@]University of Colorado at Boulder

Center for LifeLong Learning & Design (1.3D)

Department of Computer Science

ECOT 717 Engineenng Center
Campus Box 430

Boulder, Colorado 80309-0430

(303) 492-7514, FAX: (303) 492-2844

KNOWLEDGE-BASED COMMUNICATION PROCESSES
IN SOFTWARE ENGINEERING

Gerhard Fischer Matthias Schneider-Hufschmidt
Department of Computer Science and Siemens ZFE ST SN 71
[nstitute of Cognitive Science Otto-Hahn-Ring 6

Campus Box 430, University of D-81730 Muenchen

Colorado, Boulder, CO 80309 Germany

gerhard @cs.colorado.edu

[n Proceedings of the 7th International Conference on Software Engineering (Orlando, FL)
[EEE Computer Society, LLos Angeles, CA, March 1984
pp. 358-368

NOTE: Paper published while Fischer and Schneider were at the University of Stuttgart, Germany.

[of I

KNOWLEDGE-BASED CO¥MUNICATION PROCESSES IN SOFTWARE ENGIKFEERING

Proiect INFCRM, Departtent of

of Stuttgart, Herdweg 51, D-7000
Abstract

L large number 7 protlems to be solved with
the help of computer svstems are ill-structured.
Their solution reguires incremental design
processes, because complete and stable
specifications are not available.

Fsr tasks of this sort, 1life cycle models are
inadequate. Our design methodology is based on a
rapid pratstyping approack which supports the
coevolution of specification and implementation.
Communication between customers, designers and
implementors and communication between the humans
and the knowledge base in which the emerging
product is embedded are of crucial importance.
Our wnrk 1s centered around knowledge-based
systems which enhance and support the
communicaticen needs in connection with software
systems.

Prsgram documentation systems are used as an
example to illustrate the relevance of knowledge-
based human-computer communication in software
enginsering.

Keywords: xnowledge-based systems, human-
computer communication, experimental programming
envirsnments, program documentatisn, incremental
degign, rapid prototyping, user interfaces

1. Introduction

Based on our research wnrk of the last few
years (building knowledge~based systems,
improving human-computer communication (BAUER et
al. 1982) and understanding the nature of design
processes (FISCHER/BACKER 1983)) we are convinced
that the currently dominant life cycle models of
suftware engineering {(HOWDEN 1982) are inadequate
far most prablems in the domains mentioned above.
They are inedequate because they rest osn the
assumption (which is unprsven for many classes nof
problezs) that at the beginning the requirements
can be stated in a precise way and that the
complete specificatinns and the implementatisn
can be derived frem them relvine primarily on
formal manipulatinns. In reality this is not not
the cage, especially 1if we require that our

Computer Science, Tiniversity
Stuttzart, Fed. Rep. af Serrmany

]
o
e}

systems (e.g. a iser interfac a memory
sursort system) are designed ts meet resl human

needs.

In the first vart sf this paper we
characterize our view of the scftware engineering
process and propose a communicatisn-based model
for software engineering as an alternative. We
demonstrate the central role of knowledge-based
systems to support communication pracesses
between all persons involved in the develspment,
construction, modification and use of s»aftware.
The second part {llustrates our ideas by
describing a computer-supported progran
decumentation system which is being implemented
as an important part of our research praject.

2. Qur view of the software engineering
process

In software engineering we can differentiate
at least between the following three different
phases:

1, developing an intuitive understanding
of the problem to be snlved; the
communication between the client and
the designer 1ie impsrtant in this
phase

2. designing a system intended to solve
the praoblem; the designer will Inck at
previnus sclutions tc similar problems
and will try to find existing modules
which can be used in the design

3. programming an implementatinn ¢ the
design; the implementor will try to
show that his implementation is
consistent with the specificatisn.

In practice, these concerns are never totally
geparated nor entirely seguential.

2.1 Ill-gstructured problems

In software engineering we have ts deal mastly

with ill-structured problems (HAYES 1979). The
problem solver or designer has to face the
following tasks:

- he *ras 5 contribute to the croblem

definition by taking an active rnle in
sreciving the problem

- %e has tn nma%e decisisns tn fill gacs

in tre proclem definiti=n
°

ired to "fump ints the
.e. re must attemnt a3

s
P
snlutiszn tefsre he fully understands

Situsatizsns in which the client cannot provide
detailed and c¢omplete specifications are typical
for 1ll-structured vprsblems. Therefore meny »f
the methodologies and tnnls developed in software
engineering are of little use. Requirement
specification languages are subpposed to enable
the develcpers ts state their understanding »of
the user's ideas in a form comprehensible to the
user -- but the user himself has only vary vague

ideag of what he wants.

