
From Interactive to Intelligent Systems

Abstract

Gerhard Fi.gcher

Department oj Computer Science
University oj Colorado

Boulder. CO 80309 USA

Feature-rich software systems of today are the result of the continuous increase in computational power
and growing requirements for broad functionality; these systems have to be mastered by casual or un­
train('d users. This leads to operability problems (systems are too complicated), ineffective use, erroneous
behavior and frustration. Careful empirical studies indicate that even in current systems only a small
pErCEntage of the available functionality is actually used. The availability of more computational power in
the future will be of little value in constructing more usable systems, unless we open up new access paths
to enable the user to take advantage of this increased functionality.

We" claim that knowledge-based systems with qualitatively new human-computer communication
capabilities are one of the most promising ways to create intelligent systems. We propose to extend the
comprehensibility of systems by dedicating a large fraction of the computational power of the machine to
sophisticated user support systems.

1. Introduction

The ov('rall goal of this paper is to illustrate how to move on from interactive to intelligent systems. Two

research areas afe crucial for this transition: knowledge-based SYSte1J;3 and human-computer

communication. General principks for the design of intelligent systems will be postulated and a variety of

system components will be described which we have designed and implemented over the last few years.

The role of ergonomics research in relationship to intelligent ssytems will be discussed. Despite the fact

that progress has been made towards the goal of making intelligent systems more a reality, many chal­

lenges remain which will. be briefly described in the last section.

NATO ASl Series. Vo!' F22
Software System Design Methods. Edited by 1.K. Skwirzynski
@Springer-Verlag Berlin Heidelherg 1986

186

2. Why Do We Need Intelligent Systems?

The micro~lectronics revolution of the 1970s made computer systems cheaper and more compact, with a

greatly increased range of capabilities. Computing moved directly into the workplace and the home to the

fingertips of a large number of people. Much of this power is wasted, however, if users have difficulties in

understanding and using the full potential of their new systems. Too much attention has been given in the

past to technical aspects which have provided inadequate technical solutions to real world problems, have

imposed unnecessary constraints on users and have been too rigid to respond to changing needs. More

intelligent software is needed which has knowledge about the user, the tasks being carried out and the

nature of the communkation process.

The increased functionality of modern computer systems, driven by the many different tasks that a user

wants to do, will lead to increased complexity. Empirical investigations show that on the average only a

small fraction of the functionality of complex systems is used. Figure 2-1 summarizes empirical investiga­

tions and careful observations of persons using systems like UNIX, EMACS, SCRIBE, LISP etc. in our

environment. It also describes different levels of system usage which typically can be found within many

compll'x systems.

Figure 2-1: DiffE'r<'nt Levels of System Usage

The different domains correspond to the following:

D
1

: The subset of concepts (and their :lssociated commands) that the users know and use with­

out any problems.

D z: The subset of concepts which they use only occasionally. They do not know details about

them and they are not too sure about their effects. Description of commands (e.g. in the form
of property sheets)' explanations, illustrations and safeguards (e.g. UNDOs) are important so
that the user can gradually master this domain.

187

Da: The mental model [Norman 82; Fischer 841 of the user, i.e. the set of concepts wbich

sbe/be tbinks exist in the system. A passive help system (see section 5.2.1) is necessary for tbe
user to communicate ber /his plans and intentions to tbe system.

D 4: Represents the actual system. Passive help systems are of little use for the subset of D 4

which is not contained in D 3' because the user does not know about tbe existence of these

system features. Active help systems and Critics (see sections 5.2.2 and 5.3) which advise and
guide a user similar to a knowledgeable colleague or assistant are required so that the user can
incrementally extend her/his knowledge to cover D 4·

The only way to master complex systems is through incremental learning approaches. A partial knowledge

of a system can lead to the following situation (see Figure 2-2): a user (based on ber/his knowledge) makes

a typing mistake which is interpreted (as an existing command) within the complete system and the user

will be dumped in an area which is unfamiliar to her/him.

---__ ...!>o...

Figure 2-2: Protective Shields

Prot<:'ctive shields (based on the system's model of the user) are needed to avoid problems of this sort.

These protective shields must not be so restrictive that th<>y prohibit the exploration of additional system

features by the user.

3. From Interactive to Intelligent Systems

Everyone today will agree that we do not want to opNate computing systems in a batch mode any more.

Interactive computing systems hav" made a major contribution to the widespread use of computers. Some

of the most advanced interactive systems have been built as programming environments by Artificial In­

telligenc0 researchers [Barstow, Shrob", Sandewall 84; Sh('il 831 and around the SMALLTALK system

iGoldb.-rg 841

188

3.1 The Architecture of Intelligent Systems

The next step will be to move on from interactive to intelligent systems. In intelligent systems a substan­

tial part of the computational power will be used to document, explain and justify their expertise to

othns. They will provide insight, heIp and useful criticism so tbat a novice can slowly become an expert.

They will augment human intelligence by providing visualization tools. Figure 3-1 describes our vision of

the architecture of an intelligent system. It is important to note that the outer circle of system com­

ponents in Figure 3-1 are not "add-ons· to existing systems, but should be an integral part of the system

design righ t from the beginning.

Yisuelizetion
Components

Critics

Figure 3-1: From Interactive to Intelligent Systems

Intelligf'nt systems wiIi contain m:lny more tools than the functionally rich environments which are avail­

able to us today (e.g. the llNlX operating systPlTl. powerful AI progr:lmming environments). Empirical

findings indie:lte that the following problems occur which prev!'nt many people from successfully exploit­

ing the potential of the systems :lvailable to us today:

• users do not know about the existenc" of tools,

• users do not know how to access tools,

• users do not know wh!'n to use these tools.

• \I'wrs do not undenitand th!' results which tools produce for them,

• USf>rs cannot. combine, adapt and modify a t.ool to their spl'cific nef>ds.

189

Unless we are able to solve these problems, users will • reinvent the wheel· constantly instead of taking

advantage of already existing tools.

3.2 Human-Computer Communication (HCC)

Human communication and cooperation can serve as a model for how computing systems should be. What

can humans do that most current computer systems cannot do? Human communication partners

• do not have the literalness of mind which implies that not all communication has to be ex­
plicit; they can supply and deduce additional information which was not explicitly mentioned
and they can correct simple mistakes; empirical evidence shows that in any but the simplest
human communication a substantial portion of the communicated message is not explicit;

• can apply their problem solving power to fill in details if we give statements of objectives in

broad functional terms;

• can articulate their misunderstanding and the limitations of their knowledge;

• can provide explanations to others of how they reached a conclusion or why they behaved in a

particular way;

• can solve problems by taking imaginative leaps, for example by conceiving of an analogous
situation of similar characteristics with which they are more familiar.

