
• 

• 

HUMAN-COMPUTER INTERACTION, 1987-1988, Volume 3, pp, 179-222 
Copyright @ 1987-1988, Lawrence Erlbaum Associates, Inc 

Construction Kits and Design 

Environments: Steps Toward Human 

Problem-Domain Communication 

Gerhard Fischer and Andreas C. Lemke 
University oj Colorado 

ABSTRACT 

Our goal is to build cooperative computer systems to augment human 
intelligence, In these systems, the communication between the user and the 
computer plays a crucial role, To provide the user with the appropriate level 
of control and a better understanding, we have to replace human-computer 
communication with human problem-domain communication, which allows users to 
concentrate on the problems of their domain and to ignore the fact that they 
are using a computer tool. 

Construction kits and design environments are tools that represent steps 
toward human problem-domain communication, A construction kit is a set of 
building blocks that models a problem domain. The building blocks define a 
design space (the set of all possible designs that can be created by combining 
these blocks). Design environments go beyond construction kits in that they 
bring to bear general knowledge about design (e, g., which meaningful 
artifacts can be constructed, how and which blocks can be combined with each 
other) that is useful for the designer. Prototypical examples of these systems 
(especially in the area of user interface design) are described in detail, and the 
feasibility of this approach is evaluated. 
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1. INTRODUCTION 

Even for the expert -let alone the novice and occasional user- it is difficult 
to take advantage of the available computational power to use the computer 
for a purpose chosen by himself or herself. Most computer users feel that 
computer systems are unfriendly, uncooperative, and that it takes too much 
time and effort to get something done. They feel dependent on specialists, and 
they notice that "software is not soft;" that is, the behavior of a system cannot 
be changed without reprogramming it substantially. We are interested in 
building evolutionary systems that grow to fit an environment of needs rather 
than carrying out a single, well-specified task. In these systems, the main 
activity of programming has moved from the origination of new programs to 
the modification of existing ones. If designers are to modify existing pro
grams, they must understand how the parts of these programs function. 
Casual users find themselves in a situation similar to instrument flying: They 
need relearning lessons after not using the system for a while. We claim that 
systems fail primarily because their communication capabilities are insuffi
cient. 

Users use computers as tools for achieving tasks of particular problem 
domains such as text processing, financial planning, or computer-aided 
design. The fact that in order to communicate with most computer systems, 
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the user has to learn a new language together with a whole new world of 
concepts is a reason for the low usability of many powerful systems. These 
systems restrict users who cannot expend the effort to familiarize themselves 
with these large syntactic and conceptual worlds to make only marginal use of 
the systems. Users, instead of being able to structure designs themselves, must 
make do with what they can produce based on their limited mental model of 
the system or must delegate work to experts and thereby relinquish their 
control. These users can be end users with little knowledge about computers 
as well as programmers wanting to use facilities that are outside the domain 
of their main interest. 

If users can communicate with a computer tool in the language of the 
problem domain, a language that they were trained to use, then the 
communication barrier is much lower. We refer to this type of capability as 
human problem-domain communication. Convivial tools allow users to express 
themselves according to their ideas and to convert these ideas into actions and 
artifacts (Illich, 1973). 

Increasingly, users are working in domains that they were not trained in 
and that they knew a priori very little about. An example is typesetting and 
desktop publishing using modern page layout systems. Human problem
domain communication obviously cannot free users from acquiring necessary 
domain concepts, but it can support communication at an adequate level. 

In order to support communication at the domain level, concepts of the 
problem domain must be represented in the system. We consider two types of 
support systems - construction kits and design environments - as examples 
for human problem-domain communication. Construction kits make abstrac
tions of the problem domain directly available to the user. They can be 
combined to achieve the user's task. Construction kits provide syntactic 
support for this combination process and for the visualization of the results. 

A construction kit with a large number of generally useful building blocks 
provides a good basis for reuse and redesign; but there are two important 
deficiencies of construction kits: They do not help users understand the 
components that they provide, and they do not support the application of the 
components to problem solutions. A user of a construction kit is in the 
situation of a chess novice who knows the goal of the game and sees all the 
different pieces on the board; this user, however, is far from being able to play 
a good game. Our notion of design environments is intended to also support the 
semantic and pragmatic levels. A design environment has knowledge about 
the function of the components and how they can be used to achieve 
higher-level goals. 

In this article, we first articulate some problems in human-computer 
communication. We describe different approaches and discuss specific chal
lenges and unique opportunities that knowledge-based systems create for 
human-computer communication (Section 2). In Section 3, the notion of 
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human problem-domain communication is elaborated. In Section 4, general 
characteristics and a number of examples of construction kits will be 
presented. The next section (Section 5) is concerned with two systems that 
represent steps toward the goal of creating knowledge-based design environ
ments. Finally, we discuss our experiences and potential future work. 

2. HUMAN-COMPUTER COMMUNICATION 

We believe that the term user interface should be replaced by human-computer 

communication because communication between humans and computers re
quires more than tacking another layer of software onto a computer system. 

We are concerned with a new class of computer systems that support 
cooperative problem solving and provide advice, criticism, and explanation. 
In these systems, the boundaries between the user interface portion and the 
application system become much less clear than in traditional systems. 
Knowledge-based systems are the most promising approach to improve 
human-computer communication because successful communication is based 
on knowledge structures common to both human and computer (Fischer, 
1983). 

In the following sections, we look at some of the general problems in 
human-computer communication and at some approaches that have been 
used to solve them. 

2.1. Problems of Human-Computer Communication 

Designers of communication processes between humans and computers are 
challenged by a large number of requirements. High-functionality computer 
systems (containing a wealth of information) offer great possibilities but, at 
the same time, they pose a large number of problems. Some of the 
requirements designers have to address are: 

1. Help break the complexity barrier, for example, by supporting user- and 
task-specific filters and dynamic unfolding, that is, showing parts of the 
system only when they are relevant. 

2. Help break the utility barrier, defined as the ratio of value to effort 
expended; this can be done either by increasing the value of a system or 
by decreasing the effort needed to learn and use it. 

3. Give control to users when they need or desire it; do things automati
cally when users do not want to be bothered. 

4. Support active exploration, for example, by undo and redo mechanisms. 
5. Promote human problem-domain communication; mirror the abstrac

tions of the application domain, thereby reducing the transformation 
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distance between task descriptions by the domain expert and their 
representations as computer programs. 

6. Take advantage of modern hardware and basic software capabilities; for 
example, use screens as a two-dimensional world that can be edited 
(direct manipulation). 

One of the most promising approaches to cope with these requirements are 
knowledge-based systems that contain knowledge about specific problem 
domains, the communication partner, the communication process (e.g., 
recovery from breakdowns), and help and explanation facilities to increase 
their comprehensibility. They do not require that all information has to be 
communicated explicitly. 

Knowledge-based systems pose special problems and, at the same time, 
offer great possibilities for human-computer communication. The more 
intelligent and autonomous a system is, the harder it is to understand and 
issues of reliability, comprehensibility, and trust in the system's performance 
become more important (Chambers & Nagel, 1985). 

Many knowledge-based systems are built under the assumption that the 
user has a well-defined problem that the system is supposed to solve. This 
assumption has led to strongly system-controlled advisory dialogues such as in 
the MYCIN system (Buchanan & Shortliffe, 1984). These dialogs provide 
little help in problem definition. Frequently, however, users learn incremen
tally about the nature of their problems, and they want to solve them in 
cooperation with a system (Woods, 1986). This requires better communica
tion capabilities than most systems traditionally have offered. 

