
Cognitive Engineering in the Design of Human-Computer Interaction and Expert Systems,
edited by G. Salvendy
Elsevier Science Publishers B.V., Amsterdam, 1987 - Printed in The Netherlands

MAKING COMPUTERS MORE USEFUL AND MORE USABLE

GERHARD FISCHER
Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder

Abstract

97

Useful computers which are not usable are of little help; but so are usable computers which are not
useful. One of the major goals of our research is to achieve these two goals simultaneously. We claim that
useful computers have to be complex systems with a rich functionality. To make these systems usable and
to exploit their power, we have constructed a variety of computer-based intelligent support systems which
take advantage of the interactive and dynamic nature of computer systems.

Information and knowledge embedded in computers can be represented and used in qualitatively
different ways than on paper. Paper is passive and can only serve as a repository for information, whereas
computer systems can be active and assist us in searching, understanding and creating knowledge in the
course of cooperative problem solving processes.

1. Introduction
For ,system to be useful (Le. applicable to a wide range of problems by providing suitable

abstractions), they have to offer a rich functionality (examples are systems like UNIX and LISP machines; see

Figure 2-1). But systems with a rich functionality are in danger of becoming unusable. On the other hand,
usable systems (e.g. like the MACINTOSH or the PINBALL CONSTRUCTION KIT [Fischer, Lemke 87]) are limited in

their usefulness by their limited applicability and extenSibility. To resolve this design trade-off is one of the
major goals of our research.

Just as we need large libraries, we need complex computer systems. Although there is much
leverage to be gained of thinking.of online information systems as "books" or "libraries", this metaphor can

overshadow the dynamic nature of the information and its interactive uses. In this paper, we will first
illustrate our belief why there will always be a need for complex systems. Our answer towards mastering

these complex systems is the use of computer-based intelligent support systems, which help the user
asking the right questions, finding information, using it, understanding it, modifying it and personalizing it.

2. Reality is not User-Friendly - or: There will always be a Need for Complex
Systems

Modern computer systems are best understood not in their capacity to compute but to serve as

knowledge stores. And because there is lots of knowledge around, we should not expect that the systems

will be small and simple, but hey will be large and complex. The dimensions of some prototypical systems
are given in Figure 2-1.

Systems offering such a rich functionality are a mixed blessing: in a very large knowledge store it is

much more likely to find something related to what we need, but it is also much more difficult to find
something specific. Our empirical investigations indicate that the following problems prevent many users

98

Number of Computational Objects in Systems

EMACS:

• 170 function keys and 462 commands

UNIX:

• more than 700 commands and a large number of embedded systems

LlSP·Systems:

• FRANZ-LISP: 685 functions
• WlISP: 2590 LISP functions and 200 ObjTalk classes
• SYMBOLICS LISP MACHINES: 19000 functions and 2300 flavors

Amount of Written Documentation

Symbollcs LISP Machines:

• 10 Books with 3000 Pages
• does not include any application programs

SUN workstations:

• 15 books with 4600 pages
• additional Beginner's Guides: 8 books totaling 800 pages

Figure 2-1: Quantitative Analysis of Some Systems

and designers from successfully exploiting the potential of these high-functionality systems, because

• they do not know about the existence of tools;

• they do not know how to access tools;

• they do not know when to use these tools;

• they do not understand the results that tools produce for them;

• they cannot combine, adapt, and modify a tool to their specific needs.

A consequence of these problems is that these systems are underused and the broad functionality is of

little value. We are strongly convinced that what is needed is not quantitatively more intormation but

qualitatively new ways to structure and present information.

3. Intelligent Support Systems
We claim that in future computer systems, a high percentage of the computational power should be

used to make these systems usable, manageable and useful. Our system-building efforts are based on the

belief that the intelligence of a complex computer system must contribute to its ease of use and that

communication between humans and computers cannot be restricted to nice pictures on the screen (the

beauty of the interface should not overshadow the limited functionality and extensibility of a system). Truly
intelligent and knowledgeable human communicators. such as good teachers, use a substantial part of their

knowledge to explain their expertise to others. In the same way, the intelligence of a computer should be

applied to providing effective communication.

99

3.1 Shortcomings of Support Systems on Paper
One of the most neglected questions in our information society is: how to produce effective materials

and reference information to describe the operation of complex devices. Reading and understanding the
operation manual for a video-recorder is far from trivial, despite the fact it may be only 20 pages long. So
what can we expect from system descriptions which occupy 3000 to 5000 pages (see Figure 2-1)?