Traditionally the relationship between the user and the computer was sufficiently remote that it was more

likP a literary correspondence than a conversational dialogue. Today the user is coupled directly with the

computer which causes the following changes:

• interaction with computers is emerging as a human activity;

• the prior styles of interaction have been all extremely restricted (e.g. compai.1ble to the driver
of an automobile or the secretary using a typewriter); there was a limited range of tasks to be
accomplished and a Barrow range of means (e.g. like having a control stick in video games);

the user was just an operator;

• the increa",d availability, the decreased cost and the greatly improved hardware allow that an
increasing :,mount of computational resources can be spent on human-computer communica­
tion, rather than on pmely computational tasks (see Figure 3-1);

• system (ksigners tplld to concentrate on the commands of the computer systems (just look at
the doculllPntation for :tlmost any systE'm, which is usually a catalogue of commands); yet it is
how, when and why the commands are used that is most important to the user;

• (here is a growing understanding that guidelines and classifications of the appropriate er­
gonomic dinwnsions for human-computer communication are less clear cut. Detail€'d prescrip­
tions or c1lE'ck-lisis cannot be provided to cover all asppcts of human-computer communication
beouse so much is d€'pencknt on human cogniti!'f abilities - how people behave, think and
perceive the world. Such subjective factors cannot be measured and predicted with the same
precision that is possible with elements in a physical environment (see chapt<'r 6).

Human-computer communication is mOf(' than drawing nIce pictmes on the screen. The vif'wers on th"

display screen are important, but they are of little use if there are no interesting knowledge structures

behind them.

190

3.3 Knowledge-based Systems (KBS)

Knowledge-based systl'ms are the most promising approach to qualitatively improve human-computer

communication. Based on the above analysis of communication processes among humans the model in

Figure 3-2 is suited to fulfill the stated requirements. It contains a knowledge base which can be accessed

by both communication partnE'rs; this implies that the necessity to exchange all information explicitly

between user and system does not exist any more.

= <:>
o

'" "

•
T

Knowledge about:

/
..

problem domaIn
communlcat)On processes
communlcation partner
problems of the user
and tutorIal InterventIon

implIcit
communIcatIon channel

LIIIIII17
expliCIt

communicatIon channel

Figure 3-2: :\rchitf'cture for I(nowledge-Based Human-Computer Communication

Thi, ,ystem architecture has thl' following advantages compared to current architectures:

1. the crplicit cmnmuilir'atioil chalinel is widened. The interfaces use windows with asso('iated
menus. pointing devices. color and iconic representations; the screen is used as a design space
which can be manipulated clirenly .

.) information can be exch:lIlged OYPr the implicit communication channel. Both communica­
tion partners h:lVe knowl~dge which eliminates the necessity that all information has to b('
exchangpd explicitly.

The four domains of knowkdgf> shown in Figure 3-2 have the following relevance:

I. Knowledge of the problem domain: Intelligent behavior builds upon large amounts of

191

knowledge about specific domains. This knowledge imposes constraints on the number of pos­
sible actions and describes reasonable goals and operations. If, for example, in UNIX a user
needs more disk space it is in general not adequate help to advise him to use the command
"rm *" (the command will delete all files in the current directory; [Wilensky et aL 841) al­
though it would perfectly serve her/his explicitly stated goal. The user's goals and intentions
can be inferred if we understand the correspondence between the system's primitive operations

and the concepts of the task domain.

Z. Knowledge about communication processes: The information structures which control
the communication should be made explicit, so the user can manipulate them.

3. Knowledge about the communication partner: The user of a system does not exist;
there are many different kinds of users, and the requirements of an individual user grow with
experience. To pay attention to individual differences the following knowledge structures have

to be represented:

• The user's conceptual understanding of a system (e.g. in an editor, text may be
represented as a sequence of characters separated by Iinefeeds which implies that a
linefeed can be inserted and deleted like any other character).

• The user's individual set of tasks for which she/he uses the system (a text editor may be
used for such different tasks as writing books and preparing command scripts for an

operating system).

• The user's way of accomplishing domain specific tasks (e.g. does she/he take full advan­
tage of the systems functionality?).

• The pieces of advice given and whether the user remembered and accepted them.

• The situations in which the USf'f asked for help.

A prerequisite for knowledge-based human-computer cOlnmunication is to monitor the user's
behavior and reason about her/his goals. Sources for this information are: the user's actions
including illpgal opPfations. This is based on the hypothesis that a user does not make ar­

bitrary errors; all operations are iterations towards a goal [Norman 821·

4. Knowledge about the most common problems which users have In using a system
and about instructional strategies: This kind of knowledge is requirl'd if someone wants
to be a good coach or teachpr and not, only an expert; a user support system should know
when to interrupt a uspr. It must incorporate instructional strategies which are based on
pedagogical theories, exploiting the knowledge contained in the system's model of the user.
Strategies embodit'd in our systf'ms [Fischer 811 include:

• Take the initiatil'f when weaknesses of the user become obvious. Not "very recognized
suboptimal action should Ipad to an intervention.

• Be non-intrus;t'e. Only frequent suboptimal behavior without the user being aware of it
should trigger an action of the systpm.

• Give additional information which was not explicitly asked for but which is likt'ly to be
needed in the near future.

• Assist the user in the ,.tepwise extension of her/his view of the system. Be sure that
basic concepts are well understood, Don't introduce too many new features at once.

The main issues in building knowledge-based systems (which are actively pursued in Artificial Intelligence

rt'searc h) are:

1. knowledge acquisition: how is knowledge acquired most efficiently from human expt'fts

192

and from data gathered by instruments? Can the experts th<'mselves directly manipulate the
knowledg<, base or do tIH'y need a knowledge engineer?

2. knowledge representation: how can the needed knowledge for complex problem solving
processes be represented to be effective for the inference engine and to be understandable for
the human?

3. knowledge utilization: how can we retrieve the relevant knowledge needed in specific situa­
tions? Does the knowledge base help us in finding the relevant knowledge? Does it support
browsing techuiques to navigate through a knowledge space whose structure and content is
unknown to the user in advance?

We will briefly describe our work on knowledge representation which has led to the development of

ObJTaik [Laubsch, Rathke 8:,; Rathke, Lemke 8.5; Lemke 8.5]' an obj"ct-oriented knowledge representation

language and programming environment in which most of our software is implemented.

3.4 Object-Oriented Knowledge Representation

A major strength of object-oriented knowledge representations is their ability to provide the designer for

many problems with a concise and and intuitively appealing means of expression. The claim of intuitive

appeal is based on our experience that object-oriented styles of d<'scription often closely match our und,>r­

standing of the domain being modeled and therefore lessens the burden of reformulation in developing and

undf>rstanding a formal description. Th/' implementation of our window, menu and icon systems [Boecker,

Lemke, Fabian 8,51 Sf>rH'S as a convincing example for this claim.

Ob.lTalk is an object-oriented programming language as well as a general formalism for knowledge

r<'presentation. ObJTaik as a programming <'nvironment includes the following features:

• message-passing as the basic model for computation;

• class-instance relationship; instances of a class are specified by filling the 'slots' described in
their class with specific values; tlll'ir class also provides a description of the messages that they
understand and how to respond to them; these descriptions are called methods;

• class-inhtritance framework (with mUltiple supi"rclasses); it supports the methodology of
"programming by speci:lliz:lt.ion"; the n1ft h od of a class may be extended or replacf'd by a
method with the sam" name contained in on<' of the subclasses of the class.

