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Abstract-Despite lip service that "most knowledge-based systems are intended to be of assistance to 
human endeavor and are almost never intended to be autonomous agents", knowledge-based systems 
research has not been focused enough on the nature and the requirements of cooperative problem solving 
systems. 

The emphasis of our work is on creating computer systems to facilitate the cooperation between a 
human and a computer. Cooperation requires more from a system than having a nice user interface or 
supporting natural language dialogs. One needs a richer theory of problem solving, which analyzes the 
functions of shared representations, mixed-initiative dialogs, argumentation and management of trouble. 

Our evolving theoretical framework for this approach has led to a number of prototypical systems 
developments which serve as vehicles for future research. Examination of these systems provides evidence 
that learning and effective problem solving can be improved through the use of cooperative problem 
solving systems. 
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1. THE NEW LOOK OF ARTIFICIAL 
INTELLIGENCE 

Our goal is to establish the conceptual foundations 
for using the computational power that is or will be 
available in computer systems towards the goal of 
creating cooperative problem solving systems. We 
believe that artificial intelligence methodologies and 
technologies provide the unique opportunity to 
improve productivity by addressing, rather than 
ignoring, human needs and potentiaL In the spirit of 
Einstein's remark" My pencil is clet'erer than [", we 
are building systems which augment and amplify 
human intelligence in problem solving, decision 
making and information management rather than 
replacing it. 

Traditionally, the most widely understood goal of 
artificial intelligence has been to understand and 
build autonomous, intelligent, thinking machines. We 
believe with a number of other researchers that a 
more important goal is to understand and build 
interactive knowledge media [l) or cooperative prob­
lem solving systems [2-4). 

Cooperative problem solving in our approach 
refers to the cooperation between a human and a 
computer (see Fig. I). On the one hand, it shares a 
large number of research issues with two related 
research areas, namely Computer Supported Coopera­
tive Work (CSCW) (5), which refers to cooperation 
between humans mediated by computer and 
Distributed Arti{iciallntelligence (6), which refers to a 
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cooperation between computer systems. On the other 
hand, it poses a number of unique challenging 
problems as they occur in a large number of joint 
human--computer systems (7). 

This paper discusses the differences between tradi­
tional expert systems and cooperative problem solv­
ing systems, analyzes the special requirements of 
cooperative problem solving systems and defines a 
theoretical framework for these systems. It describes 
a number of prototypical system developments, each 
addressing a different aspect of cooperative problem 
solving. HELGON is an information access tool which 
supports cooperative problem solving by helping 
users to specify their goals incrementally. The SyS­
TEMS' ASSISTANT allows users to volunteer informa­
tion in support of mixed-initiative dialogs. JANUS is a 
design environment which integrates constructive and 
argumentative design. 

2. COOPERATIVE PROBLEM SOLVING 
SYSTEMS vs EXPERT SYSTEMS 

The major difference between classical expert sys­
tems (such as MYCIN and R-J) and cooperative prob­
lem solving systems is that the human is much more 
an active agent and participant. Traditional expert 
systems asked the user many questions and then 
returned an answer. In a cooperative problem solving 
system the user and the system share the problem 
solving and decision making and different role distri­
butions may be chosen depending on the user's 
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Fig. I. Cooperative systems. To achieve a task, different 
systems' architecture are possible, ranging from manual 
(everything is done by the human) to completely automatic 
(everything is done by the computer). Cooperative systems 
explore different role distributions between the two oppos-

ing ends. 

knowledge, the user's goals and the task domain. A 
cooperative system requires much richer communica­
tion facilities than the ones which were offered by 
traditional expert systems. It raises two important 
questions: 

• What part of the responsibility still has to be 
exercised by human beings? 

• How do we organize things so that the intelligent 
part of the automatic system can communicate 
effectively with the human part of the intelligent 
system? 

The two types of systems can be characterized and 
differentiated along the following issues: 

Partial understanding and knowledge of complex 
task domains·····The interaction paradigms for dealing 
with complex infonnation stores (e,g. high-function­
ality computer systems such as LIsp machines con­
taining tens of thousands of objects and tools [8]) 
have often been based on the unfounded assumption 
that people using these systems approach them with 
a precisely described task. But in most problem-solv­
ing and information retrieval tasks, the articulation 
of a precise task is the most difficult problem. Users 
of such systems suffer from a lack of knowledge 
about the interdependencies between problem articu­
lation and specification, and of knowledge about the 
tools that exist for solving these problems. Ignorant 
of these mappings. users are unable to develop a 
complete specification of what they want; specifica­
tions must be constructed incrementally. 

The communication requirements for these systems 
must allow that a question can be phrased in a variety 
of ways. Novices cannot ask questions about knowl-

edge that they do not know exists, and they may not 
be able to articulate their questions without the help 
of the expert. They ask many questions initially at a 
very general level, and a good deal of dialogue must 
occur before the communicators attain sufficient level 
of specificity. 

The failure of autonomous approaches-Coopera­
tive systems are based on a successful combination of 
human skills and computing power in carrying out a 
task which cannot be done either by the human or by 
the computer alone. We illustrate our conception of 
cooperative systems by giving examples in domains 
where autonomous systems have failed: 

• Computerized axial tomography (CAT scanning 
[9]) is based on a cooperation between doctor 
and computer. The necessary inverse Fourier 
transfonnations involve an immense amount of 
computation and cannot be done without the 
help of a computer-and the interpretation of 
the data requires discrimination between subtle 
differences in density which is beyond current 
capabilities in image processing. 

• Kay (10) proposes a symbiotic machine transla­
tion system that is always under the tight control 
of translators. The system is there to help in­
crease their productivity and not to supplant 
them. The fully automatic approach has failed 
badly in the past. 

• In aircraft automation [II) two different models 
are under investigation: the pilot's assistant and 
the electronic copilot which can be differentiated 
along the separation of tasks and control be­
tween humans and machine. 

Two agents can achieve more than one-Coopera­
tive problem solving systems consisting of a human 
and a computer can exploit the asymmetry of the two 
communication partners. Humans can contribute 
what they can do best (e.g. use of common sense, goal 
definition, decomposition into subproblems, etc.), 
whereas the computer should be used for what it is 
good for (e.g. external memory support, consistency 
maintenance, hiding irrelevant infonnation, intelli­
gent summarizing, visualization support, etc.). 

