
CRACK: A CRITIQUING APPROACH TO COOPERATIVE KITCHEN DESIGN

Gerhard Fischer and Anders Morch

Department of Computer Science and Institute of Cognitive Science
University of Colorado

Boulder, CO 80309-0430

In Proceedings of the International Conference on Intelligent Tutoring Systems,
Montreal, Canada, June 1988, pp 176-185

Abstract

Human problem-domain communication and cooperative problem solving are two enabling con­
ditions that allow users, who are not computer experts, to use computers for their own purposes.
Computer-based critics, a specific class of intelligent support systems, are most effective if they
are embedded in a framework defmed by human problem-domain communication and coopera­
tive problem solving.

CRACK is a specific critic system which supports users designing kitchens. It provides a set of
domain specific building blocks and has knowledge about how to combine these building blocks
into useful designs. It uses this knowledge' 'to look over the shoulder" of a user carrying out a
specific design. If CRACK, based on its understanding of kitchen design, discovers a shortcoming
in users' designs, it offers criticism, suggestions, and explanations and assists users in improving
their designs through a cooperative problem solving process. CRACK is not an expert system that
dominates the design process by generating new designs from high-level goals or resolving
design conflicts automatically. Users control the behavior of the system at all times (e.g., the
critiquing can be "turned on and off' '), and if users disagree with CRACK, they can modify its
knowledge base.

Acknowledgements

The authors would like to thank our colleagues and students who have helped us to critically evaluate the
usefulness of CRACK. We would like to thank especially Clayton Lewis and Raymond McCall for their
criticism and suggestions. We are grateful to Sarah Reep and Maggie Boling who as professional kitchen
designers have taken the time to collaborate with us on this project. Financial support for the work
described in this paper was provided in part by grants from MCC and AT&T.

CRACK: A CRITIQUING APPROACH TO COOPERATIVE KITCHEN DESIGN

Gerhard Fischer and Anders Morch

Department of Computer Science and Institute of Cognitive Science
University of Colorado

Boulder, CO 80309-0430

Abstract -::Hliman- problem-domain communication and
cooperative problem solving are two enabling conditions that
allow users, who are not computer experts, to use computers
for their own purposes. Computer-based critics, a specific
class of intelligent support systems, are most effective if they
are embedded in a framework defined by human problem­
domain communication and cooperative problem solving.

CRACK is a specific critic system which supports users design­
ing kitchens. It provides a set of domain specific building
blocks and has knowledge about how to combine these build­
ing blocks into useful designs. It uses this knowledge "to look
over the shoulder" of a user carrying out a specific design. If
CRACK, based on its understanding of kitchen design, discovers
a shortcoming in users' designs, it offers criticism, suggestions,
and explanations and assists users in improving their designs
through a cooperative problem solving process. CRACK is not
an expert system that dominates the design process by generat­
ing new designs from high-level goals or resolving design con­
flicts automatically. Users control the behavior of the system at
all times (e.g., the critiquing can be "turned on and off"), and
if users disagree with CRACK, they can modify its knowledge
base.

Introduction

Many aspects of human-computer systems have not kept pace
with the dramatic progress in hardware development. One of
the major challenges is to enable occasional users, who are ex­
perts in some application domain, to take advantage of the
available computational power and to use the computer for a
purpose chosen by themselves [Illich 731. Most computer users
feel that computer systems are unfriendly. not cooperative. and
that it takes too much time and too much effort to get some­
thing done. They feel that they are dependent on specialists
and notice that "software is not soft" (i.e., the behavior of a
system can not be changed without a major reprogranlming of
it).

In this paper we describe a framework to overcome these
limitations with the help of knowledge-based systems, qualita­
tively different human-computer communication, and the use
of the computer for educational and training purposes in which
the users are in control of the communic:1tion process. We il­
lustrate our general approach with a detailed discussion of
CRACK, a critic for kitchen design. An objective of CRACK is to
blend the designer and the computer into a problem solving
tearn to produce cooperatively better designs than each of them

working alone. CRACK is capable of critiquing users, provid­
ing suggestions and explanations, and allowing users to change
the behavior of the system. An evaluation of the current ver­
sion of CRACK will be given and current limitations and future
enhancements discussed.

Cooperative Problem Solving Systems

The Critiquing Approach in Human-Computer
Communication

Three major communication paradigms in human-computer
systems are: tutoring, consultation, and critiquing.

Tutoring (e.g., as in the LISP-TUTOR [Anderson et al. 84; An­
derson, Reiser 85j and in the PROUST system [Johnson,
Soloway 84]) provides an appropriate framework for getting
started to learn a new system. In tutoring systems, one can
predesign a sequence of microworlds [Burton, Brown, Fischer
84J and lead a user through them. Howevcr, tutoring offers lit­
tle help in supporting users in situations where they are in­
volved in their "own doing." Tutoring is not task-driven be­
cause the total set of tasks cannot be anticipated. Instead, the
system controls the dialogue, and the user has little control
over what to do next.

