
CONTRIBUTION TO THE ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI '89)

Topic Area: Interface Design Tools and Techniques (specifically: User Interface Tools Kits; Rapid

Prototyping; Intelligent Interfaces and Tutors; Adaptable Systems; Graphics Interfaces)

Design Environments
for

Constructive and Argumentative Design

Gerhard Fischer and Anders Morch
Department of Computer Science and Institute of Cognitive Science

Raymond McCall
Conege of Environmental Design and Institute of Cognitive Science

University of Colorado, Boulder, Colorado 80309

Abstract

Design Environments are computer systems which support design by enabling cooperative problem solv
ing between designer and computer. There are two complementary problem solving activities in design:
constructive design and argumentative design. We have created two computer-supported environments,
CRACK and VIEWPOINTS, to support these two activities.

CRACK is a knowledge-based critic which has knowledge about how kitchen appliances can be assembled
into functional kitchens. VIEWPOINTS is a hypertext system based on the IBIS design methodology and
contains useful information about the principles of kitchen design. The integration of these two types of
systems will eliminate shortcomings of the individual systems.

Number of words In paper: 2987

Keywords: intelligent support systems, design environments, construction kits, human problem-domain
communication, critics, hypertext, issue-based information systems, kitchen design

Contact Person: Anders Morch, phone: (303)-492-1592; e-mail: morch@boulder.colorado.edu

1

1 Introduction

We have developed design environments in the form of computer systems supporting cooperative
problem solving between designer and computer 1. These include hypertext systems and intelligent sup

port systems which are knowledge-based but not expert systems. Our goal is to augment the creative and
analytical skills of deSigners, not to de-skill them by replaCing them with automatic design systems.

Our environments support two complementary design activities: construction and argumentation. Con
struction is the process of assembling a solution from building blocks appropriate to a particular problem
domain. For example, in designing a kitchen the building blocks would include things such as sinks,
cabinets, stove, walls and windows. Argumentation is the process of reasoning about a design. It
includes both thinking about deSign principles and discussing a design problem with others. The designer
must construct to create any solution, but the quality of the solution depends on the argumentation under
lying it.

To support construction we have developed systems which allow assembly of complex artifacts from
basic building blocks. These systems incorporate design critics which have knowledge of criteria for fitting
the building blocks together to make successful designs. To support argumentation we have developed

hypertext systems which aid the creation of argumentation and retrieval of information, including recurring
issues, answers and arguments about the problem domain. In the remainder of this paper we discuss our
experiences with these systems in the past, two recently constructed systems called CRACK and
VIEWPOINTS, and our concepts for integrating the two types of systems (see Figure 1).

2 Background and Motivation

One of the authors (Fischer) has been involved for a number of years in the development of intelligent
support systems for design. Evaluation of these systems has shown that their explanation and sugges

tion facilities--which display brief, canned texts--are insufficient for many purposes. Such texts do not
reveal the complex argumentation which underlies them, or the differences of opinion among experts on
many design issues. Yet these things can be important information for the designer. In subjective
problem domains such as design there is no optimal solution but only a set of alternative solutions which
satisfice [Simon 81]. Satisficing is dependent upon a metric and a viewpoint. An example of a kitchen
design metric is the work triangle, which connects the center fronts of the sink, stove and refrigerator. One
design principle says that the work triangle should be less than 23 feet in perimeter [Jones, Kapple 84].

This allows many alternative kitchen solutions to be satisficing. The work triangle principle can also be
interpreted differently by deSigners with different viewpoints: some allow the work triangle to be up to 26
feet in large kitchens.

Another of the authors (McCall) has been involved for a number of years in development of IBIS (Issue
Based Information Systems) hypertext [Kunz, Rittel 70] for design. In particular, he has developed an
approach to IBIS called PHI (Procedural Hierarchy of Issues) [McCall 87] and a hypertext system called

MIKROPLIS to support PHI [McCall, Schaab, Schuler 83]. Use of MIKROPLIS over the past five years
suggests that its passivity has lead to its being underused. It supports argumentative design, but for most
of the design process designers work predominantly in constructive mode. MIKROPLIS has information

1 By cooperative problem solving we mean cooperation between human and computer. This should not be confused with
computer-supported cooperative work which refers to cooperation among humans. The latter is not discussed in this paper.