Breakdowns in cooperative problem solving systems 
are not as detrimental as in expert systems-Effective 
assistance is a collaborative effort in which advisor 
and client work together to detect and repair troubles 
that arise. 

One can never anticipate or "design away" all of 
the misunderstandings and problems that might arise 
during the use of these systems. We need to recognize 
and develop system resources for dealing with the 
unexpected. The problem is not that communicative 
trouble arises that does not arise in human-to-human 
communication, but rather than when these in­
evitable troubles do arise, there are not the same 
resources available for their detection and repair. A 
cooperative agent needs to understand the nature of 
open problems, the intentions of the problem solver, 
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and the fact that goals are often modified during a 
problem solving process. 

Background assumptions do not need to be fully 
articulated---We need a better understanding of the 
possibilities and limitations of expert systems re­
search. We have to define the characteristics for 
problems which are suitable for expert systems re­
search to generate realistic expectations. When we 
talk of a human expert, we mean someone whose 
depth of understanding serves not only to solve 
specific well-formulated problems, but also to put 
them in a larger context. The nature of expertise 
consists not only in solving a problem or explaining 
the results (which some expert systems can do to 
some extent), but of learning incrementally and re­
structuring one's knowledge, of breaking rules, of 
determining the relevance of something and of de­
grading gracefully if a problem is not within the core 
of the expertise. 

Semi~formal system architectures are appropriate­
Semi-formal systems do not require that the com­
puter can interpret all information structures, but it 
may serve only as a delivery system of information to 
be read and interpreted by the human. Semi-formal 
systems (which are also studied in computer-sup­
ported cooperative work) can be used more exten­
sively in cooperative systems than in expert systems 
and will play a large role in the design of effective 
joint human-computer systems. 

Humans enjoy "doing" and "deciding"-In many 
situations, humans enjoy the process-not just the 
product: they want to take part in something. This is 
why they build model trains, why they plan their 
vacation and why they design their own kitchen. 
Automation is a two-sided sword. At one extreme, it 
can be regarded as a servant, relieving humans of the 
tedium of low-level control operations, freeing them 
for higher cognitive functions. At the other extreme 
it is viewed as reducing the status of humans to 
"button pushers." and stripping work of its meaning 
and satisfaction. 

3. REQUIREMENTS FOR COOPERATIVE 
PROBLEM SOLVING SYSTEMS 

3.1. Beyond user interfaces 

Effective human-computer communication is more 
than creating attractive displays on a computer 
screen: it requires providing the computer with a 
considerable body of knowledge about the world, 
about users and about communication processes. 
This is not to say that the user interface is not of 
crucial importance to knowledge-based systems. 
Analysis of expert systems, e.g. of the DIPMETER 
advisor [12), has shown that that the acceptance and 
real use of expert systems depends on far more than 
a knowledge base and an inference engine. The 
developers examined the relative amount of code 
devoted to different functions of DIPMETER and found 

that the user interface portion was 42% compared to 
8% for the inference engine and 22% for the knowl­
edge base. Similar data is reported for commercial 
knowledge-based system tools (e.g. in Intellicorp's 
tools, 55-60% of the code is interface related [13)). A 
good user interface is important for two groups: for 
the developers of knowledge-based systems and for 
the end-user of these systems. 

The communication requirements are even more 
important for cooperative problem solving systems. 
Because the user is actively involved in the problem 
solving and decision making process, there is an 
increased necessity for the interface to support the 
task at a level that is comprehensible by the user. In 
order for a knowledge-based system to support coop­
erative problem solving, the following components 
dependent critically on each other: 

• The structure of the knowledge and problem 
solving system itself-how does a system repre­
sent its problem solving activity and retrieves the 
relevant portion appropriately in response to 
user queries. 

• The generation of views of this knowledge which 
corresponds to the needs and the knowledge of 
the user; in order to do so, a system must contain 
a model of the user. 

• The external presentation of this knowledge on 
the screen; it is this part which is mostly (ex­
plicitly or implicitly) associated with user inter­
face research. 

3.2. Mixed-initiative dialogs 

Despite the fact that communication capabilities 
such as mixed-initiath'e dialogs [14) have been found 
to be crucial for intelligent systems, the progress to 
achieve them has been rather modest. 

One model frequently used in human-computer 
systems (e.g. MYCIN) is the consultation model. From 
an engineering point of view, it has the advantage of 
being clear and simple: the program controls the 
dialog (much as a human consultant does) by asking 
for specific items of data about the problem at hand. 
The disadvantages are that it prevents the user from 
volunteering relevant data and it sets up the program 
as an "expert", leaving the user in the undesirable 
position of asking a machine for help. Mixed-initia­
tive dialogs must support information volunteering 
by the system as well as by the user. 

Information t'Olunteering by the user---Real users of 
expert systems are not data entry clerks. Being able 
to volunteer information, users of a knowledge-based 
system are no longer at the mercy of an unseen 
reasoning component that dictates the order in which 
information is absorbed by the system. When com­
bined with a data-driven rule base, users are offered 
an opportunity to actirely use a system and direct it 
according to their goals. The SYSTEMS' ASSISTANT (see 
Section 5.2) is a system which allows the user to 
volunteer information [42). 
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Information t'Olunteering by the system-Humans 
often learn by receiving answers to questions which 
they have never posed or which they were unable to 
pose. To ask a question, one must know how to ask 
it, and one cannot ask questions about knowledge 
whose existence is unknown. We have developed 
programs (e.g. the active help system ACTIVIST [15) 
and critic systems (see Section 5.3», which volunteer 
information and support the acquisition of informa­
tion by chance. ACTIVIST looks a user (working with 
an editor) "over the shoulder", infers from user 
actions the plan which the user wants to achieve and 
compares it with its own plan. Information about the 
conjectured knowledge is stored in the model of the 
user. A separate tutoring module decides when to 
offer to help and advice. 

