
UNIVERSITY OF COLORADO, BOULDER

Department of Computer Science

Enhancing Incremental Learning Processes
with Knowledge-Based Systems

Gerhard Fischer
Department of Computer Science and Institute of Cognitive Science

University of Colorado
Boulder, Colorado 80309

To be published in: Heinz Mandl and Alan Lesgold (eds): "Learning Issues for Intelligent Tutoring

Systems", Springer Verlag, New York, 1986 (i.P.)

ECOT 7-7 Engineering Center. Campus Box 430 • Boulder, Colorado 80309-0430 • (303) 492-1502

2

1. Introduction

In the past, computer systems limited the user to modes of communication that made the machine's job

easier. But now, as computer cycles become plentiful, our focus can shift to the users and how to make it

easier, more productive and less frustrating for them to cope with complex systems. Empirical investiga­

tions show that on the average only a small fraction of the functionality of complex systems is used.

Figure 1-1 summarizes data based on careful observations of persons using systems like UNIX, EMACS,

SCRIBE, LISP etc. in our environment. It also describes different levels of system usage which typically

can be found within many complex systems. The different domains correspond to the following:

D
1

: the subset of concepts (and their associated commands) that the users know and use with­

out any problems.

D
2

: the subset of concepts which they use only occasionally. Users do not know details about

them and they are not too sure about their effects. Descriptions of commands (e.g. in the form
of property sheets), explanations, illustrations (see section 6.1) and safeguards (e.g. UNDOs)
are important so that the user can gradually master this domain.

D3: the mental model [Norman 82; Fischer 84] of the user, i.e. the set of concepts which he/she

thinks exist in the system. A passive help system (see section 6.2) is necessary for the user to
communicate his/her plans and intentions to the system.

D 4: represents the actual system. Passive help systems are of little use for the subset of D 4

which is not contained in D
3

, because the user does not know about the existence of these

system features. Active help systems (see section 6.2) and Critics (see 6.3) which advise and
guide a user similar to a knowledgeable colleague or assistant are required so that the user can
incrementally extend his/her knowledge to cover D 4'

Figure 1-1: Levels of System Usage

3

As far as instructional strategies are concerned it is important to note that only D s can be learned by

using the methods of free exploration, whereas D -4 requires some guiding and coaching. The system's

model of the user (see section 5.2) will be used to determine the domains Dl - D 4 for an individual user.

2. General Principles for Enhancing Incremental Learning
Processes with Knowledge-Based Systems

2.1 The Paradigm of "Increasingly Complex Microworlds"

Over the last several years we have developed a general paradigm for instruction which is best described

as a sequence of "Increasingly Complex Microworlds (ICM)" [Fischer, Burton, Brown 78; Fischer 81; Bur­

ton, Brown, Fischer 83].

The ICM paradigm was developed to capture instructional processes for complex skills which are difficult

to learn because the starting state and goal state are too far apart. The student is exposed to a sequence

of increasingly complex microworlds, which provide stepping stones and intermediate levels of expertise so

that within each level the student can see a challenging but attainable goal. Increasingly complex

microworlds can also be used to provide protective shields for the novice that prevent him/her from being

dumped into unfamiliar system areas (see Figure 2-1). The paradigm requires a precise representation of

the knowledge that is learned in a specific microworld and how to choose the next microworld. It serves

well as a model to capture the essence of incremental learning processes.

--..... ~.

Figure 2-1: Protective Shields

In our application (the incremental learning of Lisp skills; see section 4) the following microworlds can be

defined:

4

• use of an interactive environments with multiple windows, icons, pointing devices;

• dynamic and associative memory structures (e.g. lists and property lists);

• applicative programming styles (e.g. little use of the assignment operators);

• destructive versus non-destructive functions;

• macros (which can be used to create more problem specific representations; they reduce the
cognitive complexity, because the goal structure of the problem domain can be more directly
mapped onto the program);

• use of existing tools (e.g. reader with real-time indenting, inspector, browser, trace and step
package, Kaestle, Code-Improver, compiler etc.) ;

• use of existing building blocks in the construction of new programs (e.g. pattern matcher,
window systems, packages to support an object-oriented style of programming, expert system
shells).

In our future research we will extend the power of the Code-Improver (see section 6.3) so it can decide

which microworlds are familiar to and have been mastered by individual learners. We will also develop a

system component which will make suggestions to a student to move on to the next microworld.

The richness of powerful Lisp systems (similar to the great variety of different slopes in skiing; [Fischer,

Burton, Brown 78]) will allow people to learn those parts of the system first that are of immediate

relevance to their tasks. Higher level programming formalisms and technological improvements (e.g. a

pattern matcher, an expert system shell, a first rate programming environment) have eliminated certain

prerequisites to use computer systems successfully.

2.2 The Critical Issues

The three major goals of our research are:

1. to enhance incremental learning processes with knowledge-based systems and to get a deeper
understanding of how people understand, learn and operate complex systems.

2. to apply and test our general framework by implementing system components which will sup­
port the instructional process which the normal computer science student or software engineer
has to go through when he/she learns to cope with complex Lisp systems.

3. to empirically evaluate the effectiveness of the user support systems constructed both to assess
their effectiveness and to discover possibilities for improvement.

To achieve these goals we are investigating:

1. How can complex systems be constructed so that they have no threshold and no ceiling? It
should be easy to get started (i.e. microworlds should provide entry points), but these systems
should also offer a rich functionality for experienced users.

2. How can our theoretical paradigm of constructing increasingly complex microworlds be ex­
ploited to build complex systems that support incremental learning strategies?

3. What are the general principles that determine the right mixture of free exploration and

5

coaching? How can we guarantee that systems take the initiative when necessary and at the
same time are non-intrusive?

4. How can we turn "non-constructive" bugs into "constructive" ones and develop a broad col­
lection of self-checking methods?

5. How can we use models of the user to make systems more responsive to the needs of different
individual users and how does the system behavior reflect the transition of a user from a
novice to an expert?

6. How can explanations be tailored to the user's conceptualization of the task?

7. What is the role and relative importance of verbal and nonverbal (e.g. graphical) explanatory
material? When should one be used in favor of the other?

