From Interactive to Intelligent Systems

Gerhard Fischer
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA

Abstract

Feature-rich software systems of today are the result of the continuous increase in computational power
and growing requirements for broad functionality; these systems have to be mastered by casual or un-
trained users. This leads to operability problems (systems are too complicated), ineffective use, erroneous
behavior and frustration. Careful empirical studies indicate that even in current systems only a small
percentage of the available functionality is actually used. The availability of more computational power in
the future will be of little value in constructing more usable systems, unless we open up new access paths
to enable the user to take advantage of this increased functionality.

Wesclaim that knowledge-based systems with qualitatively new human-computer communication
capabilities are one of the most promising ways to create intelligent systems. We propose to extend the
comprehensibility of systems by dedicating a large fraction of the computational power of the machine to
sophisticated user support systems.

A

1. Introduction

The overall goal of this paper is to illustrate how to move on from interactive to intelligent systems. Two
research areas are crucial for this transition: knowledge-based systers and human-computer
communication. General principles for the design of intelligent systems will be postulated and a variety of
system components will be described which we have designed and implemented over the last few years.
The role of ergonomics research in relationship to intelligent ssytems will be discussed. Despite the fact
that progress has been made towards the goal of making intelligent systems more a reality, many chal-

lenges remain which will be briefly described in the last section.

NATO ASJ Series. Vol. F22
Software System Design Methods. Edited by J K. Skwirzynski
© Springer-Vertag Berlin Heidelberg 1986

186

2. Why Do We Need Intelligent Systems?

The microelectronics revolution of the 1970s made computer systems cheaper and more compact, with a
greatly increased range of capabilities. Computing moved directly into the workplace and the home to the
fingertips of a large number of people. Much of this power is wasted, however, if users have difficulties in
understanding and using the full potential of their new systems. Too much attention has been given in the
past to technical aspects which have provided inadequate technical solutions to real world problems, have
imposed unnecessary constraints on users and have been too rigid to respond to changing needs. More
intelligent software is needed which has knowledge about the user, the tasks being carried out and the

nature of the communication process.

The increased functionality of modern computer systems, driven by the many different tasks that a user
wants to do, will lead to increased complexity. Empirical investigations show that on the average only a
small fraction of the functionality of complex systems is used. Figure 2-1 summarizes empirical investiga-
tions and careful observations of persons using systems like UNIX, EMACS, SCRIBE, LISP etc. in our
environment. It also describes different levels of system usage which typically can be found within many

complex systems.

Figure 2-1: Different Levels of System Usage

The different domains correspond to the following:
D,: The subset of concepts (and their associated commands) that the users know and use with-

out any problems.

D2: The subset of concepts which they use only occasionally. They do not know details about

them and they are not too sure about their effects. Description of commands (e.g. in the form
of property sheets), explanations, illustrations and safeguards (e.g. UNDOs) are important so
that the user can gradually master this domain.

187

Daz The mental model [Norman 82; Fischer 84] of the user, i.e. the set of concepts which
she/he thinks exist in the system. A passive help system (see section 5.2.1) is necessary for the
user to communicate her/his plans and intentions to the system.

D : Represents the actual system. Passive help systems are of little use for the subset of D4
which is not contained in Da, because the user does not know about the existence of these

system features. Active help systems and Critics (see sections 5.2.2 and 5.3) which advise and
guide a user similar to a knowledgeable colleague or assistant are required so that the user can
incrementally extend her/his knowledge to cover D4.

The only way to master complex systems is through incremental learning approaches. A partial knowledge
of a system can lead to the following situation (see Figure 2-2): a user (based on her/his knowledge) makes
a typing mistake which is interpreted (as an existing command) within the complete system and the user

will be dumped in an area which is unfamiliar to her/him.

Figure 2-2: Protective Shields

Protective shields {based on the system’s model of the user] are needed to avoid problems of this sort.
These protective shields must not be so restrictive that they prohibit the exploration of additional system

features by the user.

3. From Interactive to Intelligent Systems

Everyone today will agree that we do not want to operate computing systems in a batch mode any more.
Interactive computing systems have made a major contribution to the widespread use of computers. Some
of the most advanced interactive systems have been built as programming environments by Artificial In-

telligence researchers [Barstow, Shrobe, Sandewall 84; Sheil 83] and around the SMALLTALK system

[Goldberg 84].

3.1 The Architecture of Intelligent Systems

The next step will be to move on from interactive to intelligent systems. In intelligent systems a substan-

tial part of the computational power will be used to document, explain and justify their expertise to

others. They will provide insight, help and useful criticism so that a novice can slowly become an expert.

They will augment human intelligence by providing visualization tools. Figure 3-1 describes our vision of

the architecture of an intelligent system. It is important to note that the outer circle of system com-

ponents in Figure 3-1 are not *add-ons" to existing systems, but should be an integral part of the system

design right from the beginning.

Yisuslization
Components

Explanation
Components

A\ 8nd Tools
@ B

Instructional
System

Anglysis
System

Figure 3-1: From Interactive to Intelligent Systems

Intelhigent systems wili contain many more tools than the functionally rich environments which are avail-

able to us today (e.g. the UNIX operating system, powerful Al programming environments).

findings indicate that the following problems occur which prevent many people from successfully exploit-

ing the potential of the systems available to us today:
e users do not know about the existence of tools,
o users do not know how to access tools,
e users do not know when to use these tools,

e users do not understand the results which tools produce for them,

e users cannot combine, adapt and modify a tool to their specific needs.

Unless we are able to solve these problems, users will "reinvent the wheel® constantly instead of taking

advantage of already existing tools.

3.2 Human-Computer Communication (HCC)

Human communication and cooperation can serve as a model for how computing systems should be. What
can humans do that most current computer systems cannot do? Human communication partners

* do not have the literalness of mind which implies that not all communication has to be ex-
plicit; they can supply and deduce additional information which was not explicitly mentioned
and they can correct simple mistakes; empirical evidence shows that in any but the simplest
human communication a substantial portion of the communicated message is not explicit;

e can apply their problem solving power to fill in details if we give statements of objectives in
broad functional terms;

e can articulate their misunderstanding and the limitations of their knowledge;

e can provide explanations to others of how they reached a conclusion or why they behaved in a
particular way;

e can solve problems by taking imaginative leaps, for example by conceiving of an analogous
situation of similar characteristics with which they are more familiar.

