
Goals and Objectives for User Interface Software
Bill Betts, David Burlingame, Gerhard Fischer, Jim Foley, Mark Green, David Kasik, Stephen T . Kerr, Dan Olsen, James Thomas

This written report summarizes the discussions an d
conclusions of the goals and objectives group at th e
ACM/SIGGRAPH Workshop on Software Tools for Use r
Interface Development . The report is organized into th e
following sections :
e Section 1 — Overview of group goals and discussions

Section 2 — Definition and characteristics of a UIM S
® Section 3 — Criteria used to develop a taxonomy of a

UIM S
Section 4 — Tasks and tools fo r
user interface developmen t

o Section 5 — Suggested topics and areas of research

1 . Overview of group goals and discussion s
The members of the group have been both developer s

and end users of user interfaces . This experience provided
two perspectives on the nature of user interface software .
Both of these views played a major role in our discussion s
and the conclusions presented here .

The two primary goals of the group were to enumerate
the various tasks or actions involved in the development o f
user interfaces and to determine the software tools that coul d
provide automated support for these actions .

Prior to discussing the activities and software tool s
required for user interface development, the group discusse d
these topics :
e Definition of a UIM S
o Characteristics of a UIM S
o Criteria to be used in developing a taxonomy of a UIM S

The group also defined several areas and topics o f
research on user interfaces and UIMS that should b e
investigated by the academic and industrial research
community .

This report documents these discussions an d
conclusions .

2 . Definitions and characteristics of a UIMS
A User Interface Management System (UIMS) is a too l

(or tool set) designed to encourage interdisciplinar y
cooperation in the rapid development, tailoring and
management (control) of the interaction in an applicatio n
domain across varying devices, interaction techniques an d
user interface styles . A UIMS tailors and manages (controls)
user interaction in an application domain to allow for rapi d
and consistent development . A UIMS can be viewed as a
tool for increasing programmer productivity . In this way it i s
similar to a fourth generation language, where th e
concentration is on specification instead of coding . A UIM S
can be described from two different viewpoints : the
viewpoint of the software developer and the viewpoint of th e
end user .

A software developer regards a UIMS as a tool tha t
provides support for the definition of the user/applicatio n
dialogue, imposes external control on the application ,
provides support for the presentation of the application' s
output and includes an interactive component providin g
support for the interaction between an application and a n
end user . A software developer requires that a UIM S
provide a user interface with the following characteristics :

e Consistenc y
e Support for a range of users from novice to exper t
o Support for error handling and recovery
o Support for tailorability and extensibility of applicatio n

The use of a UIMS by software developers encourage s
the development of better software by :
o Providing a consistent user interface between relate d

application s

• Encouraging development and use of reusable softwar e
components

e Insulating applications from the complexities of the
environmen t

e Shielding applications from the effects of the end use r
o Supporting ease of learning and use of application s

From the viewpoint of an end user, the primary goal o f
a UIMS is to support the easy and effective use of a n
application . A UIMS provides the following advantages to
an end user :
o Consistent user interface across application s
o Support for multiple levels of help or assistanc e
o Support for trainin g
o Support for end user tailoring of the interfac e
o Support for extensibility of applicatio n

Developers of user interfaces must have software
development/design skills, knowledge of human factors an d
experience in the area of human-computer interaction .
Additional software development resources must b e
allocated for the design of user interfaces since this phase
now becomes distinct from the application developmen t
process .

3 . Criteria used to develop a taxonomy of a UIM S
This section of the report includes an enumeration an d

discussion of a proposed set of criteria to be used in th e
development of a taxonomy of a UIMS . The developmen t
of this taxonomy is required for effective evaluation of ne w
and existing UIMSs. The inclusion of a criterion in this list
does not imply that a UIMS should (or must) possess that
characteristic . The criteria are organized into two groups :
The first group is associated with an end user's view of a
UIMS. and the second group is associated with a use r
interface designer's view of a UIMS .