3.3. Knowledge requirements 

Shared understanding-To increase the mutual in­
telligibility between agents in cooperative problem 
solving requires a deeper understanding of the recip­
rocal recognizability of plans, enabled by common 
conventions for the expression of intent, and shared 
knowledge about typical situations and appropriate 
actions [16). For example, taking aviation as an 
example [17): the notion that human operators should 
inform the system of their intentions, or goals, may 
seem simple, but it is a capability noticeably and 
perhaps dangerously lacking in most present-day 
automatic systems. Goal sharing (also called "intent­
driven systems") would first require that the crew 
make its intentions known ("here's what we want to 
do"), and then allow the computer to check crew 
inputs and system outputs to see if they are logically 
consistent with the overall (strategic) plan. The au­
tomation (e.g. the digital flight guidance system or 
long-range navigators) uncritically accepts inputs and 
has no capability for checking their overall consis­
tency with any understood goal (a capability such as 
this might have saved KAL Flight 0007). Likewise, 
goal sharing may have prevented some of the dra­
matic fuel incidences that have occurred in recent 
years. 

The relerance of human problem -domain communi­
cation~--Many current knowledge-based systems use 
knowledge representations at a too low level of 
abstraction. This makes both system design and 
explanation difficult, since the system designer has to 
transform the problem into a low-level implementa­
tion language and explanation requires translating 
back to the problem level. Cooperative problem 
solving systems must have knowledge about 
task domains. To create powerful tools for the 
humans, we must "teach" the computer the 
languages of application domains. Systems with 
abstract operations and objects of a domain built into 
them give the impression of human problem-domain 
communication [18) rather than human--computer 
communication. Human problem-domain com­
munication reduces the cognitive transformation 

distance between problem-oriented and system­
oriented descriptions [19). 

3.4. Beyond natural language: natural communication 

Natural communication is more than the ability to 
communicate in natural language. It is the ability to 
engage in a dialog and when humans (e.g. a novice 
and an expert) communicate much more goes on than 
just the request for factual information. Novices may 
not be able to articulate their questions without the 
help of the expert, the advice given by the expert may 
not be understood and/or the advisee may request an 
explanation of it; each communication partner may 
hypothesize that the other partner misunderstood 
him/her or they may provide information which they 
were not explicitly asked for. 

Responsible proponents of natural language inter­
action acknowledge that current programs cannot 
understand language in a significant sense [20). This 
does not rule out the use of natural language inter­
faces because many practical applications (e.g. access 
to databases) do not demand deep understanding. 
The practicality of limited natural language systems 
is still an open question. Since the nature of the 
queries is limited by the formal structure of the data 
base, it may well be more efficient for a person to 
learn a specialized formal language designed for that 
purpose, rather than learning through experience just 
which natural language sentences are and are not 
accepted. The habitability [21) of a system (which 
measures how quickly and comfortably a user can 
recognize and adapt to the system's limitation) is a 
critical issue which needs to be studied empirically in 
realistic situations. 

These dynamics of cooperative problem solving 
indicate why natural language interfaces to databases 
do not solve the critical problem of access to informa­
tion. Studies (e.g. [4)) have provided evidence that a 
natural language front-end is a fallacy. Current natu­
ral language interfaces support the translation of a 
fully articulated query from natural language into a 
formal query language, but they do not assist users 
who are unable to describe precisely what they want 
at the beginning of an information-seeking process. 

Based on the fact that there exists an asymmetry 
between human and computer, the design of the 
interface is not only a problem of simulating human­
to-human communication but of engineering alterna­
tives to interaction related properties. We do not have 
to use natural language for every application; some 
researchers claim that, in many cases, it is not the 
preferred mode of communication [21, 22). In natural 
language interfaces, the computer is the listener and 
the human the speaker. The listener's role is always 
more difficult, because he/she has to understand a 
problem based on the speaker's description. Our 
work has been primarily guided by the belief, that it 
is the user that is more intelligent and can be directed 
into a particular context. This implies that the essence 
of user-interface design is to provide users with 
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appropriate cues. Windows, menus, spreadsheets and 
so on provide a context (making the machine the 
speaker and the human the listener) that allows the 
user's intelligence to keep choosing the next step. 

3.5. Models of the communication partner 

Cooperative problem solving systems require that 
users have models of the systems with which they 
interact and systems have models of their users. The 
later model is needed to provide explanations and 
differential descriptions. Explanations need to be 
given at the right level of detail and with the right 
level of assumed shared understanding about the 
other agent's knowledge. Differential descriptions 
(describing something by relying on the basic 
paradigm "x is equal to y, except. ... ") is a powerful 
paradigm (demonstrated in the programming world 
with object-oriented inheritance hierarchies). 

3.6. Beyond "one-shot" affairs 

Even with good models of users, cooperative prob­
lem solving systems cannot be restricted to "one­
shot" affairs. One cannot always be right the first 
time and one cannot guarantee that an advice or 
criticism is understood. The HELGON system (see 
Section 5.1) is built on the basic assumption that 
users do not always have well-formulated goals to 
start with, but that these goals are constructed incre­
mentally in a cooperative fashion. 

Cooperative problem solving systems support the 
incremental construction of queries and goals, 
whereas expert systems require a complete specifica­
tion in order that they are able to solve a problem. 

3.7. Empirical studies 

A careful assessment of the systems that we have 
built over the last decade (e.g. critics [23] and active 
and passive help system [IS]) has shown that they fall 
short of supporting real cooperative problem solving. 
In order to obtain a deeper understanding of cooper­
ative problem solving, we have designed and carried 
out an empirical study of a high-functionality system, 
namely the McGuckin hardware store in Boulder 
(which offers more than 300,000 items) and the 
cooperative problem solving between customers and 
sales agents. Details of these studies are contained in 
[24]-the most important findings are summarized 
here briefly. 

• Incremental query specification-Frequently cus­
tomers did not know what they really needed 
and did not know how their problems could be 
mapped onto the items which the store offers. 
Their queries were constructed incrementally 
through a cooperative problem solving process 
between a customer and a sales agent. 

• From natural language to natural communica­
lion--PeopJe rarely spoke in complete, gram­
matical sentences, yet managed to communicate 
in a natural way. This observation clearly indi-
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cates that the support of natural communication 
(which allows for breakdowns, follow-up ques­
tions, clarifying dialogues, explanations, etc.) is 
much more important than being able to parse 
complex syntactic sentences. 