Failed attempts to build fully automatic systems (e.g., automatic program
ming or high-quality machine translation systems; Winograd & Flores, 1986) 
have shown that for many domains, a symbiotic, cooperative system archi
tecture is more adequate and promises greater success than an automous one. 
For symbiotic, cooperative systems, a human-computer interaction sub
system is an absolute necessity. It is our belief that in many ways partially 
autonomous systems pose greater design challenges than fully autonomous 
systems. In partially autonomous systems, the two agents have to keep each 
other informed about their decisions and actions, and one of the central 
questions is: Who is in control when there is a conflict of opinion? Knowledge
based systems develop their "own will," which may be viewed as an 
encapsulation of their designers' will and understanding of the situation. 

To overcome some of these problems, we identified the following design 
constraints for human-computer systems: 

1. The limiting resource in human processing of information is human 
attention and comprehension, not the quantity of information available. 
Modern information and communication technologies have dramatically 
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increased the amount of information available to individuals. This can be 
illustrated with an example from modern aircraft design (see Chambers & 
Nagel, 1985): There are 455 separate warnings on a Boeing 747. We need 
instruments that not only display but also prioritize information before 
presenting it to the crew to avoid an information overload. 

2. The limitations and structure of human memory must be taken into 
account in designing human-computer communication. People have limited 
short-term memories. The way people recognize information is different from 
the way they recall memory structures. This distinction is relevant, for 
example, to judging the advantages and limitations of different interaction 
models such as comparing a command-based interface to a menu-based 
interface. Our intelligence has become partially externalized, contained in 
artifacts as much as in our head: The computer is in one sense an artificial 
extension of our intellect invented by humans to extend human thought 
processes and memory. 

3. The efficiency of human visual processing capabilities must be utilized 
fully. Traditional interfaces have been one-dimensional, with a single frame 
on the screen usually fIlled with lines of text. New technologies allow us to take 
advantage of human visual perception through the use of multiwindow 
displays, color, graphics, and icons. To exploit these possibilities, we have 
constructed a user interface construction kit for graphical interfaces (described 
in Section 4.2). In the domain of software engineering, we have built 
components of a software oscilloscope that, in analogy to an electronic 
oscilloscope, visualizes static and dynamic aspects of programs (Boecker, 
Fischer, & Nieper, 1986). 

These observations provide the rationale for our major research area: how 
to bring knowledge-based systems and human-computer communication 
together to construct systems that are useful and usable. The design con
straints just enumerated can be used to provide some global guidance for the 
construction of better human-computer communication and have played a 
crucial role in the development of the systems described in this article. A 
drawback is that they are not prescriptive enough to indicate how one should 
proceed within the context of a specific system design. 

2.2. Existing Interface Construction Techniques 

In order to solve these problems, different interface construction techniques 
have been proposed. 

Natural Language Front-Ends. Because humans communicate with each 
other quite easily using natural language, it is a natural step to study the 
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applicability of natural language to the human-computer communication 
problem. Because of the asymmetry between human and computer, the 
design of the interface is a problem not only of simulating human-to-human 
communication but of engineering alternatives in the domain of interaction
related properties (Bolt, 1984). We do not have to use natural language for 
every application; some researchers claim that in many cases it is not the 
preferred mode of communication (Bates & Bobrow, 1984; Robertson, 
McCracken, & Newell, 1981). In natural language interfaces, the computer is 
the listener and the human is the speaker. The listener's role is always more 
difficult because the problem must be understood from the speaker's descrip
tion. Our work has been primarily guided by the belief that the user is more 
intelligent and can be directed into a particular context. This implies that the 
essence of user-interface design is to provide users with appropriate cues. 
Windows, menus, suggestions lists, forms, and so on provide a context that 
makes the machine the speaker and the human the listener, thereby allowing 
the user's intelligence to keep choosing the next step. 

Use of a natural language front-end implies that appropriate interactive 
behavior can be achieved by tacking an off-the-shelf natural language 
front-end onto an existing system. This is a fallacy. Many human-computer 
systems have to perform more sophisticated functions than answering requests 
for factual information; for example, they must help users formulate their 
problems and assist in cooperative problem solving. These tasks require more 
elaborate data models and knowledge representations (Williams, Tou, Fikes, 
Henderson, & Malone, 1982) and additional types of reasoning. 

Rather than building systems that can analyze ever more complex sentences 
involving increasingly difficult semantic concepts, a main objective of natural 
language interface research should be to understand the processes of intention 
communication and recognition well enough to enable a system to participate 
in a natural dialogue with its user (Winograd & Flores, 1986). Assuming we 
had a natural language interface to UNIX (Wilensky, Arens, & Chin, 1984), 
we probably would be unpleasantly surprised if our question "How can I get 
more disc space?" were answered by "Type rm *", which deletes all files in a 
directory, even though this command would solve the problem as stated. The 
problem in human-computer interaction is not simply that communicative 
troubles arise that do not occur in human communication, but that when they 
do arise, the same resources are not available for their detection and repair. 

User Inteiface Management Systems (UIMS). UIMSs (Olsen et aI., 1984) 
provide graphic primitives and tools for specifying dialogue structures (A TN s, 
context free languages). By providing a uniform set of high-quality primitives, 
UIMSs attempt to foster the construction of consistent interfaces that can be 
rapidly developed. Most UIMSs are based on a strong separation of interface 
and application code. This is a good approach to problems for which there is 
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only a limited information exchange. The kinds of problems we try to solve 
(e.g., building intelligent support systems like help, documentation, and 
explanation systems) have convinced us that a strong separation between 
interface and application is a limiting factor. A user interface should have 
extensive access to the state and actions of the application system, and the user 
should be able to influence the behavior of the application. 

3. HUMAN PROBLEM-DOMAIN COMMUNICATION 

Most computer users are not interested in computers per se, but they want 
to use the computer as a tool to solve problems and to accomplish their tasks. 
To shape the computer into a truly usable and useful medium, we have to 
make it invisible and let users work directly on their problems and their tasks. 
The important abstract operations and objects of a given application area are 
directly built into the environment. This implies that the user can operate with 
personally meaningful abstractions, and learning processes are reduced by 
exploiting the user's knowledge of the problem domain. 

For a few applications and a few users, a predefined set of functions will 
suffice to accomplish nearly all tasks. For most applications, though, users 
need to customize and modify the behavior of the tools that they use in order 
to solve their particular problems. 

Traditionally, this could only be done by programmers who understood 
how abstractions of the application domain were implemented with compu
tational methods. The goal of human problem-domain communication is to 
remove the distinction between programmers and users. This can be achieved 
by representing a more complete model of the application domain. Specifying 
the desired behavior of the tool can, in most cases, be achieved without having 
to resort to programming language concepts like for loops and if then else 
statements. Many application domains have natural ways of expressing 
control; see, for example, repeat signs in musical notation or the laws of 
motion in the domain of physics. Instead of specifying conditionals and loops, 
human problem-domain communication means combining the domain 
building blocks so that they function as desired. What must be done is to move 
away from programming languages, even domain specific ones, and move 
toward providing a set of programming abstractions that are within the users' 
application areas. 

A similar shift can be seen in architectural design in the work of Alexander 
(1964). In his early book, Synthesis of Form, he described a mathematical 
framework for design whereas in his later book, A Pattern Language (Alexander 
et al., 1977), he articulated a set of patterns that can be used and understood 
by the people involved and affected by the design process (Hooper, 1986). 
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3.1. Modeling Problem Domains 

Human problem-domain communication requires environments that sup
port design methodologies whose main activity is not the generation of new, 
independent programs, but the integration, modification, and explanation of 
existing ones (Winograd, 1979). Just as one relies on already established 
theorems in a new mathematical proof, new systems should be built as much 
as possible using existing parts. 