Consultation is a frequently used interaction model in expert
systems [Buchan:1n, Shortliffe 84]. From a system designer's
point of view, this model has the advantage of being clear and
simple: the progmm controls the dialogue (in much the same
way as a human consultant does) by asking for specific items
of data about the problem at hand. The disadvantages are that
it prevents a user from volunteering information [Fischer,
Stevens 87], and it does not support mixed-initiative dialogues.

The critiquing model allows users to pursue their own goals,
and the program interrupts only if the user's behavior is judged
to be significantly inferior to what the program would have
done. It is based on empirical observations [Carroll,
McKendree 87J that users are often unwilling to learn more
about a system or a tool than is necessary for the immediate
solution of their current problem. To be able to successfully
cope with new problems as they arise, a critic is required that

. generates advice tailored to the specific needs of the users.
The critiquing approach provides information only when it be­
comes relev:1nc. It eliminates the burden of learning new things
in neutral settings when the user does not know whether the
information will ever be used and has difficulty imagining an
application.

We have developed p~ograms which instantiate ? number of
different aspects of the critiquing model. The acuve help sys­
tem ACTIVIST [Fischer, Lemke, Schwab 85] looks a user
(working with an editor) "over the shoulder" and infers from
user actions the plan which the user wants to pursue and com­
pares it with its own plan. Information about the user's ?e­
havior is stored in the model of the user. A separate tuto':tng
module (taking the information in the model of th~ user mto
account) decides when to offer help and advIce.. The
L1SP-CRlTIC [Fischer 87aJ enhances incremental le~mg of
LISP and supports learning strategies such as learmng on,
demand (Le., information is provided when needed). It has'
knowledge about how to improve USP programs locally, fol­
lowing a style defined by its rules. The ~ystem ~rates by
using a large set of transformation rules whIch descnbe. how to
improve Lisp code. The user's c~e is matched agru?st the
rules' premises, and the transformatIons suggested are .gIven to
the user. Additional tools are available to explain and illustrate
the advice.

A number of issues have been learned constructing these sys­
tems. Criticism and volunteered advice is most welcome wh~n
it is directly relevant to the problem or the tas~ t~e u~er IS

working on. The major problem in systems of thiS kind IS. not
to make them speak up but to keep them quiet most of the tJme.
To achieve this requires elaborate knowledge structures (e.g.,
models of the users and tutorial strategies). In addition, users
must be put in control of the communication with t~e systen~ in
order to be able to ignore irrelevant volunteered II1formauon

(they may already know it or they may regard it as not
relevant) and to turn the critic off if they want to be left alone.

Human Problem-Domain Communication

Most computer users are not interested in computers per se, but
rather want to use the computer to solve problems and to ac­
complish certain tasks. To shape the computer into a truly us­
able and useful medium. we have to make it invisible as a tool
and let users work directly on their problems and tasks.

Human problem-domain communication [Fischer, Lemke
88J provides a new level of quality in human-computer com­
munication because the important objects and abstract opera­
tions of a given application domain are built directly into the
computer. This implies that the user can operate ~it~ per­
sonally meaningful abstractions. In most cases It IS not
desirable to eliminate the semantics of a problem domain by
reducing the information to formulas in first-order logic or to
general graphs. Systematic domains [Winograd, ~ores 86J,
defining the major abstractions of a problem domrun and theIr
interrelationships. are needed to support human problem­
domain communication.

Construction Kits. Construction kits are system components
that represent steps towards human problem-domain com­
munication by providing a set of building blocks that model a
problem domain. The building blocks define a design sp~ce
(the set of all possible designs that can be created by combm­
ing these blocks) and a design vocabularyl. Construction kits
can be seen as domain specific programming languages which
help users to formulate solutions to complex problems and to
create complex environments without having to master the
many details of programming inherent in general programming
languages. They offer the potential advantage of eliminating a

. number of prerequisite skills, thus aUowin2 users much more.

2

time to practice and work in thelractuai area of interest.

The PinBall and Music Construction Kits (two interesting
programs for the Macintosh from Electronic Arts [Fischer.
Lemke 88}) provide domain-specific building blocks (bumpers.

. flippers; staves, piano keyboard, notes, sharps, etc.) to build
artifacts in the two domains of pinball machines and musical

'composition. Users can interact with these systems in terms
with which they are already familiar, and they need not learn
abstractions peculiar to a particular computer system.

Our empirical investigations have shown that these systems
come close (within their scope) to our notion of human
problem-<iomain communication. Users familiar with the
problem domains but inexperienced with computers had few
problems using these systems, whereas computer experts un­
familiar with the problem domains were unable to exploit the
power of these systems. Persons using these ~ystems a.re
designing artifact .. , without the need for programmlOg by wnt­
ing statements in a progran:llling language. Our subjects had a
sense of accomplishment in using these construction kits be­
cause they enabled them to construct something quickly.

