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Abstract

It has been argued for a long time that the representation of a problem is of crucial impor-
tance to understanding and solving it. Equally accepted is the fact that the human visual
system is a powerful system to be used in information processing tasks. However, there exist
few systems which try to take advantage of these insights. We have constructed a variety of
system components which automatically generate graphical representations of complex struc-
tures. We are pursuing the long-range goal of constructing a software osctlloscope which
makes the invisible visible. Qur tools are used in a variety of contexts: in programming en-
vironments, in intelligent tutoring systems, and in human-computer interaction in general by
offering aesthetically pleasing interfaces.
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1. Introduction

The way a problem is represented has a strong influence on whether we can understand and solve it.
Simon [Simon 81| argues that solving a problem simply means representing it so as to make the solution
transparent. He argues that this is especially true for mathematics which exhibits in its conclusions only
what is already implicit in its premises; mathematical derivations can be viewed as changes in represen-
tation, making evident what was previously true but obscure.

Today the technological base (e.g. raster screens, mice) exists for using computer screens as a truly two-
dimensional medium for the representation of arbitrary information structures which can be manipulated
directly with a pointing device. Despite the existence of these technological possibilities most systems still

use the screen as a "glass-teletype”.

Believing in the general hypothesis that the limits of our thoughts are all too often identical with the
limits of our imagination and visualization capabilities, we have developed over the last several years a
rich variety of visualization tools to make using the computer a more rewarding and less error-prone ex-
perience. These tools have been used successfully to enhance learning, understanding and debugging of

complex artifacts.

2. Insight and Understanding versus Verification

There exist two different views in computer science about its crucial issues which are summarized in Fig.
2-1 [Newell, Simon 76; Fischer, Boecker 83].

View 1 View 2
Computer Science is: a formal, mathematical dis- an experimental discipline
cipline
Main tools for the develop- formal specification techniques rapid prototyping / experimental
ment of systems are: programming
Basic Challenge: think more clearly better tools are needed (because
humans have a bounded
rationality)
Programming Methodology: do not write programs which design is an error correcting
cannot be verified before they process

are written

Figure 2-1: Two Opposing Views about the Crucial Issues in Computer Science

It obviously depends on the application area which view proves to be more appropriate. For all the areas
which we have been interested in {e.g. Artificial Intelligence, Cognitive Science, Human-Computer Com-
munication, Use of Computers for Learning and Instruction), there is no doubt that the second view in
Fig. 2-1 gives the adequate characterization. Based on this perspective we have constructed the tools

described in sections 3 and 4.

2.1 Examples

Over the last several years we have carried out informal experiments to understand the impact of graphi-
cal representations to generate insight and understanding in problem solving:



1. The Rope Around the Earth (see [Fischer 79]): A rope is tied around the earth at the
equator {assuming the surface of the earth is smooth). If we extend this rope by one yard
and form a concentric circle around the earth, will the difference between the earth and the
rope be big enough that a mouse can get through? Almost everybody’s intuitive answer to
this problem 1s "no". It can be easily proven using simple mathematics that the resulting
difference is independent of the size of the surrounded object and definitely big enough that a
mouse can get through. Based on the counter-intuitive nature of the problem this proof
vert fies the result but it provides no insight and understanding. The problem remains: How
do we make people believe the proof, i.e. understand the solution. We cannot give a detailed
description here of what kinds of models may be appropriate to provide this understanding
and insight. One possibility is to consider the following situation: A rope is lying on the
ground between Boulder and Denver and we lift it up by ten inches; can we do this without
increasing the length of the rope? This thought experiment indicates the relationship between
radius and curvature.

2. Number Scrabble vs. Tic-Tac-Toe (see [Simon 81|, page 151) are two isomorphic versions
of the same game. It can be shown that subjects perform much better in Tic-Tac-Toe than in
Number Scrabble. We assume that the rules of Tic-Tac-Toe are known. The rules of Number
Scrabble are: it is played by two people with nine cards face up (e.g. the ace through the nine
of a card game). The players draw cards alternately. The player who can first make up "15"
with exactly three cards, will win. Representing the board for Tic-Tac-Toe as a magic square
shows the isomorphism between the two games. One interpretation of the data would be that
the more visually-oriented version of Tic-Tac-Toe is easier to play.