Thne arf' a variety of features that make OI;JTalk an int.<'resting formalism for knowledge representation;

among thf'm ar" the following:

• if-set, if-changed, if-nudtd and if-for(/f! demons (which :lfe triggered autolllatically when the
corresponding operations are carried out);

• Hules (as in rul<,-bas<,d expert systems) which may b" associated with classes; they lllay be
used to automatically update relationships among the slots of (an inst:lnce of) a cl:lss.

As mentioned above, a major application of ObJTaik is our window system (see for ('xample Figures .5-3

and .5-4 in section S,4 for two applications using the window system and Figure 3-3 for the inh<'ritance

network underlying thl' window system).

193

simple- m.'tn.'l.ger- mixin

sera ll- msn3.ger- mix in

Figure 3-3: The ObJTaik Inheritance Hierarchy of our Window System

The facilities of ObJTalk allowed for thp highly modular and flexible structure of the window system and

they Ipd to an open architecture providing high level interfaces to applications and at the same time keep­

ing lower level parts of the system accessiblp for situations where nonstandard extensions are needed.

4. Design Considerations for Intelligent
Systems

In this chapter we summarize major principles that have emerged from our work. They are based on a

growing understanding of human information processing capabilities and on our prescriptive goals about

system design. These principii's providl' a basis for developing and acssessing some aspecto of intt'l\igent

systems.

194

4.1 Design Considerations Based on the Human Information
Processing System

Users of computer systems are humans and the human information processing system has strengths and

weaknesses. Examples of the human mental processing limits are the limited short term memory and our

tendency to make errors (for a grE'at vari<'ty of reasons). Examples of the strength is the great power of

our visual system which is slowly taken more into account in the new two-dimensional interfac<,s, using

iconic and spatial information as well as color.

We postulate a few principles which provide the most important design criteria derived from the human

information processing system:

1. The limited re.~ource in human information processing is human attention and comprehen­
sion, not the quantity of information al'ailable. Modern communication and information
technologies have dramatically increased the amount of information availabl<, to individuals.
1'I10st persons will have access to more information than they can deal with. An important
function of future computing systems is to allow for the selection of the information we ac­
tually want and need and pTl'sentation of it in the most appropriate way.

2. In complex situation •• , the uarch for an optimal .<olution is a wa,.te of time. There are
limits to the extent to which people can apply rational analyses and judgements to solving
complex, unpredictable problems. It is insufficient to ask people to "Think more clearly· with­
out providing new tools such as knowledge-based systems, which help extend the boundaries of
human rationality. The aim is to achieve the most satisfactory solution (i.e. we have to
"satisfice" instead of "optimize", see [Simon Sill given current knowledge, accepting that bet­
ter solutions will emerge as a result of experience and enhanced knowledge and understanding.

3. The nature of human memory mfChanism.s are important design considerations. The limita­
tions and structure of human memory must be taken into account in system design. People
have limited short term memories. Dialogues should, ther<,fore, be constructed which do not
expect the user to remember everything alld which reinforce, prompt and remind the user of
necessary information in a supportive but unobtrusive way. Recognition memory and recall
memory are two memory structures with different access ml'chanisms which are relevant to
judge the advantages and limitations of function-key versus menu-based systems.

4. The efficient visual processing capabilities of people must be utilized fully. New technologies
(like raster displays) have opened ways to exploit human visual perception more fully, e.g.
through the use of windows, color, graphics, icons and mice. These technologies support an
interaction technique like "direct manipulation" which is an important alt('rnative in human­
computer communication to be further explored in future systems.

5. The structure of a computer sy.stem mu"t be understandable by people using it rather than
requiring the user to learn by rate the functions that ean be performed. An adf'quate under­
standing of how a systf'm works gins users the knowledge and confidence to explore the full
potential of a system, which can have a vast range of different options. Learning by rote may
train the user to operate a limited number of functions but makes it difficult for the user to
cope with unexpected occurrences and inhibits their exploration of the full potential of the
system.

195

4.2 Design Considerations Based on our Prescriptive Goals for

Intelligent Systems

Our systems have to be flexible enough to support the variety of behavior occasioned by the unpredictable

details of particular situations. The design of hard- and software and human-computer communication

capabilities must be responsive to the knowledge worker's amorphous responsibilities. We must base our

theories, methodologies and tools on an understanding of what users are doing. The work of the users we

want to support can be characterized along the following dimensions:

• to deal with fuzzy problems, with instabilities in specifications and uncertainties; the existence
of partial solutions incrementally increases the user's understanding of the problems to be
solved and allows her/him to analyze a prototypical situation instead of anticipating it;

• formal approaches (e.g. methods from operations research) fail in most cases, because we do
not understand the problems well enough;

• the space of possibilities is unlimited; choosing is not always good enough, in many situations
it is necessary to generate new solutions: this requires the exploration of unknown situations
and not the application of habitual mpans;

• in complex decision making thert' are always too many things which are not articulated; there­
fore in many situations, tasks can not be delegated because they cannot be dt'scribed well
enough for an assistant to do them.

Based on this brief description we postulate additional principles which can serve as further guidelines to

design intelligent systems:

l. Thfn i., no such thing as the USEr oj a -,ystrm; there are many diJJerent kind oj users and

tht requirements oj an individual Ue'er grow!' with experience. Computer syst~ms must adap­
tively grow with the experience of the user. The heterogeneity of the user community and the
growing experience of one user working with a system over a long period of time requires an
adaptive behavior based on a system model of the user's abilities for a specific task.

2. The "inteliigence" oj a complex tool mltst contribute to ilc, easy lteee. Truly intelligent and
knowled~~able human communication partners, such as good teachers, use a substantial part
of their knowledge to explain their expertise to othf'rs. In the same way, the "intelligence" of a
computer system should be used to provide effective communication.

:3. The USEr interJace in a computer sy,<tem is more than just an additional compo/unt; it ie' an

integral Q,nd important part oj the whole .eyetem. The traditional design process, proceeding
from the "inside" to the ·outside", has to be reversed as much as possible. The design,
development and evaluation of new information systems should start with an understanding of
the oVf'rall social and technical environment in which any particular new technology is em­
bedded (see Figure 4-1).

5. Components of Intelligent Systems

Over the last seHral years we have designed and implemented the following prototypical components of

intelligent systems (see Figure :3-1):

• documentation systems,

• passive and active help systems,

196

Figure 4- 1: D irr~ re lJt Levels in a System Deve lopm ent P rocess

• crit.irs,

• v isu a li zat ion tools.

T hese componE'nts will be bridly desc ribed in t.he next sections. Most of them are of equ a l importa nce to

t he sy ste m des igner a nd th e system user .

