HUMAN-COMPUTER INTERACTION, 1987-1988, Volume 3, pp. 179-222
Copyright © 1987-1988, Lawrence Erlbaum Associates, Inc.

Construction Kits and Design
Environments: Steps Toward Human
Problem-Domain Communication

Gerhard Fischer and Andreas C. Lemke
Unaversity of Colorado

ABSTRACT

Our goal is to build cooperative computer systems to augment human
intelligence. In these systems, the communication between the user and the
computer plays a crucial role. To provide the user with the appropriate level
of control and a better understanding, we have to replace human-computer
communication with human problem-domain communication, which allows users to
concentrate on the problems of their domain and to ignore the fact that they
are using a computer tool.

Construction kits and design environments are tools that represent steps
toward human problem-domain communication. A construction kit is a set of
building blocks that models a problem domain. The building blocks define a
design space (the set of all possible designs that can be created by combining
these blocks). Design environments go beyond construction kits in that they
bring to bear general knowledge about design (e.g., which meaningful
artifacts can be constructed, how and which blocks can be combined with each
other) that is useful for the designer. Prototypical examples of these systems
(especially in the area of user interface design) are described in detail, and the
feasibility of this approach is evaluated.

Authors’ present address: Gerhard Fischer and Andreas C. Lemke, Department of
Computer Science and Institute of Cognitive Science, Untversity of Colorado,
Boulder, CO 80309-0430.




180 FISCHER AND LEMKE

CONTENTS

Pt

INTRODUCTION
2. HUMAN-COMPUTER COMMUNICATION
2.1. Problems of Human-Computer Communication
2.2. Existing Interface Construction Techniques
3. HUMAN PROBLEM-DOMAIN COMMUNICATION
3.1. Modeling Problem Domains
3.2. Intelligent Support Systems
4. CONSTRUCTION KITS
4.1. The Pinball and Music Construction Kits
4.2. WLISP: A Construction Kit for User Interfaces
4.35. FINANZ: A Financial Planning Kit
4.4. Z0OO: Graphical Support to Construct New Elements for a
Construction Kit
5. DESIGN ENVIRONMENTS
5.1. WIDES: A Window Design Environment
5.2. TRIKIT: An Environment for the Design of Application-Specific
Graph Editors
5.3. Comparison
6. ASSESSMENT OF OUR EFFORTS

1. INTRODUCTION

Even for the expert —let alone the novice and occasional user —it is difficult
to take advantage of the available computational power to use the computer
for a purpose chosen by himself or herself. Most computer users feel that
computer systems are unfriendly, uncooperative, and that it takes too much
time and effort to get something done. They feel dependent on specialists, and
they notice that “software is not soft;” that is, the behavior of a system cannot
be changed without reprogramming it substantially. We are interested in
building evolutionary systems that grow to fit an environment of needs rather
than carrying out a single, well-specified task. In these systems, the main
activity of programming has moved from the origination of new programs to
the modification of existing ones. If designers are to modify existing pro-
grams, they must understand how the parts of these programs function.
Casual users find themselves in a situation similar to instrument flying: They
need relearning lessons after not using the system for a while. We claim that
systems fail primarily because their communication capabilities are insuffi-
cient.

Users use computers as tools for achieving tasks of particular problem
domains such as text processing, financial planning, or computer-aided
design. The fact that in order to communicate with most computer systems,



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 181

the user has to learn a new language together with a whole new world of
concepts 1s a reason for the low usability of many powerful systems. These
systems restrict users who cannot expend the effort to familiarize themselves
with these large syntactic and conceptual worlds to make only marginal use of
the systems. Users, instead of being able to structure designs themselves, must
make do with what they can produce based on their limited mental model of
the system or must delegate work to experts and thereby relinquish their
control. These users can be end users with little knowledge about computers
as well as programmers wanting to use facilities that are outside the domain
of their main interest.

If users can communicate with a computer tool in the language of the
problem domain, a language that they were trained to use, then the
communication barrier 1s much lower. We refer to this type of capability as
human  problem-domain communication. Convivial tools allow users to express
themselves according to their ideas and to convert these ideas into actions and
artifacts (Iltich, 1973).

Increasingly, users are working in domains that they were not trained in
and that they knew a priori very little about. An example is typesetting and
desktop publishing using modern page layout systemms. Human problem-
domain communication obviously cannot free users from acquiring necessary
domain concepts, but it can support communication at an adequate level.

In order to support communication at the domain level, concepts of the
problem domain must be represented in the system. We consider two types of
support systems— construction kits and design environments —as examples
for human problem-domain communication. Construction kits make abstrac-
tions of the problem domain directly available to the user. They can be
combined to achieve the user’s task. Construction kits provide syntactic
support for this combination process and for the visualization of the results.

A construction kit with a large number of generally useful building blocks
provides a good basis for reuse and redesign; but there are two important
deficiencies of construction kits: They do not help users understand the
components that they provide, and they do not support the application of the
components to problem solutions. A user of a construction kit i1s in the
situation of a chess novice who knows the goal of the game and sees all the
different pieces on the board; this user, however, is far from being able to play
a good game. Our notion of design environments is intended to also support the
semantic and pragmatic levels. A design environment has knowledge about
the function of the components and how they can be used to achieve
higher-level goals.

In this article, we first articulate some problems in human-computer
communication. We describe different approaches and discuss specific chal-
lenges and unique opportunities that knowledge-based systems create for
human-computer communication (Section 2). In Section 3, the notion of



182 FISCHER AND LEMKE

human  problem-domain communication is elaborated. In Section 4, general
characteristics and a number of examples of construction kits will be
presented. The next section (Section 5) 1s concerned with two systems that
represent steps toward the goal of creating knowledge-based design environ-
ments. Finally, we discuss our experiences and potential future work.

2. HUMAN-COMPUTER COMMUNICATION

We believe that the term user interface should be replaced by human-computer
communicatton because communication between humans and computers re-
quires more than tacking another layer of software onto a computer system.

We are concerned with a new class of computer systems that support
cooperative problem solving and provide advice, criticism, and explanation.
In these systems, the boundaries between the user interface portion and the
application system become much less clear than in traditional systems.
Knowledge-based systems are the most promising approach to improve
human-computer communication because successful communication is based
on knowledge structures common to both human and computer (Fischer,
1983).

In the following sections, we look at some of the general problems in
human-computer communication and at some approaches that have been
used to solve them.

2.1. Problems of Human-Computer Communication

Designers of communication processes between humans and computers are
challenged by a large number of requirements. High-functionality computer
systems (containing a wealth of information) offer great possibilities but, at
the same time, they pose a large number of problems. Some of the
requirements designers have to address are:

1. Help break the complexity barrier, for example, by supporting user- and
task-specific filters and dynamic unfolding, that is, showing parts of the
system only when they are relevant.

2. Help break the utility barrier, defined as the ratio of value to effort
expended; this can be done either by increasing the value of a system or
by decreasing the effort needed to learn and use it.

3. Give control to users when they need or desire it; do things automati-
cally when users do not want to be bothered.

4. Support active exploration, for example, by undo and redo mechanisms.

5. Promote human problem-domain communication; mirror the abstrac-
tions of the application domain, thereby reducing the transformation



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 183

distance between task descriptions by the domain expert and their
representations as computer programs.

6. Take advantage of modern hardware and basic software capabilities; for
example, use screens as a two-dimensional world that can be edited
(direct manipulation).

One of the most promising approaches to cope with these requirements are
knowledge-based systems that contain knowledge about specific problem
domains, the communication partner, the communication process (e.g.,
recovery from breakdowns), and help and explanation facilities to increase
their comprehensibility. They do not require that all information has to be
communicated explicitly.

Knowledge-based systems pose special problems and, at the same time,
offer great possibilities for human-computer communication. The more
intelligent and autonomous a system 1is, the harder it is to understand and
issues of reliability, comprehensibility, and trust in the system’s performance
become more important (Chambers & Nagel, 1985).

Many knowledge-based systems are built under the assumption that the
user has a well-defined problem that the system is supposed to solve. This
assumption has led to strongly system-controlled advisory dialogues such as in
the MYCIN systemn (Buchanan & Shortliffe, 1984). These dialogs provide
little help in problem definition. Frequently, however, users learn incremen-
tally about the nature of their problems, and they want to solve them 1n
cooperation with a system (Woods, 1986). This requires better communica-
tion capabilities than most systems traditionally have offered.

Failed attempts to build fully automatic systems (e.g., automatic program-
ming or high-quality machine translation systems; Winograd & Flores, 1986)
have shown that for many domains, a symbiotic, cooperative system archi-
tecture is more adequate and promises greater success than an automous one.
For symbiotic, cooperative systems, a human-computer interaction sub-
system 1s an absolute necessity. It is our belief that in many ways partially
autonomous systems pose greater design challenges than fully autonomous
systems. In partially autonomous systems, the two agents have to keep each
other informed about their decisions and actions, and one of the central
questions is: Who is in control when there is a conflict of opinion? Knowledge-
based systems develop their “own will,” which may be viewed as an
encapsulation of their designers’ will and understanding of the situation.