3. The Design of a Roulette Table: Teaching high school students problem solving with
LOGO, we asked them to work on the following problem: stmulate a roulette table with slots
0 to 18. Given was a random number generator which returned a number between 0 and 9.
Most students came up with the solution "sum of random and random™ which they felt quite
happy with. Until they plotted the results in a graph they did not find out that their roulette
table did not give a uniform distribution. Even though the visual representation of the results
did not show to them how to produce a fair roulette table, it uncovered the incorrect solution

in an obvious way.

Our experiments with these and similar problems suggest that the right kind of representation can
provide insight and understanding for a problem. One of the advantages of visual representations over
their formal, propositional counterparts relates to the difference between observation and deduction. In
most situations, the former can be accomplished more cheaply in terms of the computations involved, and
visual representations facilitate observation since important properties are directly observable.

2.2 The Role of Visualization in Software Design

Our goal is to build software components which allow us to take advantage of the power of the human
visual system to provide insight and understanding instead of relying only on verification methods. Being
interested especially in ill-structured problems [Fischer, Schneider 84], we have found (like all other
researchers investigating design problems empirically) that the recommendation "think more clearly” is
not good enough; overwhelming evidence shows that there is an urgent need for better tools because
humans have a bounded rationality working on complex problems. A verification system [deMillo, Lip-
ton, Perlis 79] which ends up with either the result "correct™ or "incorrect™ contributes little to an under-
standing of a problem. In addition, verification procedures require that we can start with an existing
specification of a problem (which is then compared with the implementation) whereas the crucial activity
in solving ill-structured problems is exactly to generate this specification.



The great potential of a computer system is that multiple representations can be generated automatically
(i.e. without requiring the user to do much additional work) and dynamically (i.e. taking the actual work
of someone into account). In the following sections we will present first steps towards a Software
Ozsctlloscope which contributes to the goal of generating understanding and insight into the behavior of
complex artifacts. The components of the proposed Software Oscilloscope all share the property of being
of graphical nature, thus exploiting the powerful human visual system. One of the first systems that was
designed with this principle in mind was the PYGMALION system [Smith 77|. A good survey of the
current state of the art is contained in [Computer 85|.

3. Visualization of Data Structures

3.1 Static Aspects: The KAESTLE Editor

The most important data structure of Lisp! is the list. With KAESTLE [Boecker, Nieper 85| the graphical
representation of a list structure is generated automatically and can be edited directly with a pointing
device. By editing we do not only mean changing the structure itself but rearranging the graphical layout
as well. KAESTLE is integrated in a window system, the user interface is menu-based (see Fig. 3-1).2
KAESTLE is a valuable tool for the Lisp beginner to understand certain aspects of the programming lan-
guage which are difficult to explain otherwise (e.g. the difference between copying and destructive func-
tions: Fig. 3-2 illustrates the effects of append and nconc; the normal textual representation displayed in
the "toplevel® window reveals no difference between the results of these two functions).

More experienced Lisp programmers use it heavily to display and explore data structures which are dif-
ficult to represent symbolically, namely circular and reentrant structures (see "kaestle-window-1" in Fig.
3-1). KAESTLE, as part of a programming environment, can be used for designing, debugging and
documenting Lisp programs.

Planning the Spatial Layout of List Structures. To generate a graphic representation of a list
structure it is necessary to find a place on the screen for each element belonging to the structure (for more
details see [Boecker, Nieper 85|). A fully automated layout planning algorithm faces the following
problems:

o List structures may be complex networks. A very good but time consuming planning algo-

rithm is not helpful in an interactive system.

o The avatlable space is often insufficient for displaying the entire structure. How can it be

decided which parts of the structure to omit?

o The semantics of the list structure (i.e. its logical structure) should be taken into account.

