
COMPUTER-BASED CRITICS

Gerhard Fischer
Thomas Mastagllo

Reprinted from PROCEEDINGS OF THE TWENTY-SECOND ANNUAL
HAWAJI INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE

Kailua-Kona. HawaII, January 3-6, 1989

Computer-Based Critics

Gerhard Fischer and Thomas Mastaglio

Department of Computer Science and Jnstitute of CognitiVe Science
University of Colorado, Boulder

ABSTRACT

The computer-based critic is a paradigm for intelligent human­
computer communication that overcomes some limitations of
other approaches such as tutoring and advising. Critics are
much more user-centered and support users working on their
own activities. They provide information only when it is
relevant. They allow users to do what they want and interrupt
only when users' plans, actions, or products are considered
significantly inferior. They are applicable to tasks in which
users have some basic competence because users must be
able to generate a plan, action, or product by themselves.
They are most useful when no unique best solution exists in a
domain and trade-ofts have to be carefully balanced. Critics
need to be knowledge-based. They must incorporate
knowledge about the application domain, support explanation,
model individual users. and provide innovative user interfaces.
Over the last few years we have implemented a number of
critics in different domains, including programming and design.
The rationale, design, and evaluation of these systems is
described as a starting point for a general framework for
computer-based critics.

INTRODUCTION

Our goal is to establish the ~nceptu~ founda~ions for using
the computational power that IS or Will be available on com­
puter systems. We believe ~.at artificial in!elligence tech­
nologies can improve productiVity by addreSSing, rather than
ignOring. human needs and potentia!; In the spir.it ?f Einstein's
remark "My pencil is cleverer than I , we are bUilding systems
that augment human intelligence -- in other words, we are
building ·systems for experts, not expert systems: Winograd
and Flores [28] argue that the development of tools f,?r
conversation, the computer serving as a structured dynamiC
medium for conversation in systematic domains, is a more
realistic· and relevant way of exploiting information and com­
munication technologies than is the most widely perceiv~d
goal of artificial intelligence, "to understand and to budd
autonomous, intelligent, thinking machines· [25].

We have used "intelligent support systems" as a generic
name for systems that augment human capabilities. High
functionality computer systems, such as UNIX or LISP machines
which contain tens of thousands of objects and tools, have
been the major application domain of our intelligent support
systems. Our goal is to make usable the total space of
functionality that computational environments have rather than
diluting it or orienting the user toward only a subset of the
system's capabilities. Intelligent support systems. should
facilitate access, application of knowledge, and learning. We
have constructed a number of different intelligent support sys­
tems: documentation systems (14], active and passive help
systems [12], design environments [11], and critics [7, 13],
which we focus on in this paper. All of these systems have
two things in common: they are knowledge-based a~d they
use innovative techniques in human-computer communication.

0073-1129/89/0000/0427$01.00 © 1989 IEEE
427

In this paper we describe computer-based critics and articulate
some of the general principles learned from our system­
building experience. We propose a general framework for
critics, present specific requirements, and describe two
prototypical critic systems: LlSP-CRITIC, which criticizes LISP
programs, and CRACK, a system that assists the user In
designing a kitchen. Then we illustrate the generalized main
components of our critic systems and discusses their evalua­
tion. We conclude with some plans for future work.

A Characterization Qf the Qdlli< Paradigm

The computer-based critic is a useful and attractive approach
for applying techniques from both human-computer com­
munication and artificial intelligence research. Computer­
based critics allow the potential of humans and computers to
combine in a symbiotic system, that is, a successful combina­
tion of human skills and computing power to carry out a task
that cannot be done either by the human or by the computer
alone. Underlying symbiotic systems is acknowledgment of
the fact that most knowledge-based systems are intended to
assist human endeavor and that only a few are intended to be
autonomous agents. Therefore, a subsystem supporting
human-computer interaction is an absolute necessity. By using
the capabilities of a knowledge-based archite~tur~ and i.n.nova­
tive approaches to human-computer commUnication, cntlcs al­
low users to remain in control and to solve problems they
themselves want to work on, and yet critics support learning
opportunities as well.

Intelligent Support Systems

Empirical investigations [6, 12] have shown that habitually only
a small fraction of the functionality of complex systems such
as UNIX, EMACS and LISP is used. Consequently it is of little
use to equip modern computer systems with more and more
computational power and functionality, unless we can help the
user take advantage of them. The "intelligence" of a complex
computer system must therefore be made to contribute to its
ease of use and to provide effective communication, just as
truly intelligent and knowledgeable human communicators,
such as good teachers, use a substantial part of their
knowledge to explain their expertise to others.

It is not sufficient for intelligent support systems just to solve a
problem or provide information. The user must be able to un­
derstand the systems and and question their advice. One of
our assumptions is that learners and practitioners will not ask
a computer program for advice if they have no way of examin­
ing the program's expertise. Users must be able to access the
system's knowledge base and reasoning processes. Domain
knowledge has to be explainable.

Cooperative Problem Solving ill Critic Systems

One model frequently used in human-computer systems (e.g.,
MYCIN [3]) is the consultation model. From an engineering
point of view, it has the advantage of being clear and simple:

the program controls the dialogue, much as a human consult­
ant does, by asking for specific Items of data about the
problem at hand. It precludes the user volunteering what he or
she might think Is relevant data. The program is viewed as an
"all-knowing expert", and the user is left In the undesirable
position of asking a machine for help.