User oriented criteri a
The criteria associated with an end user's view of a

UIMS are organized into these five categories :
e Dialogue tailorability
® Mechanisms for tailorability
o Interaction support
e Dialogue style
o Dialogue sequence

Dialogue tailorabilit y
The first criterion is whether the UIMS supports th e

tailorability of the interface by the end user . There are a t
least two levels at which this tailorability can occur. The firs t
level is the lexical level, where the user has control ove r
where menus, windows and other interaction objects ar e
placed on the screen, command names and some details o f
lexical feedback (for example whether a bell rings or th e
screen flashes in order to attract the user's attention) . The

Computer Graphics • Volume 21 • Number 2 April 1987/7 3



second level is in the structuring of the dialogue, or syntax o f
the interaction . At this level the user can modify existin g
commands and add new commands to the user interface .
The new commands added to the dialogue could b e
combinations or old commands, or commands that add ne w
functionality to the user interface . A UIMS may support
either, both or none of these levels .

Mechanism of dialogue tailorabilit y
The mechanisms provided for tailoring the use r

interface will determine the frequency and nature of th e
changes that can be made . For some user interfaces, such a s
automatic tellers, user tailorability is not desirable . In thi s
case the UIMS should not automatically provide tailorabilit y
features . In some applications the user interface must b e
customizable to different user communities . These use r
communities could represent different language groups ,
countries or job functions . In this case one user (or a smal l
group of users) will be responsible for all modifications, I n
other applications any user can potentially modify the user
interface . This can cause some problems, and may no t
always be desirable . If each user has a custom interface,
there could be problems with training and the transfer o f
knowledge between users . Customized user interfaces can
cause problems when the user interface is updated t o
account for new program features . When this is done the
modifications made by the user may no longer be applicable .
The UIMS may provide features that simplify the migration
of users from one version of the user interface to another. I n
addition to providing mechanisms for dialogue tailorability .
the UIMS may also provide a means of controlling whe n
these mechanisms can be used, and by whom .

A number of mechanisms for dialogue tailorability hav e
been proposed . The most flexible mechanism i s
programming by example . Another mechanism supportin g
tailorability is simple textual specification by the end user.
An example of using textual specification for tailorability i s
the definition of macros .

Interaction suppor t
The degree of support provided by a UIMS for th e

interaction between an application and an end user i s
determined by the following capabilities :
e Help — An end user should be able to acquire help whe n

necessary; however, the request for help should b e
unobtrusive .

e Embedded training — The success of an applicatio n
depends on the ease of learning . Learning time is greatl y
reduced when training can be embedded in the use r
interface and can be dynamically accessed by the en d
user as necessary . An interface that allows an end user t o
simultaneously interact with an application and receive
training is an effective method of embedded training .

e User error avoidance and recovery — Good user
interfaces have a number of features that help the user
recover from errors and unexpected actions. These
features can be divided into three groups dependin g
upon when they are used . The first group of features,
called escapes, is used when the user is in the middle o f
specifying a command. They allow the user to gracefull y
back out of a command that he or she doesn't want t o
use . The second group, called stops, is used to terminate
or suspend a command while it is executing . The third
group, called undo, is used to reverse the effects of a
command that has been executed .

74/Computer Graphics • Volume 21 • Number 2 • April 1987

e Defaults — The ability of the end user to use defaults a s
defined by the application results in a decrease in
interaction time. In addition, defaults reduce th e
requisite knowledge that an end user must possess t o
understand the capabilities of an application .

Dialogue styl e
In order to cover a wide range of applications and use r

groups a UIMS should support a wide range of dialogu e
styles . Some of the dialogue styles that could be supporte d
by a UIMS are :
o Simple command interactio n
o Form interactio n
e Question/answer interactio n
e Graphical manipulation providing only lexical feedback
e Graphical manipulation providing semantic feedbac k
• Direct manipulation of graphical image s

Ideally, a UIMS should support a range of dialogu e
styles from which a user can select . The sophistication of a
user governs the type of dialogue style that is chosen .

Dialogue sequence
Support for free or random navigation through a

dialogue enhances the usefulness and flexibility of th e
system . Some types of dialogue sequences that could b e
supported by a UIMS are as follows :
• Flat — In this type of user interface all the commands ar e

accessible at each point in the dialogue . That is, there i s
no particular structure imposed on the commands .