Traditionally the relationship between the user and the computer was sufficiently remote that it was more
like a literary correspondence than a conversational dialogue. Today the user is coupled directly with the
computer which causes the following changes:

o interaction with computers is emerging as a human activity;

the prior styles of interaction have been all extremely restricted (e.g. compaiable to the driver
of an automobile or the secretary using a typewriter); there was a limited range of tasks to be
accomplished and a narrow range of means (e.g. like having a control stick in video games);

the user was just an operator,

the increased availability, the decreased cost and the greatly improved hardware allow that an
increasing amount of computational resources can be spent on human-computer communica-
tion, rather than on purely computational tasks (see Figure 3-1);

systemr designers tend to concentrate on the commands of the computer systems (just look at
the documentation for almost any system, which is usually a catalogue of commands); yet it is
how, when and why the commands are used that is most important to the user;

there is a growing understanding that guidelines and classifications of the appropriate er-
gonomic dimensions for human-computer communication are less clear cut. Detailed prescrip-
tions or check-lisis cannat be provided to cover all aspects of human-computer communication
because so much is dependent on human cognitive abilities - how people behave, think and
perceive the world. Such subjective factors cannot be measured and predicted with the same
precision that is possible with elements in a physical environment (see chapter 6).

Human-computer communication is more than drawing nice pictures on the screen. The viewers on the

display screen are important, but they are of little use if there are no interesting knowledge structures

behind them.

190

3.3 Knowledge-based Systems (KBS)

Knowledge-based systems are the most promising approach to qualitatively improve human-computer
communication. Based on the above analysis of communication processes among humans the model in
Figure 3-2 is suited to fulfill the stated requirements. It contains a knowledge base which can be accessed
by both communication partumers; this implies that the necessity to exchange all information explicitly

between user and system does not exist any more.

Knowledge about:

problem domain
communication processes
communication partner
problems of the user

and tutorial intervention

“ & o oa

knowledge

human

knowledge base

[y implicit H

communication channel

LTTTITT

[}
|| explicit @

communication channel

Figure 3-2: Architecture for Knowledge-Based Human-Computer Communication

This system architecture has the following advantages compared to current architectures:

1. the crplicit communication channel 1s widened. The interfaces use windows with associated
menus, pointing devices, color and iconic representations; the screen is used as a design space

which can be manipulated directly.

information can be exchanged over the implicit communication channel. Both comrmunica-
tion partners have knowledge which eliminates the necessity that all information has to be

[

exchanged explicitly.

The four domains of knowledge shown in Figure 3-2 have the following relevance:

1. Knowledge of the problem domain: Intelligent behavior builds upon large amounts of

191

knowledge about specific domains. This knowledge imposes constraints on the number of pos-
sible actions and describes reasonable goals and operations. If, for example, in UNIX a user
needs more disk space it is in general not adequate help to advise him to use the command
*rm ** (the command will delete all files in the current directory; [Wilensky et al. 84]) al-
though it would perfectly serve her/his explicitly stated goal. The user’s goals and intentions
can be inferred if we understand the correspondence between the system’s primitive operations
and the concepts of the task domain.

(=]

. Knowledge about communication processes: The information structures which control
the communication should be made explicit, so the user can manipulate them.

3. Knowledge about the communicatlon partner: The user of a system does not exist;
there are many different kinds of users, and the requirements of an individual user grow with
experience, To pay attention to individual differences the following knowledge structures have
to be represented:

o The user’s conceptual understanding of a system (e.g. in an editor, text may be
represented as a sequence of characters separated by linefeeds which implies that a
linefeed can be inserted and deleted like any other character).

o The user’s individual set of tasks for which she/he uses the system (a text editor may be
used for such different tasks as writing books and preparing command scripts for an

operating system}.

o The user’s way of accomplishing domain specific tasks (e.g. does she/he take full advan-
tage of the systems functionality?).

o The pieces of advice given and whether the user remembered and accepted them.

o The situations in which the user asked for help.

A prerequisite for knowledge-based human-computer communication is to monitor the user’s
behavior and reason about her/his goals. Sources for this information are: the user’s actions
including illegal operations. This is based on the hypothesis that a user does not make ar-
bitrary errors; all operations are sterations lowards a goal [Norman 82].

4. Knowledge about the most common problems whlch users have In using a system
and about instructional strategies: This kind of knowledge is required if someone wants
to be a good coach or teacher and not only an expert; a user support system should know
when to interrupt a user. It must incorporate instructional strategies which are based on
pedagogical theories, exploiting the knowledge contained in the system’s model of the user.
Strategies embodied in our systems [Fischer 81] include:

o Take the tnitiative when weaknesses of the user become obvious. Not every recognized
suboptimal action should lead to an intervention.

o Be non-intrueive. Only frequent suboptimal behavior without the user being aware of it
should trigger an action of the system.

o Give additional information which was not explicitly asked for but which is likely to be
needed in the near future.

o Assist the user in the stepwise extension of her/his view of the system. Be sure that
basic concepts are well understood. Don’t introduce too many new features at once.

The main issues in building knowledge-based systems (which are actively pursued in Artificial Intelligence

research} are:

1. knowledge acquisition: how is knowledge acquired most efficiently from human experts

162

and from data gathered by instruments? Can the experts themselves directly manipulate the
knowledge base or do they need a knowledge engineer?

2. knowledge representation: how can the needed knowledge for complex problem solving
processes be represented to be effective for the inference engine and to be understandable for

the human?

3. knowledge utilization: how can we retrieve the relevant knowledge needed in specilic situa-
tions? Does the knowledge base help us in finding the relevant knowledge? Does it support
browsing techniques to navigate through a knowledge space whose structure and content is
unknown to the user in advance?

We will briefly describe our work on knowledge representation which has led to the development of
ObjTalk [Laubsch, Rathke 82; Rathke, l.emke 85; Lemke 85|, an object-oriented knowledge representation

language and programming environment in which most of our software is iimplemented.

3.4 Object-Oriented Knowledge Representation

A major strength of object-oriented knowledge representations is their ability to provide the designer for
many problems with a concise and and intuitively appealing means of expression. The claim of intuitive
appeal is based on our experience that object-oriented styles of description often closely match our under-
standing ol the domain being modeled and therefore lessens the burden of reformulation in developing and
understanding a formal description. The implementation of our window, menu and icon systems [Boecker,

Lemke, Fabian 85] serves as a convincing example for this claim.

ObjTalk is an object-oriented programming language as well as a general formalism for knowledge
representation. ObjTalk as a programming environment includes the following features:
e message-passing as the basic model for computation;

o class-instance relationship; instances of a class are specified by filling the ¥slots® described in
their class with specific values; their class also provides a description of the messages that they
understand and how to respond to them; these descriptions are called methods;

e class-inheritance framework (with multiple superclasses); it supports the methodology of
“programming by specialization®; the method of a class may be extended or replaced by a
method with the same name contained in one of the subclasses of the class.