Making complex systems useful and usable is not only limited by our inability to produce effective
descriptions, but there are inherent limitations in doing this with paper. In the case of program documen­
tation systems, we have argued [Fischer, Schneider 84) that program documentation produced as a
separate document by a word processing system has the following disadvantages:

• it is impossible to provide pieces of information automatically,

• it is impossible to maintain consistency between the program and its documentation automati­
cally (or at least semi-automatically).

• it is impossible to generate different external views dynamically from one complex internal
structure (e.g., to read a documentation either as a primer or as a reference manual).

• it is impossible to create links between the static description and the dynamic behavior.

Similar arguments apply to form systems where paper representations also have major shortcomings.
In forms on paper, all cases (e.g. married or not married, employed or unemployed, citizen or foreigner)
must be explicitly represenfed and paper is incapable in propagating values from one part of a form to
another one.

3.2 An Architecture for Intelligent Support Systems
We need an architecture to support a coherent design strategy that treats intelligent support systems

not as add-ons to existing systems but as integral parts of a user-centered design approach. In Figure 3-1
we illustrate a system architecture that we have developed in response to this design criterion.

Vi,ualiZ1ltion
Components

Critics

Figure 3-1: An ArcMecture for Intelligent Support Systems

We have constructed the following prototypical systems contained in the outer ring of Figure 3-1: a
computer-supported documentation system [Fischer, Schneider 84), passive and active help systems
[Fischer, Lemke, Schwab 85), a critic system [Fischer 87a) and several visualization tools as part of our

software oscilloscope [Boecker, Fischer, Nieper 86).

100

3.3 The Potential of Computer-Based Support Systems
There exist support opportunities unique to interactive systems that we do not yet understand well

enough how to exploit effectively. We will briefly discuss the potential of computer-based support systems.

Knowledge-Based Systems. We predict that in the long run, our perspective of programming as the
main activity of creating computer systems will change. Designers and users will create knowledge stores,
where the executable part (Le., the code) is just one perspective of it.

In the design and implementation of our program documentation system [Fischer, Schneider 84], the

knowledge base contained all of the knowledge about a system combined with a set of tools useful for
acquiring, storing, maintaining and using this knowledge. The knowledge base was in part interpreted by

the computer to maintain the consistency of the acquired knowledge about structural properties and it

supported the users in debugging and maintaining their programs. Other parts of it were not directly
interpretable by the machine which served only as a medium for structured communication between the

different users.

Custom-tailored and user-centered representations. In order for a system to adapt to the users'
needs, it has to incorporate information about the users' preferences, skills, and what they have previously
looked at. The user should be able to communicate intentions so the system can highlight and prioritize

what's important and hide connections and details which are considered irrelevant for the task at hand.

The system must support mechanisms to generate views of reduced complexity. Filter mechanisms, where

the filters can be defined by the user, allow the generation of views of reduced complexity showing only the
information which is relevant for a specific user at a specific time (for an example see [Fischer, Schneider

84]).

Choosing program documentation again as an example, it has to serve different groups trying to
perform different tasks. Therefore the amount and structure of the information offered to these groups of

people has to be different, but all external views are generated by using different filters attached to the

same knowledge base. At least the following groups should be distinguished: clients, designers, program­

mers and users.

Turning systems Into coaches and critics. Computer-based systems have the potential to turn

systems into coaches and critics while providing some of the support which is offered by face-to-face
communication. They can help users ask the right, the interesting and the relevant questions (e.g. sup­
porting a retrieval paradigm by reformulation [Williams 84]) and they can support a knowledge store in the

form of an encyclopedia [Weyer, Borning 85) which allows the user to conjecture, create and experiment
with information instead of just retrieving it. A prerequisite for a system to act as a coach and to present

user-centered information is that the system contains a model of the user [Fischer, Lemke, Schwab 85). It
provides the necessary information to enhance incremental learning and support learning on demand

[Fischer 8Th).

How to find what we do not know? To ask a question, one must know enough to know what is not

known! How can we find out about all the good stuff, if we don't even know to ask? Active systems (e.g.,

acting as critics and consultants [Fischer, Lemke, Schwab 85; Fischer 87a)) are needed which volunteer

help in appropriate situations rather than responding to explicit requests. In order to volunteer information,
the system needs some understanding of what the user is doing.

Dynamically generated Information. A knowledge-based architecture allows information to be
generated on "the fly". The visualization tools in our software oscillOSCOpe [Boecker, Fischer, Nieper 86) all

share this property; they can take the actual working context into account and visualize the structures the
user is working on. This provides a qualitatively different level of support compared to "canned" visualiza­

tions stored on a video disc. Information on a video disc has to be preselected and cannot take the actual

working context into account.

