Goals and Objectives for User Interface Software
Bill Betts, David Burlingame, Gerhard Fischer, Jim Foley. Mark Green, David Kasik, Stephen T. Kerr, Dan Olsen, James Thomas

This written report summarizes the discussions and
conclusions of the goals and objectives group at the
ACM/SIGGRAPH Workshop on Software Tools for User
Interface Development. The report is organized into the
following sections;

e Section 1 — Overview of group goals and discussions
e Section 2 — Definition and characteristics of a UIMS
e Section 3 — Criteria used to develop a taxonomy of a

UIMS
& Section 4 — Tasks and tools for

user interface development
¢ Section 5 — Suggested topics and areas of research

1. Overview of group goals and discussions

The members of the group have been both developers
and end users of user interfaces. This experience provided
two perspectives on the nature of user interface software.
Both of these views played a major role in our discussions
and the conclusions presented here.

The two primary goals of the group were to enumerate
the various tasks or actions involved in the development of
user interfaces and to determine the software tools that could
provide automated support for these actions.

Prior to discussing the activities and software tools
required for user interface development, the group discussed
these topics:
¢ Definition of a UIMS
e Characteristics of a UIMS
e Criteria to be used in developing a taxonomy of a UIMS

The group also defined scveral areas and topics of
research on user interfaces and UIMS that should be
investigated by the academic and industrial research
community.

This report
conclusions,

documents these discussions and

2. Definitions and characteristics of a UIMS

A User Interface Management System (UIMS) is a tool
{or tool set) designed to encourage interdisciplinary
cooperation in the rapid development, tailoring and
management (control) of the interaction in an application
domain across varying devices, interaction techniques and
user interface styles. A UIMS tailors and manages (controls)
user interaction in an application domain to allow for rapid
and consistent development. A UIMS can be viewed as a
tool for increasing programmer productivity. In this way it is
similar to a fourth generation language, where the
concentration is on specification instead of coding. A UIMS
can be described from two different viewpoints: the
viewpoint of the software developer and the viewpoint of the
end user,

A software developer regards a UIMS as a tool that
provides support for the definition of the user/application
dialogue, imposes external control on the application,
provides support for the presentation of the application’s
output and includes an interactive component providing
support for the interaction between an application and an
end user. A software developer requires that a UIMS
provide a user interface with the following characteristics:

Consistency
Support for a range of users from novice to expert
Support for error handling and recovery
Support for tailorability and extensibility of application
The use of a UIMS by software developers encourages
the development of better software by:
e Providing a consistent user interface between related
applications
e Encouraging development and use of reusable software
components
e Insulating applications from the complexities of the
environment
Shielding applications from the effects of the end user
Supporting ease of learning and use of applications
From the viewpoint of an end user, the primary goal of
a UIMS is to support the easy and effective use of an
application. A UIMS provides the following advantages to
an end user:
Consistent user interface across applications
Support for multiple levels of help or assistance
Support for training
Support for end user tailoring of the interface
Support for extensibility of application
Developers of user interfaces must have software
development/design skills, knowledge of human factors and
experience in the area of human-computer interaction.
Additional software development resources must be
allocated for the design of user interfaces since this phase
now becomes distinct from the application development
PIocess.

o o o @

@ o @ 0 o

3. Criteria used to develop a taxonomy of a UIMS

This section of the report includes an enumeration and
discussion of a proposed set of criteria to be used in the
development of a taxonomy of a UIMS. The development
of this taxonomy is required for effective evaluation of new
and existing UIMSs. The inclusion of a criterion in this list
does not imply that a UIMS should (or must) possess that
characteristic. The criteria are organized into two groups:
The first group is associated with an end user’s view of a
UIMS. and the second group is associated with a user
interface designer’s view of a UIMS.
User oriented criteria