There are a variety of features that make Ol Talk an interesting formalism for knowledge representation;
among them are the following:

o if-aet, 1f-changed, if-needed and 1f-foraet demons (which are triggered automatically when the
corresponding operations are carried out);

e Rules (as in rule-based expert systems) which may be associated with classes; they may be
used to automatically update relationships among the slots of (an instance of) a class.

As mentioned above, a major application of ObjTalk is our window system (see for example Figures 5-3

and 5-4 in section 5.4 for two applications using the window system and Figure 3-3 for the inheritance

network underlying the window system).

193

D int:shmple-dieplay- region 1

-
\ stmple-display-region [bgscreen-region |

L‘_d'ﬁplf)':wion] [simple- manager mixin

[mamginembin | [Tbemixk | [wediphyrngion | L_?S;?

\\\\ \‘;\
scroBbar mixin] \\\ [Hs]vemb:in —} L*)'az;fi’l”l.s»winEjo}z'::] /

AN
\\\ \\\»
Ej};nrﬁer‘r&i mj't ~~~~~ title misin /‘ " basic window J ’F sereen- mixin E][scroll- manager mixin

——— T /

= e
text-mixin s ixin | simple- window
(e (meEE | e
| super-window J Epanemix'm‘]
i o —

Figure 3-3: The ObjTalk Inheritance Hierarchy of our Window System

The facilities of ObjTalk allowed for the highly modular and flexible structure of the window system and

they led to an open architecture providing high level interfaces to applications and at the same time keep-

ing lower level parts of the syster accessible for situations where nonstandard extensions are needed.

4. Design Considerations for Intelligent
Systems

In this chapter we summarize major principles that have emerged from our work. They are based on a

growing understanding of human information processing capabilities and on our prescriptive goals about

system design. These principles provide a basis for developing and assessing some aspect, of intelligent

systems.

194

4.1 Design Considerations Based on the Human Information

Users of computer systems are humans and the human information processing system has strengths and
weaknesses. Examples of the human mental processing limits are the limited short term memory and our
tendency to make errors (for a great variety of reasons). Examples of the strength is the great power of

our visual system which is slowly taken more into account in the new two-dimensional interfaces, using

Processing System

iconic and spatial information as well as color.

We postulate a few principles which provide the most important design criteria derived from the human

information processing system:

1.

The limited resource in human information processing is human attention and comprehen-
ston, not the quantity of information available. Modern communication and information
technologies have dramatically increased the amount of information available to individuals.
Most persons will have access to more information than they can deal with. An important
function of future computing systems is to allow for the selection of the information we ac-
tually want and need and presentation of it in the most appropriate way.

. In complex situations, the search for an optimal solution i3 a waste of time. There are

limits to the extent to which people can apply rational analyses and judgements to solving
complex, unpredictal:le problems. It is insufficient to ask people to *Think more clearly® with-
out providing new tools such as knowledge-based systems, which help extend the boundaries of
human rationality. The aim is to achieve the most satisfactory solution (i.e. we have to
“satisfice® instead of “optimize", see [Simon 81]) given current knowledge, accepting that bet-
ter solutions will emerge as a result of experience and enhanced knowledge and understanding.

. The nature of human memory mechanisms are tmportant design considerations. The limita-

tions and structure of human memory must be taken into account in system design. People
have limited short termm memories. Dialogues should, therefore, be constructed which do not
expect the user to remember everything and which reinforce, prompt and remind the user of
necessary information in a supportive but unobtrusive way. Recognition memory and recall
memory are two memory structures with different access mechanisms which are relevant to
judge the advantages and limitations of function-key versus menu-based systems.

. The effictent visual processing capabilities of people must be utilized fully. New technologies

(like raster displays) have opened ways to exploit human visual perception more fully, e.g.
through the use of windows, color, graphics, icons and mice. These technologies support an
interaction technique like "direct manipulation® which is an important alternative in human-
computer communication to be further explored in future systems.

. The structure of a computer system must be understandable by people using it rather than

requiring the user to learn by rote the functions that can be per formed. An adequate under-
standing of how a system works gives users the knowledge and confidence to explore the full
potential of a system, which can have a vast range of different options. Learning by rote may
train the user to operate a limited number of functions but makes it difficult for the user to
cope with unexpected occurrences and inhibits their exploration of the full potential of the

system.

185

4.2 Design Considerations Based on our Prescriptive Goals for

Intelligent Systems

Our systems have to be flexible enough to support the variety of behavior occasioned by the unpredictable
details of particular situations. The design of hard- and software and human-computer communication
capabilities must be responsive to the knowledge worker’s amorphous responsibilities. We must base our
theories, methodologies and tools on an understanding of what users are doing. The work of the users we
want to support can be characterized along the following dimensions:

to deal with fuzzy problems, with instabilities in specifications and uncertainties; the existence
of partial solutions incrementally increases the user's understanding of the problems to be
solved and allows her/him to analyze a prototypical situation instead of anticipating it;

formal approaches (e.g. methods from operations research} fail in most cases, because we do
not understand the problems well enough;

the space of possibilities is unlimited; choosing is not always good enough, in many situations
it is necessary to generate new solutions: this requires the exploration of unknown situations

and not the application of habitual means;

in complex decision making there are always too many things which are not articulated; there-
fore in many situations, tasks can not be delegated because they cannot be described well
enough for an assistant to do them.

Based on this brief description we postulate additional principles which can serve as further guidelines to
design intelligent systems:

1. There is no such thing as the user of a system; there are many different kind of users and
the requirements of an individual user grows with experience. Computer systems must adap-
tively grow with the experience of the user. The heterogeneity of the user community and the
growing experience of one user working with a system over a long period of time requires an
adaptive behavior based on a system model of the user’s abilities for a specific task.

12

. The "intelligence” of a complexr tool must contribute to its easy use. Truly intelligent and
knowledgeable human communication partners, such as good teachers, use a substantial part
of their knowledge to explain their expertise to others. In the same way, the "intelligence® of a
computer system should be used to provide effective communication.

3. The user interface in a computer system (s more than just an additional component; it 1= an
integral and important part of the whole system. The traditional design process, proceeding
from the "inside" to the "outside®, has to be reversed as much as possible. The design,
development and evaluation of new information systems should start with an understanding of
the overall social and technical environment in which any particular new technology is em-
bedded (see Figure 4-1).