In the context of this paper, individual building blocks will be
referred to as desigll ullits. Eastman [Eastman 69) defines a
design unit (DU) as a physical element that can be selected and
manipulated during the design process. DUs can further be or­
ganized into hierarchies which arrange them according to the
physical elements of which they are a part.

The Limitations of Construction Kits. Evaluating the Pinball
and Music Construction Kits as prototypical examples against
our objective of enhancing human problem-domain com­
munication, we have found that their major shortcoming is that
they do not assist the user in constructing interesting and use.ful
artifacts in the application domain. The Pinball ConstructIon
Kit allows users to build games in which balls get stuck in cer­
tain corners and certain devices can never be reached
[Hutchins, Hollan, Nonnan 86J. The insufficiency of just

providing design units in CRACK can be characterized by the
fact that "kitchen design is more than providing a number of
appliances." Design environments [Fischer, Lemke 881 are
needed that assist users in constructing truly interesting ar­
tifacts. The primitives of a programming language or the ele­
ments of a construction kit give little guidance on how to con­
struct a complex artifact which achieves a certain purpose.
Design critics go beyond construction kits in that they bring to
bear general knowledge about design (e.g .• which meaningful
artifacts can be constructed, how and which design units can be
combined with each other) that is useful for the designer.

Cooperative Problem Solving

The intelligent support systems. which we have constructed so
far (e.g., [Fischer 87a; Fischer. Lemke, Schwab 85)), are "one­
shot" affairs. They may give criticism and advice, but the in­
formation provided by them does not serve as a starting point
for a cooperative problem-solving process. Human advisory
dialogues [Carroll. McKendree 87) are judged successful when
they allow a shared control of the dialogue. We have explored
the issues aS~l)Ciated with shared control in a system architec­
ture which allows the volunteering of advice by the user
[Fischer, Stevens 87J. When humans (e.g., a novice and an

expert) communicate, much more goes on than just the request
for factual infom1ation. Novices may not be able to articulate
their questions without the help of the expert. The criticism or

advice given by the eltpert may not be understood. andlor the
advisee may request an eltplanation of it. Eltperts sometimes
have difficulties seeing the problem from the novices' point of
view. Each communication partner may hypothesize that the'
other partner misunderstood him/her. or they may provide in­
formation for which they were not eltplicitly asked. The
criticism provided in such interactions can serve multiple pur­
poses: it can become itself an object of interrogation. and it
can serve as a starting point for a learning process (Fischer
87 a].

Cooperative problem-solving processes can be modeled using
the basic primitives U I to U4 represented in Figure 1. The four
primitives can be combined in arbitrary ways. CRACK in its
current form supports U4 . To capture U1, CRACK has to be elt­
tended such that it can solve certain problems by itself. This
can be done by associating local eltpert system modules with
each design unit.

b~ cp .Q

e Is.

~

Pi: product version i
C i : criticism i

'If

Figure 1: Basic Components to Support Cooperative
Problem Solving Processes

U I through U 4 are the four [l0ssiblc units of cooperative problem solving

processes. Either the human or the computer can criticize a product that
was generated by either of them. One of them then creates a new product

based on the previous version and the criticism.

Human and computer play different roles in cooperative problem solving

processes. In traditional e~fl<'rt systems (such as MYCIN and RI), the

system plays the dominant role. and the user simply provides the necessary

data. which are used by the system as a specification for deriving a suitable
design design. This role assignment is easy to implement, but has turned

out to be behaviorally unacceptable in many situations. In our research we

arc trying to support the full spectrum of cooperative problem solving

processes (as illustrated by the diagrams U1 to U4), where the role assign­

ments are determined by the nature of the task, the skill and knowledge

level of the user and the decision of users, which role they prefer to play.

3

Actions in cooperative problem-solving systems should not
cause un resolvable breakdowns of the interaction and should
not be regarded as errors, but should be an integral part of the
process of accomplishing a task. All efforts in a cooperative
problem-solving process should be regarded as iterations
towards a goal. Misunderstandings should lead to a situation
which can be described as "Let's talk about it" [Lewis. Nor­
man 86]. TIle goal of a cooperative endeavor is neither to find
fault nor to assess blame, but rather to get the task done.

It is insufficient for intelligent support systems just to solve a
problem or to provide information. They need to do this in a
way that the user can understand and question their criticism.
It is one of our working assumptions that learners and prac­
titioners will not ask a computer program for advice if they
have to treat the program as an unexaminable source of exper­
tise. One has to provide windows into the knowledge base and
into the reasoning processes of these systems at a level which
is understandable by the user. The users should be able to
query the computer for suggestions and explanations, and they
should be able to modify and augment the knowledge of the
critic if they are dissatisfied with the information received.