Many large software systems, however, are built as monolithic systems, 
directly implemented on top of a general purpose programming language 
(Figure i-a). Although these systems are structured in some way, this 
structure usually does not correspond to established abstractions of the 
application domain. With construction kits and design environments the 
latter approach is taken (Figure i-b). These systems provide one or more 
intermediate levels of problem-oriented building blocks. The existence of 
these intermediate substrates enables users to redesign and adapt their 
systems (i.e., modify the original system; Figure i-c) as well as to reuse 
existing abstractions to form new systems (Figure 1-d; Fischer, 1987 a; 
Fischer, Lemke, & Rathke, 1987). In order to do so, the designer must 
understand the functioning of these parts. An important question concerns the 
level of understanding necessary for successful redesign: How well does the 
user have to understand existing components? 

The existence of the right components is not enough; they must be 
assembled in some way to form a well functioning whole. There are 
combination operators of different complexity (Fischer & Lemke, 1988). 
Fitting programs together using the UNIX pipe mechanism is an example of 
simple combination. Filling in forms can be viewed as instantiation of a 
template. 

The object-oriented paradigm has emerged as a powerful and easy to 
understand structuring method. Objects encapsulate procedures and data. 
They represent stable intermediate parts that, as Simon (1981) demonstrated, 
led to much faster evolution of complex systems. Objects are grouped into 
classes, and classes are combined in an inheritance hierarchy. This inherit
ance supports differential design (i.e., object y is like object x except u, v, 
... ). Object-oriented formalisms support design by instantiation as well as 
design by specialization through the creation of subclasses. Subclasses can 
inherit large amounts of information from their superclasses, and new objects 
that are almost like other objects can be created easily with a few incremental 
changes. Inheritance reduces the need to specify redundant information and 
simplifies updating and modification by allowing information to be entered 
and changed in one place. The creation of subclasses is more complex than 
instantiation, but also more powerful because the behavior of the superclasses 
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Figure 1. Modeling problem domains with application-oriented abstractions. 
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can be augmented and overwritten in arbitrary ways. Many tasks can be 
achieved before one has to use the full generality of subclassing. 

3.2. Intelligent Support Systems 

Systems that make an attempt to model many different problem domains 
will be large and complex in order to provide all the necessary abstractions. 
The Common Lisp standard, for instance, specifies more than 600 functions. 
More comprehensive systems, like UNIX or LISP machines, provide a larger 
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number of abstractions by far. This richness is, however, a mixed blessing. 
The advantage is that in all likelihood a building block or set of building 
blocks that either fits our needs or comes close to doing so already exists and 
has already been used and tested. The disadvantage is that they are useless 
unless the designer knows that they are available. Informal experiments 
(Fischer, 1987b) indicate that the following problems prevent designers from 
successfully exploiting the potential of high-functionality systems: 

1. Designers do not know about the existence of needed objects (either 
building blocks or tools). 

2. Designers do not know how to access objects. 
3. Designers do not know when to use these objects. 
4. Designers do not understand the results objects produce for them. 
5. Designers cannot combine, adapt, and modify objects for their specific 

needs. 

Unless we are able to solve these problems, designers will constantly 
reinvent the wheel instead of taking advantage of already existing tools. 

In highly complex systems, communication between humans and com
puters cannot be restricted to the construction of nice pictures on the screen, 
and the beauty of the interfaces must not overshadow the limited functionality 
and extensibility of some systems. The "intelligence" of a complex computer 
system must contribute to its ease of use. Truly intelligent and knowledgeable 
human communicators, such as good teachers, use a substantial part of their 
knowledge to explain their expertise to others. In the same way, the 
"intelligence" of a computer should be applied to providing effective commun
ication. Equipping modern computer systems with more and more computa
tional power and functionality will be of little use unless we are able to assist 
the user in taking advantage of them. Empirical investigations have shown 
that, on the average, only a small fraction of the functionality of complex 
systems such as UNIX, EMACS, or LISP is used (Draper, 1984; Fischer, 
Lemke, & Schwab, 1985). 

In the early days of computing, programs consisted of a number 'of 
algorithms on punched cards. Interactive systems emphasized the importance 
of the user interface. For the just described high-functionality computer 
systems, simple interactive user interfaces are no longer sufficient, and 
intelligent human-computer communication facilities are required. We have 
constructed a number of intelligent support systems including documentation 
systems (Fischer & Schneider, 1984), help systems (Fischer et aI., 1985), 
visualization components (Boecker et al., 1986), and critics (Fischer, 1987b). 

In the past, these intelligent support systems have been constructed as 
isolated components. We are in the process of combining them into an 
integrated design environment whose architecture is shown in Figure 2. The 
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Figure 2. An architecture for an integrated intelligent design environment. The 
picture shows components such as the problem decomposition goal tree, 
suggestor, and critic. These components contain design knowledge for supporting 
design processes by the user. 
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following components represent knowledge about the problem domain as well 
as about the design process: 

1. Hierarchical problem decomposition: An important part of design 
knowledge is knowledge about how the problem can be attacked, which 
subtasks have to be solved, and how partial designs can be composed. 

2. Critics: Critics are system components that recognize possible improve
ments, trouble spots, inconsistencies, or even just breaks in style. For 
the domain of programming in LISP, we have developed an intelligent 
support system that criticizes code with the goals of making it more 
cognitively or more machine efficient (Fischer, 1987b). The domain of 
general LISP programming is relatively unstructured. A critic can be 
more powerful in semantically richer domains. 

3. Suggestions: Suggestions can be content-oriented and organizational. 
Content-oriented suggestions can say something about how to improve 
the design and how to solve problems. Organizational suggestions can 
help in deciding what to do next. 

4. Animated demonstrations: One of the most powerful tools to understand 
the dynamic aspects of a system is a demonstration. 

5. Samples: Representative examples play an important role in design 
disciplines such as architecture. Samples of different types of designs are 
another way to represent design knowledge. 
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4. CONSTRUCTION KITS 

A construction kit is a set of building blocks that models a problem domain. 
The building blocks define a design space, that is, the set of all possible designs 
that can be created by combining these blocks. In the following sections, we 
briefly describe some examples and indicate how the problem of adding new 
elements to a construction kit can be addressed. 

4.1. The Pinball and Music Construction Kits 

The Pinball and Music Construction Kits (two interesting programs for the 
Apple Macintosh from Electronic Arts; see Figure 3) provide domain-level 
building blocks (e.g., bumpers and flippers; staves, piano keyboard, notes, 
sharps, etc.) to build artifacts in the two domains of pinball machines and 
musical composition. Users can interact with the system in terms with which 
they are already familiar; they need not learn abstractions peculiar to a 
computer system. 

Our empirical investigations have shown that these systems come close 
(within their scope) to our notion of human problem-domain communication. 
Users familiar with the problem domains but inexperienced with computers 
had few problems using these systems, whereas computer experts unfamiliar 
with the problem domains were unable to exploit the power of these systems. 
Most people considered it a very difficult (if not impossible) task to achieve the 
same results using only the basic Macintosh system without the construction 
kits. By using the construction kits, our subjects had a sense of accomplish
ment because they were creating their own impressive version of something 
that works, yet is not difficult to make. 

Persons using the systems do programming, but the programming consists 
of constructing artifacts in the domain and not of writing statements of a 
general-purpose programming language. This kind of programming is com
parable to writing a text using a document formatter such as TEX or 
SCRIBE. It is a process of creating a specification that is interpreted by a 
document processor and printer or by the run-time systems of the kits to direct 
the rolling ball or to generate sound. Using a WYSIWYG editor, however, is 
different and does not qualify as programming because the final product is 
created directly and there is no step of interpretation. The created document 
is virtually identical to hardcopy generated from it. 