5.1 Documentation Systems

A progr a m doc umenta tion system should bE' a par t of a softw are engineering env ironment. Its im portance

stems fro m t he large range of di fferent tas ks doc umentat ion is used for:

• to serv e as a communication medium betwee n different people (clients, designers and users),

• to en hance t he designers und erstanding of t he problem to be solved and to assist tb em in
im provin g the problem spec ifica tions ,

• to support t he desiglw rs d uring t he im plement ation of t heir solution,

• to e nab le programmers to reuse a progra m and to ex tend existing systems to tool kits,

• to m :l in tain a programm ing system,

• to m ake a program portab le and sharab le in a larger community.

[n o ur des ign and implementa tion iLemke, Sc hwa b 83; Fisc her, Sc hne ider 841 a progra m docu mentat ion

system is a kn owledge base con taining all of the available knowledge about a syste m combined with a set

of tools useful for acqu iring, storing, m aintaining a nd u.ging t his knowledge .

197

Th~ knowledge base is

• in part interpreted by the comput<'r to maintain the consistency of the acquired knowledge
about structural properties; it supports the users in debugging and maintaining their programs;

• in part only useful for thf> user, i.e, not directly intnpretable by the machine, In this case the
machine serves a<; a mE'dium for strudured communication between the different users, The
computer can support thl' user to maintain the non-interpretable information in the knowledge
base and do user-guided chang!'s of information,

A documentation system should support the entire design and programming process, Valid and consistent

documentation is of crucial importance during the programming process itself. The information structurf>S

that are accumulated around a program can be used to drive an evolutionary and incremental design

process,

In tht" traditional view docunwntation is CTt'ated at the end of the programming process; in our modfc'l

docum~ntat,ion serves as th" commulJication medium for all people involved with a software product.

Documentation is useful throughout the entirt' process and serves as a starting point for new solutions of

the problfc'm, The purpose of documentation in this view is comparable to that of a proof in mathematics:

a crystallization point for new ideas,

We gain the full benefit of a program documentation system only, if it is an integral part of a program­

ming environment, Program documentation produced as a separate document by a word proct'ssing sys­

tem has the following disadvantages:

• it is impossible to provide pieces of information automatically,

• it is impossible to maintain consistency between the program and its documentation automati­
cally (or at least semi-automatically),

• it is impossible to generate different nternal views dynamically from one complex internal
structure (e,g, to read a documentation either as a primer or as a reference manual),

• it is impossible to create links between the static description and the dynamic behavior,

Program documentation (or whom! Program documentation has to serve different groups who try

to IJPrform difft'rent tasks. Therefore the amount and quality of information offered to these groups of

people has to be different. We distinguish the following groups and their tasks:

• the desigllers of a system during tht" programming process, They have to have access to their
design decisions and the different versions of the system, They also need information about the
state of their work during the whole design process,

• the programmers who are trying to reuse or modify a program that they do not know yet.
They want to understand tht' purpose and algorithms of the program to di'cide which parts of
it have to be changed to fit their ne('ds. They need information about design decisions (in
order to avoid known pitfalls) as well as a thorough documentation of the existing code.

• the clients who are trying to find out whether the implemented system solv('s their problem,
They want to improve their own undt>rstanding by working with a prototypical version of the
system and are therefore not interested in any programming details but in design decisions,

• the users want to see a description in terms of "What does it do? How can I achieve my
goals?"; for end-users the documentation has to offer different views of the system: a primer­
like description for the beginner and manual-type explanations for the expert.

198

Knowledge acquisition and updating. TIl(' information structures which are uSNI in our system come

from two sources:

• a program aE;dysis system provid"s information about the structural properties (cross
reference" side effects) of a program. The users do not have to provide information that can
be created automatkally, so they are free to concentrate on the cre:ctivc aspects of their work.

• t lIP programmers have to provide semantic information about the different parts of the
program, inform:ttion about the internal (semantic) structure of their systems, df"scriptions of

the algorithms used etc ..

\jo,t of tlIP analysis done by the system is donI' at read-time. This ml'arlS that we have to do th" analpis

aftN ('aeh altPfnation of the program code. The systf'm knows about possible depend,'ncies between

knowkdgt' units and, if necessary. reanalyzes the units in qUf'stion. It informs thi' programmer about pos­

sibl" inconsistt'ncit's in the knowledge base Tht'st' techniques hf'lp us to maintain the consistency between

differ<'nt. representations of the information.

The way the system decid('s if a knowlt'dge unit has to be updated is the following:

• the system knows that it has to change certain structural information (e.g. 'calls" and "is­
callpd-by· relations) automatically. The system is able to alter information by using its cross­
rE'fert'nce knowledge. This knowledge can also be used to guide the users to places where they
possibly want to changf' information.

• for each unit users can provide a list of other knowledge units they want to inspect and pos­
sibly alter if a unit has been updated.

Using the available knowledge. A knowledge-based program documentation system is only useful if

the relevant information can be easily obtained. The following two requirements must be supported:

• availability: the knowledge about the system (incorporating the consequences of all changes)
must be available at any time.

• vieUis of reduced complexity: the structures in our knowledge base are too complex to be used
directly. A filter mechanism where the filters can be defined by the user [Lemke, Schwab
831 allows the generation of views of reduced complexity showing only the information which is

relevant for a specific user at a specific time.

5.2 Help Systems

The following system desniptions [Fischer, Lemke, Schwab 84; Fischer, Lemke, Schwab 851 are based on

preliminary investigations for a passive and an active help system for a screen-oriented editor. Passive

help systems are needf'd if thi' users know their goals but cannot communicate them to the system. Active

help systems assist users when they are not aware that the system offers better ways to achieve a task

(see FiguT" 2-1).

199

5.2.1 PallBivist: A Passive Help System

Thp first step in the design of Passivist, a natural language based help system, was to gl't an idea of the

r"al np{'ds of the user. In several informal experiments a human "xpert simulated the help system in

editing s('ssions with users of difff'rent expertise. The results indicated a fairly diverse set of problems

ranging from finding keys on the keyboard to complex formatting tasks.

Pas.Q il'ist provides help to requests such as:

• How can J get to the end oj the line?
• I want to delete the ntxt word.

Pa$siri,qt uses a help strategy in which earh step of the solution is prt'sented and explained to the user

who then executes this step and immediately sees the resulting eff"cfs. Help is given as text generated

from sentt'nce patterns according to the goal structure of the problem solving process and key bt'quences

and subgoals are dispbyed graphically.

Passivist is implemented in OPS5 IForgy 811. Flexible parsing using OPS5 is achievt'd by a rule-based

bottom-up method. The consistent structure of the system as a set of productions and a common working

memory allows the use of the same knowledge in several stages of the solution process. For example,

knowledge about the state of the editor is not only used to select a possible solution for tht' user's problem

but also to disambiguate the user's utterance. In the phrase the last line with the cursor being at the

beginning of the editing buffer it is clear tbat the user refers to the last line of the buffer (and not to the

previous one).