8. How can we evaluate these systems?

We claim that knowledge-based systems with qualitatively new human-computer communication

capabilities (see section 5) are one of the most promising ways to achieve our stated goal. We propose to

extend the comprehensibility of systems by using a large fraction of the computational power of the

machine to support sophisticated user support systems (see Figure 2-2).

Figure 2-2: From Tools to Communication Partners

6

In the past our efforts have been concentrated on the incremental learning of computer systems, because

they allow us to exploit the information structures already present in the machine and they do not require

maintaining consistency between an outside world and a model of this world in the computer. In addition

this problem domain is ideally suited for our purposes: it occurs in our daily work; a student pool for

testing and evaluation is readily available; there is a growing interest in Lisp-based systems and a serious

shortage of appropriately trained persons.

However, we would like to emphasize that our concerns are of more general nature. Computer systems

are used as vehicles only to carry out the work; the more general goals of our research are to develop

theories and construct experimental systems which make a true contribution towards an improvement of

instructional theories and processes in general.

3. Instructional Strategies

Our instructional strategies are oriented towards the intermediate user who has mastered a system to

some extent (see Figure 1-1). This implies that it is not sufficient to rely solely on tutorial strategies but

we have to develop several ways to support a user:

1. a critic should "look" over his/her work and make suggestions for improvements;

2. a tutoring component (using some of our visualization techniques) can illustrate the advice
given;

3. an explanation component can provide the rationale that leads to the improvement.

In our research we want to determine the balance between supporting an exploratory learning style of

learning-by-doing (the basic philosophy behind the interest worlds in LOGO environments; [Papert 80])

and a guided learning experience through coaching assistance (the primary instructional strategy sup­

ported by systems in intelligent computer-assisted instruction; [Sleeman, Brown 82]).

Learning-by-doing is tightly coupled with learning-an-demand. Users are often unwilling to learn more

about a system or a tool than is necessary for the immediate solution of their current problem. To be

able to successfully cope with new problems as they arise requires a consultant which generates advice

tailored to the user's specific need. This approach provides information only in relevant situations and

eliminates the burden to learn a lot of things in advance (i.e. at times when it is unknown if the infor­

mation ever will be used or when it is difficult for the learner to imagine an application).

To get a deeper understanding of how to support learning-an-demand our work on knowledge-based help

systems (see section 6.2) serves as a starting point. We have to be able not only to respond to errors but

7

to notice -- based on a model of the task and a model of the individual user -- suboptimal actions of

the user which serve as a basis for individual help. It is not always clear when a solution is suboptimal

and hence should trigger an activity of the help system. A metric is necessary to judge how adequate a

user's action is. Except for narrow problem domains (e.g. simple games [Burton, Brown 82]), optimal

behavior cannot be uniquely defined.

We will use the identification of a user with a specific microworld to prevent the system from using inade­

quate conceptualizations and knowledge structures which may lead to the following difficulties:

• the help offered may not be understood by the lea.rner because it refers to unknown concepts;

• the help offered may put too heavy a load on the learners short term memory;

• the help system "forces" the user to do something which he/she does not want to do. A pos­
sible solution to this problem might be to make the metric visible and to allow the user to
change it; but we must be aware that this increases the control of the user as well as the
complexity of the system. This increase in functionality will be of little use if we do not find
adequate communication structures for it.

Our approach towards the construction of instructional systems can be contrasted with some other ap­

proaches:

1. The LISP Tutor: Anderson and his research group [Anderson et al. 84] address similar
issues but their work is oriented towards tutoring which allows them to pursue a predefined
course of action, whereas our actions are triggered by the behavior and the incremental learn­
ing process of individual users. Their system deals with the early phase of a skill acquisition
process in which it is important to provide guidance and correct the acquisition of "wrong"
behavior as early as possible.

2. The PROUST system: Johnson and Solowa.y [Johnson, Soloway 84] provide systems with a
deep understanding of programs and misconceptions of users about them. They look in great
detail at very specific programs which they use as case studies in their work. Concentrating
on a very small number of examples they are able to create a very elaborate ("deep")
representation of these objects. Their system is not able to take a basically arbitrary Lisp
program and criticize it analogous to our Lisp-Critic.

3. The West system: Brown's and Burton's work on the VVEST system [Burton, Brown 82] as
well as our joint work [Fischer, Burton, Brown 78; Fischer 81; Burton, Brown, Fischer
83] have been very influential to the research described in this paper. Contrary to their ap­
proach in "West", where one can rely on the evaluation of an arithmetic expression to deter­
mine a metric for "optimal" and "suboptimal" behavior, we have to model much more com­
plex skills (e.g. how to write" good" Lisp code) which requires hundreds of rules (see section
6.3).

The following requirements can be derived from our desire to support the instructional strategies

described:

• the system must be able to support users on all levels of expertise (novices to experts);

8

• it is not restricted to a tutoring system although tutoring aspects can be found.

• it supports learning on demand; interesting new topics are introduced into the instructional
process when there is a need for them; it should take the initiative when weaknesses of the
user become obvious; not every recognized suboptimal action should lead to an intervention.

• it ought to have explanation capabilities, because even the best advice is sometimes not un­
derstood; it should give additional information which was not explicitly asked for but which
is likely to be needed in the near future.

• it needs to have a model of its communication partner in order to be able to tailor its advice
and explanations to the level of expertise of the user; knowing what the user knows the sys­
tem may be able to make predictions on the kind of problems the user is likely to encounter
when tackling specific tasks.

• it will be able to provide advice relating to the domains Ds and D 4 in Figure 1-1; it will assist

the user in the stepwise extension of his/her view of the system by making sure that basic
concepts are well understood and by not introducing too many new features at once.

• it should be be non-intrusive; only frequent suboptimal behavior without the user being aware
of it should trigger an action of the system.

4. The Application Domain: Enhancement of LISP Skills

Our system building efforts have the goal to build 3. Lisp-Critic. This system may be best thought of as

a knowledgeable colleague, a consultant or an advisor of the programmer. It should be relevant in the

standard situation that occurs among humans: some person is working on a program, somebody else

enters the room and both persons start a dialogue on the program that is under development.