To overcome some of these problems, we identified the following design
constraints for human-computer systems:

1. The limiting resource in human processing of information is human
attention and comprehension, not the quantity of information available.
Modern information and communication technologies have dramatically



184 FISCHER AND LEMKE

increased the amount of information available to individuals. This can be
illustrated with an example from modern aircraft design (see Chambers &
Nagel, 1985): There are 455 separate warnings on a Boeing 747. We need
instruments that not only display but also prioritize information before
presenting it to the crew to avoid an information overload.

2. The limitations and structure of human memory must be taken into
account in designing human-computer communication. People have limited
short-term memories. The way people recognize information is different from
the way they recall memory structures. This distinction is relevant, for
example, to judging the advantages and limitations of different interaction
models such as comparing a command-based interface to a menu-based
interface. Our intelligence has become partially externalized, contained in
artifacts as much as in our head: The computer is in one sense an artificial
extension of our intellect invented by humans to extend human thought
processes and memory.

3. The efficiency of human visual processing capabilities must be utilized
fully. Traditional interfaces have been one-dimensional, with a single frame
on the screen usually filled with lines of text. New technologies allow us to take
advantage of human visual perception through the use of multiwindow
displays, color, graphics, and icons. To exploit these possibilities, we have
constructed a user interface construction kit for graphical interfaces (described
in Section 4.2). In the domain of software engineering, we have built
components of a software oscilloscope that, in analogy to an electronic
oscilloscope, visualizes static and dynamic aspects of programs (Boecker,
Fischer, & Nieper, 1986).

These observations provide the rationale for our major research area: how
to bring knowledge-based systems and human-computer communication
together to construct systems that are useful and usable. The design con-
straints just enumerated can be used to provide some global guidance for the
construction of better human-computer communication and have played a
crucial role in the development of the systems described in this article. A
drawback is that they are not prescriptive enough to indicate how one should
proceed within the context of a specific system design.

2.2. Existing Interface Construction Techniques

In order to solve these problems, different interface construction techniques
have been proposed.

Natural Language Front-Ends. Because humans communicate with each
other quite easily using natural language, it is a natural step to study the



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 185

applicability of natural language to the human-computer communication
problem. Because of the asymmetry between human and computer, the
design of the interface is a problem not only of simulating human-to-human
communication but of engineering alternatives in the domain of interaction-
related properties (Bolt, 1984). We do not have to use natural language for
every application; some researchers claim that in many cases it is not the
preferred mode of communication (Bates & Bobrow, 1984; Robertson,
McCracken, & Newell, 1981). In natural language interfaces, the computer is
the listener and the human is the speaker. The listener’s role is always more
difficult because the problem must be understood from the speaker’s descrip-
tion. Qur work has been primarily guided by the belief that the user is more
intelligent and can be directed into a particular context. This implies that the
essence of user-interface design is to provide users with appropriate cues.
Windows, menus, suggestions lists, forms, and so on provide a context that
makes the machine the speaker and the human the listener, thereby allowing
the user’s intelligence to keep choosing the next step.

Use of a natural language front-end implies that appropriate interactive
behavior can be achieved by tacking an off-the-shelf natural language
front-end onto an existing system. This is a fallacy. Many human-computer
systems have to perform more sophisticated functions than answering requests
for factual information; for example, they must help users formulate their
problems and assist in cooperative problem solving. These tasks require more
elaborate data models and knowledge representations (Williams, Tou, Fikes,
Henderson, & Malone, 1982) and additional types of reasoning.

Rather than building systems that can analyze ever more complex sentences
involving increasingly difficult semantic concepts, a main objective of natural
language interface research should be to understand the processes of intention
communication and recognition well enough to enable a system to participate
in a natural dialogue with its user (Winograd & Flores, 1986). Assuming we
had a natural language interface to UNIX (Wilensky, Arens, & Chin, 1984),
we probably would be unpleasantly surprised if our question “How can I get
more disc space?” were answered by “T'ype rm *”, which deletes all files in a
directory, even though this command would solve the problem as stated. The
problem in human-computer interaction is not simply that communicative
troubles arise that do not occur in human communication, but that when they
do arise, the same resources are not available for their detection and repair.

User Interface Management Systems (UIMS). UIMSs (Olsen et al., 1984)
provide graphic primitives and tools for specifying dialogue structures (ATNs,
context free languages). By providing a uniform set of high-quality primitives,
UIMSs attempt to foster the construction of consistent interfaces that can be
rapidly developed. Most UIMSs are based on a strong separation of interface
and application code. This is a good approach to problems for which there is



186 FISCHER AND LEMKE

only a limited information exchange. The kinds of problems we try to solve
(e.g., building intelligent support systems like help, documentation, and
explanation systems) have convinced us that a strong separation between
interface and application is a limiting factor. A user interface should have
extensive access to the state and actions of the application system, and the use:
should be able to influence the behavior of the application.

3. HUMAN PROBLEM-DOMAIN COMMUNICATION

Most computer users are not interested in computers per se, but they want
to use the computer as a tool to solve problems and to accomplish their tasks.
To shape the computer into a truly usable and useful medium, we have to
make it invisible and let users work directly on their problems and their tasks.
The important abstract operations and objects of a given application area are
directly built into the environment. This implies that the user can operate with
personally meaningful abstractions, and learning processes are reduced by
exploiting the user’s knowledge of the problem domain.

For a few applications and a few users, a predefined set of functions will
suffice to accomplish nearly all tasks. For most applications, though, users
need to customize and modify the behavior of the tools that they use in order
to solve their particular problems.

Traditionally, this could only be done by programmers who understood
how abstractions of the application domain were implemented with compu-
tational methods. The goal of human problem-domain communication is to
remove the distinction between programmers and users. This can be achieved
by representing a more complete model of the application domain. Specifying
the desired behavior of the tool can, in most cases, be achieved without having
to resort to programming language concepts like for loops and if then else
statements. Many application domains have natural ways of expressing
control; see, for example, repeat signs in musical notation or the laws of
motion in the domain of physics. Instead of specifying conditionals and loops,
human problem-domain communication means combining the domain
building blocks so that they function as desired. What must be done is to move
away from programming languages, even domain specific ones, and move
toward providing a set of programming abstractions that are within the users’
application areas.

A similar shift can be seen in architectural design in the work of Alexander
(1964). In his early book, Synthesis of Form, he described a mathematical
framework for design whereas in his later book, A Paitern Language (Alexander
et al., 1977), he articulated a set of patterns that can be used and understood
by the people involved and affected by the design process (Hooper, 1986).



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 187

3.1. Modeling Problem Domains

Human problem-domain communication requires environments that sup-
port design methodologies whose main activity is not the generation of new,
independent programs, but the integration, modification, and explanation of
existing ones (Winograd, 1979). Just as one relies on already established
theorems in a new mathematical proof, new systems should be built as much
as possible using existing parts.

Many large software systems, however, are built as monolithic systems,
directly implemented on top of a general purpose programming language
(Figure 1-a). Although these systems are structured in some way, this
structure usually does not correspond to established abstractions of the
application domain. With construction kits and design environments the
latter approach is taken (Figure 1-b). These systems provide one or more
intermediate levels of problem-oriented building blocks. The existence of
these intermediate substrates enables users to redesign and adapt their
systems (1.e., modify the original system; Figure 1-c) as well as to reuse
existing abstractions to form new systems (Figure 1-d; Fischer, 1987a;
Fischer, Lemke, & Rathke, 1987). In order to do so, the designer must
understand the functioning of these parts. An important question concerns the
level of understanding necessary for successful redesign: How well does the
user have to understand existing components?

The existence of the right components is not enough; they must be
assembled in some way to form a well functioning whole. There are
combination operators of different complexity (Fischer & Lemke, 1988).
Fitting programs together using the UNIX pipe mechanism is an example of
simple combination. Filling in forms can be viewed as instantiation of a
template.

The object-oriented paradigm has emerged as a powerful and easy to
understand structuring method. Objects encapsulate procedures and data.
They represent stable intermediate parts that, as Simon (1981) demonstrated,
led to much faster evolution of complex systems. Objects are grouped into
classes, and classes are combined in an inheritance hierarchy. This inherit-
ance supports differential design (1.e., object y 1s like object x except u,uv,
... ). Object-oriented formalisms support design by instantiation as well as
design by specialization through the creation of subclasses. Subclasses can
inherit large amounts of information from their superclasses, and new objects
that are almost like other objects can be created easily with a few incremental
changes. Inheritance reduces the need to specify redundant information and
simplifies updating and modification by allowing information to be entered
and changed in one place. The creation of subclasses is more complex than
instantiation, but also more powerful because the behavior of the superclasses



188 FISCHER AND LEMKE

Figure I. Modecling problem domains with application-oriented abstractions.

programming
language component system
level level level

a) monolithic
design:

hew systems
are based on general-purpose programming language

b} construction

-
Kits: =
creating ~

intermediate
@]

abstractions

c) redesign:
an existing system
is modified by
replacing
components

OVDVO

d) reuse:
existing components are
reused to form new,
independent systems

UV

74

@g@ W=y W

can be augmented and overwritten in arbitrary ways. Many tasks can be
achieved before one has to use the full generality of subclassing.