2

Unsupported Designer

Vi8J·vPoin/s

~
~

argUmenttive 3upport
~

(""true"") II • II
3upport ~

CRACK
Current Design Envi ronments ----lnt----

VieN·'Poin/s 2 {7

(argumentative) II • II
3upport

(con3tructive) ~
3upport ~

CRACK.2{7

I ntegrated Design Envi ronment

Figure 1: Stages in the Development of an Integrated Design Environment

By observing that designers are involved in two complementary design activities (construction: "doing"

design; argumentation: "thinking about" design), we are on the way to develop an Integrated Design
Environment which supports designers in these two activities.

3

useful for construction, and in principle all its infonnation is at least indirectly useful for construction.
Nevertheless, students have been reluctant to interrupt construction to look for this information. They
often do not know that they need infonnation. If they do, then they do not know if the system contains the

information. If it did, they might not know how to retrieve it. To support construction such systems would
have to actively alert the designer to the existence of infonnation useful for a task at hand. To do this
such systems need embedded active agents. A shortcoming which MIKROPLIS shares with most current

hypertext systems is that it is purely passive and contains no such agents [Fischer et al. 88; Halasz 87].

3 CRACK: A Knowledge-Based System for Constructive Design

CRACK is a kitchen design environment [Fischer, Morch 88] conSisting of two components: a domain
oriented construction kit for creating a kitchen floor plan layout and a knowledge-based critic for evaluat

ing it.

A construction kit comprises a set of domain-specific building blocks. In CRACK these are called design
units (DUs). DUs are selected from a palette (see Figure 2), and can be moved around with the mouse to
desired locations inside a work area. Useful operations on DUs are move, rotate and modify width.

During construction, it is important to give the designer the feeling of directly generating the design with
out the computer's being "in the way." We refer to this as human problem-domain communication: a

prerequisite for truly usable design tools.

The goal of human problem-clomain communication [Fischer, Lemke 88] is to eliminate computer-specific
programming languages and instead to build layers of abstraction with which domain speCialists such as
kitchen designers feel comfortable. Human problem-domain communication provides a new level of
quality in human-computer communication because the important abstract operations and objects in a
given area are built directly into the computing environment. The designer can therefore operate with
personally meaningful abstractions which result in a reduced transfonnation distance between problem
oriented and system-oriented descriptions [Hutchins, Hollan, Nonnan 86]. Protocol studies have shown
[Akin 78] that architects use domain related chunks or parts of buildings such as clusters of rooms,
individual rooms, areas and furniture when they design. This means that, in kitchen design, designers
should be able to select and arrange DUs directly on the screen without any intermediate graphics pro
gramming such as defining coordinates or drawing simple shapes.

Construction kits and human problem-domain communication are necessary but not sufficient for useful
design environments. Design environments need embedded knowledge for distinguishing "good" designs
from "bad" designs and explanations for justifying it. Kitchen design involves more than selecting ap
pliances from a palette; it also involves knowing how to combine these basic building blocks into func
tional kitchens. Knowledge about kitchen design includes design principles based on building codes,

safety standards and functional preferences. An example of a building code is "the window area shalf be
at least 10% of the floor area"; an example of a safety standard is "the range should not be installed

under a window or within 12 inches of a window" and an example of a functional preference is "the work
triangle should be less than 23 feet" [Jones, Kapple 84; Paradies 73]. Functional preferences may vary
from designer to designer, whereas building codes and safety standards should be violated only in excep

tional cases. For the non-expert designer to construct truly useful kitchens, design environments also
need knowledge-based critics.

4

t
N

l -

sue ESIIGH

.Ift" ~. I .. t C. • •• lliItt.' .,. •• U .. tnu ""

.I.r.: leU ... I.,. Utili _ 'r •• • 1"" ... " , Ull lhMU ~, . ..