The Role of CrHics in Cooperative Problem Solving
Systems

Design can be viewed as problem solving where complex ar­
tifacts are constructed from simple building blocks in order to
find a satisfying solution to a design problem. Simon [Simon
81] defines satisficing as a means to look for adequate or satis­
factorily solutions rather than optimal ones. In the same way
as construction kits constrain the design space by limiting the
number of design units a user can select, critics constrain the
design space by making the user aware of the distinction be­
tween satisficing and non-satisficing arrangements of design
units. Critics are needed to guide users in unfamiliar problem
domains. Critics in CRACK are procedures for detecting non­
satisficing partial designs and can be classified along the fol­
lowing dimensions:

Activation. Critics can be active and activate themselves when
they detect a non-satisficing arrangement of design units. or
they can be passive and the user has to ask for an evaluation.
An active critic can be envisioned as a knowledgeable human
designer watching over a user's shoulder and critiquing each
time an arrangement is detected that violates his or her notion
about an appropriate solution. For example in kitchen design
this can be complaints in the form of: "sink not in front of a
window" or "refrigerator next 10 the range". TIlis type of
criticism will make the users aware of their non-satisficing
design at an early point which makes it easier for them to cor­
rect it. but at the same time they might find it a nuisance to
have someone continuously critique them and not give them
allY chance to develop something of their own for some period
of time. A passive critic does not have this problem since the
users themselves request an evaluation when they have com­
pleted a partial design. Active critics seem to be suited to guide
novice users, and passive, user-initiated critics seem to be more
appropriate for intemlediate users.

Positiveness. Critics can either be positive (praising superior
design) or negative (complaining about inferior, non-satisficing
design). Real life critics (art critics, movie critics) arc both
positive and negative.

•

SUC(ll!SftON CRllle WtNOOW

f .t ... th~'" ,,_ IUln-.rd · I "8. t.h.tIIU Ik lnJ .. 1 1'4 I fr_ ,

I
tllIk' ,"-,... • • Cf"

, 11lI. '-MIIt. 1M "-":
,1M ,h..,I •• r.... II - I' , ... ,._ ..
,I ... dl ... I' '" e r-.I ,. ' t. ..

n"" ' 1 ell IIllM ... ' ' __ '-
.a .• "' .. 1"--, _ II . f

.~I""" .~ ,

' I
/ .." , :~ f :5 ~e .. ~

Figure 2: Suggestions from the SINK-CRmC

CRACK'S user interface is based on !he world model and !he metlphor of an "architcc!'s workbench_" Design unilS are selected from the

DU Palette, and corresponding architectural symbols are moved around in !he work are:! (the center window)_ Operations on DUs arc
initinted by clicking on !heir instance name in the Design State window_ Suggestions, criticism and operations can be questioned by

clicking on the te)(L Compass, ruler and actual length are active values used during wall drawing and door/window positioning to support

the user wi!h graphical data_ Critiquing can be turned on and off_

Granularity. The grain size of critics determines whether they
are oriented towards local aspects of a partial design or a global
perspective of the total design_ A sink critic is an example of a
local critic since it is only concerned about the low-level
design unit "sink_" A work trial/gle critic is concerned with a
larger portion of the design since it is associated with the work
triangle2 which is an abstraction of several appli:ll1ces_ A
kitchen critic which is concerned about the kitchen's balance
and total look is an example of a global critic_

Crack: A Critic for Kitchen Design

The Problem Domain: Kitchen Design

CRACK is a kitchen design critic which aids users in designing
a kitchen floor plnn layout while sitting in front of a graphics
workstation (see Figure 2)_

Ill-defined problem areas where satisficing rather than optimiz­
ing is the goal are well suited for the critiquing approach_
Kitchen design (as an area of architectural design) is still an
ill-defined problem despite the existence of some well­
established design principles_ Architectural design is charac­
terized by having no strong theoretical basis as compared to
other design areas such as structural engineering and computer
design. and architects are not trying to find optima! solutions to
design problems but rather tradeoffs within a ~olution space
bounded by external constraints_ CRACK's critiquing approach

4

to design is directed towards detecting non-satisficing partial
. solutions_

Knowledge Acquisition

Domain dependent design knowledge represented in CRACK

has been acquired from kitchen design books and from profes­
sional kitchen designers whose knowledge was captured by
means of protocol analysis and a questionnaire_

Kitchen Design nooks. Our initial exposure to the standards
of American kitchens was from the series of texts compiled by
the Small Homes Coullcil-Blliiding Research COllncil at the
University of IIlinois_ The most useful manual was KitchCII
Planning Principles - Equipment - Appliances [Jones, Kapple
841. but also the kitchen design book [paradies 731 provided in­
sightful infonnation _ Most of the design parameters used in
design units and explanations for critics are taken from these
two texts_

Protocol Analysis. Two professional kitchen designers
cooperated with liS ill this research_ Protocol analysis
[Ericsson. Simon 84J was used to gather a set of protocols _

The two professionals were given typical scenarios which in­
cluded a sample floor plan and a hypothetical client providing

needs and desires_ They were asked to plan a kitchen for this
client in the space provided_ Tn order to capture all the steps
involved. including the ones which designers normally do no!
communicate. they were asked to think alolld during the design

process. If they -siiiimade some "big jumps" in the reasoiiing
process, which often happened, they were interrupted, and the
experimenter asked questions to bridge these intermediate
gaps. The sessions were recorded, and four protocols were
gathered and analyzed.