3.2. Intelligent Support Systems

Systems that make an attempt to model many different problem domains
will be large and complex in order to provide all the necessary abstractions.
The CommonLisp standard, for instance, specifies more than 600 functions.
More comprehensive systems, like UNIX or LISP machines, provide a larger



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 189

number of abstractions by far. This richness is, however, a mixed blessing.
The advantage is that in all likelihood a building block or set of building
blocks that either fits our needs or comes close to doing so already exists and
has already been used and tested. The disadvantage is that they are useless
unless the designer knows that they are available. Informal experiments
(Fischer, 1987b) indicate that the following problems prevent designers from
successfully exploiting the potential of high-functionality systems:

1. Designers do not know about the existence of needed objects (either
building blocks or tools).

Designers do not know how to access objects.

Designers do not know when to use these objects.

Designers do not understand the results objects produce for them.
Designers cannot combine, adapt, and modify objects for their specific

o W N

needs.

Unless we are able to solve these problems, designers will constantly
reinvent the wheel instead of taking advantage of already existing tools.

In highly complex systems, communication between humans and com-
puters cannot be restricted to the construction of nice pictures on the screen,
and the beauty of the interfaces must not overshadow the limited functionality
and extensibility of some systems. The “intelligence” of a complex computer
system must contribute to its ease of use. Truly intelligent and knowledgeable
human communicators, such as good teachers, use a substantial part of their
knowledge to explain their expertise to others. In the same way, the
“intelligence” of a computer should be applied to providing effective commun-
ication. Equipping modern computer systems with more and more computa-
tional power and functionality will be of little use unless we are able to assist
the user in taking advantage of them. Empirical investigations have shown
that, on the average, only a small fraction of the functionality of complex
systems such as UNIX, EMACS, or LISP is used (Draper, 1984; Fischer,
Lemke, & Schwab, 1985).

In the early days of computing, programs consisted of a number ‘of
algorithms on punched cards. Interactive systems emphasized the importance
of the user interface. For the just described high-functionality computer
systems, simple interactive user interfaces are no longer sufficient, and
intelligent human-computer communication facilities are required. We have
constructed a number of intelligent support systems including documentation
systems (Fischer & Schneider, 1984), help systems (Fischer et al., 19853),
visualization components (Boecker et al., 1986), and critics (Fischer, 1987b).

In the past, these intelligent support systems have been constructed as
isolated components. We are in the process of combining them into an
integrated design environment whose architecture is shown in Figure 2. The



190

Figure

pictur

FISCHER AND LEMKE

2. An architecture for an integrated intelligent design environment. The
¢ shows components such as the problem decomposition goal tree,

suggestor, and critic. These components contain design knowledge for supporting
design processes by the user.

Design Environment

Goal

Browser Suggestions

|

Critique
List A Sample The Design
of
Samples

following components represent knowledge about the problem domain as well

as about the design process:

. Hierarchical problem decomposition: An important part of design

knowledge is knowledge about how the problem can be attacked, which
subtasks have to be solved, and how partial designs can be composed.
Critics: Critics are system components that recognize possible improve-
ments, trouble spots, inconsistencies, or even just breaks in style. For
the domain of programming in LISP, we have developed an intelligent
support system that criticizes code with the goals of making it more
cognitively or more machine efficient (Fischer, 1987b). The domain of
general LISP programming is relatively unstructured. A critic can be
more powerful in semantically richer domains.

Suggestions: Suggestions can be content-oriented and organizational.
Content-oriented suggestions can say something about how to improve
the design and how to solve problems. Organizational suggestions can
help in deciding what to do next.

Animated demonstrations: One of the most powerful tools to understand
the dynamic aspects of a system is a demonstration.

Samples: Representative examples play an important role in design
disciplines such as architecture. Samples of different types of designs are
another way to represent design knowledge.




CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 191

4. CONSTRUCTION KITS

A construction kit is a set of building blocks that models a problem domain.
The building blocks define a design space, that is, the set of all possible designs
that can be created by combining these blocks. In the following sections, we
briefly describe some examples and indicate how the problem of adding new
elements to a construction kit can be addressed.

4.1. The Pinball and Music Construction Kits

The Pinball and Music Construction Kits (two interesting programs for the
Apple Macintosh from Electronic Arts; see Figure 3) provide domain-level
building blocks (e.g., bumpers and flippers; staves, piano keyboard, notes,
sharps, etc.) to build artifacts in the two domains of pinball machines and
musical composition. Users can interact with the system in terms with which
they are already familiar; they need not learn abstractions peculiar to a
computer system.

Our empirical investigations have shown that these systems come close
(within their scope) to our notion of human problem-domain communication.
Users familiar with the problem domains but inexperienced with computers
had few problems using these systems, whereas computer experts unfamiliar
with the problem domains were unable to exploit the power of these systems.
Most people considered it a very difficult (if not impossible) task to achieve the
same results using only the basic Macintosh system without the construction
kits. By using the construction kits, our subjects had a sense of accomplish-
ment because they were creating their own impressive version of something
that works, yet is not difficult to make.

Persons using the systems do programming, but the programming consists
of constructing artifacts in the domain and not of writing statements of a
general-purpose programming language. This kind of programming is com-
parable to writing a text using a document formatter such as TEX or
SCRIBE. It 1s a process of creating a specification that is interpreted by a
document processor and printer or by the run-time systems of the kits to direct
the rolling ball or to generate sound. Using a WYSIWYG editor, however, is
different and does not qualify as programming because the final product is
created directly and there is no step of interpretation. The created document
is virtually identical to hardcopy generated from it.

By evaluating the Pinball and Music Construction Kits as prototypical
examples against our objective to support human problem-domain commun-
ication, we have identified some shortcomings. The two systems do eliminate
programming errors below the domain level, but they do not assist the user in
constructing interesting and useful artifacts in the application domains. The



Figure 3. Screen images from the Pinball and Music Construction Kits.

" & File Edit PCSGoodies Help PURE-GEMME Co I AN

-

'] File Edit Window Play Notes Groups Measures Sounds
f_‘;-l.."_ e S e = Intchen SV

D]

r LN . ____________PienoKeyboard s
=1L I i i : |

218 ] [ | ' | ‘ i

a7} | | ]| R SRRRRRERR
FJL'!iILLJ'J J_L_J__Liil|ll.'xllij_.11|1
-‘-“-r:i nsert notes in score (@ Single Notes ) Chords { Advance | | insertRest ]

” e rop w TP

192



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 193

Pinball Construction Kit allows users to build sets in which balls get stuck in
certain corners and certain devices may not be reachable (Hutchins, Hollan,
& Norman, 1986). To assist users in constructing truly interesting objects,
more powerful design environments are needed.

For almost any domain, the set of domain abstractions is not clearly defined
or evolves over time; the number of objects at the component level of Figure
1 is not fixed. Therefore, there is a need to modify and extend the set of
existing abstractions. Here the Pinball and Music Construction Kits fall short.
The various EMACS editors and the ZOO system (Section 4.4), however,
are examples of systems that provide extension mechanisms (multiple com-
ponent levels).

For these construction kits, the physical metaphor consisting of spatial
organization and simple combination of parts (e.g., associating sound with a
bumper) has proved very powerful. If one considers the Pinball and Music
Construction Kits as success models, then one has to investigate whether the
physical metaphor can be generalized to other problem domains or if there are
other, equally intuitive metaphors.

4.2. WLISP: A Construction Kit for User Interfaces

Over the last several years, we have developed WLISP (Boecker, Fabian,
& Lemke, 1985; Fabian, 1986), an object-oriented construction kit for
human-computer communication, and a large number of associated tools and
intelligent support systems for exploiting this kit effectively (Figure 4). The
WLISP building blocks are organized as inheritance networks in an object-
oriented architecture based on the ObjTalk language (Rathke, 1986). This
architecture provides for components on multiple levels and facilitates the
extension of the set of available blocks. Much more so than in the domain of
pinball machine design, i1t was (and still is to some extent) unclear what the
right abstractions in user interface design are. Our experience indicates that
the development of the right abstractions (and their embedding into inherit-
ance hierarchies) is a difficult process that takes time and has to proceed in an
evolutionary fashion driven by the development of application systems that
are based on these abstractions. Currently, there are over 200 classes
representing abstractions about different kinds of windows such as super-
windows, paned windows, menus, icons, gauges, and so on. The inheritance
network 1s still changing, thus indicating our growing understanding about
the domain of two-dimensional interfaces.

The example of a graphical UNIX directory browser demonstrates the use
of object-oriented components of the WLISP construction kit. Figure 5 shows
a browser with four directories (andreas, Lisp, kbpe, tristan-kit) and two
plain files (tristan-kit.l, tools.l). The user can selectively display various
parts of the global file hierarchy and execute actions on the displayed files.



6!

Figure 4. The WLISP programming environment. A number of systems constructed using the WLISP
construction kit are shown. Among others, there is a file system directory display entitled boulder; it is
implemented as a subclass of the static menu class. The Wlisp RC Sheet at the bottom left is an editor
for system parameters (Fischer & Lemke, 1988); it is based on components for electronic forms. The
kaestle window on the right is a graphical editor for LISP data structures (Boecker et al., 1986).