4.1 Rationale for the Selection of the Problem Domain

The rationale for the selection of this problem domain is based on the following:

1. Relevance. There is a great need to train people to use complex Lisp systems which form the
basis for the new tools of the 5th generation computer systems; there are currently very few
people around who can successfully exploit the computational power and broad functionality
of high-performance personal work stations.

2. Complexity. The systems used are sufficiently complex that nobody masters them
completely; incremental learning processes are a must.

3. Expertise. To train students and computer scientists has been our task for several years; we
have a good understanding of the problems which they encounter and we have a large group
of people around us to test our ideas and systems in a natural setting.

4. Appropriateness. We have enough control over these systems (because we built most of
them ourselves) to augment them with knowledge structures (e.g. models of the task, models
of the users, visualization techniques) which are required to enhance incremental learning.

9

4.2 A Scenario

The following dialogue exemplifies some of the features that the system will have. It shows the

functionality only, it does not show the user interface. We use a natural language dialogue to illustrate

the main ideas; this form of interaction will be replaced or enhanced in the future by an interaction style

which is more oriented towards direct manipulation (using windows, menus, icons, mouse, etc.). The sys­

tem will not necessarily be used exclusively interactively; it may also be used in a batch mode, writing

comments and suggestions for improvement into a separate file. One alternative scenario is that before

users log off the system in the evening, they ask the system to look over the work during the night.

The following dialogue assumes that the user is not using the system the first time; from earlier sessions

the system has incrementally built up a model of the user that reflects his/her knowledge state, preferred

style of programming etc.. We will use this font to print the input of the user, another font for the

output of the computer, and a. third one to comment on both. Code will be printed in a smaller bold or

italic font.

Dialogue

(prog (line)
(setq line (append (explode word) chars))

loop
(<:ond «null line) (return (terpri))))
(prine (car line))
(prine" ")
(setq line (edr line))
(go loop))

I have some suggestions on how to tmprove your

code, want to see them?

Comments

User types in some piece of nev code,

System steps in a.ctively; ACTIVIST aspect.

Yes

The code
(prog (lin f)

(setq line (append (explode word) chars))

loop

(card ((null line) (return (terpri))))

(prine (car line))

(prine ' ')

(utq line (cdr line))

(go loop))

could be rewritten by

as:

• using the rnsg-macro and

• replacing the pTOg- form by a do-form

(do ((line (append (explode word) chars)

(cdr line)))

((null line) (terpri))

(mag (car line) B))

What does rnsg do?

msg tS a ~ that expands into more primitive

print functions; "B" will print a blank; other ar­

guments will be printed by 'prine '.

What is a macro?

A macro t'S

Give me another example of a macro

The Code
(setq line (cdr line))

could be rewritten as:
(unpush line)

10

System suggests using a macro and a higher level

looping control structure than prog by USing

transformat1on rules contained in its domain

lmo'o(ledge base,

User asks for explanation of a function, PAS-

SIVIST aspect

System generates explanation of "msg" , The un-

derl1ned 'o(ords may be explained further, Note,

that the system does ~ print the 'o(hole manual

entry for "msg" but instead gives the information

on the "BOO ke1'olord only, 'o(hich is relevant to the

specific suggested improvement,

User a.sks for the explanation of a concept,

System prints out explanation tailored to the

lmo'o(ledge state of the user

User asks for more examples of macros,

System prints out another example generated from

other port1ons of the user's code if possible,

13

4.3 A Conceptual Hierarchy of Lisp Knowledge

The main question to be answered in order to provide intelligent help to a programmer is: what does the

system need to know to fulfill its job? What is the knowledge that the system can draw upon and how is

it structured?

Weare currently restricting ourselves to build a program that can assist the programmer up to the level

of application-independent knowledge about programming; we do not try to model the knowledge that is

specific to certain algorithms. The system also does not have an understanding of higher-level program­

ming constructs like loops, hashtables etc. at the level of Rich's and Shrobe's Programmer's Apprentice

[Rich, Shrobe 78]. Our approach can be compared with the computer aids to writers in the UNIX world

[Cherry 81].

We formalize the programming knowledge using Concepts, Goals, and Functions as the basic

representational entities. We are using ObJTalk (an object-oriented knowledge representation formalism;

[Lemke 85; Rathke, Lemke 85; Rathke 86]) to represent this knowledge because it offers the right kind of

descriptive power. Some basic knowledge types can be defined as classes in the following way:

Concepts. A Concept is an entity that is primitive in the sense that no action is associated with it; they

are used to tie the procedural knowledge together that is embodied in the Goals.
(ask class neY: Concept

(superc class)
(descr (SuperConcept (default 'L1sp-KnoYledge»

(ContraryConcept)
(RelatedConcept»)

Goals. Goals specify normative categories for the Lisp programmer. Goals embody procedural

knowledge that can be applied to produce program code. Goals formulate the heuristics and higher order

principles that may be followed to produce good software. There may be several layers of goals, i.e. goals

may have subgoals. Goals will be used to represent individual rules that can be used to classify and

transform program code.
(ask class ney: Goal

(superc class)
(descr (RelatedConcept)

(SuperGoal)
(Re la tedGoal)
(Conf11ctingGoal»)

Functions. Functions capture the knowledge that is closely associated with the actual writing of Lisp

code.

11

If the system's model of the user had been different, e.g. if the user were a more advanced person already

knowing about macros and do-forms, the interaction might have been different:

I have some suggestions on how to improve your

code, want to see them?

Yes

The code
(prog (line)

(8f:l:q line (append (explode word) chars))
loop

(cond ((null line) (return (terpri))))

(prine (car line))

(prine' ')
(8etq line (cdr line))

(go loop))

could be rewritten by

• using the m8g-macro,

• replacing the prog- form
mapc- form and

by a

• using a destructive function (nconc)
instead a copying one (append).

as:
(mapc '(lambda (char) (m8g char B))

(neone (explode word) chars))

Why replace append by nconc?

nconc tS more efficient, because it does not copy

list structures.

Please explain!

You may start the Kaestle system and execute
(append (explode 'word) '(e h a r 8))

and
(ncoTtc (explode 'word) '(e h a r s))

within the Kaestle-window or run the "nconc-

append demo".