• Mixed-initiatit'e dialogs-People are flexible in 
the roles they play during a problem solving 
episode. They easily switch from asking to ex­
plaining, from learning to teaching. The struc­
ture of these dialogs were neither determined by 
the customer nor by the sales agent, but clearly 
indicated mixed initiatives [25] determined by the 
specifics of the joint problem solving effort. 

• Multiple specification techniques-We observed 
a great variety of different specification tech­
niques ranging from bringing in a broken part to 
very general request such as "I need a lock for 
my doors that reduces my insurance rate". 

• Management of trouble-Many breakdowns and 
misunderstandings occurred during the observed 
problem solving episodes. But in almost all 
cases, clarifying dialogs allowed their recovery, 
illustrating the important feature that problem 
solving among humans cannot be characterized 
by the absence of trouble, but by the identifica­
tion and repair of breakdowns (the major contri­
bution of the research work of [16] was to clearly 
identify this issue). 

• User modeling-The study made it evident that 
user modeling plays a crucial role in identifying 
the right level of shared understanding and 
providing the appropriate level of explanation 
and help. 

The state of the art with respect to complex 
computer systems can be characterized by saying 
"High-functionality computer systems offer the same 
broad functionality as large hardware stores, but they 
are operated like department stores", i.e. what is 
missing for them is the cooperative support of know­
ledgeable sales agents. 

4. A THEORETICAL FRAMEWORK FOR 
COOPERATIVE PROBLEM 

SOL VING SYSTEMS 

4. J. A taxonomy of cooperative problem solving 
systems 

Humans and computers play different roles in 
cooperative problem solving processes. Within a co­
operative problem solving system, the computer can 
play different roles. It can be a tutor [26], a suggestor 
[18], an advisor [27] or a critic [28,29, 43J. 

In our work we have concentrated on critics [23]. 
Computer-based critics are a paradigm for intelligent 
human-computer communication which overcomes a 
number of limitations of other approaches (such as 
tutoring and advising). Critics are much more user­
centered and support users in their own doing. They 
allow users to do whatever they want and interrupt 
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only when the user's plans, actions or products are 
considered significantly inferior. They are applicable 
in situations where users have some basic competence 
in carrying out a task, because users must be able to 
generate a plan, action or product by themselves. 
They are most useful in domains where no unique 
best solution exists but where trade-offs have to be 
carefully balanced. 

4.2. Speaker us listener role 

Based on the asymmetry between human and com­
puter, the design of the communication between 
humans and computers is a problem not only of 
simulating human-to-human communication but of 
engineering alternatives in the domain of interaction­
related properties [30). Natural language should not 
be used for every application; in many cases it is not 
the preferred mode of communication (21). 

Communication can be described in terms of the 
speaker and the listener roles. The speaker presents 
information (e.g. in the form of a question or as a 
request for action) which the listener tries to under­
stand. It is often difficult to determine which role suits 
which agent best. We have argued that the listener 
role is always the more difficult one, because the 
listener has to understand the problem based on the 
speaker's description. 

Natural language interfaces are desirable, because 
the human is the speaker and can talk in her/his terms 
about a problem. Unfortunately this kind of natural 
language interface does not exist. The user is either 
forced to answer questions in simple terms or to learn 
to adapt to the limited natural language understand­
ing capabilities of the system. In form-based systems, 
the system has the role of the speaker and it shows 
its understanding of the world to the user. Our work 
has been primarily guided by the belief that the user 
is more intelligent and can be directed into a partic­
ular context; this is why most of our interfaces are 
based on a world-model of computation rather than 
on a conversational model (19). 

The different role distributions are illustrated in the 
context of the HELGON system (see Section 5.1). 
Specifying retrieval cues is often difficult because 
users don't know exactly the term which is to be used. 
Using examples as cues is one way in which informa­
tion can be retrieved. But if the users know exactly 
what they want, they can ask for it directly, and there 
is no need to bother with examples. HELGON thus 
supports two modes of operation: users can be in the 

User in listener role: 

listener role, learning from the system what sort of 
questions they can ask, or in the speaker role, asking 
the system for what they want. Figure 2 lists some of 
the advantages and disadvantages associated with 
either role. 

4.3. Situation us system model 

The situation model (31) is a mental representation 
of the situation as the user sees it, including the 
problems motivating a task. general ideas for finding 
a solution, and a characterization of the desired goal 
state. The system model consists of a set of operations 
that, when invoked, will result in the desired solution. 
These operations must all be within the repertory of 
the system; that is, for each operation there must exist 
one or more commands, depending upon context, to 
execute it. At the level of the situation model, goals 
refer to actions and states in the user's problem space 
and are articulated in terms of what we want. Goals 
may be precise or imprecise, but the important point 
is that they are not necessarily structured or named 
according to the system. It is subjective and varies 
somewhat among individuals. 

In order to get something done on a computer 
system, however, the user's situation model must be 
transformed into a system model, which is normative 
and system specific. Our question has been, how, for 
a variety of tasks in which information management 
plays a central role this transformation from situation 
model to system model is achieved, and what system 
support can be provided for it. 

In Fig. 3 several different approaches to bridging 
the gap between the situation and system model are 
outlined: 

• (I) illustrates the normal situation, where there 
is no support to bridging this gap. In this case, 
people frequently have difficulties in solving 
problems or finding information, because they 
are unable to generate an effective system model, 
even if they have a clear understanding of the 
situation involved. 

• In (2), a new system model is constructed which 
is closer to an individual's situation model and 
hence easier to understand (44). 

• In (3) (which represents the HELGON approach 
(32)), we attempt to let users bring their situation 
model closer to the system model by making the 
relevant features of the latter more transparent: 
e.g. in HELGON information retrieval starts with 

• Specification of information: Clicking at information displayed on the screen. 
• Advantage: Only terms that the system knows can be used. 
• Disadvantage: The information has to be on the screen. 

User in speaker role: 
• Specification of information: Keyboard input. 
• Advantage: Users can type in values they know right from the beginning. 
• Disadvantage: Users may use terms the system does not know. 

Fig. 2. Speaker vs listener role. 
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Fig. 3. Situation vs system model. 

a query which is fonnulated at the level of the 
situation model, but is then incrementally refor­
mulated into the system model. How an initial 
query stated in situation model tenns is trans­
formed into a query the system can actually 
understand in HELGON is illustrated in Section 
5.l. 