5. Components of Intelligent Systems

Over the last several years we have designed and implemented the following prototypical components of
intelligent systems (see Figure 3-1):

o documentation systems,

e passive and active help systems,

196

Social Ergonomics / Organizational Interface|

Definition of the Problem Domasin|

User Interface|

Software

Hardware

Processor

Figure 4-1: Different Levels in a System Development Process

e critics,

e visualization tools.

These components will be briefly described in the next sections. Most of them are of equal importance to

the system designer and the system user.

5.1 Documentation Systems

A program documentation system should be a part of a software engineering environment. Its importance
stems from the large range of different tasks documentation is used for:
® (0 serve as a communication medium between different people (clients, designers and users),

e to enhance the designers understanding of the problem to be solved and to assist them in
improving the problem specifications,

¢ to support the designers during the implementation of their solution,
¢ to cnable programmers Lo reuse a program and to extend existing systems to tcol kits,
e (0 maintain a programming system,

o to make a program portable and sharable in a larger community.

In our design and implementation [Lemke, Schwab 83; Fischer, Schneider 8-1| a program documentation
systen is a knowledge base containing all of the available knowledge about a system combined with a set

of tools useful for acquiring, storing, mainlaining and using this knowledge.

197

The knowledge bhase is

e in part interpreted by the computer to maintain the consistency of the acquired knowledge
about structural properties; it supports the users in debugging and maintaining their programs;

e in part only useful for the user, i.e. not directly interpretable by the machine. In this case the
machine serves as a medium for structured communication between the different users. The
computer can support the user to maintain the non-interpretable information in the knowledge
base and do user-guided changes of information.

A documentation system should support the entire design and programming process. Valid and consistent
documentation is of crucial importance during the programming process itself. The information structures
that are accumulated around a program can be used to drive an evolutionary and incremental design

process.

In the traditional view documentation is created at the end of the programming process; in our model
documentation serves as the communication medium for all people involved with a software product.
Docurmentation is useful throughout the entire process and serves as a starting point for new solutions of
the problem. The purpose of documentation in this view is comparable to that of a proof in mathematics:

a crystallization point for new ideas.

We gain the full benefit of a program documentation system only, if it is an tntegral part of a program-
ming environment. Program documentation produced as a separate document by a word processing sys-
tem has the following disadvantages:

it is impossible to provide pieces of information automatically,

it is impossible to maintain consistency between the program and its documentation automati-

cally (or at least semi-automatically),

it is impossible to generate different external views dynamically from one complex internal
structure (e.g. to read a documentation either as a primer or as a reference manual),

e it is impossible to create links between the static description and the dynamic behavior.

Program documentation for whom? Program documentation has to serve different groups who try
to perform different tasks. Therefore the amount and quality of information offered to these groups of
people has to be different. We distinguish the following groups and their tasks:

o the designers of a system during the programming process. They have to have access to their
design decisions and the different versions of the system. They also need information about the
state of their work during the whole design process.

o the programmers who are trying to reuse or modify a program that they do not know yet.
They want to understand the purpose and algorithms of the program to decide which parts of
it have to be changed to fit their needs. They need information about design decisions (in
order to avoid known pitfalls) as well as a thorough documentation of the existing code.

e the clients who are trying to find out whether the implemented system solves their problem.
They want to improve their own understanding by working with a prototypical version of the
system and are therefore not interested in any programming details but in design decisions.

e the users want to see a description in terms of "What does it do? How can 1 achieve my
goals?™; for end-users the documentation has to offer different views of the system: a primer-
like description for the beginner and manual-type explanations for the expert.

198

Knowledge acquisition and updating. The information structures which are used in our system come

from two sources:

e 2 program analysis system provides information about the structural properties (cross
references, side effects) of a program. The users do not have to provide information that can
be created antomatically, so they are free to concentrate on the crextive aspects of their work.

o the programmers have to provide semantic information about the different parts of the
program, information about the internal (semantic) structure of their systcms, descriptions of
the algorithms used ete..

Most of the analysis done by the system is done at read-time. This means that we have to do the analysis
after each alternation of the program code. The system knows about possible dependencies between
knowledge units and, if necessary, reanalyzes the units in question. It informs the programmer about pos-
sible inconsistencies in the knowledge base. These techniques help us to maintain the consistency between

different representations of the information.

The way the system decides if a knowledge unit has to be updated is the following:

e the system knows that it has to change certain structural information {e.g. "calls* and "is-
called-by * relations) automatically. The system is able to alter information by using its cross-
reference knowledge. This knowledge can also be used to guide the users to places where they
possibly want to change information.

o for each unit users can provide a list of other knowledge units they want to inspect and pos-
sibly alter if a unit has been updated.

Using the available knowledge. A knowledge-based program documentation system is only useful if
the relevant information can be easily obtained. The following two requirements must be supported:

e availability: the knowledge about the system (incorporating the consequences of all changes)
must be available at any time.

e vicws of reduced complerity: the structures in our knowledge base are too complex to be used
directly. A filter mechanism where the filters can be defined by the user [Lemke, Schwab
83] allows the generation of views of reduced complexity showing only the information which is
relevant for a specific user at a specific time.

5.2 Help Systems

The following system descriptions [Fischer, Lemke, Schwab 84, Fischer, Lemke, Schwab 85| are based on
preliminary investigations for a passive and an active help system for a screen-oriented editor. Passive
help systems are needed if the users know their goals but cannot communicate them to the system. Active

help systems assist users when they are not aware that the system offers better ways to achieve a task

(see Figure 2-1).

5.2.1 Passivist: A Passive Help System

The first step in the design of Pagsrvrst, a natural language based help system, was to get an idea of the
real needs of the user. In several inforinal experiments a human expert simulated the help system in
editing sessions with users of different expertise. The results indicated a fairly diverse set of problems

ranging from finding keys on the keyboard to complex formatting tasks.

Pazsaivist provides help to requests such as:

o How can I get to the end of the line?
o Jwant to delete the next word.

Passairist uses a help strategy in which each step of the solution is presented and explained to the user
who then executes this step and immediately sees the resulting effects. Help is given as text generated
from sentence patterns according to the goal structure of the problem solving process and key sequences

and subgoals are displayed graphically.

Passivist is implemented in OPS5 [Forgy 81]. Flexible parsing using OPS5 is achieved by a rule-based
bottom-up method. The consistent structure of the system as a set of productions and a common working
memory allows the use of the same knowledge in several stages of the solution process. For example,
knowledge about the state of the editor is not only used to select a possible solution for the user's problem
but also to disambiguate the user’s utterance. In the phrase the fast line with the cursor being at the
beginning of the editing buffer it is clear that the user refers to the last line of the buffer (and not to the

previous one).