The criteria associated with an end user’'s view of a
UIMS are organized into these five categories:
Dialogue tailorability
Mechanisms for tailorability
Interaction support
Dialogue style
Dialogue sequence

o © © © O

Dialogue tailorahility

The first criterion is whether the UIMS supports the
tailorability of the interface by the end user. There are at
least two levels at which this tailorability can occur. The first
level is the lexical level, where the user has control over
where menus, windows and other interaction objects are
placed on the screen, command names and some details of
lexical feedback (for example whether a bell rings or the
screen flashes in order to attract the user's attention). The

Computer Graphics * Volume 21 * Number 2 © April 1987/73

second level is in the structuring of the dialogue, or syntax of
the interaction. At this level the user can modify existing
commands and add new commands to the user interface,
The new commands added to the dialogue could be
combinations or old commands, or commands that add new
functionality to the user interface. A UIMS may support
either, both or none of these levels.

Mechanism of dialogue tailorahility

The mechanisms provided for tailoring the user
interface will determine the frequency and nature of the
changes that can be made. For some user interfaces, such as
automatic tellers, user tailorability is not desirable. In this
case the UIMS should not automatically provide tailorability
features. In some applications the user interface must be
customizable to different user communities. These user
communities could represent different language groups.
countries or job functions. In this case one user (or a small
group of users) will be responsible for all modifications. In
other applications any user can potentially modify the user
interface. This can cause some problems, and may not
always be desirable. If each user has a custom interface,
there could be problems with training and the transfer of
knowledge between users. Customized user interfaces can
cause problems when the user interface is updated to
account for new program features. When this is done the
modifications made by the user may no longer be applicable.
The UIMS may provide features that simplify the migration
of users from one version of the user interface to another. In
addition to providing mechanisms for dialogue tailorability,
the UIMS may also provide a means of controlling when
these mechanisms can be used, and by whom.

A number of mechanisms for dialogue tailorability have
been proposed. The most flexible mechanism is
programming by example. Another mechanism supporting
tailorability is simple textual specification by the end user.
An example of using textual specification for tailorability is
the definition of macros,

Interaction support
The degree of support provided by a UIMS for the

interaction between an application and an end user is

determined by the following capabilities;

e Help — An end user should be able to acquire help when
necessary; however, the request for help should be
unobtrusive.

e FEmbedded training — The success of an application
depends on the ease of learning. Learning time is greatly
reduced when training can be embedded in the user
interface and can be dynamically accessed by the end
user as necessary. An interface that allows an end user to
simultaneously interact with an application and receive
training is an effective method of embedded training.

e User error avoidance and recovery — Good user
interfaces have a number of features that help the user
recover from errors and unexpected actions. These
features can be divided into three groups depending
upon when they are used. The first group of features,
called escapes. is used when the user is in the middle of
specifying a command. They allow the user to gracefully
back out of a command that he or she doesn’t want to
use. The second group, called stops, is used to terminate
or suspend a command while it is executing. The third
group, called undo, is used to reverse the effects of a
command that has been executed.

74/Computer Graphics * Volume 21 * Number 2 * April 1987

¢ Defaults — The ability of the end user to use defaults as
defined by the application results in a decrease in
interaction time. In addition, defaults reduce the
requisite knowledge that an end user must possess to
understand the capabilities of an application.

Dialogue style
In order to cover a wide range of applications and user

groups a UIMS should support a wide range of dialogue
styles. Some of the dialogue styles that could be supported
by a UIMS are;
¢ Simple command interaction
Form interaction
Question/answer interaction
Graphical manipulation providing only lexical feedback
Graphical manipulation providing semantic feedback
Direct manipulation of graphical images

Ideally, a UIMS should support a range of dialogue
styles from which a user can select. The sophistication of a
user governs the type of dialogue style that is chosen.