• In (4), a knowledge-based agent translates a 
request in the situation model into the system 
model [45]. 

• Finally, (5) is another nonnal case, where users 
are trained to express themselves in the system 
model. This is the expert case, where the user's 
situation model already takes into account the 
constraints of the system. 

5. PROTOTYPICAL SYSTEM 
DEVELOPMENTS TOWARDS COOPERATIVE 

PROBLEM SOLVING SYSTEMS 

5.1. HELGON: nell' approaches to information access 

People who attempt to use a complex infonnation 
store on a computer encounter a number of prob­
lems. They do not know what infonnation exists or 
how to find information. they get no support in 
articulating a question. and they are unable to phrase 
their question in tenns that the system understands. 
HELGON. an intelligent environment that supports 
limited cooperative problem solving. helps people 
deal with complex information stores. HELGON sup­
ports retrieval and editing by refonnulation with 
multiple specification techniques. and it acquaints the 
user with the system model of the infonnation store. 
HELGON can also be seen as a new tool for knowledge 
utili=ation which also knowledge editing. 

5.1.1. The conceptual framework behind HELGON. 

Retrieral by reformulation··-··HELGON [32J is based on 
the paradigm of retrieval by refonnulation [33], 

which was derived from a theory of human remem­
bering. This theory postulates that people naturally 
think about categories of things not in tenns of 
fonnal attributes but in tenns of examples. HELGON 
supports the incremental description of a desired 
object with multiple specification techniques. Systems 
that support retrieval by refonnulation are coopera­
tive in the sense that after users give an initial 
description, the system responds with an indication of 
its understanding by displaying example items from 
the knowledge base that match this description. Users 
then refine their description based on this feedback 
until a suitable item is found or until the absence of 
such an item is established. 

Situation model and system model in HELGON­

Many current infonnation stores (e.g. help systems) 
are oriented toward the system rather than toward 
the user. That is, infonnation is structured around a 
description of the system, not around an analysis of 
the problems users address when using the system. 
For example, a shortcoming of many existing 
infonnation stores is that access is by implementation 
unit (e.g. LISP function, UNIX command) rather than 
by application goal on the task level. 

The successful use of a complex infonnation store 
requires that the goals expressed in the situation 
model be translated in tenns of the system model (see 
Fig. 4). HELGON'S approach to solving this problem 
is to make the system model more obvious to the user 
by providing support tools for easy access to the 
'"world" of the system. 

5.1.2. Retrieval by reformulation in HELGON. The 
query is initialized with the root node of the category 
hierarchy. The list of items matching the query is 
shown in the Matching Items pane, and one of the 
matching items is shown in the Example of the 
Matching Items pane (see Fig. 5). The query consists 
of categories and attribute restrictions associated 
with the categories. Categories as weIJ as attribute 
values can be either "required" or "prohibited." The 
user does this by selecting them from the screen or a 
menu of alternative values or by typing them in on 
the keyboard. When the user makes additions to the 
query through input on the keyboard, only useful 
values, that is, values that exist in the knowledge 
base, are accepted. This prevents the user from 
imposing a restriction that would by itself lead to no 
matching items (e.g. because of a typographical 
error). The system gives help by completing partial 
input automatically if it is unique or by listing all 
possibilities that contain the current input as a sub­
string. 

Users can create the query top-down by selecting 
from the category hierarchy display the category that 
is expected to contain the desired information. But 
users may not know in what category the infonnation 
is stored. Therefore, they can also work bottom-up by 
criticizing the example. A problem of this approach 
is that, in a large infonnation space, the example 
given might be too far away from the desired 
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Fig. 4. Situation model vs system model. 

information. MUltiple specification techniques, e.g. 
first narrowing down the information space by select­
ing catego ries, then continuing by criticizing exam­
ples, are therefore important in dealing with complex 
info rmati on stores. 

VisualizaTion of The informaTion s(()re- It is well­
kn own tha t users become disoriented in la rge infor­
mation stores [34]. HELGON allows therefore to 
display the structure of the underlying information 
store, i.e. a hierarchy of categories, graphically. Once 
users have found a category that seems likely to hold 
the information they are looking for, they can add it 
to the query with a mouse click. They can also use the 
gra phical display to edit the underlying structure of 
the informa tion store (e.g. new subcategories can be 
created). 

8rmrsinR ,--ln addition to assisting the user in 
defining a query. HELGON supports browsing in the 
information store. The graphical category hierarchy 
display can be used to browse categories. Links 

within the information units can be followed , that is, 
items that appear as attribute values of other items 
(displayed in bold face) can be inspected. And items 
tha t users looked up previously are added to the 
Bookmarks of Items and allow users to return easily 
to previous states of their information search. 

Editing by reformulation-HELGON is not just a 
tool for viewing information- one of the sho rt­
comings we identified with the RABBIT and ARGON 
systems. It allows users to edit information and 
integrates the creation of new knowledge base items 
with the retrieval by reformulation paradigm. Users 
can thereby take advantage of the context created by 
an information search to editing without having to 
switch to the KANDOR level. They first use retrieval by 
reformula tion to find an item tha t is similar to the 
new one, copy it , and use it as a template. [n this way, 
they know which categories and attributes are reason­
a ble to use; and because they see examples, they 
better understand what a category or attribute means. 
Va lues can often be reused , or they can be selected 
from a list of alternative values. They ca n also be 
typed in on the keyboard, a feature providing the 
same support (automatic completion , etc.) as it does 
in the formulation of a query. The query specification 
itself, which contains concepts used in the description 
of the information store, can also be transformed into 
a new item. 

Evaluation-HELGON has been a joint research 
effort combining innovative system design and 

Fig. 5. Literature references in H ElGO!'> . 
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cognitive theory. An empirical evaluation of the 
infonnation retrieval component of an earlier version 
of HELGOl'> showed (for details see [35)) that: 

• Subjects wanted to directly enter information 
they knew from the beginning because finding 
the right example to be criticized can be tedious. 
This capability was therefore incorporated in a 
later version of HELGON. 

• Subjects had problems understanding the terms 
used in the information store. 

• Subjects had problems with the hierarchical or­
ganization of the information store. 