By evaluating the Pinball and Music Construction Kits as prototypical 
examples against our objective to support human problem-domain commun
ication, we have identified some shortcomings. The two systems do eliminate 
programming errors below the domain level, but they do not assist the user in 
constructing interesting and useful artifacts in the application domains. The 



Figure 3. Screen images from the Pinball and Music Construction Kits. 
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Pinball Construction Kit allows users to build sets in which balls get stuck in 
certain corners and certain devices may not be reachable (Hutchins, Hollan, 
& Norman, 1986). To assist users in constructing truly interesting objects, 
more powerful design environments are needed. 

For almost any domain, the set of domain abstractions is not clearly defined 
or evolves over time; the number of objects at the component level of Figure 
1 is not fixed. Therefore, there is a need to modify and extend the set of 
existing abstractions. Here the Pinball and Music Construction Kits fall short. 
The various EMACS editors and the ZOO system (Section 4.4), however, 
are examples of systems that provide extension mechanisms (multiple com
ponent levels). 

For these construction kits, the physical metaphor consisting of spatial 
organization and simple combination of parts (e.g., associating sound with a 
bumper) has proved very powerful. If one considers the Pinball and Music 
Construction Kits as success models, then one has to investigate whether the 
physical metaphor can be generalized to other problem domains or if there are 
other, equally intuitive metaphors. 

4.2. WLISP: A Construction Kit for User Interfaces 

Over the last several years, we have developed WLISP (Boecker, Fabian, 
& Lemke, 1985; Fabian, 1986), an object-oriented construction kit for 
human-computer communication, and a large number of associated tools and 
intelligent support systems for exploiting this kit effectively (Figure 4). The 
WLISP building blocks are organized as inheritance networks in an object
oriented architecture based on the ObjTalk language (Rathke, 1986). This 
architecture provides for components on multiple levels and facilitates the 
extension of the set of available blocks. Much more so than in the domain of 
pinball machine design, it was (and still is to some extent) unclear what the 
right abstractions in user interface design are. Our experience indicates that 
the development of the right abstractions (and their embedding into inherit
ance hierarchies) is a difficult process that takes time and has to proceed in an 
evolutionary fashion driven by the development of application systems that 
are based on these abstractions. Currently, there are over 200 classes 
representing abstractions about different kinds of windows such as super
windows, paned windows, menus, icons, gauges, and so on. The inheritance 
network is still changing, thus indicating our growing understanding about 
the domain of two-dimensional interfaces. 

The example of a graphical UNIX directory browser demonstrates the use 
of object-oriented components of the WLISP construction kit. Figure 5 shows 
a browser with four directories (andreas, liSp, kbpe, tristan-kit) and two 
plain files (tristan-kit. I , tools. I). The user can selectively display various 
parts of the global file hierarchy and execute actions on the displayed files. 
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Figure 4. The WLlSP programming environment. A number of systems constructed using the WLISP 
construction kit are shown. Among others, there is a file system directory display entitled boulder; it is 
implemented as a subclass of the static menu class. The Wlisp RC Sheet at the bottom left is an editor 
for system parameters (Fischer & Lemke, 1988); it is based on components for electronic forms. The 
kaestle window on the right is a graphical editor for LISP data structures (Boecker et aI., 1986). 
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Figure 5 . A hierarchical UNIX directory browser. 
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Figure 6 illustrates the component structure of the UNIX directory 
browser. The files and directories are represented as instances of class 
unix-tile-node and unix-directory-node, respectively . These two classes were 
explicitly created for this application. They inherit from multiple superclasses, 
which are parts of the WLISP kit. File nodes are based on the class 
adaptive-text-region , which displays a string of text in a rectangular area 
whose size is automatically adapted to the size of the text. Directory nodes use 
adaptive-text-region-with-border instead , which in addition draws a border 
around the text . Common to both classes are the superclasses node-mixin, 
node-repr-mixin, and node-util-mixin . These superclasses provide the func
tionality for links between nodes , selective display of parts of a graph, graph 
editing, and such. The browser window itself (class unix-directory-window) is 
a subclass of other predefined classes that provide functionality pertaining to 
the directory graph as a whole (e.g. , automatic layout planning). 

By using WLISP, the "human-computer communication design question" 
is answered by providing appropriate building blocks that suggest good 
designs. The object-oriented system architecture is highly flexible and 
enhances the reusability of many building blocks. In creating new human
computer communication capabilities, the designer may use existing objects 
either directly or with minor modifications and can thereby rely on standard 
and well-tested components. 

For the la rge set of components of WLISP, the problems described in 
Section 3.2 became prominent. Where the Pinball Construction Kit has in 
the order of tens of components , a general purpose user interface kit easily 
grows to many hundreds or thousands. For such a system, displaying a simple 
palette with all components is no longer feasible. 

4.3. FINANZ: A Financial Planning Kit 

FINANZ (Rathke , 1986) is an advanced financial planning system ex
tending the spreadsheet paradigm (see Figure 7) . Spreadsheets have become 
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Figure 6. The component structure of the UNIX directory browser. 
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success models for computer systems not because they are "smart" programs, 
but because they let users operate in a systematic domain that is directly 
relevant to their work. FINANZ differs from ordinary spreadsheet programs 
in that the relationships among the form fields are represented by internal 
knowledge structures that model the knowledge of the application domain. 

The main characteristics of FINANZ are (for details, see Rathke, 1986): 

1. In its basic configuration it can be used as a regular spreadsheet system. 
From there it can be gradually augmented to a knowledge-based system 
without losing its basic supportive style of interaction. 

2. It is embedded in a window-based, direct manipulation environment 
that makes it easy to specify operations among the form fields. Multiple 
forms can be displayed and operated on at the same time. Operations 
between form fields are selected from a menu. 

3. The system can be augmented to incorporate knowledge about the 
domain to which it is applied. Relationships among the form fields are 
expressed by internal knowledge structures that can be modified to serve 
the needs of the application. 

4. The internal knowledge structures are used to generate context depen
dent explanations on the fly. These explanations reflect the domain 
specific knowledge as well as the current state of the dialogue. 
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Figure 7. The financial planning system FINANZ. 
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The capabilities of the system are based on ObjTalk (Rathke , 1986). 
Concepts about the application domain, the user, and the dialogue are 
represented as active objects that communicate by message passing. Their 
behavior is described in classes that form a hierarchy among which knowledge 
is inherited. By specifying dependencies among the form fields the user 
generates internal knowledge structures that not only maintain the consis
tency but are also used to provide context dependent help. The specification 
of the dependency structures requires little programming knowledge because 
it is done using direct manipulation techniques . Fields that take part in a new 
relationship are pointed at with the mouse. FINANZ is a system building 
effort to provide a substantial amount of flexibility and tailorability to 
end-users without requiring that they become programming experts. 

4.4. ZOO: Graphical Support to Construct New Elements for a 
Construction Kit 

In Figure 1, the redesign and reuse processes are based on the assumption 
that the needed components are available in the construction kit . But what 
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Figure 8. The knowledge editor ZOO. 
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happens if these elements do not exist? Obviously the user who is familiar with 
the underlying programming language can go back and define the required 
component at this level. But assuming that the user can do so misses the whole 
point of our system building effort : to protect the user from the complexities 
of the lower levels . What is needed here is a middle ground between powerful 
but specialized construction kits and general purpose low-level programming 
languages. 

