" -.. ~

Fig. 8. JANUS construction interface.

probably result in little or no negative criticism from
the critics.

The "bad" designs in the CATALOG are there to
support learning about principles of design-in this
case principles of kitchen design. By bringing these
into the "Work Area", users can subject them to the
critiquing by the system illustrating to them which
principles of kitchen design are incorporated into the
system.

The "good" designs in the CATALOG can also be
used to learn design principles and explore their
argumentative background. This can be done by
bringing them into the "Work Area" then using the
"Praise aIr' command. This command causes the
system to display all of the rules which the selected
example satisfies. This positive criticism also provides
entry points into the hypertext argumentation.

JANUS' argumentation component-The hypertext
component of JANUS is implemented using Symbolics'
Concordia and Document Examiner software. Con­
cordia is a hypertext editor [40] with which the issue
base is implemented. The Document Examiner [41]
provides functionality for on-line presentation and
browsing of the issue base by users.

When users enter the argumentative part of JANUS,
they are brought into a section of the issue base

determined by and relevant to their current construc­
tion situation. They do not have to hunt for relevant
information. Their point of entry into the hypertext
network will contain relevant information. But since
the argumentation on an issue can be large and
complex, they can use the initial display of relevant
information as the starting place for a navigational
journey through the issue base. Following links will
take them to additional relevant information. Upon
completion of the examination of the relevant argu­
mentative information the designer can return to
construction and complete the current task.

Critics as hypertext agents-JANUS' knowledge­
based critics serve as the mechanism linking con­
struction to argumentation. They "watch over
the shoulders" of designers while they are con­
structing and critique their work, displaying their
criticism in the "Messages" pane (center bottom
in Fig. 8) if design principles are violated. In doing
so they also identify the argumentative context
which is appropriate to the current construction
situation.

For example, when a designer had designed the
kitchen shown in Fig. 8, the "Work-Triangle-Critic"
fires and detects that the work triangle is too large.
To see the argumentation surrounding this issue, the

34 GERHARD FISCHER

o..crt~ .. _ cw- Tn l. 1
The -" 10 eng • II Impcwl_ _ III t __ 10"' The -"
ttl • denoI __ c-. ,,_ d1l lllftCe M I __ llr .. appli-
...... , 11M, U ... _ "'''''/(Jan_. Thl. I..,. -.ld be 1_ Z3
r ... to avoid _a Iklng 10,. ."'cl_ .. _
1I0w 1ft .". kll_

•• ••

" 101 tM tr

__ (... ".. tW. SIMI)

The re&19-- -.. M _ a but not ,,1ft to .". I

Fig. 9. JANUS argumentation interface.

designer has only to click on the text of this criticism
with the mouse. The a rgumentative context shown in
Fig. 9 is then displayed.

Et'aluarion of JANus- We have evaluated JANUS

with subjects ranging from neophyte to expert
kitchen designers and from neophyte to expert com­
puter users. We found that no user group had any
significant overall advantage in using the system.
Design students were more familiar with the general
application domain but lea rned to use the system
without much difficulty after some initial practice.
Computer science students were able to understand
the critics and learn from them to create reasonable
kitchen designs. Users uncertai n about criticism from
the system or interested in more background infor­
mati on about design principles entered the hypertext
system.

6. CONCLUSION

Wiener (1 7] concludes about the future of cockpit
automation:

"The rapid pace of introduction of computer-based
devices into the cockpit has outstripped the ability
of designers, pilots and operators to formulate an
overall strategy for their use and implementation.

The human factors profession is struggling to catch
up . The devices themselves a re highly reli able. but
therein may lie the problem: they a re also dumb
and dutiful. This property of digital devices. and
the fallibility of the human opera tor, has created a
problem at the human-device interface. Putting
'just one more computer' into the cock pit is not the
answer. The solution will come from a long, expen­
sive. and sometimes tedious effort to develop a
harmonious crew-automation interface, guided by
an overall design philosophy"

To take advanage of the potential of the great
computing power available to us, we must develop
Jomt human--computer systems as cooperative
problem solving systems taking the goals of the
human, the strengths and the weaknesses of humans
and computers and the nature and structure of the
task into account.

Ackflo ... ledgemeflls~ The a uthor would like to thank hi s
colleagues and sludents al the University of Colorado,
Boulder, especially Helga Neiper-Lemke. who designed and
developed HELGON. Curt Stevens. who designed and devel­
oped SYSTEMS' ASSISTANT. Anders Morch and Raymond
McCall. who designed and developed 1A~LS and Brent
Reeves who carried out the "McGuckin" StUdy.

7 V

,

..