The following rule (an English-like transcription of the corresponding OPS5 rule) represents the systems

knowledge about deleting the end of a line:

IF the goal is to delete a string
AND the string is the end of the current line
AND the cursor ie not at the end of the current line

THEN remove the goal Irom the working memory
AND <create a new goal to propose the command *rubcut-linme-right®

5.2.2 Activist: An Active Help System
Activiat, an active help system for a screen-oriented editor, is implemented in FranzLisp and ObTalk (sce

section 3.4).

Activist deals with two different kinds of suboptimal behavior:

1. the user does not know a complex command and uses suboptimal commands to reach a goal
(e.g. she/he deletes a string character by character instead of word by word).

2. the user knows the complex command but does not use the minimal key sequence to issue the
command (e.g. she/he types the command name instead of hitting the corresponding function

key).

200

Similar to x human observer, Activief handles the following tasks (for details see |Fischer, Lemke, Schwab

84] and [Fischer, Lemke. Schwab 83]):
o to recognize what the user is doing or wants to do,
o to ¢raluate how the user tries to achieve her/his goal,
o to conxtruct a model of the user hased on the results of the evaluation task,

e to decide {dependent on the information in the model) when and how to interrupt (tutorial
intervention).

In Activziat the recognition and evalvation task is delegated to 20 different plan apecialists. Each one
recognizes and evaluates one possible plan of the problem domain. Such plans are for example "delefron

of the next word”, "position at the end of line”, etc..

A plan specialist consists of:

o A transition network (TN). which matches all the different ways to achieve the plan using the
functionality of the editor. Fach TN in the system is independent. The results of a match are
the used editor commands and the used keys to trigger these commands.

e An expert which knows the optimal plan including the best editor commands and the minimal
key scquence for these commands.

Figure 5-1 displays the user model that Actrvist has built up. For each plan there is a pane which shows
the performance of a specific user concerning this plan. Panes with black background indicate that the

corresponding plan is currently not monitored by the active help system.

AT pWe Db eed Doty cbens shamdt W
n - .

<
0->0

© KAt Zellmll 1e
U: :
SOm - om: D ->0D
ey: D ->0 5 i 1 ey: 0->0
{:Belt s . Q:leer*Ant 1 ik
3 : 3 " :m G:w
N ™
ey: 0 ->10)
:Be 1*Ant Ent ViBe [*F miend
b 0 : %

(set-cursor-to-beginning-of-1ine) liegt auch auf ~A

Figure 5-1: The User Model of Actiuvist

201

The dialogue window at the bottom displays a help message given to the user. She/he has executed the
command sel-cursor-to-beginning-of-line by typing in the command name. Activist gives the hint, that

this command is also bound to the key CTRL-A.

Figure 5-2 relates to the monitoring of the plan “delcte-the-left-part-of-the-current-word”. The window
shows one pane of Figure 5-1 in more detail: the proposed command (with the optimal keys) for this plan

and the state of the plan recognition.

The user has executed the command rubout-character-left with the DEL-key three times. After these ac-
tions the cursor is located to the right of the first character of the word. If the user once again invokes
rubout-character-left the plan will be recognized. Then the evaluation will begin: the commands used will
be compared with the optimal commands for this plan and Activist will recognize the first kind of sub-
optimal behavior {as described above). Based on the instructional strategies chosen Activist may then
decide to interrupt the user and describe how to use the "delete-the-left-part-of-the-current-word” com-

mand.

& ER HODEL

tan executed:

cod done:

irong command used:

7ith unnescessary keys:
rommand with wrong keys used:
;i th unnescessary Kkeys:
essages sent to user:

HNTERHNRL INFORRNRARTION

PVV =@ —

roposed commnands: rubout-word-left
ptinal Keys: ESC h

cmnands: rubout-character-left rubout-character-left rubout-character—feft
eys:(DEL)(DEL)(DEL)
utomaton in state: Start

Figure 5-2: Monitoring the Recognition Task

5.3 Critics

In our current work we extend the work on active help systems in order to develop systems which can
serve as eritics. This is done primarily by representing more elaborate knowledge structures in the com-
puter. The following four information structures are prerequisites to support systems which can serve as
Critics:

o Characteristica of the User: General knowledge of the user's abilities in the subject domain
independent of the current problem. This knowledge can be viewed as an abstraction from
individual problem solving attempts.

o The User's Problem Solving Approach: The system’s idea of the problem solving path chosen
by the user. This may be an explicit hierarchical model of the design choices which Jed to the
code produced by the user where the user explicitly indicates in which way she/he wants to

202

attack the problem. Plan recognition strategies attempt to infer the user's plan through obser-
vation of her/his steps performed in solving a task. For these systems the plan essentially is
the user model.

Task Model: The system’s understanding of which problem the user currently wants to solve.
In tutorial systems this knowledge can be built into a system in advance. In systems which
can serve as critics (i.e. they have to support the users in their own doing) we need methods to

infer the current task.

Domain Knowledge; User independent expert knowledge of the selected domain of competence

of the system.

Given this detailed model of the user and the task domain, the following actions of the system become

possible (e.g. to support learning strategies like learning on demand):

o Select appropriate actions with respect to the user: If the comparison of the user model and
the system’s expert knowledge reveals weaknesses in a specific area, the system should only
become active il this area is adjacent to already known areas and does not require too many
other areas unknown to the user.

Select examples from the domain the uger is familiar with: By using an executable form of

representation it is possible to generate illustrations out of areas which the user already under-
stands and thus reduce the cognitive distance that has to be bridged.

Present only the missing pieces of knowledge: In dialogues a large amount of time is spent to
find out what each communication partner knows and does not know about the subject area.
With a detailed user model, the system can concentrate on the very points where the user

needs help.

Better understending of the wser: Using knowledge about the user’s understanding of a
problem domain makes it much easier to find out about her/his real problem. We encountered
many cases where a user had a problem which originated in a wrong decomposition of a higher
level problem. Using knowledge about the user it is possible to trace a problem back to its
real roots.

The Code-Improver System. Our currently existing system, called Code-Improver, is used to get

ideas

on how to improve Lisp code. Improvements may be in either of two directions (which can be chosen by

the user):
o to make the code more cognitively efficient (e.g. more readable or concise) or

e to make the code more machine efficient (e.g. smaller or faster); this improvements include
those that can be found in optimizing compilers.