The protocol studies showed that kitchen designers use design
units at various levels of abstraction during a design process.
First, the shape of the equipment area is determined, which is
dependent upon the amount of usable wall length. Next, the -
various work centers3 are considered, and then the appliances
and cabinets which are part of the work centers are located.
Finally, type and dimension of appliances and cabinets are_
specified.

The rrotocol studies revealed domain related concepts specific
to kitchen design. Spatial relationships such as in front of, next
to and near have their own meaning in this domain. In front of
is used to refer to a relation between an equipment (appliance
or cabinet) and a wall fixture (door, window, plumbing), e.g.,
sink in-front-of window. Next to refers to two appliances which
are side by side along a wall assembly, e.g., sink next-to dish­
washer. Near refers to equipment which is not immediately
next to each other, but still within reach, meaning about 4-8
feet apart, e.g., sink near refrigerator.

Questionnaire. The protocol studit"~ were useful in under­
standing the design process. which includes in what order the
various design units are applied and how to select their type
and properties such as width and depth. For the computer im­
plementation, more concrcte information in the form of
specific values for design parameters was needed. Some of
these values were found in the books mentioned above, but
most of them were obtained by asking the designers to fill out a
questionnaire.

A User Interface Oased on the World Model

CRACK'S user interface is based on the world model metaphor
[Hutchins, Hollan, Norman 86). Users can directly manipulate

the objects in the world of kitchen design. A direct manipula­
tion interaction style using the mouse and context-sensitive
menus makes it easy to learn CRACK. The interface tries to
model an "architect's workbench" which is a familiar en­
vironment for designers. Architectural tools such as pencil,
paper, ruler and compass are part of the graphics interface.
Users can "draw" the walls of the room with pencil and ruler,
and they can select standard kitchen appliances (sink, range,
refrigerator, etc.) from a design unit palette and move them
around with the mouse to desired locations. The user interface
of CRACK allows users to engage themselves directly in their
application, and it is a step towards human problem-domain
communication as described earlier.

The Critics

The critics in CRACK are rules which are activated after each
state change and they send information to the user when non­
satisficing partial solUlions are detected. State changes are all
instance creations of design units and any design unit
manipulation (e.g., move, rotate, scale). A non­
satisficing solution is an arrangement of design units which
violates one or more of the relations between them. These rela­
tions are based on design knowledge acquired by the methods
described earlier, but can be modified by a user (see below).

5

The critics in CRACK are lIegative in the sense that they are
only complaining about non-satisficing configurations instead
of also praising especially useful or interesting configurations.
A typical critic is SINK-l not in-front-of a

"window (see Figure 2). This is a complaint about the current
screen state after a critical state change caused by SINK-l.

The grain size of critics are determined by the design units
(DU). Each DU has an associated critic. For example the DU

::3ink has the critic SINK-CRITIC. The DUs have no
knowledge about themselves except for their screen position
and their location in the DU hierarchy (Figure 3). The
knowledge about a DU's relations with other DUs is

j
represented by its critic. Not all critics are related to low-level
DUs like the sink. The WORK-TRIANGLE-CRITIC tests to

I
see if the center front distance between the appliances sink,
range, and refrigerator is less than 23 feet (see Figure 4).

!A critic con~ists of a set of geometrical relations which can ei­
ther be true or false. For example in the SINK-CRITIC some
relations in prefix notation are: (INSIDE sink
equipment-area), (IN-FRONT-OF sink window),
(NEXT-TO sink dishwasher), (LESS-THAN sink
plumbing 24) and (NEAR sink refrigerator).
These are some of the relations checked each time the
SINK-CRITC is triggered, and complaints in the form of:
SINK-l not in-front-of window, SINK-l not
less-than 24 inches from plumbing, etc., are
printed out to a critic-window on the screen in cases where
these relations are violated (see Figure 2).

! The actual geometrical comparisons are performed by actions4

. defined on a pair of design units. For example (defaction
in-front-of equipment wall-fixture () ...)
defines an action on two generic design units equipment and
wall-fixture (see Figure 3). All pairs of DUs which in­
herit from these will also have the method IN-FRONT-OF

defined. For example (IN-FRONT-OF sink window),
(IN-FRONT-OF range door), (IN-FRONT-OF cabinet
plumbing), (IN-FRONT-OF appliance door) are all
legal ways to invoke (send a message to) the IN-FRONT-OF

method. This way of interchanging DUs in relations will be
used to facilitate critic modifications.

Explanations

A user can ask for an explanation of each relation belonging to
a critic (see Figure 5). For example a user can ask why a range
should be AWAY-FROM a window, and an appropriate answer
will be given: YOll {Jilt yourself in danger if trying to open the
window wlrile the range is on, and there is a substantial fire
hazard if flammable curtains are installed. These explanations
are "hard-wired" into the system in order to explain the design
knowledge in kitchen design and cannot be modified by a user
in the current implementation of CRACK.