® 6 0 0o ©

Dialogue sequence

Support for free or random navigation through a
dialogue enhances the usefulness and flexibility of the
system. Some types of dialogue sequences that could be
supported by a UIMS are as follows:

e Flat — In this type of user interface all the commands are
accessible at each point in the dialogue, That is. there is
no particular structure imposed on the commands,

e Hierarchy — In this type of user interface the commands
are organized into a strict hierarchy. At each place in the
hierarchy, only the commands at that point can be used.
If the user wants to execute another command, he or she
must move to the part of the hierarchy where the
command is located.

e Hierarchy with limited deviation — In this case the
commands are organized into a hierarchy, but the user is
given more freedom in moving about the hierarchy. For
example, the same command could appear at several
places in the hierarchy, or there could be direct
connections from one part of the hierarchy to another.

e Multi-threaded — In a multi-threaded dialogue, the
specification of one command, or a sequence of
commands, can be suspended while the user performs
one or more unrelated commands. A common example
of this is the use of a calculator to compute the value of
an operand in the middle of specifying the command.

e Multi-threaded with multi-programming — This is an
extension of multi-threaded dialogues that allow the user
to execute several commands simultaneously. At any
point in time the user may be taking part in multiple
dialogue, with no dialogue suspended.

Designer oriented criteria
The previous criteria are used to characterize a UIMS
from an end user’s viewpoint. From a user interface
designer’s viewpoint, the following criteria are important in
developing a taxonomy of UIMS:;
¢ Rapid prototyping
Reusable components
Specification granularity
Intelligent assistance
Explicit semantics
Evaluation/testing
Open architecture
Type of control provided (internal or external)

o ¢ ¢ O © © @

e Type of model supported (state, object. direct
manipulation)
¢ Source of events/communication

Rapid prototyping

Support for rapid prototyping enhances the
effectiveness of a UIMS since feedback from the end user
can be obtained early in the software development life cycle.
A UIMS that provides support for the transition from a
rapid prototype to a final system is particularly effective
since components of the rapid prototype can be reused in the
final system. The support of reusability reduces the time and
cost of software development.

Reusable components

A UIMS that provides suppott for the development and
reuse of software components increases the productivity of
the user interface designer. In addition, support for reusable
software components encourages the development of fully
tested, evaluated and documented user interface libraries,
Other direct consequences of reusable software components
are standardization of user interfaces and enhanced support
for rapid prototyping.

Specification granularity

Specification granularity deals with the amount of detail
a user interface designer provides when defining the user
interface. There are two aspects to specification granularity.
The first aspect is the amount of information that the user
interface designer must provide before the UIMS can
construct a user interface, At one end of this spectrum the
designer only needs to list the operations (and their
arguments) supported by the user interface and the UIMS
will automatically construct a user interface. At the other
end of the spectrum the designer must specify every detail of
the user interface design (for example, the screen position of
each interaction and display technique, and the details of the
dialogue in the form of a transition diagram). The use of
higher level specifications should simplify the production of
user interfaces. The other aspect of specification granularity
is the ability to switch from one level to another. 1f the first
version of the user interface was produced from a high level
specification, is it possible to use a lower level specification
to modify fine details of the interaction? In other words, can
the granularity of the specification be adjusted to support the
operations the designer wants to perform,

Intelligent assistance

Intelligent assistance refers to the amount of assistance
or direction that a UIMS provides in the definition of the
user interface. A UIMS should encourage the creation of
good designs by making tasks or activities that result in such
designs easy to accomplish. Actions, activities and decisions
that result in poor user interface designs should be either
disallowed or difficult to accomplish. Intelligent assistance
should also provide support for the management,
organization and tracking of alternative designs of user
interfaces.

Explicit semantics

This criterion determines the degree to which a UIMS
allows the semantics of the application to be easily and
formally represented in the elements of the user interface,
The semantics of the application are expressed in the
behavior of the objects and actions of the user interface and
in the relationship between these objects and actions.

Support should be provided for the definition of the

relationship between the semantics and symbology (visual
representation) of the semantics. For example, the color red
is associated with danger or stop. and the color green is
associated with safe or continue: the UIMS should allow a
user interface designer to easily define and subsequently
modify this relationship without creating significant ripple
effects through the user interface and the application.