One solution to avoid this problem is that the construction kit designer 
provides a complete set of building blocks . But for ill-structured problem 
domains where no formal description of the problem space exists , this option 
remains wishful thinking. Another way to approach the problem is to provide 
high-level interaction techniques and metasystems that support the construc
tion of new building blocks without the necessity to descent to low levels . 

ZOO (Riekert, 1986), implemented in WLISP and ObjTalk , provides 
graphical support (Figure 8) for constructing new domain-dependent abstrac
tions without being forced to go down to the ObjTalk or even the LISP level 
(a possibility that we indicated was missing from the Pinball and Music 
Construction Kits). It is a menu-driven system in which design support is 
given through the organization of menus. 

The graphic representation provides two kinds of graphic primitives: icons 
and labeled arrows. Icons are used to represent objects , and the graphic 
symbol visualizes the class membership of the object. Knowledge can be 
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modeled as a network of icons as nodes and labeled arrows as links. Figure 8 
displays the knowledge that the class of com puters and the class of CPU s are 
both products, products are produced by companies, and companies produce 
products (the inverse relationship that can be generated automatically). ZOO 
can be used both as an instrument for inspecting the contents of a knowledge 
base and as a tool for modifying and augmenting a knowledge base by direct 
manipulation of sensitive screen objects. When the user creates graphical 
objects on the screen, ZOO internally generates descriptions of ObjTalk 
objects. From the perspective of knowledge-based systems, it is a tool to 
address the problem of knowledge acquisition. 

5. DESIGN ENVIRONMENTS 

Powerful construction kits are complex systems containing many different 
components that can be combined in many ways. In the domain of user 
interface design, WLISP provides a large number of abstractions. They are a 
prerequisite for efficient user interface design. The existence of good user 
interface components, however, does not guarantee that they are used at the 
right place and in the right way. Tools are needed to aid in making design 
decisions, carry out low-level details, analyze or criticize intermediate ver
sions, and visualize their structure. These tools incorporate knowledge that 
goes beyond what went into the design of individual components. Specifically, 
they have additional domain knowledge to aid in the design of reasonable 
artifacts. Design environments are steps in this direction. 

Currently, the use of WLISP (Section 4.2) requires considerable expertise 
on the implementation level (i.e., How do I achieve a desired system 
behavior?) as well as on the domain level (i.e., Which user interface technique 
should be used?). This expertise has to be acquired through an extended 
learning and experimentation period. To reduce this delay, we have con
structed a number of design environments to support the modification and 
construction of new systems from sets of predefined components. In contrast 
to simple software construction kits (e.g., the Pinball and Music Construction 
Kits described previously), which present the designer with the available parts 
and operations for putting them together and allow to run the resulting 
system, design environments give additional support. They incorporate 
knowledge about which components fit together and how they do so, and they 
may serve as a critic that recognizes errors or inefficient or useless structures. 
They are able to deal with multiple representations of the design including 
drafts, program code, and graphical representations. Design environments 
constrain the problem space, leaving beginners with fewer choices by 
providing defaults and grouping the available functions. 

Design environments considerably reduce the amount of knowledge a 
designer has to acquire before useful work can be done. This is especially 
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important if the design environment contains many special purpose compo
nents and if each of them is used rarely, even by a full-time designer. 

The following two sections describe two design environments for specific 
areas of the WLISP construction kit. WIDES is a design environment for 
basic characteristics of window types, and TRIKIT is a design environment 
for graph display and edit tools. 

5.1. WIDES: A Window Design Environment 

Because almost all modem user interfaces are window-based, one of the 
major tasks of user interface design is the definition of a suitable combination 
of window types. Many current window systems and user interface kits offer 
a wide variety of components such as text, graphic, and network windows and 
editors, and controls like menus and push buttons. The goals of WIDES are: 
(a) to provide a level of abstraction above the object-oriented implementation 
of these components, (b) to reduce the knowledge required to use the 
components, (c) to make their use more effective by preventing errors and 
suggesting the right components to use, and (d) to support the acquisition of 
expertise in using these tools. WIDES provides a safe learning environment in 
which no fatal errors are possible and in which enough information is 
provided in each situation to ensure that there is always a way to proceed. The 
design environment allows its users to create specific window types for their 
applications. 

In the following sections, we give an example of how WIDES employs 
techniques like menu selection and an adaptive, dynamic suggestion list to 
greatly simplify window design. Merits and shortcomings of WIDES are 
discussed. 

Description of WIDES. The initial state of the system is shown in Figure 
9. It is a window with four panes: (a) a code pane that displays the current 
definition of the window type, (b) a menu of suggestions for enhancements of 
the window type, (c) a history list, and (d) a menu of general operations. 

Selection of the name-it: entry of the suggestions menu makes the system 
ask for a name for the window type to be built. Selection of the make
an-instance: item of the operations menu creates a window that is an instance 
of the type and that corresponds to the current definition in the code pane. 
This definition describes a very basic type of window (the white rectangle in 
Figure to); there is no border, no title bar yet; just a rectangular white area. 
Nevertheless, this window has a set of properties that are inherited from its 
superclass basic-window. It reacts on mouse clicks by showing the window
menu, a menu with operations like move and reshape. 

Selection of add-title: and add-border: produces the state of Figure 11. Two 
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Figure 9. Initial state of WIDES. 
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Figure 10. WIDES: An instance of the current window definition has been 
created. 
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superclasses, border-mixin and title-mixin , have been added to the definition ; 
a new instance shows a default title, some_test-window, and a default 
border size of two pixels . 

The suggestions menu changes its contents. If, for instance, add-title: has 
been executed, it is replaced by specify-title , which would not have been 
meaningful before having a title . The system, in giving its suggestions , 
adheres basically to a tree-like regime . Once a key decision like having a title 
has been made , its menu item is replaced by suggestions for more detailed 
descriptions. This feature provides the user with some guidance about 
reasonable next steps , eliminates illegal operations, and reduces the inform 
ation overload of too many options . 

The next figure (Figure 12) shows a modification that requires user input. 
Selection of specify-title: causes a dialogue window to pop up , which prompts 
the user for an expression to be used as the title o f the window. Figure 13 
shows that the input has been added as a default for the title slot. 
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Figure 11. WIDES: Title and border have been added to the window type. 

Figure 12. WIDES: Specification of the title. 
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If specific inputs are required , we cannot expect the user to know what the 
legal inputs are. Therefore , as shown in Figure 13 in which the user associates 
the window with an icon, a menu of alternatives is displayed (see the pop-up 
menu at the bottom left). Figure 14 shows a window and an icon of the 
selected type (document-icon). 

An even more complex modificat ion is demonstrated In Figure 15. 
Windows can be associated with buttons such as those in the upper-right 
corner of the WIDES window. C licking a button with the mouse causes a 
message to be sent to the window . Selecting add-buttons: adds the default set 
of the two right-most buttons (for kill and refresh) in the title bar of the 
messages window. Additional buttons can be defined by selecting add
more-buttons-to-title-bar:. This command causes two menus to pop up for 
selecting a button icon and an associated message. The selection of the 
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Figure 13. WIDES: Association of a different icon to the window. 
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Figure 14. WIDES; The window and its associated icon. 
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message is shown in the figure _ T he new button in the messages window 
depicts a coffin for the function of burying or hiding the window . Both menus 
have, in addition to selecting one of the listed choices, the option of choosing 
an item not listed in the menu by name . 

The save-on-file: operation may be used to save the final definition for later 
use . 