• Hierarchy — In this type of user interface the command s
are organized into a strict hierarchy . At each place in th e
hierarchy, only the commands at that point can be used .
If the user wants to execute another command, he or sh e
must move to the part of the hierarchy where th e
command is located .

o Hierarchy with limited deviation — In this case th e
commands are organized into a hierarchy, but the user i s
given more freedom in moving about the hierarchy . Fo r
example, the same command could appear at severa l
places in the hierarchy, or there could be direc t
connections from one part of the hierarchy to another .

e Multi-threaded — In a multi-threaded dialogue, th e
specification of one command, or a sequence of
commands, can be suspended while the user perform s
one or more unrelated commands . A common exampl e
of this is the use of a calculator to compute the value o f
an operand in the middle of specifying the command .

• Multi-threaded with multi-programming — This is a n
extension of multi-threaded dialogues that allow the use r
to execute several commands simultaneously . At any
point in time the user may be taking part in multipl e
dialogue, with no dialogue suspended .

Designer oriented criteri a
The previous criteria are used to characterize a UIM S

from an end user's viewpoint . From a user interfac e
designer's viewpoint, the following criteria are important i n
developing a taxonomy of UIMS :
e Rapid prototypin g
• Reusable components
e Specification granularit y
o Intelligent assistanc e
o Explicit semantic s
o Evaluation/testing
e Open architectur e
o Type of control provided (internal or external)



e Type of model supported (state, object, direc t
manipulation )

• Source of events/communicatio n

Rapid prototypin g
Support for rapid prototyping enhances th e

effectiveness of a UIMS since feedback from the end use r
can be obtained early in the software development life cycle .
A UIMS that provides support for the transition from a
rapid prototype to a final system is particularly effectiv e
since components of the rapid prototype can be reused in th e
final system . The support of reusability reduces the time an d
cost of software development .

Reusable components
A UIMS that provides support for the development an d

reuse of software components increases the productivity o f
the user interface designer . In addition, support for reusabl e
software components encourages the development of full y
tested, evaluated and documented user interface libraries ,
Other direct consequences of reusable software component s
are standardization of user interfaces and enhanced suppor t
for rapid prototyping.

Specification granularity
Specification granularity deals with the amount of detai l

a user interface designer provides when defining the user
interface, There are two aspects to specification granularity .
The first aspect is the amount of information that the use r
interface designer must provide before the UIMS ca n
construct a user interface. At one end of this spectrum th e
designer only needs to list the operations (and thei r
arguments) supported by the user interface and the UIM S
will automatically construct a user interface . At the othe r
end of the spectrum the designer must specify every detail o f
the user interface design (for example, the screen position o f
each interaction and display technique, and the details of th e
dialogue in the form of a transition diagram) . The use of
higher level specifications should simplify the production of
user interfaces . The other aspect of specification granularit y
is the ability to switch from one level to another, if the firs t
version of the user interface was produced from a high leve l
specification, is it possible to use a lower level specificatio n
to modify fine details of the interaction? In other words, ca n
the granularity of the specification be adjusted to support th e
operations the designer wants to perform .

Intelligent assistanc e
Intelligent assistance refers to the amount of assistanc e

or direction that a UIMS provides in the definition of th e
user interface . A UIMS should encourage the creation o f
good designs by making tasks or activities that result in suc h
designs easy to accomplish . Actions, activities and decisions
that result in poor user interface designs should be eithe r
disallowed or difficult to accomplish . Intelligent assistanc e
should also provide support for the management ,
organization and tracking of alternative designs of user
interfaces .

Explicit semantic s
This criterion determines the degree to which a UIM S

allows the semantics of the application to be easily an d
formally represented in the elements of the user interface .
The semantics of the application are expressed in th e
behavior of the objects and actions of the user interface an d
in the relationship between these objects and actions .

Support should be provided for the definition of the

relationship between the semantics and symbology (visua l
representation) of the semantics . For example, the color re d
is associated with danger or stop, and the color green i s
associated with safe or continue : the UIMS should allow a
user interface designer to easily define and subsequentl y
modify this relationship without creating significant ripple
effects through the user interface and the application .

Evaluation/testin g
The level and degree of automated support fo r

evaluation and testing that a UIMS provides a user interfac e
designer is a criterion that should be addressed in developing
a taxonomy of UIMS . A UIMS should provide support for
testing and evaluation in all phases of the softwar e
development life cycle (requirements, specification, design ,
implementation and maintenance) .