The following rule (an English-like transcription of the corresponding OPS,) rule) represents the systems

knowledge about deleting the end of a line:

IF the goal is to delete • string
AND the string is the end of the current line
AND the cursor is not a.t the end of the current line

THEN remOTe the goal from the .orking memory
AND crea.te a. new goa.l to propose the cOMm&nd ·rubout-line-right·

5.2.2 Activist: An Active Help System

Activi8t, an active help system for a screen-oriented editor, is implemented in FranzLisp and ObJTaik (see

section 3.4).

Activist deals with two different kinds of suboptimal behavior:

1. the user does not know a complex command and uses suboptimal commands to reach a goal
(e.g. she/he deletes a string character by character instead of word by word).

2. the user knows the complex command but does not use the minimal key sequence to issue the
command (e.g. she/he types the command name instead of hitting the corresponding function

key).

'j--.:~~~"< ':-~ ii'::h'::(:;:;"~ " < '~~ .., } ~".'h"'~ "'~;: ;,:~"""H. " -:.' "". : ' 'I"~ j(~" ",. """y~' ~ /" ,'t"~1 ,,<:~, t~ N,,:)~' ':' I',,' ~J'::'~. J '.'''' ":'; ~,.>"'i~ " ': '<~ ~~.~'<' :,. >':' ,./ f' l>:;~ ',: .-
• y ., '.' • >

200

Sim il:H t o :, human obs(,rYn , A rt il ' i ,~ t h:lndl l'5 the following t:lsks (fo r details see \Fischer , Lemk e, Sc hwab

8·11 :\lId lFisc hn , Lemkl', Schwab 8'>]) :

• to r!'rogni:e what the uSI' r is doing or wants to do,

• to (l'o iualr how th,' user tri es to achieve her/his goal,

• tn cM)', !rud a model of Ih t u.'(r tn,ed on the results of the ev a luation tas k,

• I () d,'c id e (d<'pend,'nt on th f' infornntioll in the mod(>l) whw and how to intnrupt. (tutoria l
in {('f\' ell I ion) .

In Adil' I> ! the r('cognition and eva lu a tion task is del('gated to 20 difrNent plan specialist s . Each one

recog ni u ', and evaluates one poss ible plan of the problem dom a in. Such phn s are for example "dfl tf iot1

of Ihe rUTI l(' urd", "pos ition al th e end of linc", etc ..

A phn sp('C i::i1ist consists of:

• A tr3n sition network (1':'\). which mat ches all the different way s to ac hieve the plan using th ...
fun clion:llity of the edit or . E ach TN in th e system is ind e pende nt. The result s of a match are
th e uSfd edi t or comman ds a nd the uu d keys to trigger th ese comm a nd s.

• An expert which knows the optim al pla n including the best edit or com man ds and the minimal
k ey seq !lfllCe fo r these comm ands.

F ig urE' .5-1 displays the user model th a t A cti ll iJt has built up. Fol' eac h plan there is a pane which shows

th e prr{orm ance of a specific use r conc!'rning this plan. Panes with blac k background indicate th a t the

correspo nding plan is currently not monitored by the active help system .

ne

(set-cursor-to-beglnnlng-of-l1ne) l1egt auch auf ~A

Figure 5-1: The User Model of A ctivist

201

The dialogu<, window at the bottom displays a help message given to the user. She/he has executed the

command ,<et-cur,~or-to-begin7lil1g-oJ-line by typing in the command name. Activist gives the hint, that

this command is also bound to the hy (TIn-A.

Figure 5-:2 relates to the monitoring of the plan "delete-the-leJt-part-oJ-the-current-word". The window

shows one pane of Figure .')-1 in more detail: the proposed command (with the optimal keys) for this plan

and the state of the plan recognition.

The user has executed the command rubout-character-leJt with the DEL-key three times. After these ac­

tions the cursor is located to the right of the first charactn of the word. If the user once again inyohs

rubout-character-leJt the plan will be recognized. Then the evaluation will begin: the commands used will

be compared with the optimal commands for this plan and Activist will recognize the first kind of sub­

optimal bt'hayior (as described above). Based on the instructional strategies chosen Activist may then

decide to interrupt the user and describe how to use the "dtltte-the-leJt-part-oJ-the-current-word" com­

mand.

IJIIITI 10:1' pdll ,, ' 11
S E R " 0 DEL

len executed:
ood done:
rong co~~and used:
jth unne,ce33ary keY5:

_o~~~nd with wrong keY3
Ith unne3ce5'~ry keys:
e55age5 5ent to U5er:

1
8
1
6

U5f!d: 8
B
B

" T E R " R l I" FOR " R T I 0 "
ropo3ed CO~"~nd3: rubout-yord-Iert
pti"al kf!Y~: ESC h

o~~~nd~: rubout-charecter-Ieft rubout-character-left rubout-charact~r-Ieft
eY5:(DEL)(DEL)(DEL)
uto~aton in ~t~te: Start

Figure 5-2: Monitoring the Recognition Task

5.3 Critics

In our current work we rxtend the work on active ht'lp systems in order to develop systems which can

serve as critic.s. This is done primarily by reprt'senting more elaborate knowledge structures in the com­

puter. The following four information structures are prerequisites to support systems which can serve as

Critic,,:

• Characteristics oj the U.<er: General knowledge of the user's abilities in the subject domain
independent of the current probl('m. This knowledge can be viewed as an abstraction from
individual problem solving attempts .

• The User's Problem Solving Approach: The system's idea of the problem solving path chosen
by the user. This may be an explicit hierarchical model of the design choices which led to the
code produced by the user where the user explicitly indicates in which way she/he wants to

~-- --- - p - -- •• --- ~. -_.-. - - • --~----- •• ----- -~ _ • .- • .---- - ---<~ .,. I

202

attack th!' problem. Plan recognition stratt'gies attempt to infer the user's plan through obser­
vation of h!'rjhis st.eps performed in solving a task. For these systems the plan ('ssentially i.g
the user model.

• Task lvfodel: The systf'm's understanding of which problem the user currently wants to solve.
In tutorial systems this knowledge can be built into a system in advance. In systems which
can serve as critics (i.e. they have to support the users in their own doing) we need methods to
infer the current task.

• Domain K nowledgt: liser independent expf'rt knowledge of the selected domain of competence
of the system.

Giv('n this detailed model of the user and the task domain, the followin)l; actions of the system become

possible (e.g. to support It>arning strategies like learning on demand):

• Select appropriate actions with respect to the user: If the comparison of the user model and
the system's exp!'rt knowledge reveals weaknesses in a specific area, the system should only
become active if this area is adjacent to already known areas and does not require too many
other areas unknown to the user.

• Select examples from the domain the user is familiar with: By using an executable form of
representation it is possible to generate illustrations out of areas which the user already under­
stands and thus reduce the cognitive distance that has to be bridged.

• Present only the missing pieces of knowledge: In dialogues a large amount of time is spent to
find out what each communication partner knows and does not know about the subject area.
With a detailed user model, the system can concentrate on the very points where the user
needs help.

• Ettter understanding of the user: Using knowledge about the user's understanding of a
problem domain makes it much easier to find out about her/his real problem. We encountered
many cases where a user had a problem which originated in a wrong decomposition of a higher
level probl!'m. Using knowledge about the user it is possible to trace a problem baek to its
real roots.