2.2 Example domains: Human-computer communication
and knowledge-based systems

HCC and knowledge-based systems are twns

research domains with meastly ill-structured

problens. The main difficulty in these domains
is not t» have a "correct" implementation with

respect tn given specifications, but to develop
specifications which lead to effective solutions
which cor-espond to real needs. Correctness of
the speci®ications is in general no meaningful
question Dbecause it would require a precise
specification of intent, and such & specification
is seldom available.

Modern user interfaces (based on multiple
windows, menus, pointing devices and using the
screen as a truly two-dimensional medium) offer a
huge design space. Within this design space
little 1is known about how to present and
structure informatisn so that a human can make
full use of it (see Figure 2-1 and 2-2).

Knowledge-based systems are an effort to put
more knsowledge {about the problem domain, abnout
communication processes, about design and problem
solving and ebout the user) ints the machine.
This knowledge shsuld be used tn make svstems
more cooperative, absorb some af the complexity
and provide better suppsrt in problem solving.

2.3 What can we do without complete
specifications?

We have to accept the empirical truth that f»r
meny tasrs system reguirements cannot be stated
fully in advance - 1in many cases nst even in
principle because the user {nor anyone else) does
not kn»ow them in advance.

The develspment process 1itself changes thre
user's and designer's perceptions of what is

{getd getval)
smbtcte (buf)(prog (arglyp) (setg duf (skipbl (skip-not-bin buf))) (setg arglyp (¢

i

tatbintligerm e

(def getval
(lambda (buf)
Lproy (argtyp)
(setq buf (skipbl (skip-notl-btn buf)).
{velq arglyp (car tufy)
C(cond ((or C(eqg arylyp plusiCeq arglyp minus))
(setg bif Ccdr buf))yyy
(return {cons arglyp (ctod bufidiy))

(ugfm
ambca (buf)

(prog (argiyp)
(setg buf ((W buf))
(setq argtyp (car bu
(cond ((or fey arytyp glusi(eq argtyp
(setg buf {cdr buf)j))

(retycn (consg nrgtym buf ¥)1)))

s pose : Wertel opticnale nue
argumente aus

Figure 2-1: Screen layout 5f a
analysis svsten

The screen displays multiple windows, in which
difTerent perspectives are shown: a dialogue
winiow for typein; two windows showing “oretty-
print” structures; a window shawing the symbolic
calling structure and a window showing the
descriptive structures computed by our system
{e.g. called by, calls, free variables, etc). The
information describing the calling structure isg
used to drive the editar if a change is made to
the external structure of a procedure (FISCHER et
al. 1981).

Betray

BOVe

réihape

<opY

refresh et |
bury aaery: o ’

s TR, {

T

Teirition

|

Figure 2-2: Screen layosut far a finan-

cial planning system

The screen shows menus (the commands contained
in them can be activated with a pointing device)
and windows {which are viewers into the same
knowledge base); the program can be considered as
a knowledpe-based version of Visicale (i.e. each
field has its own parser and is part of a
dependency network) (RATHKE 198%3)

possi%le, increases their insights into the
application environment, and indeed often changes
the environment itself.

The follawing (not mutuslly exclusive)
possibilities exist to cope with this situation:

1. Development of experimental
programming systems (DEUTSCH and TAFT
1982; SKEIL 1983) which support the

coevolutizn e specificetions and
implementatizsns. Prototyrical
imrlementatinns allsw us ts replace
anticipatinng {i.=a. “ow Wwill the
system behave) wit {i.e. nsw
lces it Aactually
oSt cases
maie camrating sperating
systems, editara, exrart systems,
software develaspment svstems) Thave
been develnred with extensive feedback
{based »n treir 2l use) which
zoantinually ihuted to

impravements as a respanse tn
discrepancies between a system's

jctual and desired state.

2. Heavy user invnlvement and
participatinon in all rthases of the
develspment process. The user should
te able to play with the preliminary
system and toc discuss the design
ratisnal behind then. An existing
rrotatype makes this cooperation
between designer and user much more
productive, because tke user 1is not
restricted to reviewing written
specificatians t» see whether or not
the system will satisf{y his needs for
the right functicnalitv and ease of

uge.

A

Let the end-user develsp the systems;
this would eliminate trhe communicatinn
gap altogether. He 1is the person who
xnows most about the specific proablem
to be sclved and by gziving him the
possibility to change tre system there
is no necessity any more tn anticipate
all possible future interactions
between user and system. "User
tailorability” (e.g. to define
keyboard macros in text processing
systems or to create forms forms with
a general Form kit: HEPCZEG 1983) is a
first step towards "convivial systems”
(FISCHER, HERCZEG, MAIRR 1983), which
give the user the possitility to carry
2ut a <constrained design process
within the boundaries =f the knowledge
area modelled.

4. Accept changing requirerents as a fact
of life and do not cnndemn them as a
product 2f sloppy thinking: we need
methodsolngies and tonols to mske change
a coordinated, computer-supported
process.