The critiquing model supports cooperative problem SOlving.
When a novice and an expert communicate, much more goes
on than just the request for factual information. Novices may
not be able to articulate their questions without the help of the
expert. the advice given by the expert may not be understood,
and the novice may request aft explanatien; each communica­
tion partner may hypothesize that the other has misun­
derstood, or the expert may give unsolicited advice, a
phenomena we have explored in our work on active help
systems (12). Our systems should capture the essence of this
human-to-human process. Critics are designed to incorporate
as much of this process as possible.

Individualizing Computer Systems

User-centered learning. User-centered learning allows in­
dividuals to follow different learning paths. Forcing the same
intellectual style on every Individual is po~ibly much more
damaging than forcing right-handedness upon a left-hander.
To support user-centered learning processes, computational
environments have to adapt to individual needs and learning
~tyles. Giving users control over their learning and work re­
quires them to initiate actions and set their own goals. Critics
require Individualized knowledge structures to support differen­
tial descriptions. They can use them to present explanations
which represent new concepts in relation to knowledge
previously held by specific users.

Incremental learning. Not even experts can completely mas~er
complex, high-functionality computer systems. Support for In­
cremental learning is required. Incremental learning eliminates
suboptimal behavior (thereby increasing efficiency), enlarges
poSSibilities (thereby increasing functionality), supports learn­
ing on demand by presentation of new information when it is
relevant, uses models of the user to make systems more
responsive to the needs of individuals, and tailors explanations
to the user's conceptualization of the task.

Learning on Demand. The major justification for learning on
demand is that education is a distributed, lifelong process of
learning material as it is needed. Learning on demand has
been successful in human societies when learners can afford
the luxury of a personal coach or critic. Aided by a human
coach or critic, learners can articulate their problems in an in­
finite variety of ways. Computer-based support systems
should be designed to conform to this metaphor.

On a broad scale, learning on demand is neither practical nor
economical without computers. Learning on demand should in­
clude "learning to learn," providing the user with skills and
showing the user how to locate and utilize information
resources. It should not be restricted just to learning
procedures but should help to restructure the user's concep­
tual model of the domain. It should not only provide access to
factual information but also assist the user in understanding
when that knowledge can be applied.
Learning on demand Is a guided discovery approach to learn­
ing. It is initiated when the user wants to do something, not
learn about everything. Learning on demand affords the fol­
lowing:

• It is easier to understand the uses for the
knowledge being learned;

• Learning occurs because knowledge is actively
used rather than passively perceived;

428

• At least one condition under which knowledge can
be applied is learned;

• It can make a crucial difference in motivating
learning.

Learning on demand can be differentiated according to
whether the user or the system initiates the demand.

• Demands OrIginating with the User. The demand
to learn more can originate with the user. It can be
triggered by a discrepancy between an intended
product and the actual product produced. Ex­
perimentation with a system may tum up interest­
ing phenomena that users find worth exploring
further. The user's mental model can serve as a
driving force towards learning more. Users "feel"
that there must be a better way of doing things.
Adequate tools to support learning on demand are
crucially important in making users willing to em­
bark on an effort to increase their knowledge.

• Suggestions from the Coach or the Critic. The
demand to learn cannot Originate with users when
they are unaware that additional functionality ex­
ists. The system has to take the initiative, but to
avoid the problem that the system becomes too
intrusive, a metric is necessary for judging the
adequacy of a user's action. Interrupting too often
can destroy motivation, but too few interruptions
results in leaming experiences being missed. Ex­
cept for narrow problem domains (e.g., simple
games [4)), optimal behavior cannot be uniquely
defined. Therefore, the underlying metric shOUld
not be a fixed entity but a structure that users can
inspect and modify, increasing the user's control
over interaction with the system. Adequate com­
munication structures must exist to make this a
manageable task.

TutOring episodes can play an important role in learning on
demand. They can expose the user to certain tasks. The critic
can offer to act as a tutor -- the crucial difference from the nor­
mal tutoring approach is that tutoring is initiated by the user
and occurs in the context of the user's work.

Related Work

The critic paradigm is similar to the critiquing approach used in
research efforts on medical systems [18, 19, 16, 22). The
critiquing approach uses domain knowledge to help phYSicians
perform diagnoses or develop patient treatment plans. Tech­
niques from expert systems research were modified after
researchers recognized the need to assist physicians directly
in their work, leaving them in control rather than attempting to
replace them with an autonomous system. In contrast, our
research and system development efforts have a human­
computer interaction perspective. We ask how knowledge­
based approaches can improve collaboration between a com­
puter and a user.

REQUIREMENTS FOR CRITIC SYSTEMS

Design reqUirements for computer-based critics should be
based on empirical studies. As we have studied human critics,
it became obvious that knowledge is the most important fea­
ture of a good critic.

Empirical Studies

Cognitive SCientists have studied human-ta-human dyadic
relationships. These studies emphasized psychological
[5) and linguistic [15J aspects of dyadic human cooperative ef-

forts. Our own empirical work investigated why users work
suboptimally, falling to take advantage of available system
functionality. We observed the following problems:

1. Users do not know abou1 the existence of tools
and are not able to ask for them; passive help
systems are of little use in such situations.

2. Users do not know how to access tools;
retrievabillty is a big problem in information-rich
societies and in complex, high-functionality sys­
tems.

3. Users do not know when to use these tools; they
do not know the applicability conditions under
which a piece of knowledge can be used suc­
cessfully.

4. Users do not understand the results that tools
produce; finding the information is in many cases
not the end bu1 the beginning of difficulties.

5. Users cannot combine, adapt, and modify a tool
to their speCific needs; reuse and redesign
[8] have to be supported.

A consequence of these problems is that many systems are
underused. We are strongly convinced that we need is not
more information but new ways to structure and present it.