ZONTRLSCALE>

IDENTIFIER: ME = <SOME.
HORT

iconnect 10 object (evaluated): toplavel
slot (npot evaluated): border-size

Cask me cluster mcove:)

(689 508>

[2: (ask na cluster move:)

(691 248>

[3. (ask ne cluster move:>

(693 823>

redo last |

3
KRESTLE-
KRESYLé-

inhar it
1line mss T - it
e o [ 1/1/T"Hor izontaT-Scale"]
p .
T .
L n 1 n
s i T/ ]/T"Horizontaliscale" |
L shae o .
p R : autoload
process-uindous: font: mini
* - 23
THE-SCREEN: background: patterns/thin Ob\ieCt b b
automatic break-uwindow? Ho
toplevel: fonr: mini
emnacs-uindou: font: mini
Type of directory editor: cd-dired-uwindow
[0o it and save contfiguration in “/. ulisprcil




CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 195

Figure 5. A hierarchical UNIX directory browser.

Figure 6 illustrates the component structure of the UNIX directory
browser. The files and directories are represented as instances of class
unix-tile-node and unix-directory-node, respectively. These two classes were
explicitly created for this application. They inherit from multiple superclasses,
which are parts of the WLISP kit. File nodes are based on the class
adaptive-text-region, which displays a string of text in a rectangular area
whose size is automatically adapted to the size of the text. Directory nodes use
adaptive-text-region-with-border instead, which in addition draws a border
around the text. Common to both classes are the superclasses node-mixin,
node-repr-mixin, and node-util-mixin. These superclasses provide the func-
tionality for links between nodes, selective display of parts of a graph, graph
editing, and such. The browser window itself (class unix-directory-window) is
a subclass of other predefined classes that provide functionality pertaining to
the directory graph as a whole (e.g., automatic layout planning).

By using WLISP, the “human-computer communication design question
is answered by providing appropriate building blocks that suggest good
designs. The object-oriented system architecture is highly flexible and
enhances the reusability of many building blocks. In creating new human-
computer communication capabilities, the designer may use existing objects
either directly or with minor modifications and can thereby rely on standard

»

and well-tested components.

For the large set of components of WLISP, the problems described in
Section 3.2 became prominent. Where the Pinball Construction Kit has in
the order of tens of components, a general purpose user interface kit easily
grows to many hundreds or thousands. For such a system, displaying a simple
palette with all components is no longer feasible.

4.3. FINANZ: A Financial Planning Kit

FINANZ (Rathke, 1986) is an advanced financial planning system ex-
tending the spreadsheet paradigm (see Figure 7). Spreadsheets have become



196 FISCHER AND LEMKE

Figure 6. The component structure of the UNIX directory browser.

constrained

selective display . ooronts
of parts of the

automatic layout graph Aor nodes,

planning highlighting

MODE-UT i
selective display GER DAPTIVE-TEXT
ARCHY- ~MIXIN
of parts of the MIXIN graph editing - REGION-WITH-
graph BORDER

JEXT-REGIO

T e e
car

success models for computer systems not because they are “smart” programs,
but because they let users operate in a systematic domain that is directly
relevant to their work. FINANZ differs from ordinary spreadsheet programs
in that the relationships among the form fields are represented by internal
knowledge structures that model the knowledge of the application domain.
The main characteristics of FINANZ are (for details, see Rathke, 1986):

Ty

1. In its basic configuration it can be used as a regular spreadsheet system.
From there it can be gradually augmented to a knowledge-based system
without losing its basic supportive style of interaction.

2. It is embedded in a window-based, direct manipulation environment
that makes it easy to specify operations among the form fields. Multiple
forms can be displayed and operated on at the same time. Operations
between form fields are selected from a menu.

3. The system can be augmented to incorporate knowledge about the
domain to which it is applied. Relationships among the form fields are
expressed by internal knowledge structures that can be modified to serve
the needs of the application.

4. The internal knowledge structures are used to generate context depen-
dent explanations on the fly. These explanations reflect the domain
specific knowledge as well as the current state of the dialogue.



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 197

Figure 7. The financial planning system FINANZ.

The capabilities of the system are based on ObjTalk (Rathke, 1986).
Concepts about the application domain, the user, and the dialogue are
represented as active objects that communicate by message passing. Their
behavior is described in classes that form a hierarchy among which knowledge
is inherited. By specifying dependencies among the form fields the user
generates internal knowledge structures that not only maintain the consis-
tency but are also used to provide context dependent help. The specification
of the dependency structures requires little programming knowledge because
it i1s done using direct manipulation techniques. Fields that take part in a new
relationship are pointed at with the mouse. FINANZ is a system building
effort to provide a substantial amount of flexibility and tailorability to
end-users without requiring that they become programming experts.

4.4. ZOO: Graphical Support to Construct New Elements for a
Construction Kit

In Figure 1, the redesign and reuse processes are based on the assumption
that the needed components are available in the construction kit. But what



198 FISCHER AND LEMKE

Figure 8. The knowledge editor ZOO.

200: computers

215 N
7

|
INVERSE

™
~  PROCRICTS

[CORPUTER| izl

stors—>[ T} e

happens if these elements do not exist? Obviously the user who is familiar with
the underlying programming language can go back and define the required
component at this level. But assuming that the user can do so misses the whole
point of our system building effort: to protect the user from the complexities
of the lower levels. What is needed here is a middle ground between powerful
but specialized construction kits and general purpose low-level programming
languages.

One solution to avoid this problem is that the construction kit designer
provides a complete set of building blocks. But for ill-structured problem
domains where no formal description of the problem space exists, this option
remains wishful thinking. Another way to approach the problem is to provide
high-level interaction techniques and metasystems that support the construc-
tion of new building blocks without the necessity to descent to low levels.

ZOO (Riekert, 1986), implemented in WLISP and ObjTalk, provides
graphical support (Figure 8) for constructing new domain-dependent abstrac-
tions without being forced to go down to the ObjTalk or even the LISP level
(a possibility that we indicated was missing from the Pinball and Music
Construction Kits). It is a menu-driven system in which design support is
given through the organization of menus.

The graphic representation provides two kinds of graphic primitives: icons
and labeled arrows. Icons are used to represent objects, and the graphic
symbol visualizes the class membership of the object. Knowledge can be




CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 199

modeled as a network of icons as nodes and labeled arrows as links. Figure 8
displays the knowledge that the class of computers and the class of CPUs are
both products, products are produced by companies, and compantes produce
products (the inverse relationship that can be generated automatically). ZOQO
can be used both as an instrument for inspecting the contents of a knowledge
base and as a tool for modifying and augmenting a knowledge base by direct
manipulation of sensitive screen objects. When the user creates graphical
objects on the screen, ZOO internally generates descriptions of ObjTalk
objects. From the perspective of knowledge-based systems, it is a tool to
address the problem of knowledge acquisition.

5. DESIGN ENVIRONMENTS

Powerful construction kits are complex systems containing many different
components that can be combined in many ways. In the domain of user
interface design, WLISP provides a large number of abstractions. They are a
prerequisite for efficient user interface design. The existence of good user
interface components, however, does not guarantee that they are used at the
right place and in the right way. Tools are needed to aid in making design
decisions, carry out low-level detalls, analyze or criticize intermediate ver-
sions, and visualize their structure. These tools incorporate knowledge that
goes beyond what went into the design of individual components. Specifically,
they have additional domain knowledge to aid in the design of reasonable
artifacts. Design environments are steps in this direction.

Currently, the use of WLISP (Section 4.2) requires considerable expertise
on the implementation level (i.e., How do 1 achieve a desired system
behavior?) as well as on the domain level (i.e., Which user interface technique
should be used?). This expertise has to be acquired through an extended
learning and experimentation period. To reduce this delay, we have con-
structed a number of design environments to support the modification and
construction of new systems from sets of predefined components. In contrast
to simple software construction kits (e.g., the Pinball and Music Construction
Kits described previously), which present the designer with the available parts
and operations for putting them together and allow to run the resulting
system, design environments give additional support. They incorporate
knowledge about which components fit together and how they do so, and they
may serve as a critic that recognizes errors or inefficient or useless structures.
They are able to deal with multiple representations of the design including
drafts, program code, and graphical representations. Design environments
constrain the problem space, leaving beginners with fewer choices by
providing defaults and grouping the available functions.

Design environments considerably reduce the amount of knowledge a
designer has to acquire before useful work can be done. This is especially



200 FISCHER AND LEMKE

important if the design environment contains many special purpose compo-
nents and if each of them is used rarely, even by a full-time designer.

The following two sections describe two design environments for specific
areas of the WLISP construction kit. WIDES is a design environment for
basic characteristics of window types, and TRIKIT is a design environment
for graph display and edit tools.

5.1. WIDES: A Window Design Environment

Because almost all modern user interfaces are window-based, one of the
major tasks of user interface design is the definition of a suitable combination
of window types. Many current window systems and user interface kits offer
a wide variety of components such as text, graphic, and network windows and
editors, and controls like menus and push buttons. The goals of WIDES are:
(a) to provide a level of abstraction above the object-oriented implementation
of these components, (b) to reduce the knowledge required to use the
components, (¢} to make their use more effective by preventing errors and
suggesting the right components to use, and (d) to support the acquisition of
expertise in using these tools. WIDES provides a safe learning environment in
which no fatal errors are possible and in which enough information is
provided in each situation to ensure that there is always a way to proceed. The
design environment allows its users to create specific window types for their
applications.

In the following sections, we give an example of how WIDES employs
techniques like menu selection and an adaptive, dynamic suggestion list to
greatly simplify window design. Merits and shortcomings of WIDES are
discussed.