The Code-Improver System. Our currently existing system, called Code-Improver, is used to get ideas

on how to improve Lisp code. Improvemf'nts may be in either of two directions (which can be chosen by

the user):

• t.o make the code more cognit il'Eiy efficient (e.g. more readable or concise) or

• to make the code more machine efficit'nt (e.g. smaller or faster); this improvements include
those that can be found in optimizing compilers.

The system is in regular use by different groups for slightly different reasons:

• by intermediates who want to learn how to produce better Lisp code; we are currently testing
the u5f'fulness of the tool by gathering empirical, statistical data using advanced under­
graduate students of an introductory Lisp-course as subjects;

• by experienced users who want their code to be • straigh tened out'; instead of doing that by
hand (which these users in principle would be able to), they use the system to carefully recon­
sider the code th!'y have written. The system is used to detect optimizations and simplifica­
tions that can be done to the code. The system has proven especially useful with code that is
incrementally developed, i.e. gets changed and modified continuously.

The system operates by using a set of (> 200) transformation rules that describe how to transform 'bad'

203

code into better one. The user's code is match"d against these rules and the transformatIOns suggested by

the rules are given to the user; the code is not modified automatically. It is important to note, that the

system is not restricted to a specific class of Lisp functions or application domain. It accepts whatever

Li$p-code is given to it. However, thNe is a trade-off: since the system does not have any knowledge of

specific application areas or algorithms it is naturally limited in the kind of improvements that derive

from its mort> general knowledge about programming. The improvements suggested by the system are of

the following kind:

• suggesting the use of macros (e .g. (.etq • (COilS b .» may be replaced by (push b a»);

• replacing compound calls of Lisp functions by simple calls to more powerful functions (e.g. (not

(evenp a» may be replaced by (oddp .»);

• specializing functions (e.g. replacing equal by eq);

• using integer arithmetic wherever possible;

• finding alternative (simpler or faster) forms of conditional or arithmetic expressions;

• eliminating common subexpressions;

• replacing 'garbage' generating expressions by non-copying expressions (e.g. (append (explode

word) chars) may be replaced by (neone (explode word) chou»);

• finding and eliminating 'dead' code (as in (eond (. ..) (t ...) (dead code»);

• (partial) evaluation of expressions (e.g. (sum a 3 b 4) may be simplified to (SUII • b 7»).

The current versIOn of tht> Code-Improver system runs in batch mode. Like the ·writers-workbench·

UNIX tools, diction and explain, it is given a file containing Lisp code and comes back with suggestions

on how to "improve" that code.

The problem of knowledge acquisition for the system's model of the user is solved using program code

written by the user. Our current techniques will be extended from recognizing pieces of code which can be

improved to both recognizing the goals of a pit>ce of code as well as existing and missing concepts which

led to its generation. Since only in very few cases a definitive assumption about the knowledge of the user

can b" made, it is important to have many clues which allow to make uncertain inferences when no

specific evidence is available.

5.4 Visualization Tools

I\lany communication problems between humans and computers arE' due to the fact that the strongest

information processing subsystem of the human brain, the l'isual system, is hardly utilized by current

software systems. Most systems present the rt>sult of computational processes in textual and symbolic

ways that are not suited to the human information processing capabilities. Over the last 5('", ('ral years we

have actively pursued the goal of constructing a 80ftware oscilloscope whose visualization techniques en­

hance tht> communication process (see [13oecker, Nieper 8.5; Boecker, Fischer, Nieper 8.5]) by broadening

the explicit communication channel bHween computer and machine (see Figure 3-2).

204

5.4.1 Visualization of Data Structures: The Kaestle System

The most important data structure of Lisp is the list. With Kaestle [Boecker. Niep<'r 851 the graphic

representation of a list structure is generated automatically and can be edited directly with a pointing

device. By editing we do not only mean changing the structure itself but changing the graphic represen­

tation, the layout, of the structure. Kaestle is integrated into a window system and mUltiple

Kaestle-windows may be used at the same time. The user interface is menu-based (see Figure 5-3) and

the program inter face is realized through ObJTaik methods which can be triggered by sending messages to

a Kaestle-window.

K aestle provides the following functionality:

1. generating a graphic display (mUltiple independent structures may be displayed at a desired
position);

Z. changing the graphic representation (additional display of structures which are truncated in
the current display, deleting parts of the structure from the screen and moving parts of the
structure on the screen);

3. changing the structure (the manipulation (insertion of atoms or pointers) of the graphic
representation immediatl'ly changes the underlying structure);

4. controlling the layout planning in advance (selecting the maximum depth and length of lists to
be displayed, selecting the maximum length of atom names to be displayed, selecting a plan­
ning algorithm (car-first or cdr-first algorithm) and selecting the font to be used);

5. general undo and redo mechanisms.

The user of /{ aestle can take one of the following roles:

1. an active role: A graphic representation can be generated from whatever the user types in and
the user is encouraged to an exploratory style of learning.

2. a passive role: An inexperienced user does not know which structures and which operations on
them lead to interesting effects. To display prestored examples or examples taken from the
actual context, /{aestle can be used through a program interface, i.e. programs can be written
which generate graphic representations in a movie-like manner.

We will combine /{ aestlc with the docunwntation, help and critic tools dr'scribed in the previous sections.

J{ae.stle is a tool which will be used by the Code-Improver to illustrate explanations given by the system

to answer questions like:

• \'v'hat is the difference between several list creation functions (e.g. cone and list)?

• What is the dirference between equal and eq?

• What is the difference between non-destructive and destructive functions (e.g. append and
Deane)?

• \Vhy is it possible to transform (append (explode word) chars) to (nconc (explode word) chars)?

• Why is it wrong to transform (append chars (explode word» to (nconc chars (explode word»)?

• How is a stack implemented in Lisp? What are push and pop doing?

205

IJJIUJ_----.·:::::······ 122:11stel

«eins 1) (zwei 2»
23: 11ste2

« dre i 3) (vier 4»
24:(append 11ste1 l1ste2)

«eins 1) (zwe i 2) (drei J) (vier 4»
25:

.

.. .
.. ..

...
..

.

. m:snE-2

:.~. KJmlH
.

,
: : : : "" •-..r-! . . :: : . . ".: .: ,: . : ,: ,:,:,:: : . ..

.,
...

undo
ftnd path

pointer
change to nl1

ata.
delete kaest Ie

delete Itructure
replan Itructure

.ave kaeltle
.ave It ructure
zooe structure

display n1'-oons
dis structure

.. ~~~~~~~U-________________________ ~

Figure 5-3: Ka estle: Visuali za t ion of Data Structures

- . - - -------. ~ ----- -- ----- ..-----..-.-.~. . --

206

5.4.2 Visualh;ation of Control Structures: The FooScape System

One of the most helpful tools for understanding programs which are composed of a large set of procedurt's

is a program tree that displays the hierarchical calling structure (see Figure 5-4, "Dynamic Calling Tree").