The system is in regular use by different groups for slightly different reasons:

o by intermediates who want to learn how to produce better Lisp code; we are currently testing
the usefulness of the tool by gathering empirical, statistical data using advanced under-
graduate students of an introductory Lisp-course as subjects;

o by experienced users who want their code to be “straightened out®; instead of doing that by
hand (which these users in principle would be able to), they use the system to carefully recon-
sider the code they have written. The system is used to detect optimizations and simplifica-
tions that can be done to the code. The system has proven especially useful with code that is
incrementally developed, i.e. gets changed and modified continuously.

The system operates by using a set of (> 200) transformation rules that describe how to transform

‘bad’

203

code into better one. The user’s code is matched against these rules and the transformations suggested by
the rules are given to the user; the code is not modified automatically. [t is important to note, that the
system is not restricted to a specific class of Lisp functions or application domain. [t aceepts whatever
Lisp-code is given to it. However, there is a trade-off: since the system does not have any knowledge of
specific application areas or algorithms it is naturally limited in the kind of improvements that derive
from its more general knowledge about programming. The improvements suggested by the system are of
the following kind:
¢ suggesting the use of macros (e.g. (setq a (cons b a)) may be replaced by (pusb b a));

e replacing compound calls of Lisp functions by simple calls to more powerful functions (e.g. (not
(evenp 1)) may be replaced by (eddp 2));

e specializing functions {e.g. replacing equal by eq);

¢ using integer arithmetic wherever possible;

o finding alternative (simpler or faster) forms of conditional or arithmetic expressions;
¢ eliminating common subexpressions;

e replacing 'garbage’ generating expressions by non-copying expressions (e.g. (append (explode
word) chars) may be replaced by (nconc (explode word) chnrs));

e {inding and eliminating 'dead’ code (as in (cond (...) (¢t ...) (dead code)));

e (partial) evaluation of expressions (e.g. (suz a 3 b 4) may be simplified to (sua 2 b 7)).

The current version of the Code-Improver system runs in batch mode. Like the "writers-workbench®
UNIX tools, diction and ezplain, it is given a file containing Lisp code and comes back with suggestions

on how to "improve" that code.

The problem of knowledge acquisition for the system’s model of the user is solved using program code
written by the user. Our current techniques will be extended from recognizing pieces of code which can be
improved to both recognizing the goals of a piece of code as well as existing and missing concepts which
led to its generation. Since only in very few cases a definitive assumption about the knowledge of the user
can be made, it is important to have many clues which allow to make uncertain inferences when no

specific evidence is available.

5.4 Visualization Tools

Many communication problems between humans and computers are due to the fact that the strongest
information processing subsystem of the human brain, the visual system, is hardly utilized by current
software systems. Most systems present the result of computational processes in textual and symbolic
ways that are not suited to the human information processing capabilities. Over the last several years we
have actively pursued the goal of constructing a software oscilloscope whose visualization techniques en-

hance the communication process (see {Boecker, Nieper 85; Boecker, Fischer, Nieper 85]) by broadening

the explicit communication channel between computer and machine (see Figure 3-2).

204

5.4.1 Visualization of Data Structures: The Kaestle System

The most important data structure of Lisp is the [ist. With Kaestle [Boecker, Nieper 85| the graphic
representation of a list structure is generated automatically and can be edited directly with a pointing
device. By editing we do not only mean changing the structure itself but changing the graphic represen-
tation, the layout, of the structure. Kaestle is integrated into a window systemn and multiple
Kaestle-windows may be used at the same time. The user inter face is menu-based (see Figure 5-3) and
the program interface is realized through ObjTalk methods which can be triggered by sending messages to

a Kaestle-window.

Kaestle provides the following functionality:

1. generating a graphic display {multiple independent structures may be displayed at a desired
position};

o

. changing the graphic representation (additional display of structures which are truncated in
the current display, deleting parts of the structure from the screen and moving parts of the
structure on the screen);

3. changing the structure (the manipulation (insertion of atoms or pointers) of the graphic

representation immediately changes the underlying structure);

4. controlling the layout planning in advance (selecting the maximum depth and length of lists to

be displayed, selecting the maximum length of atom names to be displayed, selecting a plan-

ning algorithm (car-first or edr-first algorithm) and selecting the font to be used);

5. general undo and redo mechanisms.

The user of Kaestle can take one of the following roles:

1. an active role: A graphic representation can be generated from whatever the user types in and
the user is encouraged to an exploratory style of learning.

to

. a passive role: An inexperienced user does not know which structures and which operations on
them lead to interesting effects. To display prestored examples or examples taken from the
actual context, Kaestle can be used through a program interface, i.e. programs can be written
which generate graphic representations in a movie-like manner.

We will combine Kaestle with the documentation, help and critic tools described in the previous sections.
Kaestle 1s a tool which will be used by the Code-Improver to illustrate explanations given by the system
to answer questions like:

¢ What is the difference between several list creation functions (e.g. cons and 1ist)?
o What is the difference between equal and eq?

¢ What is the difference between non-destructive and destructive functions (e.g. append and

DCODC)?
o Why is it possible to transform (append (explode word) chars) to (aconc (explode word) chars)?

o Why is it wrong to transform (append chars (explode word)) to (nconc chars (explede word))?

o How is a stack implemented in Lisp? What are push and pop doing?

205

cliste

(Ceins 1) (zwei 2))
23:11ste2

((drei 3) (vier &)) [frenes | T
24:(append listel liste2) R

(Cetns 1) (zwet 2) (dref 3) (vier a)) |
25: :

:.': tavst le-d

T T ot e =enu
| |7|7| 'Hstel"l e

E;‘ undo
A1 T3—— find path
& / pointer

7 [eTns[T /] [we1]}{2 /] Te 3 Chlm.emt: nil

delete kaestle

] aove kaestle
move structure
zo0m structure
display nil-cons
display structure

delete structure [
replan structure |:

|J'-‘|PE] [acces= 3]

[T Ti [kaestiedamc®]

lambda
Programm | P{KAESTLE | P{Autor| LastEaitDate | M /)

Figure 5-3: Kaestle: Visualization of Data Structures

206

5.4.2 Visualization of Control Structures: The FooSecape System

One ol the most helpful tools for understanding programs which are composed of a large set of procedures
is a program tree that displays the hierarchical calling structure {see Figure 5-4, "Dynamic Calling Tree").
In reality however, most programs are more appropriately described as a network of functions rather
than a tree (see Figure 5-4, "FooScape®). In FooScape functions are displayed as ellipses and an arrow

connects ellipses a and & if function a calls function &,

Dynanic siach Bl ooscane Dynanic stack
ppu ppu
prem prem

phash passociation

passoclal lon }

passoclation

@ fillarray

tynamic Calliw) liee

p
passoc tat 1ot

pge

passoctation

pget
pinit
fillarray

11
pinit
fillarray

Figure 5-4: FooScape: Showing the Dynamic Behavior of a Program

The planning of the layout (placement of the ellipses and arrows) is done automatically. However, be-
cause the "beauty® of the solution sometimes is not acceptable we allow the user to modify the layout
interactively by moving *bubbles® around or by altering the set of functions included in the display. The

interaction style is similar o the one of the Karsfle system.