Description of WIDES. The initial state of the system is shown in Figure
9. It is a window with four panes: (a) a code pane that displays the current
definition of the window type, (b) a menu of suggestions for enhancements of
the window type, (c) a history list, and (d) a menu of general operations.

Selection of the name-it: entry of the suggestions menu makes the system
ask for a name for the window type to be built. Selection of the make-
an-instance: item of the operations menu creates a window that is an instance
of the type and that corresponds to the current definition in the code pane.
This definition describes a very basic type of window (the white rectangle in
Figure 10); there is no border, no title bar yet; just a rectangular white area.
Nevertheless, this window has a set of properties that are inherited from its
superclass basic-window. It reacts on mouse clicks by showing the window-
menu, a menu with operations like move and reshape.

Selection of add-title: and add-border: produces the state of Figure 11. Two



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 201

Figure 9. Initial state of WIDES.

Ow-Class rence:
{superc ,basic-window))

operat ilons

rake-an-instance:
undo:
add-buttons: save-on-file:
add-title:
add-border :
assoclate-icon:

history

Figure 10. WIDES: An instance of the current window definition has been
created.

Window Design Kit 5
Code

ask Window-Class renew: Lesi-wimniow
(superc ,basic-window))

simplify: make-an-instance:
add-buttons: undo:
add-title: save-on-file:

add-border

associate-icon: 1. named: test-windou

superclasses, border-mixin and title-mixin, have been added to the definition;
a new Instance shows a default title, some__test-window, and a default
border size of two pixels.

The suggestions menu changes its contents. If, for instance, add-title: has
been executed, it 1s replaced by specify-title, which would not have been
meaningful before having a title. The system, in giving its suggestions,
adheres basically to a tree-like regime. Once a key decision like having a title
has been made, its menu item is replaced by suggestions for more detailed
descriptions. This feature provides the user with some guidance about
reasonable next steps, eliminates illegal operations, and reduces the inform-
ation overload of too many options.

‘The next figure (Figure 12) shows a modification that requires user mput.
Selection of specify-title: causes a dialogue window to pop up, which prompts
the user for an expression to be used as the tide of the window. Figure 13
shows that the input has been added as a default for the title slot.




202 FISCHER AND LEMKE

Figure 11. WIDES: Title and border have been added to the window type.

Window Design kit

(ask window-class renew: testl-window
(superc ,border-mixin ,title-sixin ,basic-window))

suggest ions operal fons

spec rder-size: make-an-instance:
specify-title: undo:
simplify: save-on-file:
add-buttons:

associate-icon:

Figure 12. WIDES: Specification of the title.

Window Design Kit
Code

ask window-class renew: Lest-window CSOmE_LEeSL-W1naoW
(superc ,border-mixin ,title-mixin ,basic-window)) :

suguest tons operat ions
specify-border-size:

specify-title:
simplify: save-on-file:
add-buttons: history
associate-1con: 1. named: text-uindou

2. titla added
3. bordar edded

a-tialogue-window
detau or stot title other t

an the pname: (evaluated) "“Messages'

If specific inputs are required, we cannot expect the user to know what the
legal inputs are. Therefore, as shown in Figure 13 in which the user associates
the window with an icon, a menu of alternatives is displayed (see the pop-up
menu at the bottom left). Figure 14 shows a window and an icon of the
selected type (document-icon).

An even more complex modification is demonstrated in Figure 15.
Windows can be associated with buttons such as those in the upper-right
corner of the WIDES window. Clicking a button with the mouse causes a
message to be sent to the window. Selecting add-buttons: adds the default set
of the two right-most buttons (for Kill and refresh) in the ttle bar of the
messages window. Additional buttons can be defined by selecting add-
more-buttons-to-title-bar:. This command causes two menus to pop up for
selecting a button icon and an associated message. The selection of the



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 203

Figure 13. WIDES: Association of a different icon to the window.

Window Design Kit

ow-class renew: test-window
(descr (title (default "Messages™)))
(superc ,window-icon-mixin ,simple- wlm!ow‘.')

suggest fons operat ions

assoc make-an-instance:
specify-border-size: undo:
simplify: save-on-file:
add-buttons :

1. named: rtest-uwindou
2. title added
3. border added
4. default value of titie specified

S. detsult icon Typa sssociated

--windou bound icon
program-1icon
form-icon
document-icon

Figure 14. WIDES: The window and its associated icon.

Window Design Kit

iesi-uinﬁo&

(ask window-class renew:
(descr (partner-icon
(default (ask document-icon instantiate: {(view-of = ,5elf))))
(title (default "Messages")))
on-aixin  simple-window))

operal ions

specify-border-size:
simplify: save~ on—f‘ﬂe-
add-buttons: history

1. name - test-uingou
2 title sdoed
3. border addaxd
4. detault value of Titlxe spxcified
5. cetault {con type associated
6. icon typx changed To: document-icen

J AN
NESSASES

message 1s shown in the figure. The new button in the messages window
depicts a coffin for the function of burying or hiding the window. Both menus
have, in addition to selecting one of the listed choices, the option of choosing
an item not listed in the menu by name.

The save-on-file: operation may be used to save the final definition for later
use.



204 FISCHER AND LEMKE

Figure 15. WIDES: Adding a button to the title bar.

Window Design KiL
Code
(ask window-class renew: test-window ? i
(methods R
(default-titie-buttons: =)=) ;
(cons '(buttons/bury bury:)
Ji(default-title-buttons:))))

{(descr {partner-icon ;
(default {ask documenti-icon instantiste: (view-of = ,sﬂf!)‘i)-
(1itle (defaull “Messages™))) :

(supcrc .tiﬂc bulton-lixln uindou icon-lmin s!_n_;_:_'lg_-t_o_i_rldqy_))

=
\Ugﬂlﬂtluﬂk operat lons

add- butluns lo-rlghl-nrgln-

associate-other-icon:

specify-border-size: history

simplify: 1 namad rest-uindou

[ 4 TiTis added

select a Hessayge . 3 l:.,rd-r azten

4 dataulr value of tTivie specitilea

essage = % astauly lcon Typs sEsaciated

& |—.r q_‘;\' changed Ta documant- icon
o Tons added e Titla bar

save-on- Hle.

bgupload:
bury:
—=l|copysmove :
Kitl:

ve-out :
ove:

newshape:
pAanAAN

Drscussion.  In order to construct a new window type, users no longer
need to know what building blocks (superclasses: e.g., title-mixin) exist, what
their names are, and how they are applied, or that new superclasses have to
be added to the superc description of a class. Also, WIDES has knowledge
about the correct order of the superclasses, what types of icons are available,
and the way an icon is associated with a window. Not having to directly write
the code as displayed in the code pane is a significant advantage for the user.

But, in addition to supporting the translation of a specification into working
code (as is done by many other code-generating systems), WIDES also
supports the specification process itself. An unexperienced user who is
discriminately presented with the large number of design decisions that can be
made for the design of a window 1s very likely to fail to produce a reasonable
design. An important capability of experts is knowing the critical parts, those
parts that influence most other parts.

In WIDES, the task of window design is decomposed into a hierarchy of
semantically meaningful subtasks. The critical decisions form the highest
levels, and the dependent tasks can be found at the lower levels and the leaves.
The suggestions menu is dynamically updated according to this model of
window design. Suggestions, such as adding a button to the title bar, are given
when appropriate within the overall design process. On the other hand, the



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 205

dialog is not completely system-driven and the user can direct the design
process towards desired aspects of the design.

WIDES does not support direct editing of the generated code in the code
pane. Analyzing arbitrary program code is generally hard because the
descriptive power of general program code is greater than the one of WIDES.
WIDES may not be able to recognize features of the code and accordingly
adapt its behavior.

User interface techniques like prompting and menus make it easy to
experiment with window construction. The system makes sure that errors
below the domain level are impossible — that the system 1s internally consistent
and runnable. Because the system cannot have knowledge about arbitrary
uses of windows, it cannot prevent the designer from specifying a wrong
window title such as a title that would be confusing to read.

Because the system can guide the window designer only to a certain level
(though this level is higher than with construction kits), it supports a
prototyping design style. The undo: operation makes it easy to step back and
retract a decision in order to proceed differently. So far, the UNDQ feature
has not been implemented, and the question is whether a simple stack-
oriented scheme or a selective UNDO of operations further back in the history
can be implemented. To support the full use of an UNDO, the system needs
a network to take care of dependencies; for example, removing the title bars
of a window implies that the buttons also have to be removed.

The current implementation makes it difficult for a novice to see which
modifications of the definition were caused by an action. Highlighting the
modifications caused by the last action is a possibility. It should also be
possible to point at a piece of the code and obtain an explanation of its
function as well as the user action that created it. How can these selections be
done? What if the user selects a piece of code that does not correspond clearly
to one feature?

Informal experiments with novices have shown that the class-instance
abstraction gap is a problem. The code window shows the window class,
whereas the windows created by make-an-instance: are its instances. A
modification of the class (e.g., a modification of a default) does not automat-
ically affect its instances. Properties cannot be specified as immediate values
but must be specified as defaults inherited by instances. If the user,
experimenting with an instance of the window type, changes the local value of
a parameter (e.g., the title) so that it no longer corresponds to the default,
then a change of the default in the class has no consequences for existing
instances.