204 FISCHER AND LEMKE 

Figure 15. WIDES: Adding a button to the title bar. 
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Discussion. In order to construct a new window type, users no longer 

need to know what building blocks (superclasses: e.g., title-mixin) exist, what 
their names are, and how they are applied, or that new superclasses have to 
be added to the superc description of a class. Also, WI DES has knowledge 
about the correct order of the superclasses, what types of icons are available, 
and the wayan icon is associated with a window. Not having to directly write 
the code as displayed in the code pane is a significant advantage for the user. 

But, in addition to supporting the translation of a specification into working 
code (as is done by many other code-generating systems), WIDES also 
supports the specification process itself. An unexperienced user who is 
discriminately presented with the large number of design decisions that can be 
made for the design of a window is very likely to fail to produce a reasonable 
design. An important capability of experts is knowing the critical parts, those 
parts that influence most other parts. 

In WIDES, the task of window design is decomposed into a hierarchy of 
semantically meaningful subtasks. The critical decisions form the highest 
levels, and the dependent tasks can be found at the lower levels and the leaves. 
The suggestions menu is dynamically updated according to this model of 
window design. Suggestions, such as adding a button to the title bar, are given 
when appropriate within the overall design process. On the other hand, the 
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dialog is not completely system-driven and the user can direct the design 
process towards desired aspects of the design. 

WI DES does not support direct editing of the generated code in the code 
pane. Analyzing arbitrary program code is generally hard because the 
descriptive power of general program code is greater than the one of WIDES. 
WIDES may not be able to recognize features of the code and accordingly 
adapt its behavior. 

User interface techniques like prompting and menus make it easy to 
experiment with window construction. The system makes sure that errors 
below the domain level are impossible - that the system is internally consistent 
and runnable. Because the system cannot have knowledge about arbitrary 
uses of windows, it cannot prevent the designer from specifying a wrong 
window title such as a title that would be confusing to read. 

Because the system can guide the window designer only to a certain level 
(though this level is higher than with construction kits), it supports a 
prototyping design style. The undo: operation makes it easy to step back and 
retract a decision in order to proceed differently. So far, the UNDO feature 
has not been implemented, and the question is whether a simple stack
oriented scheme or a selective UNDO of operations further back in the history 
can be implemented. To support the full use of an UNDO, the system needs 
a network to take care of dependencies; for example, removing the title bars 
of a window implies that the buttons also have to be removed. 

The current implementation makes it difficult for a novice to see which 
modifications of the definition were caused by an action. Highlighting the 
modifications caused by the last action is a possibility. It should also be 
possible to point at a piece of the code and obtain an explanation of its 
function as well as the user action that created it. How can these selections be 
done? What if the user selects a piece of code that does not correspond clearly 
to one feature? 

Informal experiments with novices have shown that the class-instance 
abstraction gap is a problem. The code window shows the window class, 
whereas the windows created by make-an-instance: are its instances. A 
modification of the class (e. g., a modification of a default) does not automat
ically affect its instances. Properties cannot be specified as immediate values 
but must be specified as defaults inherited by instances. If the user, 
experimenting with an instance of the window type, changes the local value of 
a parameter (e. g., the title) so that it no longer corresponds to the default, 
then a change of the default in the class has no consequences for existing 
instances. 

The system in its current form is almost too small to be practical. The 
created window types do not have much functionality and represent only a 
framework that has to be augmented by more ObjTalk code. Still, users 
(students in our department) found it exciting that, with some menu 
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Figure 16. Usage of TRIKIT. 
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selections, real code could be produced. The system also achieves the goal of 
being a learning tool. It provides a good first impression of the concepts and 
structure of the domain of constructing window types. 

5.2. TRIKIT: An Environment for the Design of 
Application-Specific Graph Editors 

A very common user interface problem is the display and modification of 
hierarchical and network structures. Application systems that deal with rule 
dependency graphs, concepts of a domain of expertise (for explanation 
purposes), goal trees, or inheritance hierarchies in object-oriented languages 
are examples in which this problem occurs. 

Our response to this problem was to build a design environment for graph 
display and edit tools. Figure 16 illustrates its usage. The application 
programmer, who is an expert for the application system but not for building 
user interfaces, sets and adjusts parameters of a generic tool, TRISTAN, and 
specifies the links between it and the application. The result of the design 
process is a new, application-specific tool for displaying and editing a network 
data structure. 

The system has been used to build the following applications: (a) ObjTalk 
inheritance hierarchy editor, (b) UNIX directory browser (see Figure 17), (c) 
subwindow hierarchy display, (d) a project team hierarchy, and (e) EMYCIN 
rule dependency display. 

Application Domain of TRIKIT. Many computer programs use data 
structures that can be viewed as graphs. The nodes are data items that are 
interconnected by lines representing a semantic relationship between them. In 
this section, we use the example of a hierarchical directory browser, which 
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Figure 17. An example application of TRIKIT. 
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may be displayed as in Figure 17 (repeated from Figure 5). Here the nodes are 
directories and fLIes that are the leaf nodes. The lines represent the member
ship relation between files and directories , which can also be members of other 
directories. Each of the nodes is a data structure with properties like name, 
creation time, owner , protection, and size. There are operations to retrieve 
pieces of the graph (e.g., list-directory) and to create and delete nodes and 
lines . 

Also, the user must be able to refer to particula r nodes of the structure, 
either by a name relative to some current node , by an absolute path name 
specifying the way from a root of the hierarchy, or by some other description. 
Conversely, a screen representation must be defined for the nodes . This 
representation might be just the name of the node or the name plus some of 
the properties such as owner or size. If there are multiple types of nodes , 
different representations may be desired (e. g., directories and files in Figure 
17). 

The Generic Graph Display/Editor. TRIKIT is based on TRISTAN 
(Nieper, 1985), a facility of WLISP for building direct manipulation display 
and editing systems fo r graph structures . TRISTAN supports the following 
operations: (a) selective display of parts of the graph including a node 
specified by name, immediate children or parents of a node, and a whole 
subhierarchy of a node (possibly to a certain depth); (b) automatic layout 
planning; (c) manual layout modification by constrained moving of nodes ; (d) 
highlighting of nodes; and (e) editing the graph structure by creating and 
removing links and nodes. TRISTAN is independent of the particula r node 
representation. It assumes only that the representa tion is a subclass of a 
certain general WLISP window class. 

Description of TRIKIT. TRIKIT presents itself to the user as an 
interact ion sheet as shown in Figure 18 (top window) . In this window , the user 
specifies the interface to the application , chooses a graphical representation for 
the nodes, and controls the creation of the user interface. 
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Figure 18. Initial state of the main form and an inheritance hierarchy window 
generated from it. 
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Figure 19. Initial state of the node fonn. 
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The initial form is filled in with an example application - an ObjTalk 
inheritance hierarchy display system (Figure 18, bottom window). This allows 
users to familiarize themselves with TRIKIT, to modify parameters, and to 
learn their significance. 

Clicking the square representing the example item subform produces the 
form of Figure 19. The m ain form is associated with the graph in general, but 
the subforms describe the properties of its nodes . 

Let us examine the use of the system through the example of building a 
directory ed itor like the one shown in Figure 17. A directory editor is a tool 
for viewing a hierarchical file system and fo r doing operations on it such as 
creating or removing a directory , moving a file into another directory , and 
renaming files. 

In Figure 20 the first four fields have been filled in to reflect the terms of the 
file system domain. They establish a common vocabulary for the user and the 
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Figure 21. Node form modified to describe a directory node. 

d.n·. to,y ~~O::\~::: 

Name of Item type: directory:·: ... . ....... . ... . . . . . 