In other empirical studies we investigated how a model of the
expertise of another user is acquired by a domain expert. This
study was based on think-aloud protocols from experts [10]. A
questionnaire showed that expertise is,. not consistent for a
class of users. The results indicated that systems must model
the individual's knowledge in terms of underlying domain con­
cepts because Simple classification approaches are inade­
quate.

The design of our critic systems has been influenced by these
empirical studies. Our approach is based on two assumptions:
that cooperative work is a powerful approach to both improving
problem solving and learning, and that users need to be en­
couraged to explore.

Knowledge-Based Architectures

Knowledge-based systems are one promlslngaf>proach to
equipping machines with some human communication
capabilities. Based on an analysis of human communication,
we developed the model shown in Figure 1, and we have tried
to instantiate this general architecture in a variety of systems.

The system architecture in Figure 1 contains two major im­
provements over traditional approaches:

• The explicit communication channel is widened
(incorporating the use of windows, menus, point­
ing devices, etc.).

• Information can be exchanged over the Implicit
communication channel -- a prerequisite is shared
knowledge structures.

There are four domains of knowledge shown in Figure 1:

1. Knowledge about the problem domain: Intel­
ligent bellavior builds upon in depth knowledge
about specific domains. This knowledge con­
strains the possible actions and describes
reasonable goals and operations. Most com­
puter users are not interested in computers per
se bu1 want to use them to solve problems and
accomplish tasks. To shape the computer into a
truly usable and useful medium for them, we

429

Ie u.le .b •• t:
• p ble
• e ••••• le.tI •• p eesses
• e ••••• le.n •• p.rtae ...
• 1I le.s .f t se ...

• ... t.t I., l"terIJeoll ••

/
,.,lIclt

.. ___ .c l

explicit

FIgure 1: Architecture for Knowledge-Based
Human-Compu1er Communication

have to make it invisible and let them work
directly on their problems and their tasks; we
must support human problem-domain com­
munication [11].

2. Knowledge about communication processes: In­
.formation structures that control communication
should be made explicit.

3. Knowledge about the communication partner:
The user of a system does not exist; there are
many different kinds of users, and the require­
ments of an individual user change with ex­
perience. Systems will be unable to interact with
users intelligently unless they have some means
of finding out what the user really knows; they
must be able to infer the state of the user's
knowledge.

4. Knowledge about the most common problems
users have in using a system and about instruc­
tiona/ strategies: This knowledge is required if
someone wants to be a good coach or teacher
and not only an expert; a user support system
should know when to interrupt a user. It must
incorporate instructional strategies based on
pedagogical theories, exploiting the knowledge
contained in the system's model of the user.

Domain Knowledge

Expertise cannot exist without domain knowledge. The actual
representation chosen for domain knowledge is not critical;
rule-based systems, object hierarchies and frames are all ap­
propriate. We have used rule-based systems because they
support the incremental accumulation of domain knowledge. It
remains to be seen how adequate our representation will be
for some of the extensions we are currently pursuing.

Domain knowledge must be acquired; associated with that re­
quirement are all the traditional issues of knowledge acquisi­
tion in knOWledge-based systems. It may be that the critic
methodology is an opportunity for using the content of
previously developed knowledge bases, particulariy those that
are a part of expert systems that have not found acceptance
as stand-alone systems.

Models Q! the User

To support Incrementalleamlng and leaming on demand, sys­
tems should possess knowledge about a specific user, infor­
mation about the user's conceptual understanding, the set of
tasks for which the user uses the system, the user's way of
accomplishing domain-specific tasks, pieces of advice given
and whether they were remembered and accepted , and the
situations in which the user asked for help.

In short each user must be treated as an individual. Computer
systems based on a static model of users are often too rigid
and limited to meet the demands of a diverse user cortlmunity.
There is no such thing as "the" user of a system: there are
many different kinds of users and the requirements of an in­
dividual user change with experience. Robust and dynamic
user models are a desirable design goal for computer-based
critics.

Explanations

Explanation is critical for cooperative systems. It is a more dif­
ficult problem in critic systems than in tutoring systems be­
cause problems being addressed are arbitrary; that is the
problem space is large, and the choice of which problem to
solve is not controlled by the system.

Users learn best when they are situated in the context of their
work and are able to receive explanations from an expert who
can clear up misconceptions and clarify understanding. This
helps the user to restructure his or her knowledge (21]. Learn­
ing is habitually supported with tutoring but a more likely situa­
tion, and one similar to that which ev,.,kes human-to-human in-

:1"
--F ~rh' l'I • I_iii!.:; 3

teraction, is to provide for learning with a good explanation
capability [27]. Good tutors (and critics) explain things by
using concepts that a student already understands [26].
That explanations must be tailored to the user Implies that the
system must capture and represent the set of concepts each
individual knows in a user model. The system then has to for­
mulate (or select) explanations appropriate to the knowledge
level and experience of each individual.

PROTOTYPICAL SYSTEMS

We have developed computer-based critics for several
domains and have emphasized different issues, for example
level of analysis, narrowly bounded versus open problem
spaces and active versus passive approaches. We expect
that by a careful analySis and detailed comparison of these
system-building efforts, we will develop general principles for
designing critics and other intelligent support system. In this
section, we briefly describe two systems: LlSP-CRfTlC. a system
that critiques LISP code and CRACK that assists kitchen desig­
ners (for a detailed descriptions see [7, 13]).