These findings suggest extensions for future ver­
sions of HELGO!'>. An explanation component describ­
ing the terms used can be added to increase users' 
understanding of the system model. We are also 
experimenting with an inducth'e retrieval algorithm, 
which returns a set of items that match the query to 
varying degrees [36). Including spreading activation 
in the system implies that a larger portion of the task 
is shifted to the system. 

5.2. SYSTEMS' ASSISTANT: supporting mixed initiative 
dialogs 

One of the major stumbling blocks in the successful 
use of knowledge-based systems is the general feeling 
of apathy with which many of these systems are met 
by the users. Much of the refusal to utilize systems 
such as MYCIN stems from the fact that users, who 
often think of themselves as experts, feel that the 
system is telling them what to do. The system asks 
questions which the user answers. The system then 
decides, by some hidden mechanism, if it needs more 
information or is going to give the user advice. At no 
time are the users afforded the opportunity to make 
their observations known to the computer. They are 
simply allowed to answer the questions put to them­
a role which most humans do not experience as very 
satisfying. An expert who is knowledgeable about a 
domain wants to take an actil'e role in the process of 
deciding what actions should be taken. While cooper­
ative advice or criticism from a computer is welcome, 
the typical knowledge-based system that forces a 
particular format of discussion upon the user is not. 
In this section, we will describe several versions of 
a knowledge-based system which assist users in 
rebooting a computer [42). The initial version, called 
REBOOTER was a MYCIN-style expert system which 
turned out to be behaviorally unacceptable and led to 
the development of SYSTEMS' ASSISTANT. 

5.2.1. REBOOTER. Problem description-REBooTER 
is a knowledge-based system which allows users to 
reboot a PYRAMID 90x computer after it has crashed. 
It has a set of predetermined tasks which drive it to 
ask for certain pertinent information. If the user-goal 
is to reboot the machine, REBOOTER first tries to get 
the machine running. When a certain state has been 
reached, the system will instantiate the task to boot 
the machine into single-user mode, and finally into 

multi-user mode. This process consists of five major 
tasks which are the initial status check (is the power 
on and can you log in), error recording, booting, 
file-system checking and bringing the machine into 
multi-user mode. A sample session with REBOOTER is 
described in Fig. 6. 

The initial status, error recording, file-system 
checking and multi-user tasks are rule sets that ask 
basic questions (e.g. are there any error messages on 
the console?) or require simple actions (e.g. please 
record any error messages in the log book). Inside the 
booting task are a number of sub-tasks. This is where 
the interesting rules reside and the data-driven 
paradigm is put to the test. The rules here help users 
determine what causes the failure. While automatic 
rebooting options are available, they are not able to 
deal with problems like hardware failures and seri­
ous file system errors. In these cases the machine will 
fail its attempts at reboot or will simply tell the 
operator that file system checking must be done 
manually. Unfortunately, experience shows that these 
conditions occur more often than we would like. 
Rebooting a computer, especially if the person is not 
totally familiar with it, is a non-trivial problem. This 
is demonstrated by the fact that 2-6 months of 
on-the-job training are done by our novice systems 
administrators before they are confident enough to 
reboot machines on their own. The rebooting process 
ranges from the trivial pressing of a couple of keys on 
the console to the complicated task of diagnosing 
hardware failures. REBOOTER, designed specifically to 
help with this process, can significantly reduce the 
complexity of this task. At the same time, it allows 
users to slowly incorporate this intuitive knowledge 
into their own knowledge structures by making them 
familiar with the types of actions necessary to per­
form this task. 

The knowledge base-The knowledge base of the 
REBOOTER, which excludes the user-interface, consists 
of a set of OPS5 production rules [37]. The interfer­
ence mechanism used is forward chaining which leads 
the structure of the rules to be in a task-based, 
data-driven paradigm. The rules themselves decide 
when it is appropriate to switch from one task to 
another. Tasks are instantiated based on what the 
previous tasks were able to find out or accomplish. 
The program has two main modules, domain knowl­
edge and explanation. Each module consists of sev­
eral tasks, and tasks consist of several rules related 
through the domain knowledge they analyze, and 
they comprise a question and answer session that 
guide both the user and REBOOTER through the prob­
lem space. A limited explanation module performs a 
post-analysis on the working memory elements left by 
the session and outputs its results, in the form of 
canned text, to a file which the user can then consult. 

Communication capabilities of REBOOTER-RE­
BOOTER'S user interface is a text-based dialog session 
that runs on traditional CRT terminals. REBOOTER 
presents a series of questions that lead the user 
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INITIAlOUERY: Is the machine's power turned on? «yes/no» yes 
Can you loq on to the machine that is down across the network? «yes/no»no 
Can you loq on to the machine that is down at the console? «yes/no»no 

ERROR RECORDING: Record any error messages that appear on the console. Go to the 
E_Frame by pressing HOME then E. Are there any flashing error codes? 
«yes/no» no 

9OOTING: Go to the System Confiquration Frame (Frame 1) by pressing HOME then 
1. Press b then z to boot the machine and start the CPU. Do the two windows 
at the bottom right corner of the console report that the machine is BOOTED? 
«yes/no» yes 
that the CPU is RUNNING? «yes/no»yes 

SINGlE USER MODE: •••••• 

SET THE DATE: •••••• 

ALE SYSTEM CHECK: •••••• 

MULTI USER MODE: To go into multi_user mode press "0 (control_D) 

Execution halted by rule: multi_user_mode. Would you like an explanation of 
the session? «yes/no»yes 

IF YOU GENERATED AN EXPLANATION IT WILL BE FOUND IN: 
/staff/system/stevens/rebooter/RULETRACE 
THANKS FOR USING REBooTER. MAIL ANY COMMENTS TO CURT. 

Fig. 6. A partial session with REBOOTER. 

through the five major tasks necessary to reboot the 
computer. As the dialogue session progresses, RE­
BooTER' knowledge base evolves through states which 
fire the necessary tasks in each of these five categories. 
A typical session with REBooTER that represents a 
trouble-free reboot is shown in Fig. 6. 

Shortcomings of REBOOTER~REBooTER was put in­
to use by the systems staff for a short period of time 
during which shortcomings in its design became ap­
parent. Observations and discussions with users of the 
system yielded interesting results. While novice users 
are quite comfortable with the system-driven dialog 
paradigm, expert users are quite irritated by it. In 
fact, expert users refused to use the system after their 
first or second experience with it. Discussions with the 
various users clearly indicated that experts do not 
want to be forced into a particular format of discus­
sion with a system, while novices gain confidence in 
their actions through this very same mechanism. 