Open architecture
A UIMS that provides support for an open architectur e

by allowing the addition of other interaction techniques i s
more flexible, extensible and customizable by the end use r
than one that does not . The ability of the user interfac e
designer to define an individual style of interaction an d
presentation is also an attribute of an open architecture . Th e
style of interaction and presentation is an importan t
commercial consideration . Most software companies hav e
their own unique style that identifies them within th e
marketplace . A UIMS should be able to produce the styl e
used by a particular company . This style should be define d
once and then used in all subsequent user interfaces .

Type of contro l
Control of the application can be determined by th e

application (internal) or determined by the UIMS (external) .
A true UIMS provides support for external control, while a
toolkit only supports internal control .

Source of events/communicatio n
This criterion deals with the run-time communication s

between the user interface and the user, and between th e
user interface and other components of the program . The
user interface must deal with the information entered by th e
user (via the input devices) . The UIMS can view thi s
communications in a number of ways . The simplest view i s
that the user must interact with only one input device, and
the user interface selects the device he or she must use . A n
alternative to this approach is that the user can only interact
with one device at a time, but the user can select the device .
At the opposite end of the spectrum, the user can interact
with several devices simultaneously . Note that this criterio n
is based on the logical view supported by the UIMS and no t
on how input is implemented by the UIMS .

A UIMS also supports communications between th e
user interface and the other parts of the application . The
minimum level of interaction between the user interface an d
the application is the transmission of user requests, user dat a
and application results . In addition to this normal channel ,
the user interface and the application program may be abl e
to interrupt each other. This may occur when the user wants
to terminate a computation that is in progress, or when a n
exception condition arises in the application that must b e
dealt with by the user . This type of communication assumes
that the user interface and the application can be viewed a s
separate processes .

4. Tasks and tools for user interface development
The overall process of developing a user interfac e

Computer Graphics • Volume 21 • Number 2 • April 1987/75



follows the standard waterfall life cycle of softwar e
development . The individual phases of the waterfall life
cycle are as follows :
o Requirements
o Specificatio n
o Preliminary design
o Detailed design
o Implementatio n
o Testing
o Maintenance

Our discussions started with this life cycle model, bu t
during the discussions it became clear that from a use r
interface tools point of view it is hard to separate th e
specification, preliminary design and detailed design phases .
In the following discussion, these three phases will b e
discussed together .

Many of the activities within the life cycle and th e
necessary software support tools are unique to th e
development of user interfaces . This section summarize s
these activities and tools, based on the structure provided b y
the waterfall life cycle model . All of these tools should be
integrated to allow the sharing of information between th e
various phases of the software development life cycle .

Requirements phas e
The primary goal of the requirements phase is to

develop an understanding and subsequent documentation o f
the existing environment or problem domain . This goal i s
achieved by developing a user process model and a data
model of the system. These models describe the user's view s
of the problem domain (both the objects of interest and ho w
they can be manipulated), and the underlying abstraction s
used by the application developers . In most cases the
individuals involved in this process are the end user, who ca n
be viewed as an expert with a thorough understanding of th e
problem domain, and a user interface designer, who i s
responsible for collecting, organizing and documenting th e
end user's knowledge . The user interface designer must have
a good understanding of human behavior and user interfac e
technology, allowing him or her to match the user's need s
with the best possible user interface.

The wording of the above statements suggest a stron g
similarity between the tasks of user interface design an d
knowledge engineering . Both of these activities attempt to
formally describe the operations performed by an expert . In
our case we want to use this knowledge to assist in the desig n
of good user interface . The knowledge engineering literatur e
could provide ideas for possible tools and techniques tha t
could be used in the requirements phase of user interfac e
design .

Various tools provide support for the activities involve d
in the development of an understanding of the proble m
domain .

	

The user interface designer needs tools fo r
knowledge collection, acquisition and management . I n
addition, tools are needed that allow a designer to illustrate
or model to an end user the designer's perceive d
understanding of the problem domain . The definition or
description of the problem domain could be in terms o f
objects, object relationships, actions, action relationship s
(inverses, mutual exclusion, dependencies) and visua l
representations of objects . Tools must be developed tha t
provide support for this process and enable a designer t o
evaluate the consistency and completeness of the definition .

