CONTRIBUTION TO: PANEL ON OBJECT-ORIENTED KNOWLEDGE-BASED SOFTWARE MAINTENANCE PLATFORMS,
CHAIRPERSON: R. MIKKILINENI, COPSLA'ES

Software Maintenance Environments: a New Perspective

Gerhard Fischer, Roger King, Gary Nutt, Leon Osterweil and Christian Rathke
Deparntment of Computer Science, University of Colorado, Boulder

Software environments of the future have 1o support design methodologies whose main activity is not only
the generation of new independent programs but also the maintenance, integration, modification, and
explanation of existing ones. Our joinl research tries to find answers to this challenge in an interdis-
ciplinary research project bringing together researchers from software engineering, databases, human-
computer communication, knowledge representation and system modeling. Some of the major research
themes pursued are: large-grain object-oriented environments for software engineering, process program-
ming, visualization of complex processes, human problem-domain communication and reuse and
redesign.

Reuse and redesign can be efficiently supported by object-oriented construction kits. Construction kits
are based on a number of abstractions that characterize certain domains (e.g., user interface design,
network design, task modeling) -- and are able 1o support “human problem-domain communication®. The
abstractions for a domain constitute a partial “theory™ of a class of software systems. The evolutionary
development of such a framework, driven by testing the validity of abstractions in a variety of different
applications, is a prerequisite for a system to support reuse and redesign.

The limited success of reuse and redesign as a major programming methodology is in our opinion directly
related 1o the lack of adequate support tools. Having a large set of building blocks available without good
retrieval tools is a mixed blessing. The advantage is that, in all probability, an existing buiiding block or
set of building blocks —~ which have been used and tested belore - elther it the users’ needs directly or
come close 1o doing so. The disadvantage is that it may take a long time 1o discover a sultable building
block or to find out whether it exists al all. Using a high functionality computer system in software design
tasks reduces the size of the application system substantially because the system designer can take
advantage of the abstractions available in the basic system. The major costs incurred by the system
designer in using high functionality systems is in leaming and understanding the abstraction space of-
fered — but the desianer incurs these costs onlv once.

In our joint research project, we are integrating the following prototypical systems components
(constructed independently in other research efforts) into c<Floss>, a large-grained, object-oriented ar-
chitecture for software environments: OBJTALK -- an object-oriented knowledge representation language;
CACTIS - an object-oriented, distributed database; oLYMPUS - a modeling system fo animate and simulate
graphs; NEWTON -- a debugging system with a user interface developed in wusP (a user interface toolkit)
and NOOE -- a graphical editor design environment incorporating knowledge about application domains.

Acknowledgments. Our research is supporied by a grant No. 0487.12.03898B from UsWest Advanced
Technologies.

September 25-30, 1968 OOPSLA '88 Proceedings 289