System steps in actively; ACTIVIST aspect.

Note. tha t the system vas ab 1 e to generate a

reasonable nev name for the parameter of the

lambda-expression. This viII be done through

reference to other parts of the code or by having

some knovledge about the users naming style.

System justifies its suggestion by referring to

higher level concepts.

System suggests tvo approaches; the first involv-

ing more activity on the side of the user, the

second being a prefabricated demonstration (that

may use the current bindings of Uchars" and

"vord n
). The system could have also chosen a

textual explanation by presenting the relevant

manual information.

Show the demo

toplevel

1: list!
«one 1) (two 2»
2: I i st2
«three 3) <four 4»
3: (append I ist! I ist2)

12

The system runs the demo vhich shovs on the level

of the internal representation of list structures

hoy these are copied and modified by the tvo

functions append and nconc, respectively (see

Figure 4-i).

«one 1> (two 2) (three 3) (four 4»
4: (neone I ist! I ist2)
{(one 1> (two 2) (three 3) (four 4»
5:

Figure 4-1: Illustration of append versus nconc

Our visualization tool Kaestle (see Section 6.1) illustrates the difference between the copying operation

append (new cons-cells are used) and the destructive operation nconc (the list 'listl' is modified). Both

function seem to produce the same result (as seen in the window 'toplevel'), but nconc causes a side effect

which is undesirable in many situations.

14

(ask class nev· Function
(superc class)
(descr (SuperConcepts)

(Pattern)
(Subparts)
(RelatedFunctions)
(SubConcepts)
(RequiredConcepts)
(Critics)
(Special1zers)
(Generalizers)
(Opt1m1Zers»)

The knowledge base will consist of a large number of instances of these primitive representational units.

Some examples of instantiations of the classes are:

• Concepts

• Goals

(ask Concept
(ask Concept
(ask Concept
(ask Concept
(ask Concept

nev:
nev.
nev:
nev:
nev:

L1sp-Knovledge (SuperConcept Programming-Knovledge»
Control-Structures (SuperConcept Programming-Knovledge»
Data-Structures (SuperConcept Programming-Knovledge»
Readability)
Macros (SuperConcept Readability Speed-Eff1ciency»

(ask Goal nev: Avo1d-Creating-Garbage
(RelatedConcept Garbage-Collection»

(ask Goal nev· Avoid-Multiple-Evaluat1on-Of-Identical-Expression
(RelatedConcept Speed-Efficiency»

(ask Goal nev: Do-Not-Copy-Repeatedly
(RelatedGoal Avoid-Creat1ng-Intermed1ate-ConsCells)
(descr

(Pattern) (Consequence) (Mod if ier) (Type»)

• Figure 4-2 shows a typical ObJTaik representation of expert knowledge concerning the Lisp
function do.

The slots in this structure can be described as follows:

• SuperConcepts: a set of more general concepts which are instantiated through this function.

• Pattern: the Lisp syntax of the function. It can be used to recognize it from some piece of
program code and conversely to generate code from an abstract description.

• SubParts: lists of primitive blocks needed to build up a complete function.

• RelatedFunctions: functions that can be used to achieve similar functionality. They may be
more special or more general.

• SubConcepts: a list of more special uses of the function exploiting a certain part of the whole
functionality. The example DoWithMultipleLoopVars addresses the issue that more than one
loop variable can be used.

• RequiredConcepts: a link to concepts that are needed to understand how the function IS
working (i.e. links to previous microworlds).

• Critics: patterns of program code which are clues to mISSIng or incorrect concepts. Often
these patterns are undetected by the Lisp runtime system and the compiler because they are

15

(ask Funct10n renev: Do
(SuperConcepts

, ,; expert knowledge about the do function
; ;; links to higher level concepts

Iterat10n ParallelEvaluat10n LambdaB1nd1ng Spec1alForms
Sequent1alProgramm1ng)

(Pattern ; ;; syntax of the function
(do (?*DoDeclarat10n) ?DoEx1tClause ?*ProgBody»

(SubParts
DoDeclarat10n DoEx1tClause ProgBody)

(RelatedFunct1ons ; ;; do can be trans formed to these functions
S1mpleDo Prog MapFunct10ns)

(SubConcepts
DoW1thMult1pleLoopVars DoW1thLocalVars DoW1thUn1n1t1a11zedVars
DoW1thMoreThan1Var DoW1thNoDoVar DoW1thCondEx1tIdentical
DoW1thCondEx1t DoW1thCondSometh1ngEx1t DoW1thN1lEx1tClause)

(Requ1redConcepts
ProgBody Un1n1t1a11zedVarsAreN1l ParallelAss1gnment
LeftToR1ghtEvaluat10nSequence)

(Cr1 t1cs ; ;; recognize incorrect syntax
Mult1pleDeclaredVar1ables IgnoredParallelAss1gnment MalformedEx1tClause
Mal!ormedDeclarat10n)

(Spec1alizers
D02Mapcar D02Mapc DoW1thTconc2Mapcar-1 DoW1thTconc2Mapcar-2 D02S1mpleDo D02Let)

(Generalizers
Prog2Do-l)

(S1mplifiers)
(Opt1m1zers»

This special form 0 f do re fleets the usage of more than one loop variable
It is used to recognize the use of this functionality.

(ask Funct10n reney: DoW1thMult1pleLoopVars
(SuperConcepts Do)
(Pattern

(do (?*vars1 (?v1 ?11 ?r1) ?*vars2 (?v2 ?12 ?r3) ?*vars3)
?test ?*body»

(Used In
D02Mapcar DoW1thTconc2Mapcar-1 DoWithTconc2Mapcar-2)

(Examples ...)
(Rat1ng))

Transformation rule from prog to do and vice versa.
(ask Cr1t1cRule reney: Prog2Do-1

(FromFunct10n Prog)
(ToFunct10n Do)
(FromPattern (prog (?var) (setq ?var ?1n1t) ?label:symbolp

(cond (?test (return ?result»)
?*body (setq ?var ?rep) (go ?label»)

(ToPattern (do «?var ?1n1t ?rep» (?test ?result) ?*body»)

Transformation rule: do <--) mapc
(ask Cr1t1cRule reney: Do2Mapc

(FromFunct10n Do)
(ToFunct10n Mapc)
(FromPattern (do «?var ?1n1t (cdr ?var») «null ?var) ?*result) ?*body»
(ToPattern (mapc '(lambda (?elem) ?*(replace· ?*body (car 7var) ?elem»

?1nit) ?*result)

Figure 4-2: Representation of the "do" Function

16

not explicitly erroneous. Examples are unreached pieces of code, code which computes a con­
stant value, code which runs only interpretively etc ..