Expression to check whether 'Item' Is of this type : 
t · · .. . ...... .. ..... . . ... ::: ::::: ... .. ::: ..... : : ::::.:. :-: . ... . 

Can the parents for a given item be computed? 

Compute the list of parents for 'item': 
Yes 

(de:parents Item} ::- ..... ........... : : : .. :-:-:.:: .:- :- :- :.: : . . . . . . . . . - . . 

Is the order of the parents significant? No 

Can the children for a given Item be computed? Yes 

Compute the list of children for 'item': 

(de:children Item} :-·· 

Is the order of the children significant? 

Item representation: 

Label· 

(de:pname Item)·:- · 

Items· 

string-region 

. . . . . . . . . . . . . . . . . . 

No 

. . . . . . . . . . . 

. . . . . . . . . . . . 

. . . . .... . . .. .. . .. . . . . . . . . . . . . . .. . . . . 
Its font: mini 

Its left button down action: 

system . They describe the names of the relation to be displayed, the names of 
the item s that are elements of the relation, and those of the links to 
superordinate and subordinate nodes in the relation. The Evaluate item 
name? fi eld says that a user-entered name of a file or directory represents 
itself as opposed to being the name of a variable holding the actual item. Equal 
is used as a comparison function for directory names. No other changes have 
been made to this form . 

The example item form has been renamed (Figure 21), and the two most 
important fields have been adapted to the new ap plication: The de:parents 
function computes the list of superdirectories and the de:children function 
computes the subdirectories, that is, the contents of the directory . The 
de:pname function in the label fi eld computes a "print name ," or a label , for 
the item s; that is, it strips oIl the leading pathname component and leaves the 
file name, which is un ique only locally within its directory. 

Functions with a "de:" prefix (e.g . , de:parents . de:children, de:pname) 
belong to the application domain . They are application -specific and must be 
supplied by the application programmer 

The modifications mentioned previously are sufficient to produce an initial 
working version of the directory editor. A click on the "Create System and 
Instantiate! " push button compiles the forms into a TRISTAN system . Part 
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Figure 22. An example directory hierarchy window. 

IT'- IS TII,n -

It L. T n- 11 II 

of it is the directory-hierarchy window type, which is being instantiated to 
produce the window of Figure 22. (The "Create System" push button just 
recompiles the forms, but does not create any new instances .) 

Figure 23 shows on the left the main menu of directory hierarchy windows. 
In addition to generic window operations (top items up to scroll and the two 
bottom items), there are three application specific operations that have been 
added automatically: 

replan-layout supplied by the TRISTAN system: auto
matically rearranges the layout of the 
graph using a general planning algo
rithm ; 

display-subhierarchy. .. also supplied by the TRISTAN system: 
displays all the recursively subordinate 
nodes of a given node; 

display-directory. . . generated by TRIKIT: displays a given 
directory. This is a renamed version of 
the generic display-item ... operation of 
TRISTAN. 

The menu to the right of Figure 23 is associated with individual directory 
nodes. Again , some of the opera tions, like move, a re general. Others, like 
kill-subhierarchy, are supplied by TRISTAN, and the display operations are 
generated by TRIKIT. 

Curren tly the directory hierarchy editor has a number of shortcomings. If 
the system is to be a true editor, it should be possible to create new nodes and 
to alter the graph structure. For this purpose, the meaning of creating a child 
and of relinking a node from one parent to another have been specified in the 
main form using the application functions de:create-child and de:move 
(Figure 24) . 

Also, there are actually two types of nodes in the application: directories 
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Figure 23. The main menus of the directory hierarchy window and the directory 
node. 
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copylWDove 

IIOve 
reshape 

newshape 
ki 11 
bury 

tobottom 
totop 

refresh 
put 

find class def 
properties 

clear 
scroll 

replan-layout 
display-subhierarchy .. . 
display-directory .. . 

window-snapshot 
shrink-to-icon 

i ,. ectory-menu 
move 

IIOve- hor i z 
move-vert 
adjust-x 
adjust-y 

kill 
kill-subhierarchy 

display-subhierarchy 
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and files. The user creates a new subform (Copy of Directory) by cloning the 
existing one. Now the system must be told how to distinguish between the two 
node types. Consider Figure 25, in which the second field specifies the 
necessary predicate expression (de:directoryp). There has also been an action 
associated with the node: Clicking the node will make the directory it is 
representing the current working directory. 

This action is not appropriate for plain files (Figure 26). Instead, an action 
to load the file into an editor has been specified. Because the nodes are 
semantically different, it would be nice to display them differently. The Item 
representation field has been set to label-region, which has no frame. A 
window created according to these modifications now looks exactly like Figure 
17. 

If this version of the system is not yet satisfactory, the user will have to work 
on the system at the implementation level of ObjTalk and LISP. The Save 
System on File operation in the main form creates a file containing the code 
of the directory editor, which may then be further modified. 

Discussion. With TRIKIT the user can construct useful systems without 
knowing the details of the selected building blocks. This design process 
happens on the level of abstract properties of graphs (e.g., horizontal vs. 
vertical layout of the graph), not on the implementation level (ObjTalk 
classes). At the interface between graph editor and application, code-level 
specifications have to be used such as the code that computes the list of parents 
for a file item «(de:parents item), see Figure 21). This form of specification 
does not pertain to the graph as such, but is required to be independent of the 
internal representation of the graph in the application system. 
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Figure 24. Extended description of the directory hierarchy window. 

Name of relation: 

An item Is called a; 
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directory:: : 
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... ,' ... ' . .. ..... .. . ' ... . 
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(de:move Item parent2f ::> . . . . .. .. ' .. , , , , . . . 

The window has a default size? 

Width: 466·:- ' Height: 149:-: 

Types of Items: 

DIRECrDIIY I "' .. cr~ I"C","O,""PY'-'Df:-=---' 

Yes 
@c~P~*c~if~~~.~IZ~*--u~I~Th~r-u~b~b-*r~b-o-x~1 1 

A critical design decision was whether to make users explicitly aware of the 
distinction between an item in his or her relation and the node object 
representing it as a la beled rectangle in the display. Initially we made this 
distinction, But because we did not find clear and intuitive terms for the 
different concepts and because there was no need to be so specific , we dropped 
this distinction fro m the model of the design process that is presen ted to the 
user. T his is an example of the abstraction from implementation details that 
we hope to achieve with design environments like T RIKIT. 

Althou gh the design space of TRIKIT is limited by the available options in 
the forms, it is possible to use this system to create a first version , which may 
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Figure 25. The directory node form . 

Name of Item type: dlrectory-: -- . . ... , . . . . . . 

Expression to check whether "Item" is of this type: 

(de:dlrectoryp Item)-:- :- :-- --

, . . . . .. . . 

Can the parents for a given Item be computed? Yes 

Compute the list of parents for 'Item": 

(de:parents item):-

Is the order of the parents significant? No 

Can the children for a given Item be computed? Yes 

Compute the list o f children for 'item": 

(de:children item} : -: -: -- .. . .. . .. ... - . . . . 
Is the order of the children significant? 

Item representation: string-region 

Label -
(de:pname item)· : .... .. . . . . . . . . . . .. . 

Items -

No 

-. - . . . . . . . . . . . . . . .. .... .. . .. . . . . .. . . .. . . 

Its font: mini 

Its left button down action: 

(chdir (car item)):-

be refined on a lower level . Additional knowledge about graph data structures 
can further enhance the power of the TRIKIT design environment. Given an 
example of a graph, or a description of the data structure such as a type 
definition, the system could automatically produce an initial display design_ 

5.3. Comparison 

One major goal in the development of the TRIKIT system was to overcom e 
the limitation of the WIDES suggestions menu as being the only input mode_ 
The imperative interaction style provided by the suggestions menu of WI DES 
is replaced in TRIKIT with a declarative or descriptive mode. 