¥nowledge-based systems combined with modern
techniques for human-computer communication (see
Figure 4-1 below for the general architecture of
such a system ani Figure 2-1 and 2-2 fsr two
implemented prototypical systems), are the most
promnising approaches to cope with this situation.

384 1

3. The changing needs in software

engineering

withzut figpal, creciselr definabtie
14029)Y) gnad s

prseible
ole. Cnnstructine complex
e engineering whicr are implerente v
ime and c¢ontinually modified in the cnurse
plementatisan has much ir common wi

ive activities (lixe writing, ©paintine,
mrssing or building models with te
n ction kits (FISCHER/BETCKER 1922).

(™

&)
U

[L L S]
20 30
k)
(SR
*
0oy

O
[T Y
0

%]

We need methodcologies and tools which are
adeguste to cope with situatisns in which the
specificaticns are unavailable, incomplete,
change over time or have such an immense sicze
that it is impossible to understand them fully.

It ig natural tno 1look for such methodnlngies
and toonls in subject areas which have dealt with
this situation for a 1long time. Artificiel
Intelligence (AI) research has salways tried t»
solve ill-structured problems. In AI, one of the
main osbjectives to write programs was to get a
deeper understanding of the prablem. In
addition, intelligpent activities are complex,
therefore AI programs are complex and large.
Tocls were needed to abssrb some of the
comrlexity. The efforts ts create good
programming environments (SANDEWALL 1873,
TEITEZLMAN and MASINTFR 1631, SHEIL 13983) have
been a major focus of Al research during the last
twenty years. The creation of gond rprogramming
envirosnments was easier for the AI community,
because in LISP programs and data have the same
representations and lend themselves easily to
program manipuletion.

Similarly the development nf new user
interfaces has encountered scme of the same
problems. Until the appearance of the STAR and
the LISA machines nmnly few people have done
research in this area (the SMALLTALX develnpment
at Xerox PARC has been the most notable
excertinn).

The AI view of progrsmming has been for a long
time that a preogram should not only be regarded
as a piece of text understood bty a compiler ("a
prograz is more than its 1listing") but as a
complex knowledge-structure with includes [see
Figure 3-1)

- the program-text

- documentation information

- design information

- knowledge gbout a complex artifact put
together from pieces.

Sample Data Structure

{defobject orem |

[fname Lg!)

(lambda (key} key2)
(L;t ({1 (phashit Keyl Keyz)) (a nil))
iation i _keyl key2))

{store (put-get-hash-tabije i)
{cond {{eq
ar t- - -tab

a)
{¢dr (put-get-hash-table i2))

-get- -tabl

(parametecs ({Keyl) (kKey2)))

LTSI UREINEY (i (TYPE NUMBER))
(a (TYPE NUMBER)))

41 r ee~vardahlespy

(XSIERELY (pputget-description))
(4EERAaY, ((DEFINED 10/14/1383

(LT HOB)
{reasor

(MQDIFIED 12/12/1983
(TG HDB)
=
“prem didn't work if the property

to be deleted was the CAR of the
appropriate bucket'))))

unction removes the appropriate association-list
entry from the hashtable. If the right entry is the
first entry of the association-list, delgq won't work,
so catch this event first.")

G cratch-padiiCRR

Copvent ions
'everse VALEGE : slot names of our Knowledge units
: data that can be interpreted, used and
updated by the system
3. Normal font: knowledge generated by the user,
commentaries etc.

4. CAPITALS: system-generated information

Figure 3-1: A sample function-description

AI has developed a set of tools for coping
with knnwledge-based systems:

- general purpose knowledge-base
dependency analysers, e.g. tools for
monitnring all changes made to objects
in the knowledge base. The <calling
structure of Tigure 2-1, for example,
can be wused to drive the editer to
update our programs after we have
changed the number of parameters of a
procedure.

- indexing tonls (e.g. Browsers) for
classifying and retrieving objiects nn
the basis of selected properties

4 of Il

- 1inference and truth maintenance
mechanisms {see TFigure 5-2 where the
callees-gslot has neen fi11ed
autsmatically’

- multiple riews, generated Sy user-
iefinanle filters ‘see Figure 52 ani
5-4)

- constraints le.g. ts enfsrce the
consistency tetween different
representatisn; e.g. hetween the
program text and its ZJescri ptisn).

Within AI resesrch new methndcleagies were

develsped live structured grawth {e.g. E
partially implemented syste can bte run 2znd
tested) and trogramming oy specialization {which

is supported by the inheritance wmechanism in
osbiect-oriented languages).

The experimental, error-correcting approach
which 1s characteristic for a rapid protstyping
methcdnlngy is not an excuse for being unadle to
think c¢learly enough tut 1t 1is a respectable
scientific activity (see Popper's remarks about
the "critical method to eliminate errors” (POFPTR
1950), Simon's thesry 2f bounded rationality
(SIMON 1981) and Alexander's claim that we see
good fit only from a negative opoint cof view
(ALEXANDER 1954)).