Modification of (he Design Knowledge

CRACK allows the L1ser to control the firing of critics at three
levels: all critiquing can be turned on or off, individual critics
can be enabled or disabled, and specific relations in a critic can
be modified. When critiquing is turned off (which it is by
default), CRACK acts like a construction kit without any design
knowledge to guide users, just like the Pinball Construction
,Kit. When critiquing is enabled, all critics are active. An ill-

I .. 't*'i!!!!!l.

luw@"mi~

ID4tI4fWiQWi\

MMimAW!d.i~~i~
Figure 3: Design Unit Hierarchy

dividual cnUc can be disabled if a user does not like its
criticism, or if its knowledge has been acquired by a user and is
not needed any more. By default, all critics are enabled.

CRACK allows users to modify critics -- an important require­
ment for cooperative problem solving systems. lllis modifica­
tion can either take the form of a replacement or a removal of
one of the relations. The relation IN-FRONT-OF can be replaced
by either: NOT-IN-FRONT-OF, CLOSE-TO, NOT-CLOSE-TO,

or NO-RELATION. NO-RELATION means no relationship be­
tween these two DUs. When a critic is modified, CRACK's sug­
gestions for this DU are updated to reflect the new understand­
ing of the problem. In this way a user who does not want to
have SINK-l in-front of a window can replace this
relation with SINK-l close-to window or no relation at
all between SINK-l and window. Modified in this way,
CRACK will not critique the user any more for not putting
SINK-l in front of the window. The actual modification is
done hy having rules that modify and recompile other rules
during run-time, as seen in the cC'mmand window in Figure 6.

This feature allows CRACK to learn to see the problem from a
new perspective in order to better guide users towards their
goal. For example, the "metarule" MODIFY-SINK-CRITIC
redefines the rule SINK-CRITIC with the new relation a user
has selected for substitution. Next time SINK-CRITIC is
triggered or a suggestion from SINK-SUGGESTER is re­
quested, this correction will be in effect. This modification
will be permanent until another user modifies the same relation
again, and it supports cooperative problem solving since both
user and computer are critiquing and correcting each other in
order to achieve a common goal. A DOMAIN-CRITIC is fired
each time before a critic is redefined to warn users about the
fact that they are modifying permanently stored domain
knOWledge. An UNDO is available if the modification needs to
be revoked.

Evaluation

CRACK has been an operational system for several months and
we have accumulated some feedback about its strength and

6

shortcomings. One of our colleagues who (as a non­
professional kitchen designer) had just remodeled his kitchen
considered the use of CRACK an important experience. The
criticism that the system generated during his design process
illustrated several design concepts which he was not aware of
at the time of the remodeling. In addition to being able to to
generate a specific design for a kitchen, our colleague 111-

creased his general knowledge about kitchen design.

The system was also used by a design methodologist who con­
sidered the cooperative, user-dominated approach of CRACK its
most important feature. He felt it was this feature which sets
CRACK truly apart from expert system oriented design tools
where users have little control and are often reduced to spec­
tators of the system's operations. In the current version of
CRACK, we have deliberately not concentrated our efforts on
equipping the system with its own design capabilities. One
may also ask why critics, if they are in principle able to solve a
problem, do not just do it themselves. The rationale is that
users increase their knowledge and their independence by
working with systems that do not do the work for them, but
make the arrangements necessary for them to do it themselves.
Too much assistance and too many automatic procedures can
reduce the users' motivation due to lack of challenge.

In comparison to most current CAD systems which are merely
drafting tools ralher than design tools, CRACK has some
"understanding" of the design space. This knowledge allows
the system to critique a design during the design process -- a
capability absent in CAD systems.

We have developed critic systems in a number of areas (e.g.,
the LISP-CRITIC and CRACK), emphasizing different issues (e.g.
level of analysis, narrowly bounded problem domain versus
open problem domain, active versus passive, etc). We expect
that by a careful analysis and detailed comparison of these sys­
tem building efforl~, we will be able to develop general design
principles which will support the design of critics and intel­
ligent support system in other domains.

t
N

• ..
!IOrAr

~_~ ______ .. .J> __

CO'l I CRlfle "'10400'"

. -,
' '''19 .. 1
1IiIIftIty1 .. -1 _ .,

...

Figure 4: The Work-Triangle Critic -- A Critic for a Iligher Level Concept

Extensions

As the brief discussion in the last section indicated, CRACK in
its currem form is a useful and usable system. Bill the general
framework (Le., human problem-domain communication and
cooperative problem solving) on which CRACK is based and
our previous research suggest a number of future enhance­
ments.

Design by Redesign. Instead uf starting design with basic
building blocks, prototypical solutions that can be manipulated
and refined through redesign [Fischer 87b] are importam en­
richments for designers and enlarge their design possibilities.
Model kitchens could be stored within CRACK and adequate
support tools to find, inspect, and modify these prototypical
solutions could be provided. (See Figure 7.)