In WIDES it should be possible to disregard the suggestions and explore 
other parts of the design that the system does not currently consider 
important. This should be an additional alternative for the expert , a nd the 
suggestion Ji st should be kept because it makes interaction with WIDES 
straightforward for novices. TRIKIT, on the othe r hand , lacks this kind of 
guidance, and users are in danger of being overwhelmed with the many 
options, not knowing which of them will be important for getting done a first 
version of an application. 
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Figure 26. The plain me node form. 

Name of Item type: file::· : .. . . ... . . . 
, . . . . . . . . . 

Expression to check whether 'item' is of this type: 

(de:filep item):::: . . . . . . ... : : : : : : : : : . . .. . . . . . . 
Can the parents for a given item be computed? Yes 

Compute the list of parents for 'item': 

(de:parents Item} : '· . .. .. . . . . . : . . . . :: ::: :: : : .. . . :-:-:--- .... ..... .. .. ..... . . 

Is the order of the parents significant? 

Can the children for a given item be computed? 

Compute the list of children for 'Item': 
nil:·' .. . . . ...... .. ... . .. . 

Is the order of the children significant? 

Item representation: label-region 

Label· 
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Items· 

.... ... ... ..... .. .... . " 
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Its left button down action: 

(emacs-file (car item)) : 
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With WIDES the users are aware that code is being generated and they can 
learn the functions of the d ifferent pieces of code. This makes it easy to make 
enhancements on the implementation level. Users are incrementally writing 
code (creating a definition) by selecting high-level operations from a dynamic 
menu. For TRIKIT there is no need to show the code because TRIKIT is 
itself powerful enough to generate complete, working systems. Code is 
generated internally from the specification represented by the filled in fo rms. 

Both systems contain knowledge about their respective domains . They 
provide a subgoal decomposition that identifies subproblems of the design 
space in which the user wants to solve problems (Figure 27). The design 
environments use the partial solutions to build up a complete design. In order 
to achieve that components work togethe r properly , they must be ordered 
correctly (e .g. , the title-mixin must always precede the border-mixin). 
Existing objects must be notified when new objects are created (e .g . , the 
create-child operation notifies its superordinate node). This knowledge is 
represented in the procedures of the design environments that generate the 
code. More explicit knowledge representations are required to make the 
design environments themselves extensible. 



Figure 27. Suhgoal trees for WIDES and TRIKIT. 
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6. ASSESSMENT OF OUR EFFORTS 

The human-computer interaction subsystem is crucial to the usability and 
success of most computer systems. New prescriptive goals (e. g., convivial and 
symbiotic systems), new methodologies (e.g., differential programming, use 
of kits), and new tools (e.g., intelligent support systems) are needed to make 
systems usable and useful. 

Some of the important trade-offs and design problems in this area of 
research are: 

1. The usability barrier: It takes a major effort and large training costs to 
learn a complex system that offers extensive functionality. 

2. The construction kit versus complete system decision: Whether to design 
the system completely in advance or to offer a metasystem enabling 
end-users to alter it according to their needs. 

3. Distribution of control: Does the system or the user make decisions? Can 
control shift back and forth between the agents involved so that 
cooperative problem-solving is possible? 

The advantages of construction and design environments are: 

1. They provide a powerful environment for rapid prototyping of a large 
class of systems. 

2. They increase the control of the user over systems without requiring the 
user to learn many details. 

3. The large class of existing building blocks "guarantees" to some extent 
the construction of high-quality systems with relatively low construction 
costs; systems can be created more quickly because the designer can rely 
on well-developed parts and take advantage of stable subassemblies 
(e.g., exploiting the rich inheritance network in the WLISP system). 

4. Associated support tools make it easier to learn and work with complex 
systems. 

Specific construction and design environments are used by different classes 
of users for a variety of different tasks. Our experience has shown that the use 
of design environments is not restricted to the inexperienced user: If the 
functionality offered by the design environment is sufficient, then there is no 
reason why the expert should not use it. 

I t is misleading to assume that knowing how to use a construction and 
design environment will come for free and will not require any learning 
process at all. Learning processes are required at different levels in using the 
kits: Users have to operate on different descriptive levels, they need to 

understand the domain concepts used in the kits, and they must know how to 
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use a specific kit for their purposes and goals. With design environments, 
learning processes are controlled and better restricted to that what is really 
needed. 

It remains an open question whether we can succeed in considerably 
extending the functionality of the design environments to cover a substantial 
part of their domains while retaining or even improving the simplicity of use. 
WIDES is currently easy to use, but we do not know whether we will be able 
to retain this property when the system covers not only simple kinds of 
windows but also other objects like menus, icons, and gauges. 

The domain of user interface design does not have a well-established 
terminology. Terms vary from system to system and from manufacturer to 
manufacturer. In addition, user interfaces are often designed or redesigned by 
nonspecialists. For these reasons, it has been difficult to find a vocabulary that 
enables the user to understand the descriptions for the required inputs. The 
meaning of the label Pname selector for items (Figure 24) is not obvious to 
someone who does not know this technical term of the menu system. To 
remedy shortcomings like this, we have to: 

1. find a better conceptualization of the design task and use it to restructure 
the forms to make them easier to understand; 

2. select prototypical examples more carefully and convey a better feeling 
of what needs to be done by taking task structures and the user's 
knowledge into account; 

3. allow alternate modes of specification; explore more direct forms of 
manipulation of prototypes; 

4. prompt for information at the time it is needed. Information about what 
it means to create a link between two nodes should be asked for only 
when this action is being executed for the first time. 

Currently, the interaction with the design environments is mostly a user's 
monologue. The system does not act on its own initiative on user inputs. Our 
goal is to make dialogues possible in which the user and the system take 
actions in turn and correct each other's errors and false assumptions. Small 
examples of this kind of interaction can be found in the current implementa
tions: Default values of fields represent the design environment's initial 
assumptions of useful values; when the user creates a new type of node in 
TRIKIT, the system copies its properties from an existing node because the 
new node is probably more like the existing node than like the original 
defaults. 

Consistency becomes a problem when systems can be modified on different 
descriptive levels. If design using a kit can be mapped into simple operations 
such as setting parameters of predefined building blocks on the code level, 
consistency can easily be achieved (e.g., specifying the size of a window on the 
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code level by giving two constants for width and height). If, however, a part 
of a definition (e.g., the list of superclasses) is derived from multiple 
specifications of the user (e.g., whether a title bar or an icon is desired) the 
design environment cannot, in general, decide how to reconcile the interactive 
specifications and the code-level specifications. A program analysis compo
nent could make it possible for the high-level (form) description and the 
program code to coexist and for the user to use both languages alternatively 
(for a further discussion of this problem, see Waters, 1986). 

Other issues arising from the conceptual distance between a description and 
what it describes need to be further explored. With WIDES, what happens to 
an existing object when its description has been changed? Should it be 
updated? Updating is not always desirable or possible because immediate 
updates may be computationally too expensive, the screen display may change 
to such a degree that the user loses track of where things are, or changes of 
descriptions of actions executed at the time an object is created have no effect 
on already existing objects (e.g., initial size of a window). 

We believe that human problem-domain communication is the most 
promising way of overcoming these problems. Construction kits with large 
numbers of generally useful building blocks provide a good basis for making 
computer more usable; but without the additional assistance of design 
environments, users are lost in the wealth of information and possibilities. 
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