Similar reactions were observed when the MYCIN 
(38) program was introduced into the medical 
establishment. When experts in a field use a knowl­
edge-based system they need to feel that they have an 
active role in the process of deciding what actions 
should be taken. In REBOOTER, the dialog is com­
pletely system-driven. Users are delegated the tasks of 
answering questions and pushing buttons. MYCIN has 
the very same problem. Users are put in a passive role 
throughout their interaction with the system. 

5.2.2. THE SYSTEMS' ASSISTANT: incorporating 
in/ormation wlunteering. Our solution to this prob-

lem of inflexibility in the communication paradigm is 
the introduction of a mechanism through which the 
user can volunteer information to the system. By 
volunteering information we mean that the user can 
make statements about the domain which are out of 
context with respect to the current conversation 
between user and system. Information volunteering 
allows users to be in the speaker role and focus the 
attention of the system on the information which they 
feel is relevant. The user is no longer just answering 
questions, but taking an active role in deciding what 
the knowledge-based system is reasoning about. The 
system now plays the role of assisting users as 
opposed to directing users and therefore this new 
version of our knowledge-based system is called the 
SYSTEMS' ASSISTANT. 

When a user first starts up a session with the 
SYSTEMS' ASSISTANT the system will always begin by 
asking some basic information about thc PYRAMID in 
question. This information must be known to the 
SYSTEMS' ASSISTANT for it to do any diagnosis or offer 
any assistance. Beyond that point, however, the 
actions which the SYSTEMS' ASSISTANT will take are 
mostly dependent upon the data which the user 
supplies in response to its inquiries. The SYSTEMS' 
ASSISTANT asks a question after which the user re­
sponds with some new data. After reviewing the 
modified state of the data at hand the SYSTEMS' 
ASSISTANT proceeds to suggest some course of 
action which is then carried out by the user. This 
loop continues until the SYSTEMS' ASSISTANT has 
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successfully helped the user reboot the computer. 
However, an experienced systems administrator will 
be able to notice pertinent information long before 
the SYSTEMS' ASSISTANT asks about it. For instance, 
these types of users might quickly notice that the 
ethernet board is sticking an inch further out than the 
rest of the boards in the machine. They would 
certainly come to the conclusion that this might have 
something to do with the machine's problem, and 
therefore want to focus the attention of the SYSTEMS' 
ASSISTANT on that fact. This type of information is 
considered out of context since the SYSTEMS' AssIs­
T ANT is asking questions like IS THE MACHINE'S POWER 
TURNED ON? or DOES THE CONSOLE SA Y THAT THE CPU IS 
RUNNING? If users know something about the system, 
then they should be able to present that information 
to the SYSTEMS' ASSISTANT as soon as it becomes 
apparent. 

The system's knowledge is explicitly represented in 
a world model (see Fig. 7) with which the user 
interacts in a direct manipulation style [19]. 

Users can either ask for general information about 
each of these components or volunteer information 
about them. If users are confused about what an icon 
represents they can ask the system about that icon by 
clicking the mouse on it. At that point the system 
presents the user with a text based explanation about 
the component in question. It also explains some of 
the most common indications that this component is 
damaged and common methods of determining the 
functional state of it. These possibilities give the user 
a window into the "mind" of the SYSTEMS' ASSISTANT 
and provide a well-defined and common basis for 
communication between the user and the system. To 
volunteer information (and change the context in 
which the icons are understood), the users click with 
the mouse on the volunteer information icon. At this 
point a click on any of the machine component icons 
yields a menu of possible facts about that particular 
component. 

The interface, however, is not the most crucial 
modification that is necessary. To bring information 
volunteering to fruition it is not sufficient to change 
the external appearance of the system on the screen. 
This new mechanism requires the restructuring of the 
knowledge base to accommodate the incoming "out­
of-context" information. In REBOOTER, an analysis of 
the structure of tasks was carried out to determine 
which task should in turn instantiate successive tasks. 
The original design was far too rigid for the informa­
tion volunteering mechanism. What is needed is a 
more general methodology for determining the cur­
rent task selection. This problem is being solved by 
removing the task selection criterion from the tasks 
themselves and creating an autonomous collection of 
rules whose only function is to recognize situations in 
which particular tasks should be instantiated. To 
operate in this mode the system needs more informa­
tion about the machine components and its own rule 
groups than before to allow the SYSTEMS' ASSISTANT 

to resolve conflicts when more than one task is 
simultaneously instantiated due to some volunteered 
information. This extra knowledge allows the SyS­
TEMS' AssiSTANT to be much more powerful in its 
ability to handle the inevitable context switches that 
occur due to the incoming out of context informa­
tion. In addition, a mechanism is needed through 
which the system can determine what information is 
inplicit in the volunteered information. For instance, 
this instantiation of tasks might be altered if users 
volunteer information that implies they have already 
tried to reboot the machine. A related problem is 
the decision of whether to ask a previously posed 
question again. The volunteered information might 
have implied an answer to this earlier question and 
the rule base has to be general enough to handle these 
cases. 

Experiences with the SYSTEMS' ASSISTANT have 
demonstrated that the system provides the right kind 
of mixture between highly structured dialogs (which 
are useful for the novice) and the possibility to 
volunteer information to get to the point quickly, 
which is a necessary requirement to make a system 
acceptable to the expert. 

5.3. JANUS: design environments 

Design environments provide a framework in 
which the domain experts can themselves articulate 
their relevant knowledge precisely enough that it can 
then be used by the computer not only to aid in 
problem solving in the domain but also made subject 
to peer review and revision. 

JANUS [46,39] allows designers to construct 
artifacts in the domain of architectural design and at 
the same time informs them about principles of 
design and the reasoning underlying them. This 
process, which we call Informed Design, integrates 
two design activities: construction and argumenta­
tion. Construction is supported by a knowledge­
based graphical design environment (see Fig. 8) and 
argumentation is supported by a hypertext system 
(see Fig. 9). 