The USP-CRITIC. The LlSP-CRITIC, a passive critic for FranzUsp
(see Figure 2), suggests improvements to program code. The
critic works in one of two modes. Improvements can make the
code either more cognitively efficient (I.e., more readable and
concise) or more. machine effiCient (I.e., smaller and faster).
~sers can choose the kind of suggestions in which they 'are
Interested. LlSp·CRITIC is more than a tutoring environment; it
differs from LISP TUTOR [1] in that it augments the user's work­
ing environment by providing an available expert to assist him
or her in producing a better program. In a session with
LlSP·CRITIC, as opposed to a structured tutoring episode, the
user maintains control of both problem selection and the user-

. 1uc) I I»)

This ligure shows the LISP-CRITIC running on a bit graph terminal in a UNIX environment. The user can initiate an action by
clicking a button. The FUNCTIONCODE pane displays the text of the program that LISP-CRITIC is wo~ing on. The other
three windows show suggested transfomnations. The "?" in the title line of the windows is a button for obtaining an
explanation.

Figure 2: The LISP-CRITIC

430

Replace 8 Copying Function with a Destructive Function

(rule append/.l-new.cons.cells-to-nconc/.l ...
(?foo:{append appendl}

;;; the name of the rule
;;; the orifJinal code

(restrict ?expr
(cons-cell-generating-expr expr»

;;; condition
;;; (rule can only be applied
;;; if "?expr" generates

?b)
=>
((compute-it:

;;; cons cells)

;;; the replacement
(cdr (assq (get-binding fool

'«append. nconc)
(appendl . nconcl»»)

?expr ?b)
safe (machine»

Example (see Figure 5):

(append (explode word) chars)
=>
(nconc (explode word) chars)

;;; rule category

Figure 3: Example of a Rule in the LlSP·CRITIC

computer interaction. In addition to improving the user's work,
a by-product of this interaction is that the user learns more
about LISP as a domain in the context of his or her work.

The system can be used by two different user groups. One
group consists of intermediate users who want to learn how to
produce better LISP code. We have tested the usefulness of
LlSP·CRITIC for this purpose by gathering statistical data on the
programs written by students in an introductory LISP course.
The other group consists of experienced users who want to
have their code "straightened out." Instead of refining their
code by hand (which in principle these users can do), they use
LlSP·CRITIC to help them carefully reconsider the code they
have written. The system has proven especially useful with
code that is under development, continuously being changed
and modified.

LlSP·CRITIC is able to criticize a user's code in the following
ways:

• replace compound calls of LISP functions by
simple calls to more powerful functions:
(not (evenp a» may be replaced by
(oddp a);

• suggest the use of macros:
(setq a (cons b a» may be replaced by
(push b a);

• find and eliminate 'dead' code:
as in (cond (...) (t ...) (dead code»;

• find alternative forms of conditional or arithmetic
expressions that are simpler or faster;

• replace copying (garbage generating) function
with a destructive function:
(append (explode word) chars)
may be replaced by
(nconc (explode word) chars);
see Figures 3 and5;

• specialized functions:
replace equal by eq - use integer instead of
floating point arithmetic wherever possible;

• evaluate or partially evaluate expressions:
(sum a 3 b 4) may be simplified to
(sum a b 7).

431

The Architecture of the LlSP·CRITIC

The structure of the overall system is given in Figure 4. The
user's code is simplified and analyzed according to the trans­
formation rules, and protocol files are produced. They contain
information (see Figure 2) that is used to generate explana­
tions. The user model (for a more detailed discussion see [9])
obtains information from the rules that have fired, from the
statistical analyzer, and from specialized knowledge acquisi­
tion rules which look for cues indicating that a specific concept
of LISP is either known or not known by the user. In return, the
user model determines which rules should fire and what ex­
planations should be generated.

"hlch rule, have fired

"hich rule •• Muld fire
set of rules

of the code of •• pecific u,er

knowledge structures
obout LISP

Figure 4: The Architecture of the LlSP·CRITIC

(.etq re.ul.t
(append (explode word) chars»

IthhV0MWOid"1

~

(setq resul.t
(append chars (explode word»)

=>

=>

(•• tq result
(nconc (explode word) chars»

rs'

(setq result
(nconc chars (explode word»)

In the environment shown in the individual screen images, the variable word is bound to the value this and the variable

c hars is bound to the list (i s).

Figure 5: Illustration of the Validity of a Rule Using Kaestle

USP-CriCic [version 1.1]

)'. E_~ """"""
!U ___ -"' ., • I t . .-...-11IIIPI'wo.....,. .

fU..-. , . ..

11_'

~t .. u ... ~.
'~ .I I,. (.... ... ') ..

,
~ f_.~nn

c..,.....,._ j
..... Ic.... • • • t ~ t"-,. l'

•,. {~I-

'- '
'"

f""",-- f ' '"

..... ~ tl _· 'IiIJt
"ItU

___ ct · - u _____ ".,...1_ ',
,'-- (~t_

... 'I~t; ,.
....... ---'1_ r ~_ -.-. ,.

111 ...-... • •

Y
· --.....---

,~~. ~

I'
__ . -~ 'tJ ••

Cllck 0f'1 LISP j:'1 lit to be lJif'\C)11fi~ Of'" ~tar n.,.. then <r-.tur-n):
LISP-Crh;!c c:~: Stl"lPIHy

IISP-Crltio rul., ""ch flre4
5hoo..tn 11'1 the '011owtl'\8 rOt"1'l4ot.1

To Ste. an CJ'lplan.9tton of tor <SnY of
the rules, v •• "ef'IV ootion ,Jt'pl .. in rul.