.. 11 ff". - . III III., r i' ~utttJ._ .'" r ..-,,--\:uI; ,
tl -.vl .. 'II! .eM AI .. . " ... AdtIJI. l til"'.'. ""..uJ.,w
•• ,. IItI. aDI iii '''Ir r
... IItA .6 ,.' rl i_r.& W

-- ...:. .. - ; - .-......... -' --- • -- - -- ~ • I

~er , , ..
Figure 2: CRACK: Suggestions from the SINK-CRITIC

CRACK'S user interface is based on a direct-manipulation interaction style and the metaphor of an

"architect's workbench" . Operations on building blocks (DUs) are initiated by clicking on their instance
name in the Design State window. Suggestions and criticism can be questioned by clicking on mouse
sensitive text. Compass, ruler and actual length are active values used during wall drawing and

door/window/plumbing positioning to support the designer with graphical data. Critiquing can be turned
on and off.

Critics are intelligent support systems which detect and criticize partial solutions constructed by the deSig
ner based on knowledge of design principles. Critics in CRACK are state-driven condition-action rules

which take action when non-satisficing partial designs are detected (see Figure 3) . The critics display
crit icism (such as: "sink not in front of a window') in a critic window (lower right corner in Figure 2) . If a

designer wants more information, requests for suggestions (lower left corner in Figure 2) and explana

tions (lower left corner in Figure 4) can be made by clicking with the mouse on mouse-sensitive text

output.

The critics create the text display dynamically and in the proper context as the user is designing. The

suggestions and explanations, however, are canned text. Explanations contain justifications for the
various kitchen design principles (such as why the sink should be in front of a window) . However, simple

explanations are often not sufficient to persuade the designer or to capture the argumentation among
design experts. For this a system like VIEWPOINTS is needed.

5

Definition of SINK-CRITIC which test the various re1ation
ships defined between sink and other design units.

(defru1e sink-critic

=>

(mode critiquing)
(focus correction)
(enab1ed sink-critic t)
(or (moved ?sink)

(rotated ?sink)
(sca1ed ?sink»

(instance-of ?sink sink)

;; Assume first that a11 re1ations are vio1ated.

(bind ?in-front-of-p ni1)

I I Must first check to see that we have the
re1ated DUs, if not we don't want to critique.

(bind ?window (get-schema-va1ue
'window 'has-instances»

(if (not ?window) then
(bind ?in-front-of-p t»

II Now test each re1ation for each app1icab1e DU instance.

(for window ins1otva1ues 'window 'has-instances do
(if (in-front-of ?sink window) then

(bind ?in-front-of-p t»

;; Te11 the user which re1ations are vio1ated

(if (not ?in-front-of-p) then
(printout (window-stream 'critic-window)

?sink " not in front of a window.")
(mu1tip1e-va1ue-bind (x y)

(cursor-x-y-position 'critic-window)
(create~usab1e-area 'in-front-of

'critic-window
22 y x (+ y 13)
"sink not in-front of a window"
"Mouse-L: IN-FRONT-OF re1ation menu."»»

Figure 3: Code Example from the SINK-CRITIC

CRACK is written in ART and this example shows part of an ART rule, the SINK-CRITIC. The condition of the
rule precedes the => (inference symbol), while the action follows it. This extracted code shows the
"in-front-of" test between the sink and a window. There are seven other relational tests like this one in
the SINK-CRITIC. "In-front-of" is defined as a method which geometrically checks that at least half of the
sink is in front of a window.

6

,-_ I

l.)fPIAHAIt ,. CH, " C WItlOOW

(ft.. "'h 1,04' ''' _""10 It" .. hili " ... ".
klll,U .• .all .. 'III ".11 ~ •• ,." "t' .. , ~ •
Lil. I ,'" &1.' 111 <III""" ' 1, U' •• '''II!
,., 1 .. ,.,. ,."..*_ .hlli &11114 ~')I'u".

1It.,. "'III:' .k411 r •• r ••• ' r ,,, .. If .

~ _&~-~ •• _. "-- - ••

: b:

Figure 4: Explanations for NEXT-TO relation in REFRIGERATOR-CRITIC

An explanation for why the refrigerator should not be next to the range. Although the explanation is
context sensitive, it is unmodifiable, canned text. This is insufficient for domains where issues are
disputed by experts.