Evaluation/testing

The level and degree of automated support for
evaluation and testing that a UIMS provides a user interface
designer is a criterion that should be addressed in developing
a taxonomy of UIMS. A UIMS should provide support for
testing and evaluation in all phases of the software
development life cycle (requirements, specification, design.
implementation and maintenance).

Open architecture

A UIMS that provides support for an open architecture
by allowing the addition of other interaction techniques is
more flexible, extensible and customizable by the end user
than one that does not. The ability of the user interface
designer to define an individual style of interaction and
presentation is also an attribute of an open architecture. The
style of interaction and presentation is an important
commercial consideration. Most software companies have
their own unique style that identifies them within the
marketplace. A UIMS should be able to produce the style
used by a particular company. This style should be defined
once and then used in all subsequent user interfaces.

Type of control

Control of the application can be determined by the
application (internal) or determined by the UIMS (external).
A true UIMS provides support for external control. while a
toolkit only supports internal control.

Source of events/communication

This criterion deals with the run-time communications
between the user interface and the user, and between the
user interface and other components of the program. The
user interface must deal with the information entered by the
user (via the input devices). The UIMS can view this
communications in a number of ways. The simplest view is
that the user must interact with only one input device, and
the user interface selects the device he or she must use. An
alternative to this approach is that the user can only interact
with one device at a time, but the user can select the device.
At the opposite end of the spectrum, the user can interact
with several devices simultaneously. Note that this criterion
is based on the logical view supported by the UIMS and not
on how input is implemented by the UIMS,

A UIMS also supports communications between the
user interface and the other parts of the application. The
minimum level of interaction between the user interface and
the application is the transmission of user requests. user data
and application results. [n addition to this normal channel,
the user interface and the application program may be able
to interrupt each other. This may occur when the user wants
1o terminate a computation that is in progress, or when an
exception condition arises in the application that must be
dealt with by the user. This type of communication assumes
that the user interface and the application can be viewed as
separate processes.

4. Tasks and tools for user interface development
The overall process of developing a user interface

Computer Graphics » Volume 21 < Number 2 * April 1987/75

follows the standard waterfall life cycle of software
development. The individual phases of the waterfall life
cycle are as follows;

Requirements

Specification

Preliminary design

Detailed design

[mplementation
Testing

Maintenance

Our discussions started with this life cycle model, but
during the discussions it became clear that from a user
interface tools point of view it is hard to separate the
specification, preliminary design and detailed design phases.
In the following discussion, these three phases will be
discussed together.

Many of the activities within the life cycle and the
necessary software support tools are unique to the
development of user interfaces. This section summarizes
these activities and tools, based on the structure provided by
the waterfall life cycle model. All of these tools should be
integrated to allow the sharing of information between the
various phases of the software development life cycle.

® © © o © 2 O

Requirements phase

The primary goal of the requirements phase is to
develop an understanding and subsequent documentation of
the existing environment or problem domain. This goal is
achieved by developing a user process model and a data
model of the system. These models describe the user’s views
of the problem domain (both the objects of interest and how
they can be manipulated), and the underlying abstractions
used by the application developers. In most cases the
individuals involved in this process are the end user, who can
be viewed as an expert with a thorough understanding of the
problem domain, and a user interface designer, who is
responsible for collecting, organizing and documenting the
end user’s knowledge. The user interface designer must have
a good understanding of human behavior and user interface
technology, allowing him or her to match the user’s needs
with the best possible user interface.

The wording of the above statements suggest a strong
similarity between the tasks of user interface design and
knowledge engineering, Both of these activities attempt to
formally describe the operations performed by an expert. In
our case we want to use this knowledge to assist in the design
of good user interface. The knowledge engineering literature
could provide ideas for possible tools and techniques that
could be used in the requirements phase of user interface
design.