• Specializers, Generalizers, Simplifiers and Optimizers: transformation rules which make the
knowledge base operational. They allow the transition from a concept to a related concept
and can also be used to generate explanations for this relation. The Prog2Do-1 generalizer con­
nects this function to the related prog function and the Do2Ma.pc specializer provides the link to
one of the higher level "map"-functions.

The network of concepts, goals, and functions serves a variety of purposes; it may be used

• to make the relations between different parts of the programming knowledge explicit;

• to justify and thereby explain the improvements suggested by the rules (see section 6.3);

• to enable the student to actively browse through the conceptual space (e.g. to learn about
similar concepts) of the application domain;

• to restrict the domain of tutoring to parts of the conceptual knowledge; i.e. criticize and ad­
vice relative to a subset of concepts and goals.

• to derive a model of the user (see section 5.2).

5. Architecture of a System to Support Incremental Learning

Processes

5.1 Knowledge-Based Human-Computer Communication

Knowledge-Based systems are one promising approach to equip machines with some human communica­

tion capabilities. Based on an analysis of human communication processes we have developed the model

shown in Figure 5-1.

The system architecture in Figure 5-1 contains two major improvements over traditional approaches:

• the explicit communication channel is widened (e.g. we use windows, menus, pointing devices,
etc.) and

• information can be exchanged over the implicit communication channel.

The four domains of knowledge shown in Figure 5-1 have the following relevance:

1. Knowledge of the problem domain (see section 4): Intelligent behavior builds upon large
amounts of knowledge about specific domains. This knowledge imposes constraints on the
number of possible actions and describes reasonable goals and operations. If, for example, in
UNIX a user needs more disk space it is in general not an adequate help to advise him/her to

use the command rm *1 [Wilensky et al. 84] although it would perfectly serve his/her ex­
plicitly stated goal. The user's goals and intentions can be inferred if we understand the cor­
respondence between the system's primitive operations and the concepts of the task domain.

1The command deletes all files in the current directory.

o
o
o
<:)

C>

• ,

17

Knowl,.dg" about:

/

• probl,.m domain
• communication process,.s
• communication partner
• problems of the user

and tutorial intervention

•

implicit
communication channel

LIIIIII17
explicit

communication chann,.l

Figure 6-1: Architecture for Knowledge-Based Human-Computer Communication

2. Knowledge about communication processes: The information structures which control
the communication should be made explicit, so the user can manipulate them.

3. Knowledge about the communication partner (see section 5.2): The user of a system
does not exist; there are many different kinds of users, and the requirements of an individual
user grow with experience.

4. Knowledge about the most common problems which users have in using a system
and about instructional strategies (see section 3): This kind of knowledge is required if
someone wants to be a good coach or teacher and not only an expert; a user support system
should know when to interrupt a user. It must incorporate instructional strategies which are
based on pedagogical theories, exploiting the knowledge contained in the system's model of the
user.

5.2 The Use of Models to Support Incremental Learning Processes

To support incremental learning processes and learning-on-demand the system must be able to represent

for specific users information about the user's conceptual understanding of a system, the user's individual

set of tasks for which he/she uses the system, the user's way of accomplishing domain specific tasks, the

pieces of advice given and whether the user remembered and accepted them and the situations in which

the user asked for help.

18

The domain chosen for this research is much more complex than the simple editing tasks considered in the

Activist and Passivist systems (see section 6.2) or a simple game like the WEST system [Burton, Brown

82]. While parametric models (i.e. ratings of the user in a small set of concepts) or overlay models, in

the form of a one-to-one association of tasks and (expert) solutions, are sufficient for simple tasks, a net­

work consisting of programming concepts, Lisp functions, data types, and trans formation rules must be

developed to represent both the expert knowledge and the incomplete, suboptimal, and partly erroneous

knowledge of the user.

The representation of the user's knowledge and skills is done as a modified subset of the system's expert

knowledge. Compared to the system's expert knowledge, some of the concepts and transformation rules

may be missing. Others may be present but incomplete or incorrect. In addition, there may be erroneous

subconcepts which were detected in code written by the user. An example of a user's representation of the

DO-function (as hypothesized by the system) is given in Figure 5-2.

(ask Function renev: Do
(SuperConcepts , ;; fewer known superconcepts

Iteration SequentialProgramming)
(Pattern , ;; less general form

(do (?*DoDeclaration) (?test ?result) ?*LambdaBody))
(SubParts ; ;; there is a lambda body instead of a prog body

DoDeclaration DoExitClause LambdaBody)
(RelatedFunctions many related functions are unknown or

Prog) not recognized as being related
(SubConcepts

DoWithMultipleLoopVars DoWithMoreThan1Var
DoWithCondExit DoWithCondSomethingExit)

(RequiredConcepts
LeftToRightEvaluationSequence)

(Critics
MultipleDeclaredVariables IgnoredParallelAssignment MalformedExitClause
MalformedDeclaration)

(Specia.lizers) , ;, no transformation rules available
(Genera.lizers)
(Simplifiers)
(Optimizers))

Figure 0-2: A User's Representation of the "do" Function

Given this detailed model of the user and the system's understanding of Lisp knowledge, the following

actions of the system become possible:

• Select appropriate actions with respect to the user: If the comparison of the user model and
the system's expert knowledge reveals weaknesses in a specific area, the system should only
become active if this area is adjacent (in terms of the rCM-paradigm) to already known areas

and does not require too many other areas unknown to the user .

• Select examples from the domain the user is familiar with: By using an executable form of

19

representation it is possible to generate illustrations out of areas which the user already under­
stands and thus reduce the cognitive distance that has to be bridged .