4 VIEWPOINTS: A Hypertext System for Argumentative Design

VIEWPOINTS is a hypertext system for argumentative kitchen design based on the PHI design methodology
[McCall 87], an extension of IBIS [Kunz, Rittel 70]. VIEWPOINTS is the most recent of a series of PHI and

IBIS based systems including MIKROPLIS [McCall, Schaab, Schuler 83] and, more recently, g18IS [Conklin,
Begeman 87]. These are all hypertext systems since the conceptual framework for IBIS fits naturally into

the non-linear structuring of text in a network of nodes and labelled links [Conklin 87].

In IBIS design centers on the resolution of issues. In Rittel's original IBIS, issues were to be resolved by

the process of deliberation, consisting of (1) considering alternative answers, (2) arguing the pros and
cons of these answers and (3) rejecting and accepting answers on the basis of the argumentation. PHI

differs from IBIS in two respects: it allows decomposition of issues, answers and arguments into hierar

chies of subissues, subanswers and subarguments; and it broadens the concept of issue to include all
design questions, not merely those deliberated.

VIEWPOINTS extends MIKROPLIS with graphics capabilities, an important feature for illustrating principles of

7

kitchen design. Currently, VIEWPOINTS is used as a Iook-up manual where designers can find answers to
specific problems and consider the various arguments for and against these answers. VIEWPOINTS is also
user extensible; so designers can add argumentation reflecting their own design philosophy.

The elements of VIEWPOINTS are issues, answers, arguments and graphics (see Figure 5). A typical issue

is "What should the location of the sink be?". An answer to this could be "Near a range. ". One argument
supporting this answer would be "There is a frequent work flow from sink to range during food
preparation." Another argument would be 'There should be a minimum of 24 inches counter space
between sink and range to allow for 'set-off' space. II The graphics corresponding to this answer could
represent pictorially what it means for something to "be near" something else in the domain of kitchen

design.

Figure 5: Elements of VIEWPOINTS

VIEWPOINTS consists of issues, answers, arguments and graphics about design problems. Arguments can
be either support arguments or counter arguments. Argumentative contexts: argument context, answer
context and graphics context define the amount of information presented to the designer on a
MACINTOSH2 screen.

VIEWPOINTS in its current form supplies the deSigner with an initial set of issues, answers and arguments.
This defines a "generic" viewpoint, or the default knowledge of kitchen deSign principles acquired by

interviewing professional designers (see section 6). This initial knowledge is meant to provoke ideas and

2VIEWPOINTS has been developed on the MACINTOSH using HYPERCARD.

8

to define the overall structure of the information base. By having different experienced designers using

the system, we allow multiple viewpoints to be incorporated into the information base as each of them

adds issues, answers and arguments representing their particular point of interest and expertise.

To fill a screen with as much useful information as possible without overwhelming the designer, we have

defined several argumentative contexts consisting of subsets of issues, answers, arguments and graphics

for simultaneous display. (Figure 5 shows how they are related). The three most useful contexts are:

• Answer context: superissue, issue and answers (Figure 6)

• Argument context: issue, answer and arguments (Figure 7)

• Graphics context: graphics about a particular answer (Figure 8)

2. I n front of a ... 1 ndo ...

3. C1 03e to a vi ndO'w'

4. l"s than 2 feet from
plumbinq

ext 0 II dlsh ... uher

Figure 6: An Answer Card and an Answer Context

This card shows information related to answering the issue "What should the location of the sink be?".
The text are typed inside "fields", while the small rectangular areas are "buttons". Buttons link to other
cards (ISSue, ANSwer, ARGument, GRAphics) when they receive a mouse click. Cards are stored in

stacks. There are four stacks: kitchen-issues, kitchen-answers, kitchen-arguments and kitchen-graphics.

VIEWPOINTS can also be used for systematic browsing through the issue hierarchy. In this case the desig

ner would start from the top-level issue, referred to as the prime issui3, and move stepwise down to more

detailed issues.

3The prime issue in kitchen design is "What should the design of the kitchen be?"

Near a range, but not
next 0 a range.