4. ¥nowledge-based models for
communication

As an alternative to the life cycle model we
propcse a communciation model. The knowledge-
based systems which we develop for software
engineering with respect to this model suppsrt
the following two activities:

1. the ccmmunication between a human and
the knowledge tase which represents
the emerging product

2. the communicarion between the
different classes of humans (e.g.
designers, usersg) : in this case the
computers serves as a8 structured media
for communicatisn.

Human communication and cocperetion can be used
as a mndel to define the general characteristics
of a knowledge-based system of this scrt. What
can humsans do that most current computer systems
cannot do? Human communication partners

- do not have the 1literalism of mind
which implies that not all
communicatian has to be explicit; they
can supply and deduce additional
information which has not been
explicitly mentioned and they <can
correct simple mistakes

¥nrowl
approach tn

can avply their rratlem solvina power
to fill in details if we give
statements ! sbiecztives in troad

functiongl tar

eir misanderstanding
st their “nowledge

can rprovide exclanatinns (especially

for the infsrmation which gets

evxchanged aver the implicit

communication channel, see Figure

4-1 below).

edege~haged systems are nne promising
equip machines with some of these

human conmmunication c¢a2pabilities. The work in our

research project INFCEM [BAURR et al., 1a9r2) is
guided by the m=del shown in Figure 4-1.

knowledge adbout:

* problem domain

* programring

* design and preblem solving

* comrunicetion processes

* comrunication partner

/ \\\
humen knowledge
knowledge e —— tese
implicit

Figure 4-1:

The svatem architecture fron

communication channel

. -00000

.

explicit coomunication channel

Architecture of a knowledge-
based system to support HCC

Figure 4-1

two major components:

1.

The explicit communication channel is

widened. Our 1interfaces use windows
with sgsoclated menus, pointing
devices, calor and iconic
repregentations; the screen is used as
a design space which can be
nanipulated directly (see Figure

2-1 and 2-2).

Informatinn can be exchanged over the
implicit c¢ommunication channel- Both
communication partners heave knowledge

has

E;lag {[

which eliminates the ne
gall informatisn has to
explicitly.

shswn 1in Figure

Ly
ss7tware

knowledge
relevance fnr

five domains of
tave the {=llowing

engineering:

> 3

7
aw

t. xnnwledge ~f the problem domain: a
programming system must have ¥nowledge
absut the task domain, otherwise a
dsmain expert cannnt communicate with
it in a natural fsrm {BARSTOW 1993

2. knowledge about oprogramming (RICH,
SHROZE and WATERS 1879): such
knowledge censists nf pragram
fragments {abstracted tn various
degrees), each assncizted with a
variety of ©propositions absut the

behavior of the schema and indexed so

that they can be applied to large
classes of problems
3. knowledge about design eond problem

golving: it is important not only to
retain the finished product but the
important parts of the process; we

should be atle to explcre alternative
designs in different contexts and
merge them if necessary (GOLDSTEIN and

EBOBROW, 1981: FISCHER and BOCKER 1382)
4. knowledge about commanicaticn
processes: the information structure
which cantrols the communication
shoauld be made explicit, so the user
can manipulate 1it; scripts (esctions

which are in general carried out in a
sequence) should be available

5. knowledge about the communication
partner: the designer of a program

wants to see quite different parts
compared to a programmer who wants to
use the module only as a package. For
the user information will be relevant
which helps him to create a consistent
model of the sgystem, to know how to
invoke certain subsystems and tn link
the behavior of the system to the
underlying design rationale.
A knowledge-based architecture and new, twn-
dimensional interfaces are important components
for convivial systems {see section 2.3). The
additional freedom for the user of & convivial
system {giving him the possibility to carry cut a
constrained design process within the boundaries
ef the knowledge area modelled) increases the
functionality and the complexity of the
communication process; novel interfaces are
required that the user can take full advantage of
the possibilities given to him. The
representation of arbitrary information
structures in knnwledge-based systems allows that

the communicatisn process can he gharpad
dynzmically, which implies
- the user can madify 2 orogrzm acenrding
to his specific needs and the designer
ises npat have ts anticirate every

interactinsn in sadvance

- static dncumentation structures
(traditionally stored as canned text)
can be gzenerated dynamically and can
serve as a user- and problem-specific
explanatinn.

We pelieve that the Zevelsopment of convivial
tnels will break down an oid distinction: there
will be no sharp torderline any more between
vrogramming and using programs -- a distinctisn
which has been a major obstacle for the
usefulness of computers. In the open systems of
the future (as they are needed in domains like
office automation) a convivial system is a
“must™, because the system designer cannot
fsresee in detail all the specific needs which
the users will have in the future.