The system in its current form is almost too small to be practical. The
created window types do not have much functionality and represent only a
framework that has to be augmented by more ObjTalk code. Still, users
(students in our department) found it exciting that, with some menu



206 FISCHER AND LEMKE

Figure 16. Usage of TRIKIT.

application-specific
graph editor

application _ '

programmer “\knows

uses
end user ———S=

application Tristanl

selections, real code could be produced. The system also achieves the goal of
being a learning tool. It provides a good first impression of the concepts and
structure of the domain of constructing window types.

5.2. TRIKIT: An Environment for the Design of
Application-Specific Graph Editors

A very common user interface problem is the display and modification of
hierarchical and network structures. Application systems that deal with rule
dependency graphs, concepts of a domain of expertise (for explanation
purposes), goal trees, or inheritance hierarchies in object-oriented languages
are examples in which this problem occurs.

Our response to this problem was to build a design environment for graph
display and edit tools. Figure 16 illustrates its usage. The application
programmer, who is an expert for the application system but not for building
user interfaces, sets and adjusts parameters of a generic tool, TRISTAN, and
specifies the links between it and the application. The result of the design
process is a new, application-specific tool for displaying and editing a network
data structure.

The system has been used to build the following applications: (a) ObjTalk
inheritance hierarchy editor, (b)y UNIX directory browser (see Figure 17), (c)
subwindow hierarchy display, (d} a project team hierarchy, and (e} EMYCIN
rule dependency display.

Application Domain of TRIKIT. Many computer programs use data
structures that can be viewed as graphs. The nodes are data items that are
interconnected by lines representing a semantic relationship between them. In
this section, we use the example of a hierarchical directory browser, which



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 207

Figure 17. An example application of TRIKIT.

~Tools . 1

may be displayed as in Figure 17 (repeated from Figure 5). Here the nodes are
directories and files that are the leaf nodes. The lines represent the member-
ship relation between files and directories, which can also be members of other
directories. Each of the nodes is a data structure with properties like name,
creation time, owner, protection, and size. There are operations to retrieve
pieces of the graph (e.g., list-directory) and to create and delete nodes and
lines.

Also, the user must be able to refer to particular nodes of the structure,
either by a name relative to some current node, by an absolute path name
specifying the way from a root of the hierarchy, or by some other description.
Conversely, a screen representation must be defined for the nodes. This
representation might be just the name of the node or the name plus some of
the properties such as owner or size. If there are multiple types of nodes,
different representations may be desired (e.g., directories and files in Figure

17).

The Generic Graph Display/Editor. TRIKIT is based on TRISTAN
(Nieper, 1985), a facility of WLISP for building direct manipulation display
and editing systems for graph structures. TRISTAN supports the following
operations: (a) selective display of parts of the graph including a node
specified by name, immediate children or parents of a node, and a whole
subhierarchy of a node (possibly to a certain depth); (b) automatic layout
planning; (¢) manual layout modification by constrained moving of nodes; (d)
highlighting of nodes; and (e) editing the graph structure by creating and
removing links and nodes. TRISTAN is independent of the particular node
representation. It assumes only that the representation is a subclass of a
certain general WLISP window class.

Description of TRIKIT. TRIKIT presents itsell to the user as an
interaction sheet as shown in Figure 18 (top window). In this window, the user
specifies the interface to the application, chooses a graphical representation for
the nodes, and controls the creation of the user interface.



208

Figure 18. Initial state of the main form and an inheritance hierarchy window

generated from it.

teistan-design-Kit-¢

Name of relation:

An item Is called a:
Name of child relation:
Name of parent relation:

FISCHER AND LEMKE

directory~hierarchy.:
directory: "
subdirectory.
parent-directory.:.

Default layout directlon: horizontal
: Evaluate Item name? No
Compare items by: equal oL

Pname selector for items: general-get-pname
Create an unlinked item with name "name™

No

[Specity size uith rubber box!|

The window has a default size?

Width: 500---0 Height: 400

Types of ltems:

OIRECTORY

[Save Sysven on File:| tristan-system.|

[Create System and Instantiate!] |Create Systanl|

1 55

<<

> <

The following types of fields may be found in the interaction sheet:

indicated by their dotted background; for entry
and modification of names, numbers, program
code, and so on; a mouse click on the field moves
the cursor into it and allows editing of its contents.
if the number of possible values of a field is very
small, this type of field is being used; mouse clicks
circle through the set of values.

edit fields

choice fields



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 209

Figure 19. Initial state of the node form.

example item

Name of item type: example ftem- .-/l
Expression to check whether "item® Is of this type:

Can the parents for a given Item be computed? Yes
Compute the list of parents for "item™:
(28K Litem SUP@rC) - - vl ol L
Is the order of the parents significant? No
Can the children for a given item be computed? Yes
Compute the list of children for "item®:

(ask item subclagseg)- il L

Is the order of the children significant? No
Item representation: string-ragion
Label =

(ask ,Jtem pname)- -l L
items =

(list (@ask ,ltem pRame)) . -l il
Its font: mini

Its left button down actlon:

menu fields for a larger number of choices; a mouse click
produces a pop-up menu.

push buttons low and long rectangles with a black frame; a
mouse click activates their associated action.

subform icons  large squares; a mouse chck produces a subform.

The initial form is filled in with an example application—an ObjTalk
inheritance hierarchy display system (Figure 18, bottom window). This allows
users to familiarize themselves with TRIKIT, to modify parameters, and to
learn their significance.

Clicking the square representing the example item subform produces the
form of Figure 19. The main form is associated with the graph in general, but
the subforms describe the properties of its nodes.

Let us examine the use of the system through the example of building a
directory editor like the one shown in Figure 17. A directory editor is a tool
for viewing a hierarchical file system and for doing operations on it such as
creating or removing a directory, moving a file into another directory, and
renaming files.

In Figure 20 the first four fields have been filled in to reflect the terms of the
file system domain. They establish a common vocabulary for the user and the



Figure 20. Main form modified to describe a directory editor.

tristan-des ign-Kit-2

Name of relatlon: inheritance~hlerarchy::
An item Is called a: clagsg:; il
Name of child relation: subclass: -
Name of parent relation: superclass
Defauilt fayout direction: horizontal
Evaluate item name? Yes
Compare items by:
Pname selector for items: general-get-pname.;.:":
Create an uniinked item with name "name™

The window has a default size? No
Width: 500- - Helight: 400 Pecify size with rubber boxl|
Types of items: Show Exanplas!
LN EXANFLE
r ITEN
Bsve Susten on File ] tristan-system.- -l
Ereate Systen and Instentiate!|] Kreate Systen!]
] 55 5 2 R

{some_inheritance-hierarchy-window)

macs-uindoy
[process-u indouj< shell-uindou

roque~-uindouy

210



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 211

Figure 21. Node form modified to describe a directory node.

Name of item type: directory- -
Expression to check whether ‘ltem” is of this type:

Can the parents for a given item be computed? Yes
Compute the list of parents for “item*":

(demparents ftemy) il
Is the order of the parents significant? No

Can the children for a glven Item be computed? Yes

Compute the ilst of children for *item*

(dechildren Item) il il il T

s the order of the chiidren significant? No
Item representation: string-region
Label =
(depname Jtem). il il
Items ~
Its font: mini

Its left button down actlon:

systern. They describe the narmnes of the relation to be displayed, the names of
the items that are elements of the relation, and those of the links to
superordinate and subordinate nodes in the relation. The Evaluate item
name? field says that a user-entered name of a file or directory represents
itself as opposed to being the name of a variable holding the actual item. Equal
is used as a comparison function for directory names. No other changes have
been made to this form.

The example item form has been renamed (Figure 21), and the two most
important fields have been adapted to the new application: The de:parents
function computes the list of superdirectories and the de:children function
computes the subdirectories, that is, the contents of the directory. The
de:pname function in the label field computes a “print name,” or a label, for
the items; that is, it strips off the leading pathname component and leaves the
file name, which 1s unique only locally within its directory.

Functions with a “de:” prefix (e.g., de:parents, de:children, de:pname)
belong to the application domain. They are application-specific and must be
supplied by the application programmer.

The modifications mentioned previously are sufficient to produce an initial
working version of the directory editor. A click on the “Create System and
Instantiate!” push button compiles the forms into a TRISTAN system. Part



212 FISCHER AND LEMKE

Figure 22. An example directory hierarchy window.

{some_directory-hierarchy=-window>»

- ISP

[sndreasl——|kbre}l——[tristan-k itk

of it is the directory-hierarchy window type, which is being instantiated to
produce the window of Figure 22. (The “Create System” push button just
recompiles the forms, but does not create any new instances.)

Figure 23 shows on the left the main menu of directory hierarchy windows.
In addition to generic window operations (top items up to scroll and the two
bottom items), there are three application specific operations that have been
added automatically:

replan-layout supplied by the TRISTAN system: auto-
matically rearranges the layout of the
graph using a general planning algo-
rithm;

display-subhierarchy ... also supplied by the TRISTAN system:
displays all the recursively subordinate
nodes of a given node;

display-directory . . . generated by TRIKIT: displays a given
directory. This 1s a renamed version of
the generic display-item . . . operation of
TRISTAN.