Various tools provide support for the activities involved
in the development of an understanding of the problem
domain. The user interface designer needs tools for
knowledge collection, acquisition and management. In
addition, tools are needed that allow a designer to illustrate
or model to an end user the designer's perceived
understanding of the problem domain. The definition or
description of the problem domain could be in terms of
objects. object relationships, actions, action relationships
(inverses, mutual exclusion, dependencies) and visual
representations of objects. Tools must be developed that
provide support for this process and enable a designer to
evaluate the consistency and completeness of the definition,

Rapid prototyping tools are also useful during this

76/Computer Graphics ¢« Volume 21 « Number 2 » April 1987

phase of software development, because they provide a
tangible and executable version of the final system. Rapid
prototypes are effective means for the user interface designer
to generate feedback from the end user. However, the
designer must be careful to prevent the user from
prematurely accepting the view provided by the prototype as
the only solution. Ideally, the user interface designer should
develop several prototypes that illustrate alternative design
strategies.

Specification and design phase

The information gathered in the requirements phase is
used to produce a system specification, which is a formal
description of the user interface to be developed. The
requirements identified in the previous phase should be
reflected in this specification. That is, for each requirement
it should be possible to identify the parts of the specification
which satisfy the requirement. When the requirements
change it should be possible to identify the parts of the
specification that must be updated. Tools that support this
tracing of the specifications from the requirements are
necessary to perform adequate verification of the
specifications. These tools could also assist with updating
the specifications when the requirements change.

Once the specification of the user interface is complete,
the design of the user interface can begin. User interface
design could benefit from a number of tools. One of these
tools is rapid prototyping. There are a number of properties
that a prototyping tool should have. It should be able to use
the specification of the user interface as a starting point for
the development of the prototype. This will have the
benefits of reducing the number of notations that the
designer must learn. and facilitate tracing the design back to
the requirements. An effective prototyping tool should
allow previously defined software components to be reused
in the new prototype, thus enabling a user interface designer
to quickly develop a large number of alternative designs.
Prototyping tools that allow a user interface designer to
refine a prototype into a completed design are more effective
than those that do not allow continual refinement. Finally
there should be a well defined. and potentially automated,
route from the prototype to the implementation of the user
interface. Once an acceptable design has been produced,
there should be no need to recode the design in another
notation. with the possibility of introducing errors.

Automated software tools that support the evaluation of
user interface designs need to be developed. There are two
aspects to this type of tool. One aspect is the detection of
features that could give the users problems when they are
interacting with the user interface. This type of evaluation
could deal with screen layout, command syntax. consistency
of the user model and usage of input devices. This type of
tool could produce a rating for the user interface, or it could
warn the designer of potential problems. The other aspect of
design evaluation is adherence to style manuals. [f a style
manual has been defined for a collection of user interfaces,
this tool would ensure that all the designs agreed with the
manual.

Tools that can automatically produce the design of a
user interface from its specification could have a significant
impact on the design of user interfaces. There are several
ways in which this type of tool could be used, depending
upon its sophistication. An automatic design tool could be
used to produce the first draft of the design. The output of

this tool should be in a form that is acceptable to a UIMS,
allowing the designer to move directly from a specification (o
an implementation of the user interface. The designer would
then refine the design until an acceptable user interface is
produced. In some cases the first draft may be acceptable.
Another possible use of an automatic design tool is in the
evaluation of different design strategies. For example, the
design tool could be instructed to design menu based, direct
manipulation and command based interfaces for the same
program. The designer could then evaluate each of these
approaches to determine the best one. This tool could also
be used to produce different interfaces for different user
communities.

Finally, a tool for tracing the design back to the
specification should also be developed. This tool could be
used in the evaluation of the design, and updating the design
when the specification changes. If automatic design tools are
used, a separate tracing tool may not be required.

In summary, in the design phase we need tools for rapid
prototyping, the evaluation of designs, automatic design and
tracing the designs back to the specification. In addition, the
design tools should encourage the definition of good user
interfaces by encouraging decisions that result in a good
interfaces, and discouraging decisions that result in a bad
ones.

Implementation phase

The implementation of the user interface design could
benefit from reusable software components. Software tools
that provide support for reusability must include adequate
mechanisms for the definition, storage and retrieval of
reusable components. Methods to categorize and express the
semantics of reusable components must be provided by the
software tool, thus enabling a user interface designer to
determine the existence and functionality of reusable
software components.