101

Situation models versus system models. Current support information is designer-oriented rather

than user-oriented. Documentation and help information is structured to describe the system, not to ad­

dress the problems experienced by the user. We claim that this is the main reason that human aSSistance,

if available on a personal level, is still the most useful source of advice and help. Learners can ask a

knowledgeable colleague a question in an infinite variety of ways; they get assistance in formulating the

question, and they can articulate their problem in terms of the Situation model rather than being required to

do so in terms of a system mode/(Fischer, Kintsch 861.

A knowledge store trying to cover situation models must incorporate "user constructs", user-oriented

organizations of knowledge and a presentation component which presents information in the user's con­

cepts and words.

4. Making Systems more Useful and more Usable
As mentioned before, it is one of our major research goals to eliminate the deSign trade-off between

useful and usable systems. In this section we briefly describe a few approaches from our work towards

achieving this goal.

Most computer users are not interested in computers per se, but they want to use the computer to

solve problems and to accomplish their tasks. To shape the computer into a truly usable and useful

medium for them, we have to make it invisible and let them work directly on their problems and their tasks.

Human problem-domain communication provides a new level of quality in human-computer communication.

because it permits us to build the important abstract operations and objects of a given application area

directly into the environment. This implies that the user can operate with personally meaningful abstrac­

tions. In most cases we do not want to eliminate the semantics of a problem domain by reducing the

information to formulas in first-order logic or to general graphs. Whenever the user of a system can directly

manipulate the concepts of an application, systems become more understandable and the distinction be­

tween programmers and non-programmers vanishes.

Construction and design kits [Fischer, Lemke 87] are system components that represent steps

towards human problem-domain communication. A construction kit is a set of building blocks that models a

problem domain. The building blocks define a design space (the set of all possible designs that can be

created by combining these blocks). Design kits go beyond construction kits in that they bring to bear

general knowledge about design (e.g. which meaningful artifacts can be constructed, how and which blocks

can be combined with each other) that is useful for the designer. In [Fischer, Lemke 87] we describe a

number of prototypical examples of systems which try to provide a foundation for human problem-domain

communication.

Systems which make an attempt to model many different problem domains (which is a necessity for

systems based on the human problem-domain communication paradigm) will be large and complex in order

to provide all the necessary abstractions (evidence is provided by Figure 2-1).

By exploiting the possibilities of intelligent support systems, we can make these systems more usable.

In addition, our previous statement "reality is not user-friendly" should not be misunderstood. There is no

"conversation law on complexity" [Simon 81), which requires that the complexity and usability of a system

is a given constant. Complexity can be reduced by

• exploiting what people already know (e.g., human problem-domain communication exploits this
aspect);

• using familiar representations (based on previous knowledge and analogous to known
situations);

• exploiting the strengths of human information processing (e.g., the power of our visual system
[Boecker, Fischer, Nieper 86»;

• segmenting information into microwortds [Fischer 87b];

102

• eliminate learning through "better" systems.

To elaborate the last objective mentioned: in analyzing the design tradeoffs for mastering complex
systems, it is crucial that we learn when to enhance leaming and understanding and when to reduce

leaming by providing more adequate representations. The amount of expertise necessary to do a task is
determined not only by the nature of the task but also by the design of the system being used to accomplish
the task. We are convinced that qualitatively different ways of communication between humans and com­
puters can greatly reduce the need for learning in many situations. Innovative systems should be explored
as alternatives to support tools developed for inferior systems.

We illustrate the tradeoff between enhancing learning and reducing leaming with the example shown
in Figure 4-1. In almost all current interfaces to UNIX, directory trees cannot be presented externally in a
two-dimensional representation which can be modified by direct manipulation. Using one of our software
oscilloscope tools, we can represent the directory as a tree structure on the screen. In the traditional
representation, switching back and forth between different directories requires long, error-prone command
sequences using the cd command. An active help system like our ACTIVIST system [Fischer, Lemke,
Schwab 85) could discover this kind of behavior and suggest the pushd and popd commands instead.

These commands create a stack with the used directories and make the switching process less cumber­
some. This suggestion can be seen as an enhancement of leaming that becomes obsolete through the
display and direct manipulation possibilities offered by the software oscilloscope.

Many of the issues discussed before can contribute to the goal of reducing the cognitive effort and
costs to leam and operate a complex system:

• The software oscilloscope: it expioits the basic human information-processing capabilities.
The human visual system is very powerful. Instead of using the UNIX pushd command to
manipulate an inviSible stack, it is much easier to change working directories by pointing into a
graphical display of the directory structure (see Figure 4-1).

• Human problem-domain communication: it explores the creation of systematic domains
[Winograd, Flores 86), which represent objects and concepts in a way the professional is

already familiar with.

• Defaults: they hide redundant or rarely used detail. A system should be easy to use for simple
things. It should exhibit reasonable behavior when only a small part of its functionality is being
used. Defaults should be used as much as possible and mechanisms should be provided to
enable the user to override the defaults at will.