The menu to the right of Figure 23 is associated with individual directory
nodes. Again, some of the operations, like move, are general. Others, like
kill-subhierarchy, are supplied by TRISTAN, and the display operations are
generated by TRIKIT.

Currently the directory hierarchy editor has a number of shortcomings. If
the system is to be a true editor, it should be possible to create new nodes and
to alter the graph structure. For this purpose, the meaning of creating a child
and of relinking a node from one parent to another have been specified in the
main form using the application functions de:create-child and de:move
(Figure 24).

Also, there are actually two types of nodes in the application: directories



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 213

Figure 23. The main menus of the directory hierarchy window and the directory
node.

directory-hierarchy-window-menu
copydmove directory-menu
move mOVE
reshape move-horiz
newshape move-vert
g&l; adjust-x
tobottom adjust-y
totop kill-subhierarchy
refresh display-subhierarchy
. put tohot tom
find class def totop
properties refresh
clear flip
scroll idisplay-one-parent-directory
. ]rep]an—]ayout display-all-parent-directorysl
display-subhierarchy. .. display-one-subdirectory
d]sp!ay—dIrectory... display-all-subdirectorys
window-snapshot
shrink-to-icon

and files. The user creates a new subform (Copy of Directory) by cloning the
existing one. Now the system must be told how to distinguish between the two
node types. Consider Figure 25, in which the second field specifies the
necessary predicate expression (de:directoryp). There has also been an action
associated with the node: Clicking the node will make the directory it is
representing the current working directory.

This action is not appropriate for plain files (Figure 26). Instead, an action
to load the file into an editor has been specified. Because the nodes are
semantically different, it would be nice to display them differently. The Item
representation field has been set to label-region, which has no frame. A
window created according to these modifications now looks exactly like Figure
17.

If this version of the system is not yet satisfactory, the user will have to work
on the system at the implementation level of ObjTalk and LISP. The Save
System on File operation in the main form creates a file containing the code
of the directory editor, which may then be further modified.

Discussion.  With TRIKIT the user can construct useful systems without
knowing the details of the selected building blocks. This design process
happens on the level of abstract properties of graphs (e.g., horizontal vs.
vertical layout of the graph), not on the implementation level (ObjTalk
classes). At the interface between graph editor and application, code-level
specifications have to be used such as the code that computes the list of parents
for a file item ((de:parents item), see Figure 21). This form of specification
does not pertain to the graph as such, but is required to be independent of the
internal representation of the graph in the application system.



214 FISCHER AND LEMKE

Figure 24. Extended description of the directory hierarchy window.

tristan-design-kit-2

Name of relatlon: directory-hlerarchy:

An item Ig called a: directory: ;0 :

Name of child relation: subdirectory.::

Name of parent relation: parent-directory. ...
N Default layout direction: horizontal

Evaluate Item name?
Comparse items by:
Pname selector for items:

The window has a default size? Yes
Width: 466--- Helght: 148 Brecify size uith rubber boxl]
Types of Items:
iy DIRECTORY COPY OF
DIRECTORY
ol
[Eave System on File:] trIstan—system.l-f-?ﬁ-i-li-i-i-j-}i

[Create System and Instantisate!l [Create Sustenm!|

| 5> > ¢ R

A critical design decision was whether to make users explicitly aware of the
distinction between an itern in his or her relation and the node object
representing it as a labeled rectangle in the display. Initially we made this
distinction. But because we did not find clear and intuitive terms for the
different concepts and because there was no need to be so specific, we dropped
this distinction from the model of the design process that is presented to the
user. This is an example of the abstraction from implementation details that
we hope to achieve with design environments like TRIKIT.

Although the design space of TRIKIT 1s limited by the available options in
the forms, it is possible to use this system to create a first version, which may



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 215

Figure 25. The directory node form.

Name of Item type: directory- i i

Expression to check whether “ltem” is of this type:

(derdirectoryp ftem)- -l T
Can the parents for a given Item be computed? Yes
Compute the list of parents for “ltem™:

(derparents item) -l i T T T
Is the order of the parents significant? No
Can the chlidren for a given Item be computed? Yes
Compute the list of children for "item”

(deschildren ftem) - i T T

ls the order of the children significant? No
Item representation: string-reglon
Label =
(detpriame Qtem) - L T T T T
ltems =
Its font: minl

its teft button down action:

(Chdir (Car Bt@m) Y-l el e L e

be refined on a lower level. Additional knowledge about graph data structures
can further enhance the power of the TRIKIT design environment. Given an
example of a graph, or a description of the data structure such as a type
definition, the system could automatically produce an initial display design.

5.3. Comparison

One major goal in the development of the TRIKIT system was to overcome
the limitation of the WIDES suggestions menu as being the only input mode.
The imperative interaction style provided by the suggestions menu of WIDES
is replaced in TRIKIT with a declarative or descriptive mode.

In WIDES it should be possible to disregard the suggestions and explore
other parts of the design that the system does not currently consider
important. This should be an additional alternative for the expert, and the
snggestion list should be kept because it makes interaction with WIDES
straightforward for novices. TRIKIT, on the other hand, lacks this kind of
guidance, and users are in danger of being overwhelmed with the many
options, not knowing which of them will be important for getting done a first
version of an application.



216 FISCHER AND LEMKE

Figure 26. The plain file node form.

Can the parents for a given item be computed? Yes
Compute the list of parents for "item™
(AEIPAr@NES JOM) -7 tor o st ot

Is the order of the parents significant? No
Can the children for a glven item be computed? Yes
Compute the list of chiidren for “item™:
T T T
Is the order of the children significant? No
item representation: label-region
Label =
(detpname Item). il
ltems =
Its font: mini

Its left button down action:

With WIDES the users are aware that code is being generated and they can
learn the functions of the different pieces of code. This makes it easy to make
enhancements on the implementation level. Users are incrementally writing
code (creating a definition) by selecting high-level operations from a dynamic
menu. For TRIKIT there is no need to show the code because TRIKIT is
itself powerful enough to generate complete, working systems. Code is
generated internally from the specification represented by the filled in forms.

Both systems contain knowledge about their respective domains. They
provide a subgoal decomposition that identifies subproblems of the design
space in which the user wants to solve problems (Figure 27). The design
environments use the partial solutions to build up a complete design. In order
to achieve that components work together properly, they must be ordered
correctly (e.g., the titlemixin must always precede the border-mixin).
Existing objects must be notified when new objects are created (e.g., the
create-child operation notifles its superordinate node). This knowledge is
represented in the procedures of the design environments that generate the
code. More explicit knowledge representations are required to make the
design environments themselves extensible.



Figure 27. Subgoal trees for WIDES and TRIKIT.

add buttons

add borderH specify border SizeJ

add UEH specify title (
\

{associate icon Hassociate other icon [

add buttons to title bar \

\( add buttons to right margin}

hame of relation ‘

terminology name of items ‘

name of children l

test function

pname selector function ‘

itemn creator function J

default size
[ sesi |

window design

i)

height

4 name

/

\.\ / test function

W itemn types%—{ compite parentﬂ
NN
\{ corpute children

217



218 FISCHER AND LEMKE

6. ASSESSMENT OF OUR EFFORTS

The human-computer interaction subsystem is crucial to the usability and
success of most computer systems. New prescriptive goals (e.g., convivial and
symbiotic systems), new methodologies (¢.g., differential programming, use
of kits), and new tools (e.g., intelligent support systems) are needed to make
systems usable and useful.

Some of the important trade-offs and design problems in this area of
research are:

1. The usability barrier: It takes a major effort and large training costs to
learn a complex system that offers extensive functionality.

2. The construction kit versus complete system decision: Whether to design
the system completely in advance or to offer a metasystem enabling
end-users to alter it according to their needs.

3. Distribution of control: Does the system or the user make decisions? Can
control shift back and forth between the agents involved so that
cooperative problem-solving is possible?

The advantages of construction and design environments are:

1. They provide a powerful environment for rapid prototyping of a large
class of systems.

2. They increase the control of the user over systems without requiring the
user to learn many details.

3. The large class of existing building blocks “guarantees” to some extent
the construction of high-quality systems with relatively low construction
costs; systems can be created more quickly because the designer can rely
on well-developed parts and take advantage of stable subassemblies
(e.g., exploiting the rich inheritance network in the WLISP system).

4. Associated support tools make it easier to learn and work with complex

systems.

Specific construction and design environments are used by different classes
of users for a variety of different tasks. Our experience has shown that the use
of design environments is not restricted to the inexperienced user: If the
functionality offered by the design environment is sufficient, then there is no
reason why the expert should not use it.

It is misleading to assume that knowing how to use a construction and
design environment will come for free and will not require any learning
process at all. Learning processes are required at different levels in using the
kits: Users have to operate on different descriptive levels, they need to
understand the domain concepts used in the kits, and they must know how to



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 219

use a specific kit for their purposes and goals. With design environments,
learning processes are controlled and better restricted to that what is really
needed.

It remains an open question whether we can succeed in considerably
extending the functionality of the design environments to cover a substantial
part of their domains while retaining or even improving the simplicity of use.
WIDES is currently easy to use, but we do not know whether we will be able
to retain this property when the system covers not only simple kinds of
windows but also other objects like menus, 1cons, and gauges.