5. Program documentation systems

We consider a program documentation system to
be the heart of a software erigineering
envirsnment, because it serves as the
communication medium between different users and
the knowledge base of the system.

The importance »f a documentation system stems
from the large range of different tasks a
documentation is useful for:

- to enhance the desigrers understanding
»f the prsoblem to be solved and to
assist him in improving the problem
specifications

- to suppsrt the designer during the
implementati»n of his soluticn

- to enable a programmer to reuse a
program and to extend existing systems
to tool kits

- to maintain a programming system

- t2 make a program portable and sharabdble
in a larger community

A program documentatinn system is a knowledge
base containing all of the available knowledge
about & system combined with a set of tools
useful for acquiring, storing, maintaining and
using this knowledge (SCHNEIDER 1981).

The knowledge base is

- in part interpreted by the computer to
maintain the congistency of the
acgaired knowledge about structural

properties; 1t supports the user in
debugeing and maintaining his program
system

- in part only useful “ar the user, i.2.
not directly interpretable by the
machine. In thie zase the nmachine
serves as a far structured
communicatisn the different
userz. The c¢omputer can suppsart the
user to maintain the nan-intervretable
infarmatison in the ¥nowledge base, 4o
user-guided change »f information (tv
driving the aditor (see sectiosn 3)),
suggest the updating of possibly
inconsistent data in the knowledge
base, etc. (see Figure 3-1).

A documentation system should support the
entire design and programming process. 4 valid
and consistent documentation is of crucial
importance during the prsogramming process itself.
The information structures that are accunulated
around a program {see Figure 3-1) can be used to
drive an evolutionary and incremental design
process. Documentation should not only be done
at the end of the implementatisn but throughout
the whole d2sign process {see Figure 5-1).

In writing large manuscripts, document
preparation systems (e.g. SCRIBE; REID and WALKER
1980) offer many services (e.g. automatic
generation and maintenznce of a table of contents
and an index) which are of crucial importance
during the process of writing. The amount of
work that has to bve done ts keep the
documentetion of a large program or manuscript
up-to-date with each incremental change 1is far
too large tc be done manually by the designer.
Support is necessary for

- creating information about the
structural properties of a system

- keeping the whole documentation
consistent.

This task should be dcne by a documentation
system.

By improving the specificatisns of a problem
the designer gets new ideas about how to solve
his problem. A documentation of a program that is
usable during the design process can therefore be
a driving force fer the synthesis of new ideas
and implementations {see Figure 5-2).

Ve gain the full henefit of a program
documentation system onlyv, if it is an integral
part of an integrated programming environment. A
program documentation produced as a separate
document by a wecrd processing system has at least
the following disadvantages:

- it is impossible to provide pileces »of
information sutomaticslly

Tesign Inple- Tocumen- Use | Modifi-
Specifi-~ menta- tation caticn
cation tien
Tesign D |Imple- | D | Use | D | Modif- [D
Specifi- | o | menta=- o o] fica- ¢
cation ¢ | tion c c tion c
Figure 5-1: tlternative views on the
rosition of doncumentatisn
in the programming-process
In the traditional view documentation is

created at the end »f the programming process; in

sur model (SCHNEIDER 1981) documentatian serves
as the communicatisn medium for all pensple
involved with a software product. Documentation

is useful throughout the entire process and
serves as a starting point for new solutisns of
the problem. The purpose of a documentation in

this view is comparable to that of a proof in
mathematics: a crystallization point for new
ideas (LAKATOS 1977).

- it is impossible to maintain

consistency between the program and its
documentatinn automatically f{or at
least semi-automatically)

~ it is impossible to generate different
external views dynamically from one
complex internal structure (e.g. to
read a documentatinn either as a primer
or as a reference manual)

the designer of a system during the
programming process {zes Tigure 5-1 and
£-2). He has tn have access to his
design decisinns and the different
versions 2% the system. He 2lss needs
infarmation abzut the state o7 his wnork
in the whole design prnocess. At anv
peint we shsuld be able ts asy
questisns of the following %ind:

* Yhat kas still to be done?

* Which vparts of the oproblen are
still unsnlved?

¥ How far 4did the
his plans and with respect tn h
task”

designer get in
is

the programmer who is trying tn reuse
or modify a program that he dnes not
know yet. He first wants to understand
the purpcse and algorithms 9% the
progran to decide which parts of it
have t2 be changed ts fit his needs.
He needs information about design-
decisions (in order to avoid known
pitfaslls}) as well as a thsrough
documentaticn of the existing code.

the client who is trying to find out
whether the implemented system solves
his problem. He wants to improve his
own understanding bty working with a
prototypical versicn of the system and
is therefore not interested in any
programming details but in design
decisions.

the user wants to see a description in
terms of "What does it do? How can I
achieve my goals?"; for end-users the
documentation has to offer different
views of the system: a primer-like
description for the beginner and
manual-type explanations for the expert
{see Section 5.4, Figure 5-2 and 5-4).