«(1~ ()I ...) (~ (Ilrt <11 ... >0) (~_ ,'0...,. (y) (_ ". v)) ...) ... »
(C ... I) (coo-r (~ s»))

I~;' (::=:t:;rt _ .
(... (~r (Cdr I»))

(........... (l .. t.C!lrt")l (~.·(\~ (..) (_.y)\I) ... »

(ggrod { «(1""Othu) r , ,,ll)

(t. (~ .·0 (11) <_ (CoW u) 1') (_ (_ v) (1 - ~»)) l I"" .' ~ ___ l-'
(..... (..... 11 (~(I~ ,,) ~ »

<.....-: ,'0_ (y) <_ (e- ,,) y » (~ (cor uJ (1 - r»/)

<_ « .. r ., , .. n (t. (_ (Coal' _) ~_ (cor .) 0- ,.)))))

jIIIIIo l •• ~---)-.
(_ (,.", (.. ,..,)

(_ <¢a". .) (..... <_ 'I) n~ ")n)

<_ « ,.,11 I) "II) ({ I .w.) t) (t. (......--~ _ (odf' '» » "" .. _r~ __ .
(_ ({ II ! l ",., « '1 _l) It. (___ (CdI' 1»»

~
: ... '.' --..-,_.
(_ ((.... 11 1) .. 11)

(t.(_ (....... '_' <....-._ (odr ' } HH

Click on l.ISP File to be .1f'\C)IH'led Of'" ef'Icer ~ th~ (r-«turn > : ~rfOIR : >THOnRSrt~~,.. , li-.o . l
USP-ct-Hic c~: Shoo,., ~...,1 •• r:i,.~
tlsp-cr1ele c~: Expol.;n Rule

'.
The interface shows the user worKing on a L1SP·CRITlC code file . The user has seen the recommendations of IISP.CRITIC,

has asked for a display of the rules which were applied and is about to request explanation of a particular rule.

Figure 6: The L1Sp·CRITIC Interface on the Symbolics Computer

432

OrawOI".ctJon

.C!),
D' 0

PIO
BIt-
[]lffiJ
aJlBJ I

~I t11 I
!.!.liImdit.@a __ #il3I&DB- If MI."

SUGGESTION

"1'\11; sh4ul d ~It INgIDE ~ui~ .. ,-~~.

HAitH!-

CrItique CAl TIC WlNOOW

;JNK-l tIot \~ IIqWPlUDt

ActU1lfL~ttt

81

Vftl aSl-1
II«1II.-"""'-1
HI\u.,
JOU1b-.. .u-1

--I
--,
potu.bulr- I
p{u.atM.(~./.

~l~-_-I

nnj,;-\

r

fUylU ',.0" SIHI:.·SUC:C£SfU:

51,... s""id b~ LESi-TKAH Z4 1"'_ f ... f". 1I1.., .. oln"

1 'H£:'?Cn':?!rJr -':'iV,!I!tst':!!~~i,. ~
~[NK-; M(I.tr:U th& ~~ U\.. fI'CIIl p;\WIlbUl.f

::INK-, ~U1 t:'ontQ(~ "".MOW

,inir: s/lo.,ld be H£R •• ".""9<!1'

iib"·JIO-/':! ~_; ... :>: v'" .,,,oe"',,

CRACK'S user interface is based on the metaphor of an "architect's workbench", Design units (DU's) are selected from
the DU Palette and their architectural symnbol moved within the work area (the center window), The user manipulates
DU's by CIiCki~ on their name in the Design State window, The user can question suggestions and criticism by clicking
on the text. Critiquing can be turned on and off,

Figure 7: Suggestions from the SINK-CRITIC

fu!.QQQr! for Understanding the Criticism

Our experience with LISP-CRITiC in our LISP courses has been
that the criticism given is often not understOOd_ Therefore we
use additional system components to illustrate and explain the
LISP-CRITiC's advice. KAESTLE, a visualization tool that is part
of our software oscilloscope [2], allows us to illustrate the
functioning and validity of certain rules. In Figure 5, we use
Kaestle to show why the transformation

(append (explode word) chars) ==>
(nconc (explode word) chars)

is safe (because explode is a cons-generating function; see
Figure 3), whereas the transformation

(append chars (explode word» ==>
(nconc chars (explode word»

is unsafe (because the destructive change of the value of the
first argument by nconc may cause undesirable side effects,)

Present Research System Environment

LISP-CRITIC has been ported to other computing environments,
most recently to the Symbolics 3600 (see Figure 6). Future
research will use the Symbolics as a proto typing environment
with COMMON liSP as the target domain. We emphasize
issues in human computer interaction: usability, explanation,
and user modelling.

433

CRACK

CRACK (see Figure 7) is a critic system that, suppo!,!,s us~rs
designing kitchens. It provides a set of domain-specific bUild­
ing blocks and knows how to combine these buildirl9 blocks
into useful designs. It uses this knowledge "to look over t~e
shoulder" of a user carrying out a specific design. If CRACK diS­
covers a shortcoming in users' designs, it otters ~riticism, sUQ­
gestions, and explanations. It assists users I.mprove their
designs through a cooperative ~roblem solving, process.
CRACK is not an expert system; It does not dominate the
design process by ge~erating ,new design~ from high-level
goals or resolving deSign confliCts automatlC?lIy. The users
controls the behavior of the system at all times (e.g., the
critiquing can be turned on and ott). and if users disagree with
CRACK. they can modify its knowledge base.