Therefore our basic approach is building cooperative, symbiotic systems [Fischer 83] for the human and
the computer. In KAESTLE the computer uses a simple planning algorithm: [t doesn’t pay attention to
arrows crossing boxes or other arrows, and the display is truncated at the right and lower border of the
display area. After this "first draft"™ of the graphical layout is generated by the computer, a sophis-
ticated user interface allows the user to move or delete parts of the display or to display additional sub-
structures. Thus the user can decide which parts of the structure he or she wants to see and eventually

arrive at a "nice" output by moving around parts of the display.

1Lisp is the implementation language of all described systems.

2All the supporting software tools used in our systems (e.g. the window and menu system, the knowledge representation system
ObjTalk [Rathke, Lemke 85|} were developed in our research group. The systems run on a BITGRAPH raster display terminal.
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Figure 8-1: KAESTLE: Integrated in 2 Window System

Funetionality of the System. The following operations are available in KAESTLE, among others:
1. Generating a graphic display: Multiple independent structures may be displayed at a desired
position.

2. Changing the graphic representation: displaying substructures which are truncated in the cur-
rent display, deleting substructures from the display, moving substructures on the screen.

3. Changtng the structure: The manipulation of the graphic representation (insertion of atoms or
pointers) immediately changes the underlying structure.

4. General undo and redo mechanisms.

The user can access this functionality by selecting actions from context-sensitive menus which become
visible when they are needed.



toplevel

1: fistl
(lone 1) (two 2))
2: list2

((three 3) (four 4))

3: (append listl list2)

((one 1) (tuo 2) (three 3) (four 4))
4: (nconc listl list2)

((one 1) (tuo 2) (three 3) (four 4))
S:

[three[ [four] +{a]7]

Figure 8-2: The Difference between Copying append and Destructive nconc

8.2 Dynamic Aspects: What Happens to the Structures?

KAESTLE may not only be used to display (and edit) static structures but as a monitoring tool for running
programs. The standard FranzLisp trace package can be used for this purpose by updating the contents
of KAESTLE-windows whenever an "interesting” function is entered (traceenter) or left (traceexit).
The trace facility can also be used to generate a sequence of snapshots of a data structure while running
the program (see Fig. 3-3 which illustrates a recursive, destructive algorithm which reverses a list).

4. Visualization of Control Structures

4.1 Static Aspects: What is the Structure of the Program?

A program composed of a large set of usually rather simple functions may be appropriately described as a
network of functions which mutually call each other. A graphical representation of such a network is
displayed in Fig. 4-1. FooScape displays functions as ellipses that are connected by arrows. The tool is
primarily meant to get a first, rough overview over some piece of software. It is especially useful for
languages that do not allow a lexical nesting of function definitions.

The planning of the layout (placement of the ellipses and arrows) is done automatically (see [Boecker,
Nieper 85] for more details). However, because the "beauty™ of the solution sometimes is not acceptable



(def my-nreverse
(lambda (1)
(cond ((dtpr (cdr 1))
(progl (my-nreverse (cdr 1))
(rplacd (cdr 1) 1)
(rplacd 1 nil)))
(v 1))

1/ snapshot-1 4O 0. snapshot-2 400 Vsnapshot-3 4O D

(1] 2] 3] 4] (5]

I/mdpshm -7

AT

.
A B | e B | o 3 BT

Figure 3-3: Generating a Sequence of Snapshots of a Data Structure

we allow the user to modify the layout interactively by moving "bubbles” around or by altering the set of
functions included in the display. The interaction style is similar to the one described in connection with
the KAESTLE system.

4.2 Dynamic Aspects: What is the Program Doing?

Traditional techniques for monitoring the dynamic behavior of programs (e.g. breakpoints, dumps) suffer
from the fact that they capture just one state of the data and too often generate a huge amount of data.
The inspection tools described here try to avoid these disadvantages while on the other hand trying to
preserve the dynamics of the processes they look at. Being able to see a program run gives one a grasp of
detail that is hard to obtain in any other way.

FooScapes can be readily extended to display the dynamic behavior of programs. The basic mechanism
for accomplishing this is provided by the standard FranzLisp trace package. Fig. 4-2 shows two snap-
shots of an enimated FooScape. A function name is highlighted - i.e. flips from white to black - when-
ever the function is active.