5.2 Knowledge Acquisition and Updating

- it is impossible to create 1links
between the static description and the
dynamic behavior.

The informatisn structures which are used in
our system come from two sources:

Modern systems for human-computer communication

(see Figure 2-1 and 2-2) which are dynamic (i.e. - the analyzing system PAMIN (FISCHER et

the screen 1is constantly changing) can only be
insufficiently described with a static medium
like pencil and paper. Therefore it is difficult
{if not impogsible) to give a detailed and
precise specificatisn and documentatinn of such
systems using less powerful media.

5.1 Program documentation for whom?

Program documentatisn has to serve different
groups wno try to vperform different tasks.
Therefore the amount and quality of informatisn
sffered to these groups of pesple has to be
different. We distinguish the following groups
and their tasks:

al., 1981) provides information about
the structural properties (cross
references, side effects) of & program.
This system’'s functinnality is similar
to the one of MASTERSCOPE (TEITELMAY
and MASINTER 1981). fThe user doesn't
have to provide information that cen be
created sutnmatically, so he is free to
concentrate on the creative aspects of
his work.

the programmer has to provide semantic
information about the different parts
of the program, information about the
internal (semantic) structure of his
system, descriptions af the used
algorithms etc.

Most aof the analysis done by the system is
dsne at read-time (see Tigure 5~2). This means
that we have to dn the analysis after esch
alternatisn nf the pragram code. The systen
YNows about rossitle dependencies between
wnowledge units and , 1f necessary, reanalyvzes
the anits in question. It infarms the rrogrammer
abcut possible 1incaensistencies in the knowledge
tase. These technilgues *»elp us 12 rmaintain the
cnnsistency between different revresentations of
the information.

unction removes the appropriate associatfon-list
entry from the hashtable. If the right entry is the
first entry of the association list, delq won't work,
so catch this event first.

prem
(lambda (keyl key2)

(let (i (pghashit keyl key2)) (a nil))
(setqg a (passociation i Keyl key2))
(cond (_

Figure 5-2: Documentation during
programming

When the user starts tn define a new function
(or package) the system creates a new knowledge
unit f{as shown in Pigure 3-1) and inserts
inferred infnrmation as soon as possible. If the
user deletes already typed cnde the system
extracts the information derived from this piece
of code (LEMKE and SCHWAB 19873)

The way the system decides if a knowledge unit
has to be updated is the following:

- the system knows that it has to change
certain structural information (e.g.
calls - is-called-by relations)
automatically. The system 1is able to
alter information by using its cross-
reference xnowledge. This knowledge can
alsn be wused teo guide the wuser to
places where he ©psssibly wants to
change informatisn.

- far each unit the user can provide a
list »f other knowledge units he wants
to inspect and possibly alter if a unit
has been updated {see the “see-alss’-
slat in PFigure ©5-4; this informatiocn
cannot be created by automatic
inspection of the code.)

5.3 Object-criented knowledge representation

Object-sriented knowledge representations have
the follnwing advantages:

gol Il

- for many protlems =an nobjiec e
style =sf descriptinn (e.g. like 1in
=l

SYALLTALY or CRJITALK (RLTHKR and
LAUPSCH 1087} oroviies a gond redel
for the designer's undsrstanding ~° tre
domain

- inference mechanisns ts

properties »f the prseranm are
stiects {in our ~sase ¥nowledge
#hich represent the ¥nzwledze >
small part sf the documented progran
by means of methods;
effects of these inferences can te
local and reduce the complexity »F
deduction process

N

- effects of changes sare kept lacal by
of

using the same technique defining
methods to propagate necessary changes
to other objects

- objects own methsds that define

different views on their knowledge; new
views on a knowledge unit to fit the
needs of a user are created by defining
other methods by the user bhimself.

Our system uses OBJTALX (RATHKE and LAUBSC!
1983) as the implementatisn language for the

knowledge base. It is a good descriptive
mechanism to model our problem domain
{documentatisn of LISP-pregrams). The Dbasic

units are frame-like structures (¥INSKY, 1975)
that inccrporate gdifferent kinds of knowledge
about the analyzed items. Informartion is
organized arsund the concepts of packages {the
largest package bdeing the entire system) and
functions. Additionally there 1is a concept
called a filter (see section 5.4) which praovides
the user with the possi®ility to create his own
filtered views on the information units. TFigure
2-1 shows a sample knowledge unit for an analyzed
and decumented function.

5.4 Using the available knowledge

A knowledge-based program documentation system
is only useful if the relevant informaticn can be
easily obtained. The following two requirements
must be supported:

1. availadility: the knowledge sbout the
system (incorporating the consequences
¢f 81l changes) must be available at
any time (see Figure 5-1).