CRACK aids users in designing the layout of a kitchen floor plan
while seated at a graphics workstation (see Figure 7), , The
system is actually a collection of critics, each of.'~hich IS an
expert on a specific design unit (DU). Thes~ cntlCS ~erv~ a
dual purpose: they monitor what the user IS doing and Inteqect
their critique when appropriate, and they can provld,e a sUQ­
gestion if asked. Users can also ask for an explanation of ei­
ther a criticism or a suggestion, These explanations are "hard­
wired" into the system.

Most of the knowledge contained in the critics ,was ob!ained
from protocol studies, a questionnaire, and traditional kitchen
design books. We found that the system needed a method for
overriding these sources of knowledge when user preferences
conflicted with them. CRACK allows users to modify a critic in
order to better fit it to their preferences.

COMPONENTS OF OUR CRITIC SYSTEMS

Domain Knowledge

We represent domain knowledge In rule based formats. In the
case of L1SP-CRITlC, these rules are expressed in LISP in a for­
mat developed for this application. CRACK uses the ART expert
system shell environment and its underlying rule based ar­
chltecture for knowledge representation. Example rules for the
LISP-CRITIC system are shown in Figure 3.

Model Q! !IN User

As discussed previously, computer-based critics must contain
a user model in order to reach their full potential. Our work
with CRACK indicated that it is possible. to develop a usable
system without an underlying user modelling component.
Also, L1SP-CRITIC in its Initial form did not attempt to create in­
dividual user models and appeared to function at a satisfactory
level. However, for these systems to be truly integrated into
an individual's personal working environment, they must adjust
to the knowledge level and preferences of the individual user.

Representing the User ~ Our first attempts in L1SP-CRITIC
to model the user were classification approaches. We
categorized an individual by his or her expertise, inferred by
observation of programming habits. This approach tumed out
to be inadequate and caused us to reflect on expertise in the
domain of LISP. Knowledge needs to be represented in the
user model as a collection of concepts that each individual
knows. It cannot be assumed that a whole class of users
know the same set of concepts just because they have the
same background or experience. A survey of experienced
LISP programmers in our department confirmed this intuition.
Our test of expertise was the programmer's understanding of
generalized variables in COMMON LisP [24] and preference for
using ;p1d teaching the "setq" and "setf" special forms. We
discovered a significant variability not only in preference but
also in their understanding of the concept. These experiences
have led us to represent each user as a collection of concepts
that he or she knows or doesn't know about LISP along with an
associated confidence factor.

Acquisition Q! the User Model. The problem of knowledge ac­
quisition for the user model in LISP-CRITIC will be solved
primarily by examining code written by the user. Techniques
described in [7] have been developed to extend the system
beyond recognizing pieces of code that can be improved '0
recognizing the use of both constructs and concepts that
LISP-CRITIC thinks are preferable. A module statistically
analyzes the code for average function length and depth of
nesting. This analysis gives a measure of readability and al­
lows the system to infer a crude approximation of the user's
expertise.

Explicit acquisition of user knowledge has nO.t been att~mpte,d
for the LISP-CRITIC itself; however, we experimented With thiS
approach when we attempted to build an initial ":lodel o~ the
user for a tutoring system for a personal workstat.lon en.vl~on­
ment. This approach appeared to work well In .a limited
domain, but it is severely limited in its ability to acqUire a~ ac­
curate initial model of the user's knowledge of a domain as
complex as LISP.

Implicit acquisition of user knowledge will have to be sup­
ported in order to make our system robust. Our approach to
implicit knowledge acquisition involves a hierarchy of levels:

1. CUES - low-level primitives evidenced by the use
of particular syntax or constructs;

2. CHUNKS - the representation of LISP concepts in
the user model;

434

3. STEREOTYPES - groups of the chunks used for In-
ferring additional data In the user model.

The primary source for cues is L1SP-CR1T1C rules that fire when
a pattern is found in the user's code. Collections of rules that
have fired imply that the programmer knows a particular con­
cept (possesses a chunk), and furthermore that the system
believes this with a certain level of confidence. Similarly, col­
lections of chunks trigger a stereotype [23]. Chunks in that
stereotype in addition to the set that triggered the stereotype
can now be indirectly inferred and added to the user model.

Explanations

Critics must be able to explain their actions in terms of
knowledge about the underlying domain. Our first approach to
these explanations was to select appropriate textual explana­
tions from prestored information -- canned text. This approach
was not entirely satisfactory because advice was often not un­
derstood and textual descriptions alone made the concepts
hard to visualize.

We believe that human's efficient visual processing
capabilities must be utilized fully. Traditional displays have
been one-dimensional, with a Single frame on the screen filled
with lines of text. New technologies offer ways to exploit
human visual perception with multiple window displays, color,
graphics, and icons. Figure 5 shows one of our visualization
tools that illustrates the rationale for a complicated rule in the
LISP-CRITIC.

EVALUATION

Research on intelligent support systems must move beyond
"arm-chair design". These systems are so complex that build­
ing them Is not good enough. We have to test our implemen­
tations in real-world domains, those in which people actually
use the computer as a medium for their work.

Evaluation Techniques

We have tested our critics systems with real users over ex­
tended periods of time. Various evaluation methods (e.g.,
think-aloud protocols [17] and questionnaires) showed that a
strictly quantitative evaluation is not feasible because many
important factors are only qualitative.

Results Q! Evaluation

The results of our evaluations of LISP-CRITIC showed its
strengths and weaknesses.