9

nle and ranQe are h.-o of he
components of the orle rienc;Jle
in hich there is a frequent orle
nov from si nle 0 ranqe dun nc;J
food preparation. Onen he food is
fI rst cleaned 1 n the ,1 nle, end next
cooleed In the oven or over a coole
top.

2. There should be a mi ni mum of
241 nche, counter surface on one
,ide of he ,inle and 16 inche, on
the other, de 0 allov for "sel-

Figure 7: An Argument Card and an Argument Context

5 Empirical Studies and Evaluation

The design knowledge used in CRACK and VIEWPOINTS was acquired through protocol studies of two
professional kitchen designers. One designer and several students helped in evaluating CRACK.

Protocol Analysis. The kitchen designers were given scenarios consisting of sample floor plans and
hypothetical clients with specific needs. They were asked to think aloud while filling out the room with
appliances and cabinets [Ericsson, Simon 84]. These protocol studies revealed domain-specific concepts
for kitchen design. Spatial relationships such as "in front of", "next to" and linear" have their own mean

ing in this domain. "In front of" refers to a relation between a piece of equipment (appliance, cabinet) and
a wall fixture (door, window, plumbing), such as "sink in front of window", which means that at least half

of the sink is in front of the window. "Next to" refers to two pieces of equipment which are side by side
along a wall, such as "sink next to dishwasher". "Near" refers to two pieces of eqUipment which are not
immediately next to each other, but still within reach, about 4-8 feet apart, e.g., "sink near refrigerator".
These relations and others are incorporated in the critics.

Evaluation. To evaluate CRACK, we let computer science students, design students and a kitchen desig
ner use it. This showed that one did not have to be a computer or design expert to use the system. It
also suggested that students could produce better designs and learn about design principles through the
use of the system [Fischer, Morch 88].

10

: ,_t :.~ ~ _ '.

DO
dlst

54 <' dlst (/('8 Inches

sink nelJr IJ rlJn!Je~ but not next 10 a range

Figure 8: A Graphics Card

Use of VIEWPOINTS revealed that its graphics interface makes it easier to use than the text-only MIKROPLIS

system, though the latter has more powerful authoring and retrieval facilities. The ability to include

graphic explanations of answers was also a clear improvement. Due to the large number of issues in the
information base, we have found that designers often get lost during this extensive browsing since there

is no facility available for guiding designers in the right direction4. Evaluations of CRACK and VIEWPOINTS

indicate that integrated support for construction and argumentation is necessary for full support of deSign

6 Future Work: An Integrated Design Environment

Designers continuously shift between construction and argumentation [Krauss, Myer 68]. The shift to
argumentation occurs when designers need to evaluate what has been constructed or to think about what

to do next. The criticism given by CRACK allows this, but in far too limited a way. The triggering of criticism

should instead provide an entry point into VIEWPOINTS' far richer information base. Since this triggering is

context sensitive, it can be used to identify the issue(s) corresponding to the current construction task. For
example, the criticism "sink not in front of a window" shows that the designer has problems locating the

sink and is therefore implicitly proposing an answer to the issue "What should the location of the sink
be?". This fad allows identification of the appropriate "argumentative context" in VIEWPOINTS, including

alternative answers, graphics, arguments and subissues. This is a much richer explanation facility than

4A way to improve upon this, and another way to integrate AI with hypertext. is to build intelligent agents into VIEWPOINTS which
can automatically raise the necessary issues needed to resolve the designer's problem. This is not addressed in this paper.

11

CRACK currently provides. After studying the argumentation about the design principles relevant to their

current problem, designers can retum to CRACK and resume construction.

CRACK and VIEWPOINTS currently suffer from being in separate environments (SYMBOLICS and MACINTOSH).

Our future work will concentrate on integrating the two within the SYMBOLICS GENERA software environ

ment using CONCORDIA [Walker 88} and the DOCUMENT EXAMINER [Walker 87] as the basis for PHI hyper
text. With this integration we expect to eliminate some shortcomings of CRACK and VIEWPOINTS as

separate systems.