An ultimate long-term goal in the design and
implementation of user interfaces is to develop a set of tools
or an environment that will enable the requirements,
specifications, design and implementation phases to be
highly automated. A user interface designer should be able
to interact with this environment to accomplish all of the
following tasks:

Description of the problem domain

Rapid prototyping

Evaluation of the design including human factors criteria
Consistency and completeness analysis

Automatic implementation of the user interface

o © & 0 ¢

Testing phase

Testing of user interfaces should address both the
functionality and performance of the user interface. There
are two times at which testing must be performed. The first
occurs during the user interface development process. In
this case, all the features of the user interface must be
exercised to ensure that they are functioning correctly. The
second time is when modifications are made to the user
interface after it has been released. In this case, the
modifications must be tested to ensure that they have been
performed correctly, plus all the other features of the user
interface must also be tested to ensure that the modifications
have not invalidated previously correct parts of the user
interface. Tools should be developed to aid with this type of
regression testing. For non-interactive programs a set of
input data and the corresponding correct results can be used

for regression testing. In the case of user interfaces this is not
always possible, Most of the input comes from graphics
devices such as a mouse. Mouse positions can be logged,
and then played back as a means of testing, but if the screen
layout is changed the logged data could invoke different
operations than originally intended. Similarly, if the syntax
of commands has changed, logged input data will be useless
for regression testing. Determining whether the user
interface is producing the correct results can also be difficult,
Most of the important information produced by the user
interface takes the form of images on the screen. It is very
difficult to construct programs that automatically analyze the
images on a screen to determine if the correct output was
produced. The development of automated tools for the
regression testing of user interfaces is an important research
topic.

If the implementation of the user interface can be traced
to the specifications of the user interface, then the automatic
generation of test data may be possible. In addition, the
evaluation of the test results is an activity that could be
partially automated through the use of pre- and post-
conditions.

The removal of errors is the ultimate goal of the testing
process. therefore, tools should be developed to support
debugging. An ideal debugging tool allows the simultaneous
testing of the user interface and viewing of the software
support code.

The user interface must also be evaluated against
human factors criteria. If prototyping has been used in the
requirements and design phases, then a significant amount of
human factors evaluation will have already been completed
by this phase of the life cycle. Human factors evaluations
should be performed in all phases of the life cycle.

An effective user interface evaluation should inciude the
logging of the user’s interaction with the user interface. This
logging should be correlated with the tasks being performed,
thus allowing the user interface evaluator to determine
where and when excessive user entry errors, requests for
assistance and pauses occur. Tools that provide support for
the automated analysis of the logs enable the user interface
evaluator to effectively identify areas of poor design.

A considerable amount of detailed information can be
produced when logging user interactions, therefore, tools
must be developed to process this data and generate
summarized information and statistics concerning user
interaction. Such tools can act as filters for the user interface
evaluator, thus shielding the evaluator from low-level details.

In addition, a feedback mechanism should be included
in the design of the user interface. This feedback mechanism
allows the user to provide critical comment on the user
interaction process.

Maintenance phase

The maintenance phase requires careful consideration
since a modification to the user interface may have a direct
and adverse effect on the end user community.
Modifications to the wuser interface are particularly
problematic when users are able to customize the interface.
Through customization, multiple views of the user interface
can develop; user interface maintenance must take into
account every possible view.

Tools must be developed that indicate to a maintainer
the extent to which a modification will affect the user
interface. A user interface maintainer can then evaluate,

Computer Graphics * Volume 21 * Number 2 ¢ April 1987/77

prior to making a change, the impact that the modification
will have on the end user community.

5. Suggested topics and areas of research
The information generated from a workshop affects the

direction of subsequent research on the topic. One of the

goals of this workshop was to suggest specific areas of user
interface and UIMS research that should be addressed by
industry and academia.