2. views of reduced complexity: the
structures in our knawledge base are
too complex (see FPigure 3-1) to be
used directly. A filter mechanism
where the filters can be defined by
the user (see Figures 5-3 and 5-4)
allows to generate views of reduced
complexity showing only the
infsrmation which is releveant for a
specific user at a specific time.

caller (FILTER) FILTER: normal
SYSTEM:

in-packages
callers
callees
purpose
description
see-also
callees

Eescrxption

see-also

Conventions

TR slois present in the

current filter
Normal font: omitted slots

Pigure 5-3: DPefinition of a filter

The wuser can create his oswn views of a
xnowledge unit. In the exzaxzple given the user
wants ts see information at2ut called functions
(LEMKE and SCHWAB 1983).

5.5 Human-Computer Communication (HCC) techniques
to enhance program documentation

The broaad functionality »f future computer
systems can only be achieved with complex
programs. The descriptive structures arourd then
will be even more complex. Communication betwesn
users of these large systems and their knowledge
bases will vte imrossitle withcut an easy-to-use
human-computer interface.

Our research »on HCC shows several wayvs to
enhance the coammunication between users and the
documentatian.

1. The user may decide which informatisn
he wants to insert ar inspect.
¥nnowledge acquisition <can be user
driven {(by selecting and filling
appropriste knswledge units) or guided
by the dncumentation system (by asking
for necessary information).

2. Pefault values for certain knowledge
units enabtle the user to concentrate
on areas that are of interest to him.

! el pput
: (lambda (Keyl Keye value)

(ltet ((i (phashit Keyl Key2)) (a nil))
(selq a (passociation i Keyl key2))
(cond (a (rplaca (cddr a) value))

(1 (store (put-get-hash-table i)
(cons (list keyl
Key?2
. value)
. (put-get-hash-table i))
IDDBDY]
pget

; iéei pget
(lambda (Keyl key2)
(let ((a (passogiation (phashit keyl key2)
i keyl
i key2)))
\ (cond (a (caddr a))))))
i prem :

el prem
(lambda (keyl key2)
(let ((i (ghashit keyl key2)) (a nil))
(setq a (passociation 1 Keyl key2))
(cond (a (store
(put-get-hash-table i)
(cond
((eq (car (put-get-hash-table 1))
aj

(cdr (put-get~hash-table 1)))
(t (delq a
(put-get-hash-table {)))
NN

passocilation returns the property keyz of keyl in bucket i
or nil if no such property exists

5&:; passociation

(lambda (i Keyl Key2)
(do ((ass (cdr (put-get-hash-table i))
(cdr ass))
(a (car (put-get-hash-table 1))
(car ass)))
(Cor (null aj)
(amd (eq (car a) Kkeyl)
(eq (cadr a) key2)))
a))))

A filtered view on a
function

Figure 5-4:

After having Jdefined a filter for a knowledge
unit (see Tigure 5-3) the sysiem gererates a
revresentation of the information structure
showing the code +f the function and its callers.
This view allows the user to easily alter the
nere or parametars of tre describved function
(LE¥KE and SCHWAB 1983).

However, the user 1is always "éﬁi;—_to
change these default values.

3. ¥ultiple windows ere used to focus the

attenticn on specific issues: they
provide different contexts to avaoid
confusion.

4. Pilters generate user- and context-
specific infoarmation structures of
reduced complexity (see 5.1). The user
can define his own filter tc see jJust
the information he wants to see (see

Figure 5-%); these techniques help the
dser to build models of the system at
different levels of abstraztiosn.

6. Conclusisns

Experimental programming envir-tunnents, Gtuilt
as knowledge-based svstems and accesgible by a
gosd human-campuater communicatinn will nst be =
luxury but a necessity to make the =szftware
engineer more productive and to levelop zrstems
which serve real human needs.

b

We have developed a framework to pursuis some
of the stated protlems. The crogram
documentation system that we have implen
serves currently nmostly as a memory support
system. Many parts of our knowledge gstractures
are not interpreted by the machine %Ytut are
presented to the human at the right time, under
the desired perspective and with the appropriate
level of detail. We have moduls which zutomate
some of the knowledge acquisition (moszly by
analyzing the progran code) and we have simple
mechanisms to maintain the c¢onsistency among
different representations. All components are
embedded in a LISP environment and czn be
accessed by a unifnrm, high-bandwith intzsrface
using windews, menus and a pointing device.

To investigate the real ©potential =f
apprasach many more problems remain to be sslved.

To mention some of the impsrtant ones:

- more parts of cur knowledge structures
must be formalized that they can te
manipulated by the computer

~ evolutionary, incremental development
and modification must be supported ty
the computer (e.g. a dependency networx
must propagate the implications of a
small change our knowledge structures)

- the computer needs wmore knowledge
about: specific subject domains,
design, programming, users and
communication processes; more suppsart
is necessary to acquire, represent and
utilize this knowledge.