FooScape can be used to display the dynamic behavior of programs. Figure 5-4 shows two snapshots. A
function name is highlighted - ie. flips from white to black - whenever the function is active. FooSecape
can be augmented by a tool that displays the current stack of function calls. Traditional techniques for
monitoring the dynamic behavior of programs (eg. breakpoints, dumps) capture just one state of the data
and too often generate a huge amount of data. The animated FooScape system tries to avoid these dis-

advantages, while, on the other hand, trying to preserve the dynamics of the processes being monitored.

207

6. The Role of Ergonomics Research in
Intelligent Systems

Ergonomics analyzes the consequences of technology to the learning and working environment of a
human. It is dominated by the goal to create environments which support the human and do not require

that the human has to put up with inadequate technical solutions.

In the past properties of systems were investigated which could be measured with methods from physics
(e.g. according to the size of an average hand, what is the optimal distance hetween the keys on a
keyboard). This approach is insufficient for the design and evaluation of human-computer communication

and knowledge-based systems.

Design conflicts. The first thing a designer is confronted with is that there are no optimal solutions --
only tradeoffs. One has to cope with conflicting design issues; some of the major ones are:

e cognitive efficiency versus machine efficiency of a system,

e simplicity of a tool (to be easily handled by a large community) versus power (to be used in
the construction of a large variety of different and complex systems),

e the necessity to remain compatible with existing systems (e.g. timesharing computers) versus
exploiting the power of new media (e.g. networks of personal machines),

e ease for novice users (like mnemonic names in editors or menu-driven systeins) versus con-
venience for experienced users (like a terse command language),

o tight integration between different subsystems versus flexible, reconfigurable modules or tool
kits.

Costs of ignoring ergonomics. Without a great concern for ergonomics (especially software
ergonomics) computing systems may prove detrimental to the people who have to work with them. Once
a computer system has been installed, it is difficult to avoid the assumption that the things it can deal
with are the most relevant things (e.g. text-processing systems do not support grapliics, therefore papers
get written without graphics). Introducing a system whose functioning is incompletely understood may
cause unintended transfers of power and obscured responsibilities. Designs which ignore the fact that
computing systermns are embedded systems (see Figure 4-1) may lead to systems where satisfying work
procedures are subdivided in meaningless parts and intellectual assembly line work is created. Contrary to
that, good systems have the potential to reduce stress {by being forgiving towards errors from the user;
e.g. by providing an UNDO command for every operation) and to augment human capabilities. Er-
gonomics research should indicate wrong developments in an early state; this reguires that evaluation of a
system should start at the heginning of the development process and should not be restricted to accep-
tance testing. The use of computer systems as tools is a complex skill which is acquired over long periods

of time and it is very costly to untrain people after they have become familiar with one way of doing

something.

208

Ergonomics research faces one critical problem: technology has progressed so fast that some of the ques-
tions which were too closely tied to a certain technology became obsolete before the studies were com-
pleted. A detailed understanding of the optimal design of a keypunch is of little value today, because
keypunches are dying out anyway. Tlie question whether a terminal or a printer should support small and

capital letters is not discussed any more, because all products which do not are driven out of the market.

When is ergonomics research most important? Applying criteria from ergoromics and psychology
to the acceptance testing of a given system Is definitely easier than applying evaluation criteria to the
design of systems. In acceptance testing, the system is given; all of its parts and properties are specified.
In design, the system is still largely hypothetical; it is a class of systems. But there is much more leverage
in evaluation of the system design than in acceptance testing of the finished product. The long ranging
goal is that the designer of a complex computer system has a design handbook (similar to the handbooks
which are available to the civil engineer today) which gives him access to the important design criteria.
Unfortunately this is not the case. We are lacking cognitive theories which are prescriptive enough to be
used as design criteria and of planning and a detailed understanding of the specific iask structure. In
addition, productivity gains inherent in new technology cannot be realized simply by carrying out existing

operations at a faster pace; a careful analysis of work procedures is crucial for a substantial improvement.

Why not just ask the user? There is no doubt that the user community should play an active part in
the design of a system (shared system design among users and designers} -- but unfortunately most poten-
tial user communities can not articulate in enough detail the characteristics of the systems which they
would like to have. Therefore it is important that there are research places where users can explore and

criticize new system designs in a prototypical development stage.

7. Problems and Challenges for Research in
Intelligent Systems

What can we do without complete specifications? System design belongs to the *Sciences of the
Artificial® [Simon 81]. Contrary to natural scientists who are given a universe and seek to discover the
laws, the system designer makes "laws* in the form of programs and the computer brings a new universe
to life. Many interesting problem areas (especially the domain of intelligent systems) contain mostly ill-
structured problems. The main difficulty in these domains is not to have a ®correct® implementation
with respect to given specifications, but to develop specifications which lead to effective solutions which
correspond to real needs. Correctness of the specifications is in general no meaningful question because it

would require a precise specification of intent, and such a specification is seldom available.

We have to accept the empirical truth that for many tasks system requirements cannot be stated fully in

advance - in many cases not even in principle because neither the user nor anyone else knows them in

advance.

209

The development process itself changes the user’s and designer’s perceptions of what is possible, increases

their insights into the application environment, and indeed often changes the environment itself.

The following (not mutually exclusive) possibilities exist to cope with this situation:

1. Development of ezpertmental programming systems which support the coevolution of
speci fications and tmplementations. Prototypical implementations allow us to replace an-
ticipation (i.e. how will the system behave) with analysis (i.e. how does it actually behave),
which is in most cases much easier. Most of the major computing systems (operating systems,
editors, expert systems, software development systems) have been developed with extensive
feedback (based on their actual use} which continually contributed to improvements as a
response to discrepancies between a system's actual and desired state.

2. Heavy user involvement and participation in all phases of the development process. The user
should be able to play with the preliminary system and to discuss the design rational behind it.
An existing prototype makes this cooperation between designer and user much more produc-
tive, because the users are not restricted to reviewing written specifications to see whether or
not the system will satisfy their needs with respect to functionality and ease of use.