Acknowledgments

The authors would like to thank our colleagues and students who have helped us critically evaluate the
usefulness of CRACK and VIEWPOINTS. We are especially grateful to Sarah Reep and Maggie Boling who

as professional kitchen deSigners have taken time to collaborate with us. The research was supported in
part by Grant No. MDA903-86-C0143 from the Army Research Institute and by a grant from NYNEX cor
poration.

References

[McCall, Schaab, Schuler 831
R. McCall, B. Schaab, W. Schuler, An Information Station for the Problem Solver: System
Concepts, in C. Keren, L. Perlmutter (eds.), Applications of Mini- and Microcomputers in Infor
mation, Documentation and Libraries, Elsevier, New York, 1983.

[Akin 78]0. Akin, How Do Architects DeSign?, in J. Latombe (ed.), Artificial Intelligence and Pattern
Recognition in Computer Aided Design, North-Holland, New York, 1978.

[Conklin 871
J. Conklin, Hypertext: An Introduction and Survey, IEEE Computer, Vol. 20, No.9, September
1987.

[Conklin, Begeman 87]
J. Conklin, M. Begeman, gIBIS: A Hypertext Tool for Team Design Deliberation, Hypertext'87
Papers, University of North Carolina, Chapel Hill, NC, November 1987, pp. 247-251.

[Ericsson, Simon 84]
K.A. Ericsson, H.A Simon, Protocol Analysis: Verbal Reports as Data, The MIT Press,
Cambridge, MA, 1984.

[Fischer et al. 88}
G. Fischer, S.A Weyer, W.P. Jones, AC. Kay, W. Kintsch, R.H. Trigg, A Critical Assessment of
Hypert.ext Systems, Human Factors in Computing Systems, CHI'88 Conference Proceedings
(WaShIngton, D.C.), ACM, New York, May 1988, pp. 223-227.

[Fischer, Lemke 88}
G. Fischer, A.C. Lemke, Construction Kits and Design Environments: Steps Toward Human
Problem-Domain Communication, Human-Computer Interaction, Vol. 3, No.3, 1988, pp.
179-222.

[Fischer, Morch 88}
G. Fischer, A. Morch, CRACK: A Critiquing Approach to Cooperative Kitchen DeSign, Proceed
ings of the Intemational Conference on Intelligent Tutoring Systems (Montreal, Canada), June
1988, pp. 176-185.

[Halasz 87]
F.G. Halasz, Reflections on NoteCards: Seven Issues for the Next Generation of Hypermedia
Systems, Communications of the ACM, Vol. 31, No.7, July 1987, pp. 836-852.

12

[Hutchins, Hollan, Norman 861
E.L. Hutchins, J.D. !-follan, DA Norman, Direct Manipulation Interfaces, in D.A. Norman, S.W.
Draper (ads.), User Centered System Design, New Perspectives on Human-Computer
InteractIon, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, pp. 87-124, Ch. 5.

[Jones, Kaoole 84]
R:J. Jones, W.H. Kapple, Kitchen Planning Principles - Equipment - Appliances, Small Homes
CounciJ- Building Research Council, University of Illinois, Urbana-Champaign, IL, 1984.

[Krauss, Myer 68]
R.I.Krauss, Design: A Case History, in G.T. Moore (ad.), Emerging Methods in Environmental
Design and Planning, The MIT Press, Cambridge, MA, 1968.

[Kunz, Rittel 70)
W. Kunz, H. Rittel, Issues as Elements of Information Systems, Working Paper 131, Center for
Planning and Development Research, University of California, Berkely, CA, 1970.

[McCall 87]
R. McCall, PHIBIS: Procedurally Hierarchical Issue-Based Information Systems, Proceedings of
the 1987 Conference on Planning and Design in Architecture, American Society of Mechanical
Engineers, 1987.

[Paradies 731
K. P'aradies, The Kitchen Book, Peter H. Wyden Publisher, New York, NY, 1973.

[Simon 811
!-fA Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981.

[Walker 871
J.f-I. Walker, Document Examiner: Delivery Interface for Hypertext Documents, Hypertext'87
Papers, University of North Carolina, Chapel Hill, NC, November 1987, pp. 307-323.

[Walker 881
J.f-I. Walker, Supporting Document Development with Concordia, IEEE Computer, January 1988,
pp.48-59.