Rapid prototyping tools are also useful during thi s

76/Computer Graphics • Volume 21 • Number 2 • April 1987

phase of software development, because they provide a
tangible and executable version of the final system . Rapid
prototypes are effective means for the user interface designe r
to generate feedback from the end user . However, the
designer must be careful to prevent the user fro m
prematurely accepting the view provided by the prototype a s
the only solution . Ideally, the user interface designer shoul d
develop several prototypes that illustrate alternative desig n
strategies .

Specification and design phas e
The information gathered in the requirements phase i s

used to produce a system specification, which is a forma l
description of the user interface to be developed . The
requirements identified in the previous phase should b e
reflected in this specification . That is, for each requiremen t
it should be possible to identify the parts of the specificatio n
which satisfy the requirement . When the requirements
change it should be possible to identify the parts of th e
specification that must be updated . Tools that support thi s
tracing of the specifications from the requirements ar e
necessary to perform adequate verification of th e
specifications . These tools could also assist with updatin g
the specifications when the requirements change .

Once the specification of the user interface is complete ,
the design of the user interface can begin . User interfac e
design could benefit from a number of tools . One of these
tools is rapid prototyping . There are a number of propertie s
that a prototyping tool should have . It should be able to use
the specification of the user interface as a starting point for
the development of the prototype . This will have th e
benefits of reducing the number of notations that th e
designer must learn, and facilitate tracing the design back t o
the requirements . An effective prototyping tool shoul d
allow previously defined software components to be reuse d
in the new prototype, thus enabling a user interface designe r
to quickly develop a large number of alternative designs .
Prototyping tools that allow a user interface designer t o
refine a prototype into a completed design are more effectiv e
than those that do not allow continual refinement . Finally
there should be a well defined . and potentially automated ,
route from the prototype to the implementation of the use r
interface . Once an acceptable design has been produced ,
there should be no need to recode the design in anothe r
notation, with the possibility of introducing errors .

Automated software tools that support the evaluation o f
user interface designs need to be developed . There are tw o
aspects to this type of tool . One aspect is the detection o f
features that could give the users problems when they ar e
interacting with the user interface . This type of evaluatio n
could deal with screen layout, command syntax, consistenc y
of the user model and usage of input devices . This type o f
tool could produce a rating for the user interface, or it coul d
warn the designer of potential problems . The other aspect o f
design evaluation is adherence to style manuals . If a styl e
manual has been defined for a collection of user interfaces ,
this tool would ensure that all the designs agreed with th e
manual .

Tools that can automatically produce the design of a
user interface from its specification could have a significan t
impact on the design of user interfaces . There are severa l
ways in which this type of tool could be used, dependin g
upon its sophistication . An automatic design tool could b e
used to produce the first draft of the design . The output of



this tool should be in a form that is acceptable to a UIMS ,
allowing the designer to move directly from a specification t o
an implementation of the user interface . The designer would
then refine the design until an acceptable user interface i s
produced . In some cases the first draft may be acceptable .
Another possible use of an automatic design tool is in th e
evaluation of different design strategies . For example, th e
design tool could be instructed to design menu based, direc t
manipulation and command based interfaces for the sam e
program. The designer could then evaluate each of these
approaches to determine the best one . This tool could also
be used to produce different interfaces for different use r
communities .

Finally, a tool for tracing the design back to th e
specification should also be developed . This tool could b e
used in the evaluation of the design, and updating the desig n
when the specification changes . If automatic design tools are
used, a separate tracing tool may not be required .

In summary, in the design phase we need tools for rapi d
prototyping, the evaluation of designs, automatic design an d
tracing the designs back to the specification . In addition, th e
design tools should encourage the definition of good use r
interfaces by encouraging decisions that result in a goo d
interfaces, and discouraging decisions that result in a ba d
ones .

Implementation phase
The implementation of the user interface design coul d

benefit from reusable software components . Software tool s
that provide support for reusability must include adequat e
mechanisms for the definition, storage and retrieval o f
reusable components . Methods to categorize and express th e
semantics of reusable components must be provided by th e
software tool, thus enabling a user interface designer t o
determine the existence and functionality of reusable
software components .