We hope to contribute with this work to sne of
the key prablems of our time: to understand the
pstential of computers in domains that call far
human understanding and intelligence; an area
where Artificial Intelligence and Software
Engineering can henefit from each other.

References

Atlexander, C. (1964): "The Synthesis of Zarm”,
Harvard University Press

A0 o‘ [/

Pauyer, J., u,.-D. Ricyer, ¥, Fzahign,
G. Fischer, R. Gunzenhiduser and C. Bathke (1022):
"4issensbasierte CZysteme zur Verhesserune der
¥ensch-Maschine Yammunivation', MMV -Vens,
Institut fir Infarmstix, Stutteert

Barstow D. ({oez), "4 Perspective o3e!
Aut-matic rcgra mmirg”, Proceedings »f the Eighth
International Jaint rnference on Artificial
Intelligence, Karlsruhe, pp 1170-1170

Deutsch, P.L. and E.72ft (eds.){108C):
"y . o .
Regquirements for &n Experimental Programming
Cnvirsnment", Xersx Corporatisn, Paln Alto,
Calif»rnia
Fischer, 6. and H.-D. Bdcker (198%): “The
nature of design vprocesses and how computer

systems can support them”, in P. Degans und Zrik
Sandewall: "Integrated Interactive Computer
Systems”, North Holland, Amsterdam, pp 73-36

Fischer, G., J. Failenschmid, W. Maier and
H. Straub (1981): "Symbiotic Systems for Program
Development and Analysis', MMK-Memo, Institut fiir
Informatik, Stuttgart

Fischer, G., M. Herczeg arnd D. Maier (1983):
"Knowledge-based systems for convivial
compiting”, MMK-Memo, Institut fir Informatik,

Stuttgart
G-ldstein, I. and D. Bobrow (1981): "An
Experimental Description-Based Programmin

Environment: Four Peports”, ZXerox Corpsration,

Palo Alto, California

Hayes, J.R. (1978): 'Cognitive Psychology-

Thinking and creating”, Dorsey, Homewcod,
Illinois
Herczeg, M. (1983): "DYKAFORM: ein

interaktives Formul arsystem zum Aufbau und zur
Bearbeitung von Datenbasen’, in Balzert, H. (ed):
"Software Ergonomie”, Teubner Verlag, Stuttgart,
pp 135-146

Howden, W.E. (1982): “Contempsrary Software
Develnpment Envircnments”, Communicaticns of the
ACM, V0l.25, Nr. 5, May 1982, pp 318-329

Minsky, ¥. (1975): "A Pramework for
Representing Knowledge”, in: P.H. Winston (Ed)
"The Psychology of Computer Visicn, McGCraw Hill,
New York, pp 211-277

"Prosfs and Refutations”,
Cambridge

Laketos, I. (1977):
Cambridge University Press,

Lemke, A. and T. Schwsb, {1983): "DOXY:
computergestitzte Doku-~ mentationssysteme”
Studien-Arbeit Nr. 338, Institut fiir Informsatik,
Stuttgart

Popper, K.R.{1358Y: “The Lapic »7 Scientific
Tiscavery”, New VYork

issenshasierts tema:
Eiidschirmrzestaltung”,
T, 1087, rp LD-df
Zathke, ©. and J. Zaubsch (1087 UQRITALY
eine Erweiterung von LIZP zun stiekisrientizrter
Programmieren”, 1in H. Stavan and ¥, Wedekin?
{eds.): "Objfextsrientierte Spfiware- und
Hardwarearchitexturen”, Teubner Verlag,
Stuttgart, pp 60-7¢
Reid, B.K. and J.%., Walker {1QRC): "SCRIET
User Manual”, Unil»~gic, Pittsburgh
Rich, ©C.H., H. Shrove and R. Waters (1G72):
"Computer Aided Zvnliutinnary Design for Softwarsz
Engineering”, MIT Al Memos 506, Cambridge.
Massachusetts
Sandewall, FE. (1a979): "Programming in an

Interactive Environment: the LISP Experience”, in
ACM Computing Surveys, Vol 10, No 1, March 1978,
pp 35-T1

"Rechnerunterstiitzte
Software”, Diplom-
fir Informatik,

(1a81):
fir
Institut

Schneider, ¥
Dokumentationssystene
Arbeit Nr. 165,
Stuttzart

Sheil, B. (1983): "Environments far
exploratory programming”, in Datamation, February

1983

Siman, H.A. (1981): "The Sciences of the
Artificial”, MIT Press, Cambridee, MA, 2nd
Edition

Teitelman, W. and L. Mssinter (1a81): "The
Interlisp Programrming Envirsnment”, Computer, pr

25-33