• Present only the missing pieces of knowledge: In dialogues a large amount of time is spent to
find out what each communication partner knows and does not know about the subject area.
Provided a detailed user model the system can concentrate on the very points where the user
needs help .

• Better understanding of the user: Using knowledge about the user's understanding of a
problem domain makes it much easier to find out about his/her real problem. We encoun­
tered many cases where a user had a problem which originated in a wrong decomposition of a
higher level problem. Using knowledge about the user it is possible to trace a problem back to
its real roots.

The problem of knowledge acquisition for the user model will be solved primarily using program code

written by the user. Techniques as described in section 6.3 will be extended from recognizing pieces of

code which can be improved to both recognizing the goals of a piece of code as well as existing and miss­

ing concepts which led to its generation. Since only in very few cases a definitive assumption about the

knowledge of the user can be made, it is important to have many clues which allow to make uncertain

inferences when no specific evidence is available. Concepts grouped into a set of microworlds are such a

clue. If, for example, the user has shown to know a certain concept and there is no information about

any of the prerequisite concepts then it is very likely that he/she also knows these concepts to some ex­

tent.

6. Prototypical System Components to Enhance Incremental

Learning Processes

In this section visualization techniques, knowledge-based help systems and the Code-Improver system will

be briefly described. These system components were developed over the last several years, have been in

active use for some time and will serve as important building blocks towards our goal to construct a

Critic for Lisp.

6.1 Visualization Techniques

Our visualization tools were developed as extensions to the FranzLisp programming environment. All

these tools display and visualize relationships among data and control structures that are otherwise in­

visible. They all together build a software oscilloscope, that is used in a similar way as the oscilloscope

of the electrical engineer.

The most important data structure of Lisp IS the list. With Kaestle [Boecker, Nieper 85; Boecker, Fis-

20

cher, Nieper 86J the graphic representation of a list structure is generated automatically and can be edited

directly with a pointing device. By editing we do not only mean changing the structure itself but chang­

ing the graphic representation, the layout, of the structure. Kaestle is integrated into a window system

and multiple Kaestle-windows may be used at the same time. The user inter face is menu-based (see

Figure 6-1) and the program inter face is realized through Ob)Talk methods which can be triggered by

sending messages to a Kaestle-window.