The domain of user interface design does not have a well-established
terminology. Terms vary from system to system and from manufacturer to
manufacturer. In addition, user interfaces are often designed or redesigned by
nonspecialists. For these reasons, it has been difficult to find a vocabulary that
enables the user to understand the descriptions for the required inputs. The
meaning of the label Pname selector for items (Figure 24) 1s not obvious to
someone who does not know this technical term of the menu system. To
remedy shortcomings like this, we have to:

1. find a better conceptualization of the design task and use it to restructure
the forms to make them easier to understand;

2. select prototypical examples more carefully and convey a better feeling
of what needs to be done by taking task structures and the user’s
knowledge into account;

3. allow alternate modes of specification; explore more direct forms of
manipulation of prototypes;

4. prompt for information at the time it is needed. Information about what
it means to create a link between two nodes should be asked for only
when this action is being executed for the first time.

Currently, the interaction with the design environments is mostly a user’s
monologue. The system does not act on its own initiative on user inputs. Our
goal is to make dialogues possible in which the user and the system take
actions 1n turn and correct each other’s errors and false assumptions. Small
examples of this kind of interaction can be found in the current implementa-
tions: Default values of fields represent the design environment’s initial
assumptions of useful values; when the user creates a new type of node in
TRIKIT, the system copies its properties from an existing node because the
new node is probably more like the existing node than like the original
defaults.

Consistency becomes a problem when systems can be modified on different
descriptive levels. If design using a kit can be mapped into simple operations
such as setting parameters of predefined building blocks on the code level,
consistency can easily be achieved (e.g., specifying the size of a window on the



220 FISCHER AND LEMKE

code level by giving two constants for width and height). If, however, a part
of a definition (e.g., the list of superclasses) is derived from multiple
specifications of the user (e.g., whether a title bar or an icon is desired) the
design environment cannot, in general, decide how to reconcile the interactive
specifications and the code-level specifications. A program analysis compo-
nent could make it possible for the high-level (form) description and the
program code to coexist and for the user to use both languages alternatively
(for a further discussion of this problem, see Waters, 1986).

Other issues arising from the conceptual distance between a description and
what it describes need to be further explored. With WIDES, what happens to
an existing object when its description has been changed? Should it be
updated? Updating is not always desirable or possible because immediate
updates may be computationally too expensive, the screen display may change
to such a degree that the user loses track of where things are, or changes of
descriptions of actions executed at the time an object is created have no effect
on already existing objects (e.g., initial size of a window).

We believe that human problem-domain communication is the most
promising way of overcoming these problems. Construction kits with large
numbers of generally useful building blocks provide a good basis for making
computer more usable; but without the additional assistance of design
environments, users are lost in the wealth of information and possibilities.

Acknowledgments. We thank our former colleagues from the INFORM project at
the University of Stuttgart: Franz Fabian who has created the foundations of WLISP,
and Wolf-Fritz Riekert who developed ZOO, as well as their current colleagues at the
University of Colorado, Boulder, including Helga Nieper-Lemke who developed
TRISTAN, and Christian Rathke who developed FINANZ. Without their contribu-
tions, the described research effort would not have been possible.

Support. The research was supported by Grant No. DCR-8420944 from the
National Science Foundation, Grant No. N00014-85-K-0842 from the Office of Naval
Research, and Grant No. MDA903-86-C0143 from the Army Research Institute.

REFERENCES

Alexander, C. (1964). The synthesis of form. Harvard University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., &
Angel, S. (1977). A pattern language: Towns, buildings, construction. New York: Oxford
University Press.

Bates, M., & Bobrow, R. J. (1984). Natural language interfaces: What's here, what's
coming, and who needs it. In W. Reitman (Ed.), Artificial intelligence applications for
business (pp. 179-194). Norwood, NJ: Ablex.

Boecker, H.-D., Fabian, F., Jr., & Lemke, A. C. (1985). WLisp: A window based
programming environment for FranzLisp. Proceedings of the First Pan Pacific Computer
Conference, 580-595. Melbourne, Australia: Australian Computer Society.

Boecker, H.-D., Fischer, G., & Nieper, H. (1986). The enhancement of under-



CONSTRUCTION KITS AND DESIGN ENVIRONMENTS 221

standing through visual representations. Proceedings of the CHI 86 Conference on Human
Factors in Computing Systems, 44~50. New York: ACM.

Bolt, R. A. (1984). The human interface. Belmont, CA: Lifetime Learning Publications.

Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-based expert systems: The MYCIN
experiments of the Stanford Heuristic Programming Project. Reading, MA: Addison-
Wesley.

Chambers, A. B., & Nagel, D. C. (1985). Pilots of the future: Human or computer?
Communications of the ACM, 28, 1187-1199.

Draper, S. W. (1984). The nature of expertise in UNIX. Proceedings of INTERACT 84,
IFIP Conference on Human—Computer Interaction, 182-186. Amsterdam: Elsevier Sci-
ence Publishers.

Fabian, F. (1986). Fenster- und Menuesysteme in der MCK [Window and menu
systems in human computer communication]. In G. Fischer & R. Gunzenhaeuser
(Eds.), Methoden und Werkzeuge zur Gestaltung benutzergerechter Computersysteme {Methods and
tools for the design of user-oriented computer systems] (pp. 101-119). Berlin & New York:
Walter de Gruyter.

Fischer, G. (1983). Symbiotic, knowledge-based computer support systems.
Automatica, 19, 627-637.

Fischer, G. (1987a). Cognitive view of reuse and redesign. IEEE Software, Special Issue
on Reusability, 4(4), 60-72.

Fischer, G. (1987b). A critic for LISP. Proceedings of the 10th International Joint Conference
on Artificial Intelligence (Milan, Italy), 177-184. Los Altos, CA: Kaufmann.

Fischer, G., & Lemke, A. C. (1988). Constrained design processes: Steps towards
convivial computing. In R. Guindon (Ed.), Cognitive science and its application for
human—computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Fischer, G., Lemke, A. C., & Rathke, C. (1987). From design to redesign. Proceedings
of the 9th International Conference on Software Engineering, 369-376. Washington, DC:
IEEE Computer Society.

Fischer, G., Lemke, A. C., & Schwabh, T. (1985). Knowledge-based help systems.
Proceedings of the CHI "85 Conference on Human Factors in Computing Systems, 161-167.
New York: ACM.

Fischer, G., & Schneider, M. (1984). Knowledge-based communication processes in
software engineering. Proceedings of the 7th International Conference on Software Engineering
(Orlando, FL), 358-368. Los Angeles, CA: IEEE Computer Society.

Hooper, K. (1986). Architectural design: An analogy. In D. A. Norman & S. W.
Draper (Eds.), User centered system design: new perspectives on human—compulter inleraction
(pp- 9-23). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation
interfaces. In D. A. Norman & S. W. Draper (Eds.), User centered system design: new
perspectives on human-compuler inleraction (pp. 87-124). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Ilich, 1. (1973). Tools for conviviality. New York: Harper & Row.

Nieper, H. (1985). TRISTAN. A generic display and editing system for hierarchical structures
(internal memo). Boulder, CO: Department of Computer Science, University of
Colorado.

Olsen, D. R., Jr., Buxton, W., Ehrich, R., Kasik, D. J., Rhyne, J. R., & Sibert, |.
(1984). A context for user interface management. IEEE Computer Graphics and
Applications, 4(12), 33-42.

Rathke, C. (1986). ObjTalk: Repraesentation von Wissen in einer objektorientierten Sprache



222 FISCHER AND LEMKE

[Ob Talk: knowledge representation tn an object-oriented language]. Unpublished doctoral
dissertation, Fakultaet fuer Mathematik und Informatik, Universitaet Stuttgart,
Federal Republic of Germany.

Riekert, W.-F. (1986). Werkzeuge und Systeme zur Unterstuetzung des Erwerbs und der
objektorientierten Modellierung von Wissen [Tools and systems supporting acquisttion and
object-orienied modeling of knowledge]. Unpublished doctoral dissertation, Fakultaet fuer
Mathematik und Informatik, Universitaet Stuttgart, Federal Republic of Germany.

Robertson, G., McCracken, D., & Newell, A. (1981). The ZOG approach to
man-machine communication. Intemational Journal of Man-Machine Studies, 14,
461-488.

Simon, H. A. (1981). The sciences of the artificial. Cambridge, MA: MIT Press.

Waters, R. C. (1986). KBEmacs: Where’s the AI? AT Magazine, 7(1), 47-56.

Wilensky, R., Arens, Y., & Chin, D. (1984). Talking to UNIX in English: An
overview of UC. Communications of the ACM, 27, 574-593.

Williams, M. D., Tou, F. N., Fikes, R., Henderson, A., & Malone, T. W. (1982).
RABBIT: Cognitive science in interface design. Proceedings of the Cognitive Science
Conference (Ann Arbor, Michigan), 82-85. Cognitive Science Society.

Winograd, T. (1979). Beyond programming languages. Communications of the ACM, 22,
391-401.

Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new foundation
Jor design. Norwood, NJ: Ablex.

Woods, D. D. (1986). Cognitive technologies: The design of joint human-machine
cognitive systems. Al Magazine, 6(4), 86-92.

HCI Editorial Record.  First manuscript received May 19, 1986. Revisions
received October 3, 1986, March 25, 1987, and August 7, 1987. Accepted by Ruven
Brooks. Final manuscript received December 3, 1987. — Editor