Higher-level Concepts. Currently, all critics in CRACK
(except the WORK-TRIANGLE-CRITIC) are associated with
low-level equipment DUs (sink, range, refrigerator, etc.). Our
protocol studies clearly indicated that kitchen designers use
higher level concepts. These higher level concepts also require
critics, e.g., a KITCHEN-CRITIC that tests for global con­
cepts such as: at least 72 inches of coumer space, maximize
cabinet storage, minimize cost, and the total look of thel
kitchen.

Support for the Preferences of Individual Users. For users:
with special demands and desires, context-sensitive critics are
needed which are tailored to individual preferences. The cur­
rent approach in CRACK is limited to critiquing the ideal user
designing a standard kitchen. Explicit user models need to be
incorporated into critics to serve individual users better.

7

More Guidance with Graphical Support. Users of CRACK

could be adviced where (according to the system 's
understanding) a design unit selected from the palette could be
placed. The system could highlight these areas. The integration
of this feature into the system would have to be carefully
evaluated, because it would provide substantially more
guidance, thereby reducing the opportunities for the users to
explore designs by themselves.

Deliheratioll. Users can modify design knowledge in CRACK,
changing the behavior of the system permanently (see previous
section about the modification of the design knowledge). But
this operation deletes the previously stored knowledge. In fu­
ture versions of CRACK. we will support the concept of
deliberation by which an arbitrary number of arguments
(support, refutation, including associated explanations) can be
stored in the system's knowledge base. representing the views
of different designers. With this c~pability, the different styles
and strategies of a number of designers can be represented. in­
spected and selected as the basis for critiquing. TIle knowledge
base of CRACK could evolve by having designers use the sys­
tem to integrate their expertise by adding new rules to the sys­
tem. This feature would acknowledge that expertise in design

is never complete and highly controversial and would allow
learners to acquaint themselves with different design
philosophies.

::~- l!~I~I ~il~I ~',I~' ~Ii~I~i :i1:.I:I :":1:' :I ~:I:':11:i:il:'~:i :ti:~:':~:~:I :q:I:II:I:~:II:t:' :I':I:~:II:1 :'1:':I ':'I~IJ-·_<~·:~~~~:~~·~.JI
~ kel . , 114 - • "·0·

t
N

o

"'lit .. lM r 1. - #,. .. , .,
'" _l ".ce_fl!IItI.jf ,.,. ••• .,. . , ' A l .
ft,dh ., ,rull ,. -,lfill" """

.".t.,~ .. l _II .. 1M "" , " " •
• ,. 'IIWt t . .. ,. c-n . 6_.
_ ,,_'I t". ,~ ... , •• "., , t.c,..
I ""_",LI. I ~

~ :

0 0
o

Cr ' , 1_ CAIIiC WltClOW

Figure 5: Explanation for AWAY-FROM Relation in RANGE-CRITIC

1 2 3 .. 5 6 ., . 8
! '1111111'1'111'111'11111'111111111111 111 111 111 / 11I i ' 11I1 111111 11

t
N

o

CO_NO WIHOOW
e ft c,.. ,. • ..rv 'cr. I • • • r ? . " .
" •• " • 'f ill.

"""'''C r •• IIII.r''''' u.. ~ ,,1"': -(,.
"'C'~I ..-... - ••.
CeIlt. U'", rul 11fC ~atrtlc .. 4 a •.•

" ,. .. ,. • ...,JJI:,. .. ,J ••• ,J .,. .. ,J .. I' . ..
1 ,...-iII.'tPlect •
.... • "VlfMI ___ .W"'~ ~ ,,1 .. "" r l ... p"

"'"

Critique

Figure 6: Modifying Design Knowledge

8

C R. riC WINOOW

76

.... ·1

U a bfy

Figure 7: Four Prototypical Kitchen Solutions

Notes

l111e specific design vocabulary for CRACK is represented as a
set of icons in a palette (see Figure 2).

2The lVork triangle is the center front distance between the
three appliances sink, range and refrigerator.

3 A work center is an abstraction of several pieces of equi­
pment, and the four main work centers are the cleanup-center.
the cooking-center, the storage-center and the preparation­
center.

4CRACK is implemented using ART. a knowledge-based
development environment from Inference Corporation that
runs on a SYMBOLICS Lisp machine. "Action" is the ART ter­
minology for a method defined on objects or slots in an object­
oriented programming language.

Acknowledgements

The authors would like fO thank our colleagues and students who
have helped us to critically evaluate the usefulness of CRACK. We
would like to thank especially Clayton Lewis and Raymond McCall
for their criticism and suggestions. We are grateful to Sarah Reep
and Maggie Boling who as professional kitchen designers have taken
the time to collaborate with us on this project. Financial support for
the work described in this paper was provided in part by grants from
MCC and AT&T.