move st ructur e
move kaestle

~~~~~~~~~~~~~~~~~~~~~~replan structure 
·~cm~IC~~~lIlIlIlIlIlIlIlIlIlIlIlIlIlIr!lete structure 
.p! delete kaestle 

insert atOll 
change to ni 1 

insert pointer 
find path 

undo 
redo 

Figure 8-1: Kaestle: Visualization of Data Structures 

The user of Kaestle may take one of the following roles: 

1. An active role: A graphic representation can be generated from whatever the user types in and 
the user is encouraged to an exploratory style of learning. 

2. A passive role: An inexperienced user does not know which structures and which operations on 



21 

them lead to interesting effects. To display prestored examples (or even examples taken from 
the actual context) Kaestle can be used through a program interface, i.e. programs can be 
written which generate graphic representations in a movie-like manner. 

Our visualization tools can be used to support different instructional strategies. Kaestle supports the 

graphic display of data structures to answer questions like: What are the (list) structures that the system 

is currently working on? How do they change through the execution of programs? 

Kaestle is a tool which can be used by the Lisp-Critic to illustrate explanations given by the system to 

answer questions like: 

• What is the difference between several list creation functions (e.g. cons and list)? 

• What is the difference between equal and eq? 

• What is the difference between non-destructive and destructive functions (e.g. append and 

nconc 2)? 

• Why is it possible to transform (append (explode yord) chars) to (nconc (explode yord) 
chars)? 

• Why is it wrong to transform (append chars (explode yord)) to (nconc chars (explode Yord))? 

• Why does nconc not work if the first argument is nil? 

• How is a stack implemented in Lisp? What are push and pop doing? 

We will adapt these and similar tools to help and explanation systems (see Figure 4-1), augmenting 

natural language by graphic- and movie-like capabilities [Boecker, Fischer, Nieper 86]. 

6.2 Knowledge-Based Help Systems 

Our knowledge-based help systems (for details see [Fischer, Lemke, Schwab 84; Fischer, Lemke, Schwab 

85]) have created some of the basic ideas towards our goal to support learning by demand. PASSIVIST, 

a passive, natural language based help system, is implemented in OPS5 [Brownston et al. 85]. Flexible 

parsing using OPS5 is achieved by a rule-based bottom-up method. The consistent structure of the sys­

tem as a set of productions and a common working memory allows the use of the same knowledge III 

several stages of the solution process. It uses a help strategy in which each step of the solution is 

presented and explained to the user who then executes this step and immediately sees the resulting effects. 

Help is given as text generated from sentence patterns according to the goal structure of the problem 

solving process and key sequences and subgoals are displayed graphically. 

ACTIVIST, an active help system for an EMACS-like editor, is implemented in FranzLisp and ObJTalk. 

Activist deals with two different kinds of suboptimal behavior: 

1. the user does not know a complex command and uses suboptimal commands to reach a goal 
(e.g. he/she deletes a string character by character instead of word by word). 

2see the figure in the scenario in section 4.2 



22 

2. the user knows the complex command but does not use the minimal key sequence to issue the 
command (e.g. he/ she types the command name instead of hitting the corresponding function 
key). 

Similar to a human observer, Activist handles the following tasks: 

• to recognize what the user is doing or wants to do. 

• to evaluate how the user tries to achieve his / her goal. 

• to construct a model of the user based on the results of the evaluation task. 

• to decide (dependent on the information in the model) when and how to interrupt (tutorial 
in tervention). 

In Activist the recognition and evaluation task is delegated to 20 different plan specialists (Figure 6-2). 

DELETE left part of word 
U SE R t1 0 D 

plan executed : 
well done : 

L 

wrong COMMand used: 
with unnescessary keys : 
COMMand with rong e ys 

ith unnescessar y keys : 
Messages sent to user : 

I N T E RN A L I N 

2 
1 
1 
4 

used : 9 
9 
9 

0 R t1 A T I 

proposed co Mands : 
optiMal e ys : 

rubou t - wo rd - I e ft 
ESC h 

COMr'lands : 
e s : 

auto laton In sta e : S t ar 

Figure 6·2: A Detailed View of one Plan Specialist 

0 N 

Each plan specialist recognizes and evaluates one possible plan of the problem domain. Such plans are for 

example "deletion 0 f the next word", "positioning to the end of line", etc. . A plan specialist consists of: 
1. A transition network, which matches all the different ways to achieve the plan using the 

functionality of the editor. Each transition network in the system is independent. The results 
of a match are the used editor commands and the used keys to trigger these commands. 

2. An expert which knows the optimal plan including the best editor commands and the 
minimal key sequence for these commands. 

Figure 6-3 displays the user model (consisting of all plan specialists) that Activis t has built up. For each 



23 

plan there is a pane which shows the performance of a specific user concerning this plan. Panes with 

black background indicate that the corresponding plan is currently not monitored by the active help sys­

tem. A set of heuristics is used to focus the attention of the system on the critical issues. 

The dialogue window at the bottom displays a help message given to the user. He / she has executed the 

command set-cursor-to-beginning-of-line by typing in the command name. Activist gives the hint, that 

this command is also bound to the key CTRL-A. 

ive COMMANO: set-cursor-to-beginning-of-line 

(set-cursor-to-beginning-of-line) is bound to ~A 

Figure 6-3: The User Model of Activist 

6.3 The Code-Improver System 

The Code-Improver system [Boecker 84J can be used to get ideas on how to improve Lisp code. The 

direction of improvements may be either of the following: 

• improvements that make the code more cognitively efficient {e.g. more readable or concise}; 

• improvements that make the code more machine efficient {e.g. smaller or faster}; these im­
provements include those that can be found in optimizing compilers. 

The user must choose which kind of suggestions he / she is interested in. 

The system is used by two different user groups for two slightly different reasons: 

• by intermediates who want to learn how to produce better Lisp code; we have tested the use­
fulness of the tool by gathering empirical, statistical data using the students of an introduc­
tory Lisp-course as subjects; 

• by experienced users who want their code to be "straightened out ft; instead of doing that by 
hand {which these users in principle would be able to} they use a system to carefully reconsider 



24 

the code they have written. The system is used to detect optimizations and simplifications 
and it has proven especially useful with code that is under development and gets changed and 
modified continuously. 

The system operates by using a large set of transformation rules (for examples see Figure 6-4) that 

describe how to improve code. The user's code is matched against these rules and the transformations 

suggested by the rules are given to the user; the code is not modified automatically. 

Saving Cons Cells 
(rule append/.l-nev.cons.cells-to-nconc/.1 .. 

(?foo:{append appendl} 
(restrict ?expr 

?b) 
==> 
«compute-it : 

(cons-cell-generating-expr expr)) 

(cdr (assq (get-binding foo) 

the name of the rule 

the condition 

'«append nconc) the action 
(appendl nconcl))))) 

?expr ?b) 
safe (machine)) purpose and validity of the rule 

Example: 
(append (cdr (reverse a)) b) ---> (nconc (cdr (reverse a)) b) 

Avoiding Unnecessary Comparisons 

(rule eq/equal-predicate-t 
(?foo:{eq = equal} 

==> 
(restrict ?expr (predicate-expr expr)) 
?result:{nil t}) 

?expr safe (people machine)) 

An Unknown Function 

(rule length.explode/n-to-flatsize 
(length (?foo:{explode exploden} ?a)) 
==> 

(flatsize ?a) safe (machine people)) 