The impression given by a "running” FooScape bears some resemblance to the control panels of
{outdated) computer systems: You can tell from the pattern of lights that are switched on what the sys-
tem is doing. Recently sound has been added to the FooScape tool: Each of the functions is assigned two
specific tones that are played when a function is entered and left, respectively. Preliminary experience
with this experimental version seems to confirm the hypothesis that the human audio system is even more
capable to monitor sequences over time than the human visual system: As long as the program plays this

Bach style music everything 1s ok.

The usefulness of the tool depends on its appropriate use: The programmer has to exercise care in select-
ing the functions to be included in the FooScape. If the granularity is too fine (the functions included are
too primitive) nothing but a flickering screen will be seen whereas hardly any dynamic behavior can be
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Figure 4-1: FooScape: A Landscape of Functions

observed if the granularity is too coarse. To give the user control over the granularity we have provided
some means to exclude functions temporarily from being traced (see the functions shaded with a gray
raster-pattern in Fig. 4-2). Experience shows that the selection of the right level of detail requires some

familiarity with the tool.

5. Experiences with our Visualization Tools

The tools described have been used for almost two years by a large group of researchers and students on a
regular basis. This use has triggered new ideas about additional tools of the same kind and applying
them as building blocks in larger applications. For a widespread use it is of critical importance that these
tools are tightly integrated and easily accessible within the general programming environment. Nothing is
a better indication of the usefulness of a tool than that people start using it, without being forced to use
it (e.g. in an employment situation) or without being asked to use it (e.g. in a psychological experiment).
We will briefly describe two domains in which the tools were used successfully: programming environ-

ments and user support systems.

5.1 Programming Environments

Currently our visualization tools are primarily used as integrated components of a window-based pro-
gramming environment. The case study below shows how the KAESTLE system is used to debug a Lisp

function.

KAESTLE allows tinkering with data structures and supports primitive forms of "programming by
example™. The user may test algorithms on specific examples having KAESTLE keep a record of what
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happens to the data structures. Visualization tools like this reduce the conceptual transformation dis-
tance between the symbols and primitives of a Lisp function and the manipulated data structure. They
essentially turn a cons-cell into an object which can be easily manipulated.

A Case Study: Self-Organizing Linear Lists. Several techniques are summarized under the rubric of
self-organizing linear lists. For this case study we will focus on the actual implementation of a specific
algorithm that reorganiszes a linear list by pulling an element to the front of the list whenever it is ac-
cessed. The idea is to exploit statistical properties of the data in order to speed up later operations. We
have implemented self-organizing data structures as property lists and association lists in Lisp. Fig. 5-1
shows how the association list a~11st is reorganized through the self-org-assq access function.

1. (setq a-1ist '((Francols . Paris) (Maggie . London) (Helmut . Bonn) (Ronald . Washington}))
((Francois . Paris) (Maggie . London) (Helmut . Bonn) (Ronald . Washington))

2: (self-org-assq 'Helmut a-list)
(Helmut . Bonn)

3: a-list
((Helmut . Bonm) (Francois . Paris) (Maggie . London) (Ronald . Washington))

4: (self-org-agsq 'Francols a-list)
(Francois . Paris)

6: a-list
((Francois . Paris) (Helmut . Bonn) (Maggie . London) (Ronald . Washingtomn))

Figure 5-1: Self Organizing Linear Lists

When implementing the algorithm to accomplish this behavior one of the authors of the paper had
defined a buggy self-org-assq access function that for some unknown reason chopped off the last ele-
ment of the association list when reorganizing it; Fig. 5-2 shows what happened.

1: (setq a-1ist '((Francois . Paris) (Maggie . London) (Helmut . Bonn) (Ronald . Washington)))
((Francois . Paris) (Maggie . London) (Helmut . Bonn) (Ronald . Washington))

2: (self-org-assq 'Helmut a-1list)
(Helmut . Bonn)

3: a-list
((Helmut . Bonmn) (Francois . Paris) (Maggie . London))

Figure 5-2: A Buggy Implementation

The question was: What happened to the last element? Without any visualization tools it would have
been necessary to undertake the tedious and error-prone task of debugging that function by essentially
running a simulation of it, drawing cons-cells with pencil and paper and making heavy use of an eraser to
redirect pointers. With the help of KAESTLE, the bug was easily discovered. Fig. 5-3 shows what hap-
pened internally: the cdr of the last cell erroneously was made to point to itself. Having this clue avail-
able the code was easy to fix. No other tool of the Lisp programming environment would have been able

to provide this quality of support.