JANUS provides a set of domain-specific building 
blocks and has knowledge about how to combine 
them into useful designs. With this knowledge it 
"Iooks over the shoulder" of users carrying out a 
specific design. If it discovers a shortcoming in users' 
designs, it offers criticism, suggestions and explana­
tions and assists users in improving their designs 
through cooperative problem solving. JANUS is not an 
expert system that dominates the design process by 
generating new designs from high-level goals or re­
solving design conflicts automatically. Users control 
the behavior of the system at all times (e.g. the 
critiquing can be "turned on and off"), and if users 
disagree with JANUS, they can modify its knowledge 
base. An objective of JANUS is to blend the designer 
and the computer into a problem-solving team to 
produce cooperatively better designs than each of 
them can by working alone. 
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Fig. 7. The SYSTEM'S ASSISTANT in operation. 

Critics in JANUS are procedures for detecting non­
satisfying partial designs. JANUS' concept for integrat­
ing the constructive and argumentative component 
originated from the observation that the criticism 
generated by the critics is a limited type of argumen­
tation. In particular, the construction actions can be 
seen as attempts to resolve design issues. For exam­
ple, when a designer is positioning the sink in the 
kitchen, the issue being resolved is "Where should the 
sink be located"'? 

The knowledge-based critiquing mechanism in 
JANUS bridges the gap between construction and 
argumentation. This means means that critiquing and 
argumentation can be coupled by using JANUS' critics 
to provide the designer with immediate entry into the 
exact place in the hypertext network where the argu­
mentation relevant to the current construction task 
lay. Such a combined system provides argumentative 
information for construction effectively, efficiently 
and without designers' having to realize they need 
information, suspect that needed information is in the 
system or know how to retrieve it. 

JANUS' construction component-The constructive 
part of JANUS supports the construction of an artifact 
either "from scratch" or by modifying an already 
constructed artifact. To contruct from scratch, the 
designer chooses building blocks from a design units 
"Palette" and positions them in the "Work area" (see 
Fig. 8). 

To construct by modifying an existing artifact, the 
designer uses the "CATALOG" (lower left in Fig. 8), 
which contains many previously designed kitchens. 
The designer can browse through this catalog of 
examples until an interesting design is found. This 
design can then be selected and brought into the 
"Work Area", where it can be modified to the 
designer's liking. 

The CATALOG contains two types of examples: 
"good" designs and "bad" designs. The former 
satisfy all the rules of kitchen design and will 
receive no negative criticism from the system's 
critics. People who want to design without knowing 
the underlying principles might want to select one of 
these, since minor modifications of these will be 
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Fig. 8. JANUS construction interface. 

probably result in little or no negative criticism from 
the critics. 

The "bad" designs in the CATALOG are there to 
support learning about principles of design-in this 
case principles of kitchen design. By bringing these 
into the "Work Area", users can subject them to the 
critiquing by the system illustrating to them which 
principles of kitchen design are incorporated into the 
system. 

The "good" designs in the CATALOG can also be 
used to learn design principles and explore their 
argumentative background. This can be done by 
bringing them into the "Work Area" then using the 
"Praise aIr' command. This command causes the 
system to display all of the rules which the selected 
example satisfies. This positive criticism also provides 
entry points into the hypertext argumentation. 

JANUS' argumentation component-The hypertext 
component of JANUS is implemented using Symbolics' 
Concordia and Document Examiner software. Con­
cordia is a hypertext editor [40] with which the issue 
base is implemented. The Document Examiner [41] 
provides functionality for on-line presentation and 
browsing of the issue base by users. 

When users enter the argumentative part of JANUS, 
they are brought into a section of the issue base 

determined by and relevant to their current construc­
tion situation. They do not have to hunt for relevant 
information. Their point of entry into the hypertext 
network will contain relevant information. But since 
the argumentation on an issue can be large and 
complex, they can use the initial display of relevant 
information as the starting place for a navigational 
journey through the issue base. Following links will 
take them to additional relevant information. Upon 
completion of the examination of the relevant argu­
mentative information the designer can return to 
construction and complete the current task. 

Critics as hypertext agents-JANUS' knowledge­
based critics serve as the mechanism linking con­
struction to argumentation. They "watch over 
the shoulders" of designers while they are con­
structing and critique their work, displaying their 
criticism in the "Messages" pane (center bottom 
in Fig. 8) if design principles are violated. In doing 
so they also identify the argumentative context 
which is appropriate to the current construction 
situation. 

For example, when a designer had designed the 
kitchen shown in Fig. 8, the "Work-Triangle-Critic" 
fires and detects that the work triangle is too large. 
To see the argumentation surrounding this issue, the 
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Fig. 9. JANUS argumentation interface. 

designer has only to click on the text of this criticism 
with the mouse. The a rgumentative context shown in 
Fig. 9 is then displayed. 

Et'aluarion of JANus- We have evaluated JANUS 

with subjects ranging from neophyte to expert 
kitchen designers and from neophyte to expert com­
puter users. We found that no user group had any 
significant overall advantage in using the system. 
Design students were more familiar with the general 
application domain but lea rned to use the system 
without much difficulty after some initial practice. 
Computer science students were able to understand 
the critics and learn from them to create reasonable 
kitchen designs. Users uncertai n about criticism from 
the system or interested in more background infor­
mati on about design principles entered the hypertext 
system. 

6. CONCLUSION 

Wiener (1 7] concludes about the future of cockpit 
automation: 

"The rapid pace of introduction of computer-based 
devices into the cockpit has outstripped the ability 
of designers, pilots and operators to formulate an 
overall strategy for their use and implementation. 

The human factors profession is struggling to catch 
up . The devices themselves a re highly reli able. but 
therein may lie the problem: they a re also dumb 
and dutiful. This property of digital devices. and 
the fallibility of the human opera tor, has created a 
problem at the human-device interface. Putting 
'just one more computer' into the cock pit is not the 
answer. The solution will come from a long, expen­
sive. and sometimes tedious effort to develop a 
harmonious crew-automation interface, guided by 
an overall design philosophy" 

To take advanage of the potential of the great 
computing power available to us, we must develop 
Jomt human--computer systems as cooperative 
problem solving systems taking the goals of the 
human, the strengths and the weaknesses of humans 
and computers and the nature and structure of the 
task into account. 
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