• Support for user activities: this implies structuring information in the situation model instead
of the system model. Reduction of leaming can be accomplished by easy and fast information
retrieval. Information retrieval systems can be viewed as an extension of the human memory.
A shortcoming of many existing information retrieval systems, like manuals, is that access is by
implementation unit (e.g., LISP function, UNIX command) rather than by application goal on the
task level.

5. Future Research
The task of SCience is to make use of the world's redundancy to descnbe that world simply [Simon 81]

We argued that there will always be a need for complex systems, but that there are unique and largely
unexplored opportunities (espeCially in the area of intelligent support systems) to break the "conversation

law of complexity" and to create systems which are useful and usable at the same time.

Computer systems of the future should be perceived and constructed as knowledge stores. The
traditional view of programming should be replaced by creating a knowledge base about problem domains
(see Figure 3-1). Executable programs, help, explanations, criticism and so on should all be contained or
derived from this knowledge base. An arcMecture of this kind will also be able to personalize the factual
information to the user's goals, needs and understanding [Fischer, Kintsch 86).

103

? cd -gerhard/teaching/spring85/kbs

d\ea~ng ? cd -andreas/papers/chi85/text

spring85

The UNIX commands to switch between directories

The file hierarchy as hand-drawn picture

~
."d"'
bk ••• t 1.,1

.rCM I"'" OJ' •• "'\' 1 •. 1

h4s •••• 1'I. 1
1t ... ,,-rI .. e3.1

~
" ".
~ ... d".
Ie •• :1'1' 'C-TO-p Ie, 1

Ode 1t •• ST 1_ I

" ••• t't. I)

".T\JP-., Tl. (
vl.t.il.~O-UT. 1

k".'1'la 1 ,",'IS
k,u,..%f •• "' ••

lot'l'94 ••• ..,x

10n"d •• iI'''
lon'94 •• 10<;'

~~~~=== 10n':l0 •• "',. 

'~~~~~~;~~;:;;. 
~::~r:::. "' .. 

"TIt r.po*':!_ " •• 
1.IJer .... 

The automatically generated, graphical layout structure. 

File operations can be directly carried out on this structure. 

rad Ir 
II\( 

Is -lgd 
cd 

Figure 4-1: Reducing Learning through New Presentations 



104 

Acknowledgements 
The author would like to thank his colleagues and students at the University of Stuttgart and at the 

University of Colorado, Boulder who have developed the systems (described elsewhere) on which the 

contents of this paper is based. Without their contributions, the described research effort would not have 

been possible. The research was supported by grant No. N00014-85-K-0842 from the Office of Naval 

Research and grant No. MDA903-86-C0143 from the Army Research Institute. 

References 

H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of Understanding through Visual Representations, 
Human Factors in Computing Systems, CHI'86 Conference Proceedings (Boston, MA), ACM, New 
York, April 1986, pp. 44-50. 

G. Fischer, A Critic for USP, Proceedings of the 10th International Joint Conference on Artificial Intel­
ligence, Milan, 1987. 

G. Fischer, Enhancing Incremental Learning Processes with Knowledge-Based Systems, in H. Mandl, 
A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems, Springer-Verlag, Berlin -
Heidelberg - New York, 19"87. 

G. Fischer, W. Kintsch, Theories, Methods and Tools for the DeSign of User-Centered Systems, Technical 
Report, Department of Computer Science, University of Colorado, Boulder, CO, 1986. 

G. Fischer, A.C. Lemke, Design Kits: Steps Toward Human Problem-Domain Communication, Paper Sub­
mitted to the Journal 'Human-Computer Interaction', Department of Computer Science, University 
of Colorado, Boulder, CO, 1987. 

G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based Help Systems, Human Factors in Computing Sys­
tems, CHI'85 Conference Proceedings (San FranciSCO, CAl. ACM, New York, April 1985, pp. 
161-167. 

G. Fischer, M. Schneider, Knowledge-Based Communication Processes in Software Engineering, Proceed­
ings of the 7th International Conference on Software Engineering, Orlando, Florida, March 1984, 
pp.358-368. 

H.A. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981. 

SA Weyer, A.H. Borning, A Prototype Electronic Encyclopedia, ACM Transactions on Office Information 
Systems, Vol. 3, NO.1, January 1985, pp. 63-88. 

M. D. Williams, What Makes RABBIT Run?, International Journal of Man-Machine Studies, Vol. 21, 1984, 
pp. 333-352. 

T. Winograd, F. Flores, Understanding Computers and Cognition: A New Foundation for Design, Ablex 
Publishing Corporation, NorwOOd, NJ, 1986. 