In reality however, most programs are more appropriately described as a network oj Junctions rather

than a tree (see Figure 5-4, "FooScape·). In FooScape functions are displayed as ellipses and an arrow

connects ellipses a and b if function a calls function b.

passoclat Ion
pget
plnlt

fl11array

184
216
300

334
567

ppu
prell
phash

plnlt

217
sh 466

300
pget
plnlt 334

flllarray 567

Figure 5-4: FooScape: Showing the Dynamic Behavior of a Program

ppu
pr ..
passoc1at Ion

The planning of the layout (placement of the ellipses and arrows) is done automatically. However, be­

cause the "Iwauty· of the solution sometimes is not accept:lble we allow the user to modify the layout

int<'f:l.ctively by moving "bubbles· around or by altering the set of functions included in the display. The

interaction style is similar '0 the one of the Koe<'/ie system.

FooStape can be us('d to di!'play the dyn~lmic behavior of programs. Figure 5-4 shows two snapshots. A

function name is highlighted - i.e. flips from white to black - whenever the function is active. FooScape

can be augmented by a tool that displays the current stack of function calls. Traditional techniques for

monitoring the dynamic behavior of progr~ms (eg. breakpoints, dumps) capture just one state of the data

and too often gen('rate a huge amount or data. The animated FooScape system tries to avoid these dis­

advantages, while, on the other h~nd, trying to preserve the dynamics of the processes being monitored.

207

6. The Role of Ergonomics Research
Intelligent Systems

.
In

Ergonomics analyzes the consequences of technology to the learning and working environment of a

human. It is dominated by the goal to create environments which support the human and do not require

that the human has to put up with inadequate technical solutions.

In the past properties of systems were investigated which could be measured with methods from physics

(e.g. according to the size of an average hand, what is the optimal distance between the keys on a

keyboard). This approach is insufficient for the design and evaluation of human-computer communication

and knowledg!'-based systems.

Design conflicts. The first thing a designer is confronted with is that there are no optimal solutions

only tradeo! !s. One has to cope with conflicting design issues; some of the major ones are:

• cognitive efficiency versus machine efficiency of a system,

• simplicity of a tool (to be !'asily handled by a large community) versus power (to be used in
the construction of a large variety of different and complex systems),

• the necessity to remain compatible with existing systems (e.g. timesharing computers) versus
exploiting the power of new media (e.g. networks of personal machines),

• ease for novice users (like mnemonic names in editors or menu-driven systems) versus con­
venience for experienced users (like a terse command language),

• tight integration between different subsystems versus flexible, reconfigurable modules or tool
kits.

Costs of ignoring ergonomics. Without a great concern for ergonomics (especially software

!'rgonomics) computing systems may prove detrimental to the people who have to work with them. Once

a computt'r system has be"n installed, it is difficult to avoid the assumption that the things it can deal

with are the most relcv:lnt things (e.g. text-processing systems do not support graphics, therefore papers

get written without graphics). Introducing a system whose functioning is incomnletely understood may

cause unintended transfprs of power and obscured responsibilities. Desi~ns which ignore the fact that

computing systems are embf'c1ded systems (see Figure 4-1) may lead to systems where satisfying work

procedures are subdivided in meaningless parts and intellectual assembly line work is created. Contrary to

that, good systems have the p'1tential to reduce stress (by being forgiving towards errors from the user;

e.g. by providing an l'NDO command for every operation) and to augment human capabilities. Er­

gonomics research should indicate wrong developments in an early state; this requires that evaluation of a

system should start at the bt'ginning of the developml'nt process and should not be restrictf,d to accep­

tance testing. The us(' of comput!'r systems as tools is a complex skill which is acquired over long periods

of time and it is Hry costly to untrain people after they have become familiar with one way of doing

something.

208

Ergonomics rl'search faces one critical probl,..m: technology has progressed so fast that some of the ques­

tions which were too closely tied to a certain technology became obsolete before the studies were com­

pl"ted. A detailf>d understanding of the optimal design of a keypunch is of little value today, because

keypunchf>' are dying out anyway. The question whether a terminal or a printer should support small and

capital letters is not discussed any more, because all products which do not are driven out of the market.

When is ergonomics research most important! Applying criteria from ergonomics and psychology

to the aC('fptance testing of a given system is definitely easier than applying evaluation criteria to the

design of systems. In acceptance testing, the system is given; all of its parts and properties are specified.

In design, the system is still largely hypothetical; it is a class of systems. But there is much more leverage

in evaluation of the system design than in acceptance testing of the finished product. The long ranging

goal is that the design0f of a complex computer systf'm has a design handbook (similar to the handbooks

which are available to the civil engineer today) which gives him access to the important design criteria.

Unfortunately this is not the case. We are lacking cognitive theories which are prescriptive enough to be

used as dt'sign criteria and of planning and a detailed understanding of the specific cask structure. In

addition, productivity gains inherent in new technology cannot be realized simply by carrying out existing

opf'rations at a fastN paci'; a careful analysis of work procedures is crucial for a substantial improvement.

Why not just ask the user! There is no doubt that the user community should play an active part in

the design of a system (shared system design among users and designers) -- but unfortunately most poten­

tial user communities can not articulate in enough detail the characteristics of the systems which they

would like to have. Therefore it is important that there are research places where users can explore and

criticize new system designs in a prototypical development stage.

7. Problems and Challenges for Research
Intelligent Systems

.
In

What can we do without complete specifications! System design belongs to the 'Sciences of the

Artificial" [Simon 81]. Contrary to natural scientists who are given a universe and seek to discover the

laws. the system designer makes "laws· in the form of programs and the comput(>r brings a new universe

to lift'. I\1any interesting problem areas (especially thi' domain of intt'lligent syst(>ms) contain mostly ill­

structurl'd problems. The main difficulty in these domains is not to have a ·correct" implementation

with respect to given specifications, but t.o develop specifications which lead to effective solutions which

correspond to real needs. Corr!'clness of the specifications is in general no mt'aningful question because it

would rE-quire a prpcise specification of intent. and such a specification is seldom available.

We have to accept the t'mpirical truth that for many tasks systt'm requirements cannot be stated fully in

advance - in many cases not even in principle because neither the user nor anyone else knows them in

advance.

209

The development process itself changes the user's and designer's perceptions of what is possible, increases

their insights into the application environment, and indeed often changes the environment itself.

The following (not mutually t'xC\usive) possibilities exist to cope with this situation:

L Dt'velopment of experimental programming systems which support the coevolution oj
opecifications and implementations. Prototypical implementations allow us to replace an­
ticipation (i.e. how will the system behave) with analysis (i.e. how does it actually behave),
which is in most cases much easier. Most of the major computing systems (operating systems,
editors, expert systems, software development systems) have been developed with extensive
feedback (based on their actual use) which continually contributed to improvements as a
response to discrepancies between a system's actual and desired state.