An ultimate long-term goal in the design an d
implementation of user interfaces is to develop a set of tool s
or an environment that will enable the requirements ,
specifications, design and implementation phases to b e
highly automated . A user interface designer should be abl e
to interact with this environment to accomplish all of th e
following tasks :
• Description of the problem domai n
• Rapid prototyping
• Evaluation of the design including human factors criteri a
• Consistency and completeness analysi s
• Automatic implementation of the user interfac e

Testing phas e
Testing of user interfaces should address both the

functionality and performance of the user interface . There
are two times at which testing must be performed . The firs t
occurs during the user interface development process . In
this case, all the features of the user interface must b e
exercised to ensure that they are functioning correctly . The
second time is when modifications are made to the use r
interface after it has been released . In this case, the
modifications must be tested to ensure that they have bee n
performed correctly, plus all the other features of the use r
interface must also be tested to ensure that the modification s
have not invalidated previously correct parts of the use r
interface . Tools should be developed to aid with this type o f
regression testing. For non-interactive programs a set o f
input data and the corresponding correct results can be used

for regression testing . In the case of user interfaces this is no t
always possible . Most of the input comes from graphics
devices such as a mouse, Mouse positions can be logged ,
and then played back as a means of testing, but if the scree n
layout is changed the logged data could invoke differen t
operations than originally intended . Similarly, if the syntax
of commands has changed, logged input data will be useles s
for regression testing . Determining whether the use r
interface is producing the correct results can also be difficult .
Most of the important information produced by the use r
interface takes the form of images on the screen . It is very
difficult to construct programs that automatically analyze th e
images on a screen to determine if the correct output wa s
produced . The development of automated tools for th e
regression testing of user interfaces is an important research
topic .

If the implementation of the user interface can be trace d
to the specifications of the user interface, then the automatic
generation of test data may be possible . In addition, th e
evaluation of the test results is an activity that could be
partially automated through the use of pre- and post -
conditions .

The removal of errors is the ultimate goal of the testin g
process; therefore, tools should be developed to suppor t
debugging . An ideal debugging tool allows the simultaneou s
testing of the user interface and viewing of the softwar e
support code .

The user interface must also be evaluated agains t
human factors criteria . If prototyping has been used in th e
requirements and design phases, then a significant amount o f
human factors evaluation will have already been complete d
by this phase of the life cycle . Human factors evaluation s
should be performed in all phases of the life cycle.

An effective user interface evaluation should include th e
logging of the user's interaction with the user interface . Thi s
logging should be correlated with the tasks being performed ,
thus allowing the user interface evaluator to determin e
where and when excessive user entry errors, requests fo r
assistance and pauses occur . Tools that provide support fo r
the automated analysis of the logs enable the user interfac e
evaluator to effectively identify areas of poor design .

A considerable amount of detailed information can b e
produced when logging user interactions, therefore, tool s
must be developed to process this data and generat e
summarized information and statistics concerning use r
interaction . Such tools can act as filters for the user interface
evaluator, thus shielding the evaluator from low-level details .

In addition, a feedback mechanism should be included
in the design of the user interface . This feedback mechanis m
allows the user to provide critical comment on the user
interaction process .

Maintenance phas e
The maintenance phase requires careful consideratio n

since a modification to the user interface may have a direc t
and adverse effect on the end user community .
Modifications to the user interface are particularl y
problematic when users are able to customize the interface .
Through customization, multiple views of the user interface
can develop ; user interface maintenance must take int o
account every possible view .

Tools must be developed that indicate to a maintaine r
the extent to which a modification will affect the user
interface . A user interface maintainer can then evaluate ,

Computer Graphics • Volume 21 • Number 2 • April 1987/77



prior to making a change, the impact that the modificatio n
will have on the end user community .

5 . Suggested topics and areas of researc h
The information generated from a workshop affects th e

direction of subsequent research on the topic. One of the
goals of this workshop was to suggest specific areas of use r
interface and UIMS research that should be addressed b y
industry and academia .