Example: 
(eq (numberp a) t) ---> (numberp a) 

Example: 
(length (explode a)) ---) (flatsize a) 

Figure 6-4: Some Rules of the Code-Improver System 

It is important to note, that the system is not restricted to a specific class of Lisp functions or application 

domain. It accepts whatever Lisp-code is given to it. However, there is a trade-off: since the system does 

not have any knowledge of specific application areas or algorithms it is naturally limited in the kind of 

improvements that derive from its more general knowledge about programming. The improvements sug-

gested by the system are of the following kind: 



25 

• suggesting the use of macros (e.g. (setq a (cons b a)) may be replaced by (puSh b a)); 

• replacing compound calls of Lisp functions by simple calls to more powerful functions (e.g. 
(not (evenp a)) may be replaced by (Oddp a»); 

• specializing functions (e.g. replacing equal by eq)j using integer instead of floating point arith­
metic wherever possible; 

• finding alternative (simpler or faster) forms of conditional or arithmetic expressions; 

• eliminating common subexpressions; 

• replacing 'garbage' generating expressions by non-copying expressions (e.g. (append (explode 

~ord) chars) may be replaced by (nconc (explode ~ord) chars»); 

• finding and eliminating' dead' code (as in (cond (.. ) (t .. ) (dead code))j 

• (partial) evaluation of expressions (e.g. (sum a 3 b 4) may be simplified to (sum a b 7»). 

The current verSIOn of the Code-Improver system runs in batch mode. Like the "writers-workbench" 

UNIX tools, diction and explain [Cherry 81], it is given a file containing Li.sp code and produces sugges­

tions how to improve it. 

7. Conclusions 

The scenario given III section 4.2 characterizes our goals towards the construction of a Lisp-Critic; the 

systems described in section 6 serve as important stepping stones towards this goal. 

Our approach towards the enhancement of incremental learning processes using knowledge-based systems: 

does the following: 

1. it applies the paradigm of increasingly complex microworlds to give people ideas and hints to 
improve their Lisp skills; 

2. it supports people in "real" working situations by using and combining different system 
components for assistance; 

3. it is oriented towards the intermediate user who is already involved in his/her own doing and 
should not be restricted to a particular tutorial sequence or to a very small number of specific 
case studies; 

4. it builds a bridge between learning-by-doing and guided tutoring and coaching by trying to 
combine the best of both worlds; 

5. it supports a large variety of instructional strategies and represents a substantial amount of 
knowledge about Lisp programming; 

6. it uses our tools as object and medium (providing us with a large methodological advantage); 
Lisp and ObJTalk provide a universal framework for representation and are the object of the 
incremental learning process; 



26 

7. it exploits graphical, aesthetically pleasing inter faces to illustrate structures and concepts 
and animates the dynamics of procedures; 

Acknow ledgements 

This paper is based on a joint research effort with my colleagues Heinz-Dieter Boecker, Andreas Lemke, 

Helga Nieper and Clayton Lewis who have made major contributions to the ideas and system components 

described in this paper. This research was supported by grants from the Office of Naval Research 

(contract number: NOOOI4-85-K-0842) and the University of Colorado, Boulder. 

References 

[Anderson et al. 84] 
J.R. Anderson, C.F. Boyle, R. Farrell, B. Reiser, Cognitive Principles in the Design of Computer 
Tutors, Proceedings of the Sixth Annual Conference of the Cognitive Science Society, Boulder, 
Colorado, June 1984, pp. 2-9. 

[Boecker 84] 
H.-D. Boecker, Softwareerstellung als wissensbasierter Kommunikations- und Designprozess, 
Dissertation, Universitaet Stuttgart, Fakultaet fuer Mathematik und Informatik, April 1984. 

[Boecker, Fischer, Nieper 86] 
H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of Understanding through Visual 
Representations, Human Factors in Computing Systems, CHI'86 Conference Proceedings 
(Boston), ACM, New York, April 1986, pp. 44-50. 

[Boecker, Nieper 85] 
H.-D. Boecker, H. Nieper, Making the Invisible Visible: Tools for Exploratory Programming, 
Proceedings of the First Pan Pacific Computer Conference, The Australian Computer Society, 
Melbourne, Australia, September 1985. 

[Brownston et al. 85] 
L. Brownston, R. Farrell, E. Kant, N. Martin, Programming Expert Systems in OPS5: An In­
toduction to Rule-Based Programming, Addison-Wesley, Reading, MA, 1985. 

[Burton, Brown 82] 
R.R. Burton, J.S. Brown, An Investigation of Computer Coaching for Informal Learning 
Activities, in D. Sleeman, J.S. Brown (eds.), Intelligent Tutoring Systems, Academic Press, Lon­
don, New York, 1982, pp. 79-98, ch. 4. 

[Burton, Brown, Fischer 83] 
R.R. Burton, J.S. Brown, G. Fischer, Analysis of Skiing as a Success Model of Instruction: 
Manipulating the Learning Environment to Enhance Skill Acquisition, in Rogoff (ed.), 
Everyday Cognition: its Development in Social Context, Harvard University Press, Cambridge, 
MA,1983. 

[Cherry 81] 
Lorinda Cherry, Computer Aids for Writers, Proceedings of the ACM SIGPLAN SIGOA Sym­
posion on Text Manipulation, Portland, Oregon, 1981, pp. 61-67. 

[Fischer 81] 
G. Fischer, Computational Models of Skill Acquisition Processes, Computers in Education, 3rd 
World Conference on Computers and Education, Lausanne, Switzerland, July 1981, pp. 477-481. 

~Fischer 84] 
G. Fischer, Formen und Funktionen von Modellen in der Mensch-Computer Kommunikation, 



27 

in H. Schauer, M.J. Tauber (eds.), Psychologie der Computerbenutzung, Olden bourg Verlag, Wien 
- Muenchen, Schriftenreihe der Oesterreichischen Computer Gesellschaft, Vol. 22, 1984, pp. 
328-343. 

[Fischer, Burton, Brown 78] 
G. Fischer, R. Burton, J.S. Brown, Analysis of Skiing as a Success Model of Instruction: 
Manipulating the Learning Environment to Enhance Skill Acquisition, Proceedings of the 
Second National Conference of the Canadian Society for Computational Studies of Intelligence, 
Conference of the Canadian Society for Computational Studies of Intelligence, 1978. 

[Fischer, Lemke, Schwab 84] 
G. Fischer, A. Lemke, T. Schwab, Active Help Systems, Proceedings of Second European Con­
ference on Cognitive Ergonomics - Mind and Computers, Gmunden, Austria, Springer Verlag, 
Heidelberg - Berlin - New York, September 1984. 

[Fischer, Lemke, Schwab 85] 
G. Fischer, A. Lemke, T. Schwab, Knowledge-Based Help Systems, Human Factors in Computing 
Systems, CHI'85 Conference Proceedings (San Francisco), ACM, New York, April 1985, pp. 
161-167. 

[Johnson, Soloway 84] 
W.L. Johnson, E. Soloway, PROUST: Knowledge-Based Program Understanding, Proceedings of 
the Seventh International Conference on Software Engineering, Orlando Florida, March 1984, pp. 
369-380. 

[Lemke 85] 
A.C. Lemke, ObJTalk84 Reference Manual, Technical Report CU-CS-291-85, University of 
Colorado, Boulder, 1985. 

[Norman 82] 
D. Norman, Some Observations on Mental Models, in D. Gentner, A. Stevens (eds.), Mental 
Models, Lawrence Erlbaum Associates, Hillsdale, ~J, 1982. 

[Papert 80] 
S. Papert, Mindstorms: Children, Computers and Powerful Ideas, Basic Books, New York, 1980. 

[Rathke 86] 
C. Rathke, ObJTalk: Repraesentation von Wissen in einer obJektorientierten Sprache, PhD Dis­
sertation, Universitaet Stuttgart, Fakultaet fuer Mathematik und Informatik, 1986, 
(forthcoming). 

[Rathke, Lemke 85] 
C. Rathke, A.C. Lemke, ObJTalk Primer, Technical Report CU-CS-290-85, University of 
Colorado, Boulder, February 1985. 

[Rich, Shrobe 781 
C. Rich, H.E. Shrobe, Initial Report on a Lisp Programmer '8 Apprentice, IEEE Transactions on 
Software Engineering, Vol. SE-4, No.6, 1978, pp. 456-467. 

[Sleeman, Brown 82] 
D. Sleeman, J.S. Brown (eds.), Intelligent Tutoring Systems, Academic Press, London - New 
York, Computer and People Series, 1982. 

[Wilensky et al. 84] 
R. Wilensky, Y. Arens, D. Chin, Talking to UNIX in English: A.n Overview of UC, Communica­
tions of the ACM, Vol. 27, No.6, June 1984, pp. 574-593. 