Some of the strengths of LISP-CRITIC are:

• It supports users in doing their own tasks and it
supports intermediate users, not just beginners;

• It enhances incrementalleaming;

• It fosters reusability by pointing out operations
that exist in the system;

• It can be applied to every program (in the worst
case nothing is found to critique;)

• It is not just a toy system because users have
used it in the context of their everyday work;

• Using it does not require users to provide infor­
mation in addition to the code.

Some of the weaknesses of LISP-CRITIC are:

• It use only low-level transformations (i.e., it
operates primarily at the level of s-expressions;)

• It has absolutely no understanding of the user's
problem; this limits analysis because LISP-CRITIC
cannot distinguish between constructs the user
does not know and those not required to solve
this problem.

• The rules are not tied to higher-level concepts;

• The explanations should be generated more
dynamically [20].

In our evaluation of CRACK, which has been an operational
system almost a year, we accumulated feedback about its
strengths and shortcomings. One of our colleagues who is not
a professional kitchen deSigner, remodeled his kitchen. He
considered CRACK a valuable tool. The criticism generated by
the system during his design process illustrated several design
concepts of which he was not aware. In addition to generating
a specific design for his kitchen, our colleague increased his
knowledge about kitchen design.

The system was also used by a design methodologist who
considered the cooperative, user-dominated approach of
CRACK its most important feature. He felt that this set CRACK
apart from expert system oriented design tools that users have
little control of and that often reduce users to spectators of the
system's operations. We have deliberately avoided equipping
the current version of CRACK with its own design capabilities.
Too much assistance and too many automatic procedures can
reduce the users' motivation by not providing sufficient chal­
lenge. In contrast to most current CAD systems, Which are
merely drafting tools rather than deSign tools, CRACK has some
"understanding" of the design space. This knowledge allows
the system to critique a design during the design process -- a
capability absent in CAD systems.

Our evaluations also confirmed that the critic paradigm, al­
though attractive and useful in many situations, does have
limitations. It is not an expert system capable of generating,
on its own, a complete and correct solution to every problem.
Nor is it a better tutoring approach but merely one that is ap­
propriate under certain circumstances. A totally naive user
should still be exposed to initial instruction in a domain to
prevent floundering and frustration. We do feel, however, that
the critiquing approach uses techniques that approximate
human-to-human cooperation in day-to-day work settings.

FUTURE RESEARCH AND CONCLUSIONS

The deficiencies we uncovered in our evaluation work are the
basis for our future research agenda.

Structured Representation Qf Domain Knowledge

The results of our initial efforts indicated the need for
representing domain knowledge in a form which can be used
in the critiquing process itself, for explaining criticism, and for
representing the user's knowledge state. Rules alone are in­
adequate. We are investigating the decomposition of LISP as a
domain into concepts, called "chunks" in our user model. The
user model is a collection of chunks which the system inferred
a user does or does not know along with an associated degree
of confidence in that inference. Rules will continue to be the
applicative form of our LISP knowledge in the critiquing
process. They will be catalogued and organized by our
taxonomy of concepts, and used to guide explanation.

Beyond Canned Explanations

Explanations of LlSP-CRlnC'S "behavior" have been canned
text pegged to the user's knowledge level (novice, inter­
mediate, or expert). We are investigating approaches for
generating explanations on the fly using the domain

435

knowledge structure and the user model, thereby integrating
the ''explainable experts systems" approach [20].

Differential Descriptions

Another approach which depends heavily on the user model
and on maintaining a record of context for the user's work is
the use of differential explanations. Descriptions of concepts
new to a particular user will be generated by relating them to
concepts already known; the latter are contained in the user
model.

cooperative Problem Solving Systems

The long-term goal of this effort is to develop the full potential
of the critic paradigm and to make it a prototype for designing
cooperative problem solving systems. We would.like to endow
our critic systems with various techniques of deliberation that
would allow users to choose a critic approach that fits their
style of working and learning.

Conclusions

Computer-based critics incorporate many powerful ideas from
human-computer communications and artificial intelligence
into a system that makes use of the best aspects of human
and computational cognition. They have the potential to
provide a symbiotic relationship between a user and a
knowledge-based system. This environment can support
COl)perative work between these two agents while helping the
user learn in the context of his or her own work.

Implementation of this concept will require that computer­
based critics contain domain knowledge represented in a form
that is applicable both to problem solving and to explanations.
An explanation component will use that knowledge base and
an inferred user model to generate contextual explanations.
The system will share its knowledge with the user while build­
ing up a dynamic user model.

We have developed several critic systems that incorporate
some of these ideas and have formulated a plan to extend at
least one of these system, the LISP-CRITIC. The successes and
failures of this research will help us define the characteristics
and design considerations for critic systems as well as gauge
their potential. These results should be applicable to the entire
class of cooperative problem solving systems.

Acknowledgment
Many people have contributed to the development of IISP'(;RITIC over the last
few years. The authors would like to thank especially Heinz-Dieter Boecker,
who developed many of the original ideas; Andreas Lemke, who contributed
to the general framework; Helga Nieper-Lemke, who developed KAESTLE;

and Anders March who is the author of CRACK. We also thank John Reiman,
Paul Johl, and Patrick Lynn for recent work on LISP-CRITIC user modelling and
explanations components, Hal Eden for porting the system to the Symbolics
environment. The research is partially supported by a grant from the
Colorado Institute of Artificial Intelligence. The CIAI is sponsored in part by
the Colorado Advanced Technology Institute (CA Tt). an agency of the State
of Colorado. CA Tt promotes advanced technology education and research
at universities in Colorado for the purpose of economic development.