Rrferenecs

[Anderson et al. 84J
J.R. Anderson, c.F. Boyle, R.O. Farrell. B.l. Reiser,
Cognitive Principles in tlte Design of Computer
Tutors, Proceedings pf the Sixth Annual Conference
of the Cognitive Science Society, Boulder, CO, June
1984, pp. 2-9.

[Anderson. Reiser 85J
l.R. Anderson, B.I. Reiser, The USP Tutor. BYTE,
Vol.lO, No.4. April 1985, pp. 159-175.

9

[Buchanan, Shortliffe 84) .
B.O. Buchanan. E.H. Shortliffe. Rule·Based Expert
Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley
Publishing Company, Reading, MA, 1984.

[Ilurton, Brown, Fischer 84J
R.R. Burton, J.S. Brown, O. Fischer, Analysis of Ski­
illg as a Success Model of [nstrucrion: Manipufating
the Leamillg Environment to Enhance Skill
Acquisition, in B. Rogoff. J. Lave (eds.), Everyday
Cognition: Its Developmellt in Social Colltext, Har­
vanl University Press, Cambridge, MA - London,
1984, pp. 139-150.

[Carroll, McKendree 871
1.M. Carroll, J. McKendree, Interface Design Issues
for Advice·Giving Expert Systems, Communications of
the ACM, Vol. 30, No.1, January 1987. pp. 14-31.

[Eastman 691
C.M. Eastman, Cognitive Processes and Ill·Defined
Problen~L' A Case SlIIdv from Design, Proceedings of
the International Joint Conference on Artificial Intel­
ligence, Morgan Kaufmann, Los Altos, CA, May
1969, pp. 669-675.

[Ericsson, Simon 84J
K.A. Ericsson, H.A. Simon, Protocol Analysis: Verbal
Reports as Data, The MIT Press, Cambridge, MA,
1984.

[Fischer 87al
O. Fischer, A Critic for LISP, Proceedings of the 10th
International Joint Conference on Artificial Intel­
ligence (Milan, Italy), J. McDermott (ed.), Morgan
Kaufmann Publishers, Los Altos, CA, August 1987,
pp.I77-184.

lFischer 87bl
I G. Fischer, Cognitire Fiew of Reuse and Redesign,

IEEE Software. Special Issue on Reusability, Vol. 4,
No.4, July 1987, pp. 60-72.

[Fischer, Lemke 88J
O. Fischer, A.C. Lemke. Construction Kits and
Desirm Environments: Steps Toward Hlunan Proh/on­
Doniain Com/llunication, Human·Computer Inter­
action, Vol. 3, No.3, 1988.

[Fischer, Lemke, Schwab 85J
O. Fischer, A.C. Lemke, T. Schwab,
Knowledge·Based Help Systems, Human Factors in
Computing Systems, CH1'85 Conference Proceedings
(San Francisco, CAl, ACM, New York, April 1985,
pp.161-167.

[Fischer, Stevens 87J
O. Fischer, C. Stevens, Follllfteering Information -­
Enhancing tire Communication Capabilities of
Knowledge-Based Systems, Proceedings of
INTERACT'87, 2nd IFIP Conference on Human­
Computer Interaction (Stuttgart, FRO), H.-J. Bul­
linger. B. Shackel (eds.), North-Holland, Amsterdam,
September 1987, pp. 965-971.

[Hutchins, Hollan, Norman 86)
E.L. Hutchins, J.D. Hollan, D.A. Norman. Direct
Maniplllationllllerjaces, in D.A. Norman, S.W.
Draper (eds.), User Centered System Design, New
Perspectives OIflllunan-Compllter /Itleraction,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.
pp. 87-124. Ch. 5.

[IIlich 73J
I. IIlich. Tools for Conviviality, Harper and Row, New
York,1973.

[Johnson, Soloway 84J
W.L. khnson, E. Soloway, PROUST: Knowledge­
Based Program Understanding, Proceedings of the
7th International Conference on Software tngineering
(Orlando, FL), IEEE Computer Society, Los Angeles,
CA, March 1984, pp. 369-380.

[Jones, Kapple 84)
RJ. Jones, W.H. Kapple, Kitchen Plannin$ Principles
- Equipmellt - Appliallces, Small Homes Council -
Building Research Council, University of Illinois,
Urbana-Champaign, lL, 1984.

[Lewis, Noonan 86)
C.H. Lewis, O.A. Norman, Designing for Error, in
D.A. Norman, S.W. Draper (eds.), User Centered Sys-

10

telll Desigll, New Perspectives on HLUnan-Computer
lmeraction, Lawrence Erlbaum Associates, Hillsdale
NJ,1986,Ch.20. .

[Paradies 13]
K. Paradies. rite Kitchell Book, Peter H. Wyden
Publisher, New York, NY, 1973.

[Simon 811
II.A. Simon, The Sciences of the Anifjcial The MIT
Press, Cambridge, MA, 1981. '

{Winograd, Flores 86t
T. Winograd, F. Aores, Understanding Compulers
and CogmiuJII: A New F vltndalion for Design A blcx
Publishing Corporation, Norwood, NJ, 1986. '