5.2 Intelligent User Support Systems

We are in the process of integrating our visualization tools as components of an intelligent user support
system {we use the term "intelligent user support system™ as a generic word for passive and active help
systems [Fischer, Lemke, Schwab 85|, documentation systems [Fischer, Schneider 84], explanation systems
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and advisory systems). It is quite obvious that they may be used to provide ezplanations and
tllustrations of complex processes to the user or generate explanatory materials within tutorial environ-
ments. The important point is that they can do this on the fly, i.e. explanations do not have to be
precompiled and stored for later use, but instead can be generated dynamically when they are needed,

using actual data.

We believe that general visualization tools may be used to complement other tools, like video disks, in a
natural way. The main advantages of our tools are: The designer of the explanation facilities is freed
from foreseeing all conceivable future situations. By integrating these tools with models of the user
[Fischer, Lemke, Schwab 85], advice and information will only be given when it is relevant for the actual

situation.

5.8 Lessons Learned

One of the most striking lessons learned in implementing the various kinds of visualization tools relates to
the automatic planning of graphical layouts of data and control structures. Although sometimes difficult
it is usually possible to find algorithms that produce some solution in acceptable time. To automatically
produce a pleasing, aesthetically nice layout, however, is a different story. Problems arise because
nobody knows exactly what the properties of a nice layout are, and the semantics of the structures dis-
played sometimes require alternative representations that can not be deduced from the syntax of the

structures.

Our experiments and implementations also show that programming environments require substantial com-
putational resources when augmented by visualization and monitoring techniques. Personal work stations
are necessary to take full advantage of these techniques on a broader scale.

There is a close connection between visualization techniques and "direct manipulation™ [Shneiderman 83].
The success of these systems depends on the designer’s skill and artistic capabilities in choosing layouts,
icons and graphical representations that are natural (i.e. convey the meaning of what they represent) and
therefore easily understood. Systems of this sort require expertise in the task domain, but less detailed
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knowledge of computers. The world the user has to deal with is explicitly represented. This gives the
user the feeling of a more immediate control. We have found that less error-prone interaction results
from such an environment because it is not necessary to describe actions (which then get carried out by
an interpreter) but we can do them directly.

6. Conclusions

The commercial success of systems taking advantage of rather simple visualization techniques (e.g. spread-
sheet programs) indicates that there is a great potential for building more visually based software. Tech-
niques of this sort make computer systems attractive to people which have so far been alienated and
scared by their very formal nature and non-transparency. Qur experience with the visualization tools
described has shown that they are one of the most promising approaches making computers understand-
able and transparent for all kinds of users. Providing a software oscilloscope will be even more impor-
tant when computers become more intelligent. For example, these tools are necessary for understanding
the complex internal processing (e.g. inference processes, inheritance networks} of knowledge-based sys-
tems. Without them we are left with *"black boxes".

Many interesting problems remain to be solved to further enhance our understanding of the usefulness of
visualization techniques as tools for understanding and insight. Not the least of these problems is to build
them for a large variety of applications and eventually come up with a toolkit so that they can be easily
constructed. In many situations, however, it is not good enough to make the invisible visible [Boecker,
Nieper 85]. What is required are techniques that assist the user in making the relevant facts and relations
visible, e.g. intelligent summarizers and filtering techniques. The techniques which we have developed so
far go mostly just in one direction: They generate visual representations of programs. It is an interesting
and challenging goal to develop systems which would go in the other direction: Programs would be con-
structed through "programming by example” [Gould, Finzer 84]. The user would "play" with graphical
representations, doing experiments to gain insight into special cases and eventually define (being sup-
ported by the system) the general algorithm. This approach may contribute that programming as an
intellectual activity will be attractive and achievable by a large group of people.
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