3. Let the end-users develop the systerms. This would eliminate the communication gap al-
together. They are the persons who know most about the specific problems to be solved and
by giving them the opportunity to change the system there is no longer a necessity to an-
ticipate all possible future interactions between user and system. User tatlorability is a first
step towards convivial systems [Fischer 83] which give the users the capability to carry out a
constrained design process within the boundaries of the knowledge area modeled. A strong test
for the intelligence of a system is not how well its features conform to anticipated needs but
how well it performs when one wants to do something the designer did not foresee.

o

. Accept changing requirements as a fact.of life and do not condemn them as a product of
sloppy thinking; we need methodologies and tools to make change a coordinated, computer-
supported process.

Understanding the limitations of systems. A critical problem can be that the users do not have a
clear understanding of the limitations of a system. This is an important problem for natural language
interfaces where users are often seduced to believe that they can talk to these systems like to their col-
leagues. Users will be especially disappointed if the projected illusion is that of intelligence but the reality
falls far short (the ELIZA system may serve as a good example). Despite progress in the area of intel-
ligent systems, it is still the user who is more intelligent and can be directed into a particular context.
Giving the user tlie appropriate cues is one of the essences of human-computer communication. Windows,
menus, spreadsheets, documentation, help, explanations, critics and visualization provide a context that

allows the user's intelligence to keep choosing the appropriate next step.

Towards Human-ProblemDomain Communication. Despite the fact that we have used the term
Human-Computer Communication throughout this paper, we believe that the goal to achieve is Human-
ProblemDomain Communication, where the users can deal with descriptions within their world of exper-
tise. Knowledge-based systems are one important step towards this goal and allow users to deal with

content instead of form or low-level mechanisms.

Human-oriented computer systems. There is no difficulty in getting people to use computers

210

provided the computer and its application are genuinely useful. The goal of intelligent systems has to be
to create human-oriented computer systems where the users have control and can achieve their goals in
their way. These systems should eliminate the necessity that the human has to become a computer-

oriented person (see Figure 7-1).

D @ [

Figure 7-1: Human-centered and computer-centered system

Design of Peter Hajnozcky, Zuerich

References

[Barstow, Shrobe, Sandewall 84]
D. Barstow, H. Shrobe, E. Sandewall.
Interactive Programming Environmenta.
MecGrawHill, New York, 1984.

[Boecker, Fischer, Nieper 85|
H.-D. Boecker, G. Fischer, H. Nieper.
The Enhancement of Understanding through Visual Representations.
Technical Report, University of Colorado, Boulder, 1985.

[Boecker, Lemke, Fabian 85]
H.-D. Boecker, A.C. Lemke, F. Fabian, Jr.
WLisp: A Window Based Programming Environment for Franzl.isp.
In Proceedings of the First Pan Pacsfic Computer Conference. The Australian Com-
puter Society, Melbourne, Australia, September, 1985.

[Boecker, Nieper 85|
H.-D. Boecker, H. Nieper.
Making the Invisible Visible: Tools for Exploratory Programming.
In Proceedings of the First Pan Pacific Computer Conference. The Australian Com-
puter Society, Melbourne, Australia, September, 1985.

[Fischer 81] G. Fischer.
Computational Models of Skill Acquisition Processes.
In R. Lewis, D. Tagg (editor), Computers in Education, pages 477-481. 3rd World Con-
ference on Computers and Education, Lausanne, Switzerland, July, 1981.

[Fischer 83] G. Fischer.
Symbiotic, Knowledge-Based Computer Support Systems.
Automatica 19(6):627-637, November, 1983.

211

[Fischer 84] G. Fischer.
Formen und Funktionen von Modellen in der Mensch-Computer Kommunikation.
In M.J. Tauber (editor), Psychologie der Computernutzung. Oldenbourg Verlag, Wien -
Muenchen, 1984.
Schriftenreihe der Oesterreichischen Computergesellschaft.

[Fischer, Lemke, Schwab 84]
G. Fischer, A. Lemke, T. Schwab.
Active Help Systems.
In T.Green, M. Tauber, G.van der Veer (editor), Proceedings of Second European Con-
ference on Cognitive Ergonomics - Mind and Computers, Gmunden, Austria.
Springer Verlag, Heidelberg - Berlin - New York, September, 1984.

[Fischer, Lemke, Schwab 85]
G. I'ischer, A. Lemke, T. Schwab.
Knowledge-Based Help Systems.
In Human Factors in Computing Systermms. CHI-85 Conference Proceedings, 1985,

[Fischer, Schneider 84]
(. Fischer, M. Schneider.
Knowledge-Based Communicalion Processes in Software Engineering.
In Proceedings of the 7th International Conference on Software Engineering, pages
358-368. Orlando, Florida, March, 1984.

[Forgy 81] C.L. Forgy.
OPS5 User's Manual,
Technical Report CS-81-135, CMU, 1981.

[Goldberg 84] A. Goldberg.
SMALLTALK-80, The Interactive Programming Environment.
Addison-Wesley, Reading, Ma., 1984,

[Laubsch, Rathke 83| -
J. Laubsch, C. Rathke,
OBJTALK: Eine Erweiterung von LISP zum objektorientierten Programmieren.
In H.Stoyan, H.Wedekind (editor], Objektorientierte Software- und
Hardwarearchitekturen, pages 60-75. Teubner Verlag, Stuttgart, 1983.

[Lemke 85 A. Lemke.
ObjTalks4 Reference Manual.
Technical Report CU-CS-291-85, University of Colorado, Boulder, 1985.

[Lemke, Schwab 83|
A. Lemke, T. Schwab.
DOXY: Computergestuetzte Dokumentationssysteme.
1983,
Studienarbeit Nr. 338, Institut fuer Informatik, Universitaet Stuttgart.

[Norman 82 D. Norman.
Some Observations on Mental Models.
In D. Gentner, A. Stevens (eds.) (editor), Mental Models. Erlbaum, Hillsdale, N.J., 1082,

[Rathke, Lemke 85
Ch. Rathke, A. C. Lemke.
ObjTalk Primer.
Technical Report CU-CS-290-85, University of Colorado, Boulder, February, 1985.
Translated by V. Patten and C. Morel.

212

|Sheil 83] B.A. Sheil.
Power Tools for Programmers.
Datamation , February, 1983,

[Simon 81| H.A. Simon.
The Sciences of the Artificial.
MIT Press, Cambridge, Ma., 1981.

[Wilensky et al. 84]
R. Wilensky, Y. Arens, D. Chin.
Talking to UNIX in English: An Overview of UC.
Communications of the ACM 27(6):574-593, June, 1984.