Cooperative problem solving systems 35

The research was partially supported by Grant No.
DCR-8420944 from the National Science Foundation,
Grant No. MDA903-C0143 from the Army Research Insti­
tute and grants from the Intelligent Systems Group at
NYNEX and from Software Research Associates (SRA),
Tokyo.

REFERENCES

[I] M. J. Stefik. The next knowledge medium. Al Mag.
7(1), 34- 36 (1986).

[2] G. Fischer. Cooperative problem solving systems. Pro('.
1st Simp. Int. de Inteligencia Artificial, Monterrey,
Mexico, October, pp. 127-132 (1988).

[3] T. W. Malone, K. R. Grant, K.-Y. Lai, R. Rao and D.
Rosenblitt. Semi-structured messages are surprisingly
useful for computer-supported coordination. Proc.
Con! on Computer-Supported Cooperative Work
(CSCW'86), MCC, Austin, Texas, pp. 102-114 (1986).

[4] B. L. Webber and T. W. Finin. In response: next
steps in natural language interaction. Artificial Intelli­
gence Applications for Business (W. Reitman, Ed.),
pp. 211-234, Chap. 12. Norwood, New Jersey (1984).

[5] L Greif (Ed.). Computer-Supported Cooperative Work:
A Book of Readings. Morgan-Kaufmann, San Mateo,
Calif. (1988).

[6] A. H. Bond and L. Gasser (Eds). Readings in Dis­
tributed Artificial Intelligence. Morgan-Kaufmann, San
Mateo, Calif. (1988).

[7] D. D. Woods. Cognitive technologies: the design of
joint human-machine cognitive systems. AI Mag. 6(4),
86-92 (1986).

[8] G. Fischer. Cognitive view of reuse and redesign. IEEE
Software 4(4),60-72 (1987).

[9] D. McCracken. Man + computer: a new symbiosis.
Commun. ACM 22(11),587-588 (1979).

[10) M. Kay. The proper place of men and machines in
language translation. Technical Report CSL-80-11,
Xerox Palo Alto Research Center (1980).

[II] A. B. Chambers and D. C. Nagel. Pilots of the future:
human or computer? Commun. ACM 28(11),1187-119
(1985).

[12] R. G. Smith. On the development of commercial expert
systems. AI Mag. 5(3), 61-73 (1984).

[13] M. Stelzner and M. D. Williams. The evolution of in­
terface requirements for expert systems. Expert Systems:
The User Interface (1. A. Hendler, Ed.), pp. 285-306,
Chap. 12. Ablex, Norwood, New Jersey (1988).

[14] J. R. Carbonell. Al in CAl: an artificial-intelligence
approach to computer-assisted instruction. IEEE Trans
Man Machine Systems. MMS-ll(4), (1970).

[15] G. Fischer, A. C. Lemke and T. Schwab. Knowledge­
based help systems. Human Factors in Computing Sys­
tems, CHJ'85 Conf Proc, San Francisco, pp. 161·167.
ACM. New York (1985).

[16] L. A. Suchman. Plans and Situated Actions. Cambridge
University Press, New York (1987).

[17] E. L. Wiener. Cockpit automation. Human FaclOrs in
Aciation (F. L. Wiener and D. C. NagaI, Eds), pp.
433--461. Academic Press, San Diego (1988).

[18] G. Fischer and A. C. Lemke. Construction kits and
design environments: steps toward human problem-do­
main communication. Human-Computer Interaction
3(3), 179-222 (1988).

[19] E. L. Hutchins, J. D. Hollan and D. A. Norman. Direct
manipUlation interfaces. User Centered System Design,
New Perspectil'es on Human-Computer Interaction
(D. A. Norman and S. W. Draper, Eds), pp. 87·124.
Chap. 5. Lawrence Erlbaum, Hillsdale (1986).

[20] T. Winograd and F. Flores. Understanding Computers
and Cognition: A New Foundation for Design. Ablex,
Norwood, New Jersey (1986).

[21] M. J. Bates and R. J. Bobrow. Natural language
interfaces: what's here, what's coming and who needs
it. Artificial Intelligence Applications for Business (W.
Reitman, Ed.), pp. 179-194, Chap. 10. Ablex, Nor­
wood, New Jersey (1984).

[22] G. Robertson, D. McCracken and A. Newell. The
ZaG approach to man-machine communication. Int.
1. Man-·Machine Studies 14,461488 (1981).

[23] G. Fischer and T. Mastaglio. Computer-based critics.
Pro('. Twenty-Second Annual Hawaii Con! on System
Sciences, Vol. III: Decision Support and Knowledge
Based Systems Track. pp. 427·--436. IEEE Computer
Society (1989).