In general, the predominant areas of research are th e
development of tools that provide support for th e
development/evaluation of user interfaces, the developmen t
of higher-level languages for the definition an d
implementation of user interfaces and the development o f
formal taxonomies/categorizations of UIMS . Nine specifi c
research topics are as follows :
1) Determine how artificial intelligence and knowledge

engineering can support the definitions of th e
conceptual model of the user's problem or system bein g
developed . In the development of a system such as a
user interface, research should define a method, tool or
environment to enable a knowledge engineer to presen t
the end user with a description or conceptual model o f
the system. Modeling is particularly important in the
development of a user interface .

2) Define and develop data structures that will provid e
adequate support and effective interfaces for use r
interface software tools .

3) Develop user interface design tools that can acquire an d
use higher-level knowledge about user interface
concepts for particular application domains . This
higher-level knowledge includes the objects, actions an d
relationships in specific problem domains . Design tool s
should allow the definition and reuse of primitives i n
specific application domains, thus enabling user

interface designers to begin defining user interfaces i n
terms of abstract objects instead of lower-leve l
programming language concepts .

4) Determine the characteristics of good user interfac e
designs and how these characteristics can be quantified
and measured. Tools should then be developed that
will encourage user interface designers to define goo d
user interfaces by making easy those decisions that
result in good user interfaces and making difficult thos e
decisions that result in bad user interfaces .

5) Develop prototyping tools that will facilitate feedbac k
from the end users of the interface . The feedback
resulting from the end user's interaction with th e
prototype can be used to further refine the requirement s
of the user interface .

6) Develop a formal taxonomy or categorization of UIM S
functionality with respect to the control and data model s
provided by UIMS . As additional examples of UIM S
are developed, a taxonomy will be important i n
evaluation .

7) Conduct research in the area of UIMS and distribute d
systems . The majority of work on UIMS has bee n
concerned with supporting the development o f
applications executing on single user workstations o r
single processor computer systems .

8) Investigate the automatic generation of user interface s
from high-level specifications. The higher-leve l
specifications should be defined in terms of objects ,
actions and relationships between objects and actions .

9) Investigate the use of conventional tools and technique s
that have been defined to support the softwar e
development process . These tools include prototyping ,
testing, debugging, evaluation and configuratio n
management tools .

Tools and Methodology for User Interface Developmen t
Jim Rhyne, Roger Ehrich, John Bennett, Tom Hewett, John Sibert, Terry Bleser

1 . Task force organization and objectives

The members of this task force were : John Bennett ,
Terry Bleser, Neil Corrigan, Roger Ehrich, Tom Hewett ,
Przemyslaw Prusinkiewicz, Hank Ramsey, Jim Rhyne, Kurt
Schmucker, John Sibert and John Wiberg . We jointl y
prepared an annotated outline for this report during th e
workshop . The conversion of this outline to prose, after w e
had left Seattle, was done by Jim Rhyne, Roger Ehrich, Joh n
Bennett, Tom Hewett, John Sibert and Terry Bleser . In th e
process, we were again reminded of the inadequacy o f
present editing, networking and text formatting tools fo r
such a task .

The objective of the task force was to characterize in a
broad way the understanding of procedures for enduse r
interface design and development . Discussion often focused
on tools to assist designers and implementers, payin g
particular attention to research topics of current and futur e
interest . There was a consensus that enduser interface
software proceeds through phases of requirements/solutions ,
design . implementation and testing common to other
software and hardware developments .

78/Computer Graphics • Volume 21 • Number 2 • April 1987

The primary focus of research has been o n
implementation, and little progress has been made o n
methodology and tools for the other phases . We also lac k
integrated tools for use throughout all of the phases .
Consequently, most of the group's effort went to
requirements/solutions and design . The group members fel t
that the most important testing of an enduser interface wa s
its scrutiny by the actual endusers and by human factors
experts, and that this testing must occur at the earliest stage s
of the development, rather than at the end . Auditing of th e
final software is also essential, but should not be a proble m
when the design of the interface is cleanly specified .

Perhaps the most important software developmen t
bearing on the enduser interface has been the User Interfac e
Management System (UIMS) . Since Kasik published hi s
research paper with this title [14], the pace of research int o
enduser interface development and tools has greatl y
accelerated . We begin with an assessment of the state of thi s
development .