References

1. J.A. Anderson, B.J. Reiser. "The LISP Tutor". BYTE 10,4
(April 1985), 159-175.

2. H.-D. Boecker, G. Fischer, H. Nleper. The Enhancement of
Understanding Through Visual Representations. Human Fac­
tors in Computing Systems, CHI'86 Conference Proceedings
(Boston, MA), ACM, New York, April, 1986, pp. 44-50.

3. B.G. Buchanan, E.H. Shortliffe. Human Engineering of
Medical Expert Systems. In Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic PI'ogrammfng
Project, Addison-Wesley Publishing Company, Reading, MA,
1984, Chap. 32, pp. 599-612.

4. A.R. Burton, J.S. Brown. An Investigation of Computer
Coaching for Informal learning Activities. In Intelligent Tutor­
ing Systems, D.H. Sleeman, J.S. Brown, Eds., Academic
Press, London - New York, 1982, ch. 4, pp. 79-98.

5. D.F. Dansereau. Cooperative Learning Strategies. In
Learning and Study Strategies: Issues in Assessment, Instruc­
tion and Evaluation, Academic Press, New York, 1988, Chap.
7, pp. 103-120.

6. S.W. Draper. The Nature of Expertise In UNIX. Proceed­
ings of INTERACT'84, IFIP Conference on Human-Computer
~nteraction, Amsterdam, September, 1984, pp. 182-186.

7. G. Fischer. A Critic for LISP. Proceedings of the 10th In­
ternational Joint Conference on Artificial Intelligence (Milan,
Italy), Los Altos, CA, August, 1987, pp. 177-184.

8. G. Fischer. "Cognitive View of Reuse and Redesign".
IEEE Software, Special Issue on Reusability 4, 4 (July 1987),
60-72.

9. G. Fischer. Enhancing Incremental Learning Processes
with Knowledge-Based Systems. In Learning Issues for Intel­
ligent Tutoring Systems, Springer-Verlag, New York, 1988,
Chap. 7, pp. 138-163.

10. G. Fischer, P. Johl, T. Mastaglio, J. Rieman. A Study of
Expert Inferences of Novice Programmer Knowledge from
Their Programs. in preparation, Department of Computer
Science, University of Colorado, 1988.

11. G. Fischer, A.C. Lemke. "Construction Kits and Design
Environments: Steps Toward Human Problem-Domain
Communication". Human-Computer Interaction 3. 3 (1988),
179-222.

12. G. Fischer. A.C. Lemke, T. Schwab. Knowledge-Based
Help Systems. Human Factors in Computing Systems. CHI'8!
Conference Proceedings (San Francisco, CAl. ACM, New
York. April, 1985. pp. 161-167.

13. G. Fischer, A. Morch. CRACK: A Critiquing Approach to
Cooperative Kitchen Design. Proceedings of the International
Conference on Intelligent Tutoring Systems (Montreal,
Canada), June. 1988, pp. 176-185.

436

14. G. Fischer, M. Schneider. Knowledge-Based Com­
munication Processes in Software Engineering. Proceedings
of the 7th International Conference on Software Engineering
(Orlando, FL), IEEE Computer Society, Los Angeles, CA,
March, 1984, pp. 358-368.

15. B. Fox, L. Karen. Collaborative Cognition. Proceedings
of the Tenth Annuat Conference of the Cognitive Science
Society, Cognitiv!'/ Science Society, 1988.

16. C. Langlotz, E. Shortliffe. "Adapting a Consultation Sys­
tem to Critique User Plans·. International Journal of Man­
Machine Studies 19 (1983),479-496.

17. C.H. Lewis. Using the 'Thinking-Aloud' Method in Cog­
nitive Interface Design. RC 9265, IBM, Yorktown Heights, NY
1982.

18. P. Miller. A CritiquIng Approach to Expert Computer Ad­
vice: ATTENDING. Pittman, London - Boston. 1984.

19. P. Miller. Expert Critiquing Systems: Practice-Based
Medical Consultation by Computer. Springer-Verlag, New
York - Berlin, 1986.

20. A. Neches, W.R. Swartout, J.D. Moore. "Enhanced Main­
tenance and Explanation of Expert Systems Through Explicit
Models of Their Development". IEEE Transactions on
Software Engineering SE-11, 11 (November 1985),
1337-1351.

21. J. Psotka, L.D. Massey, S. Mutter. Intelligent Instructional
Design. In Intelligent Tutoring Systems: Lessons Leamed,
Lawrence Erlbaum Associates, Hilisdale,NJ , 1988, pp.
113-118.

22. P.L. Reichertz, D.A.B. Undberg (Ed.). A Computational
Model of Reasoning from the Clinical Literature. Springer­
Verlag. New York, 1987.

23. E. Rich. "Users are Individuals: Individualizing User
Models·. International Journal of Man-Machine Studies 18
(1983),199-214.

24. G.L. Steele. Common LISP: The Language. Digital
Press, Burlington, MA, 1984.

25. M.J. Stefik. "The Next Knowledge Medium". Al Magazine
7, 1 (Spring 1986), 34-46.

26. K. VanLehn. Student Modeling. In M. Polson,
J. Richardson, Ed., Foundations of Intelligent TutOring
Systems, Lawrence Erlbaum Associates, Hilisdale,NJ , 1988,
pp.55-78.

27. E. Wenger. Artificial Intelligence and TutOring Systems.
Morgan Kaufmann Publishers, Los Altos, CA, 1987.

28. T. Winograd, F. Flores. Understanding Computers and
Cognition: A New Foundation for Design. Ablex Publishing
Corporation, Norwood, NJ, 1986.