[24] B. Reeves. Finding and choosing the right object in a
large hardware store-an empirical study of coopera­
tive problem solving among humans. Technical Report,
Department of Computer Science, University of Colo­
rado, Boulder (1989).

[25] J. R. Carbonell. Mixed-initiative man--computer in­
structional dialogues. Report 1971, BBN (1970).

[26] J. R. Anderson and B. J. Reiser. The LISP tutor. BYTE
10(4), 159-175 (1985).

[27] J. M. Carroll and J. McKendree. Interface design issues
for advice-giving expert systems. Commun. ACM 30(1).
14 .. 31 (1987).

[28] G. Fischer. A critic for LISP. Proc. 10Th Int. loint Cont
on Artificial Intelligence, Milan, Italy (J. McDermott,
Ed.), pp. 177-184. Morgan-Kaufmann, Los Altos.
Calif. (1987).

[29] G. Fischer and A. Morch. CRACK: a critiquing ap­
proach to cooperative kitchen design. Proc. Int. Con!
on Intelligent Tutoring Systems, Montreal, Canada,
pp. 176-185. ACM, New York (1988).

[30] R. A. Bolt. The Human Interface. Lifetime Learning
Publications, Belmont, Calif. (1984).

[31] G. Fischer, P. W. Foltz, W. Kintsch, H. Nieper-Lemke
and C. Stevens. Personal information systems and
models of human memory. Technical Report, Dept of
Computer Science, University of Colorado (1989).

[32] G. Fischer and H. Nieper-Lemke. HELGON: extend­
ing the retrieval by reformation paradigm. Human
Factors in Computing Systems, CHJ'89 Con! Pro('.
Austin, Texas, pp. 357·362. ACM, New York (1989).

[33] M. D. Williams, What makes RABBIT Run? Int. 1.
Man-Machine Studies 21, 333··352 (1984).

[34] F. G. Halasz. Reflections on notecards: seven issues for
the next generation of hypermedia systems. Commun.
ACM 31(7),836-852 (1988).

[35] P. W. Foltz and W. Kintsch. An empirical study of
retrieval by reformulation on HELGON. Mental Mod­
els and User-Centered Design (A. A. Turner, Ed.).
Workshop Report (Breckenridge. CO), Institute of
Cognitive Science, University of Colorado, Boulder.
Technical Report No. 88 .. 9, pp. 9-14 (1988).

[36] M. C. Mozer. Inductive information retrieval using
parallel distributed computation. ICS Report 8406,
Institute for Cognitive Science. University of Califor·
nia, San Diego (1984).

[37] L. Brownston, R. Farrel, E. Kant and N. Martin.
Programming Expert Systems in OPS5: An IniroduClion
10 Rule-Based Programming. Addison-Wesley, Read­
ing, Mass. (1985).

[38] B. G. Buchanan and E. H. Shortliffe. Rule-Based
Expert Systems: The MYCIN Experiments olthe Stan­
ford Heuristic Programming Project. Addison-Wesley.
Reading, Mass. (1984).

[39] G. Fischer, R. McCall and A. Morch. Design
environments for constructive and argumentative
design. Human Factors in Computing Systems, CHJ'89
Cant Proc., Austin, Texas. pp. 269-275. ACM, New
York (1989).

[40] J. H. Walker. Supporting document development with
Concordia. IEEE Comput. 21(1), 48·59 (1988).

36 GERHARD FISCHER

[41] J. H. Walker. Document examiner: delivery interface
for hypertext documents. Hypertext' 87 Papers, Univer­
sity of North Carolina, Chapel Hill, pp. 307-323 (1987).

[42] G. Fischer and C. Stevens. Volunteering information­
enhancing the communication capabilities of knowl­
edge-based systems. Proc. INTERACT'87, 2nd IFfP
Con(on Human-Computer Interaction (Stuttgart,
FR.G.) (H.-J. Bullinger and B. Shackel, &is),
pp. 965--971. North-Holland, Amsterdam (1987).

[43] G. Fischer, A. C. Lemke, T. Mastaglio and A. Morch.
Using critics to empower users. Human Factors in
Computing Sl'stems, CHJ'90Conf Proc., Seattle, WA,
ACM, New York (1990).

[44] G, Fischer and C. Stevens. Information access in
complex, poorly structured information spaces. Tech­
nical Report, Department of Computer Science,
University of Colorado (1990),

[45J S, Mannes and W. Kintsch. Planning routine comput­
ing tasks: understanding what to do. Technical Report
89-8, Institute of Cognitive Science, University of
Colorado (1989),

[46] G. Fischer, R. McCall and A, Morch, JANUS:
integrating hypertext with a knowledge-based design
environment. Proc. Hypertext'89, ACM, New York,
pp. 105-117 (1989)