In general, the predominant areas of research are the
development of tools that provide support for the
development/evaluation of user interfaces, the development
of higher-level languages for the definition and
implementation of user interfaces and the development of
formal taxonomies/categorizations of UIMS, Nine specific
research topics are as follows;

1) Determine how artificial intelligence and knowledge
engineering can support the definitions of the
conceptual model of the user’s problem or system being
developed. In the development of a system such as a
user interface, research should define a method, tool or
environment to enable a knowledge engineer to present
the end user with a description or conceptual model of
the system. Modeling is particularly important in the
development of a user interface.

2) Define and develop data structures that will provide
adequate support and effective interfaces for user
interface software tools.

3) Develop user interface design tools that can acquire and
use higher-level knowledge about user interface
concepts for particular application domains. This
higher-level knowledge includes the objects, actions and
relationships in specific problem domains. Design tools
should allow the definition and reuse of primitives in
specific application domains, thus enabling user

interface designers to begin defining user interfaces in
terms of abstract objects instead of lower-level
programming language concepts.

4) Determine the characteristics of good user interface
designs and how these characteristics can be quantified
and measured. Tools should then be developed that
will encourage user interface designers to define good
user interfaces by making easy those decisions that
result in good user interfaces and making difficult those
decisions that result in bad user interfaces.

5) Develop prototyping tools that will facilitate feedback
from the end users of the interface. The feedback
resulting from the end user’s interaction with the
prototype can be used to further refine the requirements
of the user interface.

6) Develop a formal taxonomy or categorization of UIMS
functionality with respect to the control and data models
provided by UIMS. As additional examples of UIMS
are developed. a taxonomy will be important in
evaluation,

7} Conduct research in the area of UIMS and distributed
systems. The majority of work on UIMS has been
concerned with supporting the development of
applications executing on single user workstations or
single processor computer systems,

8) Investigate the automatic generation of user interfaces
from high-level specifications. The higher-level
specifications should be defined in terms of objects,
actions and relationships between objects and actions,

9} Investigate the use of conventional tools and techniques
that have been defined to support the software
development process. These tools include prototyping.
testing, debugging, evaluation and configuration
management tools.

Tools and Methodology for User Interface Development
Jim Rhyne, Roger Ehrich, John Bennett, Tom Hewett, John Sibert, Terry Bleser

1. Task force organization and objectives

The members of this task force were: John Bennett,
Terry Bleser, Neil Corrigan, Roger Ehrich, Tom Hewett,
Przemyslaw Prusinkiewicz, Hank Ramsey, Jim Rhyne, Kurt
Schmucker, John Sibert and John Wiberg. We jointly
prepared an annotated outline for this report during the
workshop. The conversion of this outline to prose, after we
had left Seattle, was done by Jim Rhyne, Roger Ehrich, John
Bennett. Tom Hewett, John Sibert and Terry Bleser. In the
process, we were again reminded of the inadequacy of
present editing, networking and text formatting tools for
such a task.

The objective of the task force was to characterize in a
broad way the understanding of procedures for enduser
interface design and development. Discussion often focused
on tools to assist designers and implementers, paying
particular attention to research topics of current and future
interest. There was a consensus that enduser interface
software proceeds through phases of requirements/solutions,
design, implementation and testing common to other
software and hardware developments.

78/Computer Graphics ® Volume 21 » Number 2 » April 1987

The primary focus of research has been on
implementation, and little progress has been made on
methodology and tools for the other phases. We also lack
integrated tools for use throughout all of the phases.
Consequently, most of the group’s effort went to
requirements/solutions and design. The group members felt
that the most important testing of an enduser interface was
its scrutiny by the actual endusers and by human factors
experts, and that this testing must occur at the earliest stages
of the development, rather than at the end. Auditing of the
final software is also essential, but should not be a problem
when the design of the interface is cleanly specified.

Perhaps the most important software development
bearing on the enduser interface has been the User Interface
Management System (UIMS). Since Kasik published his
research paper with this title [14]. the pace of research into
enduser interface development and tools has greatly
accelerated. We begin with an assessment of the state of this
development.