2. Heavy user involvement and participation in all phases of the development process. The user
should be able to play with the preliminary system and to discuss the design rational behind it.
An existing prototype makes this coopt'ration between designer and user much more produc­
tive, because the users are not restricted to reviewing written specifications to see whether or
not the system will satisfy their needs with respect to functionality and ease of use.

3. Let the end-users develop the systems. This would eliminate the communication gap al­
together. They are the persons who know most about the specific problems to be solved and
by giving them the opportunity to change the system there is no longer a necessity to an­
ticipate all possible future interactions between user and system. User tailorability is a first
step towards convivial sy.gtems [Fischer 831 which give the users the capability to carry out a
constrained design process within the boundaries of the knowledge area modeled. A strong test
for the intelligence of a system is not how well its features conform to anticipated needs but
how well it performs when one wants to do something the designer did not foresee.

4. Accept changing requirements as a fact. of life and do not condemn them as a product of
sloppy thinking; we need methodologies and tools to make change a coordinated, computer­
s1lpported prOCESS.

Understanding the limitations or systems. A critical problem can be that the users GO not have a

clear understanding of the limitations of a system. This is an important problem for natural language

interfaces where users are often seduced to believe that they can talk to these systems like to their col­

leagues. Users will be especially disappointed if the projected illusion is that of intelligence but the reality

falls far short (the ELIZA system may serve as a good example). Despite progress in the area of intel­

ligent systems, it is still the user who is more intelligent and can be directed into a particular context.

Giving the us(>r the appropriate cues is one of the essences of human-computer communication. Windows,

menus, spreadsheets, documentation, help, explanations, critics and visualization provide a context that

allows the user's intelligence to keep choosing the appropriate next step.

Towards Human-ProblemDomaln Communication. Despite the fact that we haY!" used the term

Human-Computer Communication throughout this paper, we believe that the goal to achieve is Human­

Problem Domain Comm unication, where the users can deal with descriptions within their world of exper­

tis;>. Knowledge-based systems are one importan l step towards this goal and allow users to deal with

content instead of form or low-level mec!l~nisms.

Human-oriented computer systems. Thi're IS no difficulty in getting people to use computers

210

provided the computer and its application are genuinely useful. The goal of intelligent systems has to be

to create human-oriented computer systems where the users have control and can achieve their goals in

their way. These systems should eliminate the necessity that the human has to become a computer­

oriented person (see Figure 7-1).

Figure 7-1: Human-centered and computer-centered system
De8ign oj Peter HaJnozcky, Zuerich

References

[Barstow, Shrobe, Sandewall 841
D. Barstow, H. Shrobe, E. Sandewall.
Interactive Programming Environments.
McGrawHill, New York, 1984.

[Boecker, Fischer, Nieper 851
H.-D. Boecker, G. Fischer, H. Nieper.
The Enhancement of Understanding through Visual Representations.
Technical Report, University of Colorado, Boulder, 1985.

[Boecker, Lemke, Fabian 85]
H.-D. Boecker, A.C. Lemke, F. Fabian, Jr.
WLisp: A Window Based Programming Environment for FranzLisp.
In Proceedings of the First Pan Pacific Computer Conference. The Australian Com­

puter Society, Melbourne, Australia, September, 1985.

[Boecker, Nieper 851

[Fisch('r 8l[

[Fisc hpr 83]

H.-D. Boeckt'r, H. Nieper.
Making thE' Invisible Visibl,,; Tools for Exploratory Programming.
In Proceedings of the First Pan Pacific Computer Conference. The Australian Com­

putt'T Society, Melbourne, Australia, September, 1985.

G. Fischer.
Computational Models of Skill Acquisition Processes.
In R Lewis, D. Tagg (editor), Computers in Education, pages 477-481. 3rd World Con­

ference on Computers and Education, Lausanne, Switzerland, July, 1981.

G. Fischer.
Symbiotic, Knowledge-Based Computer Support Systems.
Automatica 19(5):5~7-537, November, 1983.

[Fischer 84]

211

G. Fischer.
Formen und Funktionen von Modellen in der Mensch-Computer Kommunikation.
In M.J. Tauber (editor), F'ccychologie der Computernutzung. Olden bourg Verlag, Wien -

Muenchen, 1984.
Schriftenreihe der Oesterreichischen Computergesellscbaft.

[Fischer, Lemke, Schwab 84]
G. Fischer, A. Lemke, T. Schwab.
Active Help Systems.
In T.Green, M.Tauber, G.van der Veer (editor), Proceedings of Second European Con­

ference on Cognitive Ergonomics - A1ind and Computers, Gmunden, Austria.
Springer Verlag, Heidelberg - Berlin - New York, September, 1984.

[Fischer, Lemke, Schwab 85]
G. Fischer, A. Lemke, T. Schwab.
Knowledge-Based Help Systems.
In Human Factors in Computing Systerrw. CHI-85 Conference Proceedings, 1985.

[Fischer, Schneider 84]

[Forgy 81]

[Goldberg 84]

G. Fischer, M. Schneider.
Knowledge-Based Communicaf ion Processes in Software Engineering.
In Proceedings of the 7th International Conference on Software Engineering, pages

358-368. Orlando, Florida, March, 1984.

C.L. Forgy.
OPS5 User's A1anual.
Technical Report CS-81-135, CMU, 1981.

A. Goldberg.
SMALLTALK-80, The Interactive Programming Environment.
Addison-Wesley, Reading, Ma., 1984.

[Laubsch, Rathke 83[

[Lemke 85]

J. Laubsch, C. Rathke.
OBJT ALK: Eine Erweiterung von LISP zum objektorientierten Programmieren.
In H.Stoyan, H.Wedekind (editor), Objektorientierte Software- und

Hardwarearchitekturcn, pages 60-7.5. Teubner Verlag, Stuttgart, 1983.

A. Lemke.
Ob)TalkS4 Reference fI.{anual.
Technical Report CU-CS-291-85, University of Colorado, Boulder, 1985.

[Lemb>, Schwab 83[

[~orman 82[

A. Lemke, T. Schwab.
DOXY: Computergestuetzte Dokumentationssysteme.
198,3.
Studienarbeit t\r. 338, Institut fuer Informatik, Universitaet Stuttgart.

D. Norman.
Some Observations on Mental Modt>ls.
In D. Gentner, A. Stevens (eds.) (editor), Mental Models. Erlbaum, Hillsdale, N.J., 1982.

[Rathki', Lemke 85)
Ch. Rathke, A. C. Lemke.
Ob)Talk Primer.
Technical Report CU-CS-290-85, Univt'rsity of Colorado, Boulder, February, 1985.
Translated by V. Patten and C. Morel.

[Sheil83J

[Simon 811

B.A. Sheil.
Power Tools for Programmers,
Datamation, February, 1983,

H,A. Simon,
The Sciences of the Artificial.
MIT Press, Cambridge, Ma" 1981.

212

[Wilensky et al. 841

R. Wilensky, Y. Arens, D, Chin.
Talking to UNIX in English: An Overview of UC.
Communications of the ACM 27(6):574-593, June, 1984.

