
~ University of Colorado at Boulder

('~nter for Lifelong Learning & Design (L3D)

Department of Computer Science

ECOT 7J7 EIIgineering Center
Campus Box 430
Boulder. Colorado 80309--0430
(303) 492-7514, FAX: (303) 492-2844

KNOWLEDGE-BASED COMMUNICATION PROCESSES

IN SOFTWARE ENGINEERING

Gerhard Fischer
Department of Computer Science and
Institute of Cognitive Science
Campus Box 430, University of
Colorado, Boulder, CO 80309
gerhard@cs.colorado.edu

Matthias Schneider-Hufschmidt
Siemens ZFE ST SN 71
Otto-Hahn-Ring 6
D-81730 Muenchen
Germany

In Proceedings afthe 7th International Conference on Software Engineering (Orlando, FL)
IEEE Computer Society, Los Angeles, CA, March 1984
pp.358-368

NOTE: Paper published while Fischer and Schneider were at the University of Stuttgart, Gennany.

I .. f II

KNO'IiLEDGE-BASED COVMUNICATION P?OCESSES I~, SOFTWARE ENGINEERING

~FRHAR~ ?I2CEER and rA~~~!AS SCHN~IrFR

Pro~ert :~FO?r, ~epart~ent o~ 2'1~ruter SCience, lniversity
t)f Stuttgart, Her::we? 51, D-70:: Stuttgart, F~d. Rep. :)f ';e:-r:ar,J

Abstract

A large nClmber '); problems to be s:)l ved with
the help of computer systems are ill-strClctClred.
~heir solution requires incremental design
processes, because complete and stable
specifications are not available.

F')r tasks of this sort, life cycle m').~els are
inadeqClate. Our design methodology is based on a
rapid prot')typing approach which supp:)rts the
coev')lCltion of specification and implementation.
ComrnClnication between customers, designers and
imple~entors and communicati')n between the humans
and the knowledge base in which the emerging
product is embedded are of crucial importance.
Our w')rk is centered around knClwledge-based
syste;:Js which enhance and suppClrt the
communication needs in connectiCln with software
systems.

Program documentatiCln systems are used as an
example to illustrate the relevance of knowledge­
based human-computer cornm'unication in software
engineering.

KeY',%rds: knowledge- based sys terns, human-
comruter communication, experimental progral1lIning
envir')nments, program documenta tion, incremental
design, rapid prototyping, user interfaces

1. Introduction

Based on f)ur research work of the last few
years (bClilding knowledge-based systems,
imprClving human-comp'u ter communic3 ti on (BAU8P et
al. 1 9E2) and und ers tand ing the na ttlre of design
processes (FISCHER/EhCKER 1983» we are convinced
that the currently daminant life cycle models of
snftware engineering (HOWDEI1 1982) are inadequate
for mast problems in the do~ains mentiClned above.
~hey are inadequate because they rest on the
ass~T;rtion (which is unproven for many classes of
prCltle~s) that at the beginning the requirements
can be stated in a precise way and that the
complete specifications and the implementatiCln
can be derived from them relyin~ primarily on
formal manipulatir)ns. In reality this is not not
the case, espp-cially if we require that our

systems (e.g.
sClt::P')rt sys tem)
needs.

a ~ser interf9ce or a memory
are desi;;n-ed t') meet real h·ll.~an

In the first prt this paper we
characterize our view of the software engineering
process and prop':lse a communication-based :nodel
for software engineering as an alt'?rnative. 'lie
demonstrate the central role of kn:)wledge-based
systems to support communicatiCln processes
between all persons invol'led in the development,
construction, modification and use of software.
The second part illustrates :)ur ideas by
describing a computer-supported prf)gra:n
documentation system whic!: is being implemented
as an important part of r)ur research pr')~ect.

2. Our view of the software engineering
process

In software engineering we can di fferentia te
at least between the following three different
phases:

1. developing an intuitive unrlerstanding
of the problem to be SOlved; the
communication between the client and
the designer is important in this
phase

2. designing a system intended to sol',e
the pr'lblem; the designer will l'JClk at
previous s'llutions to similar prClblems
and will try to find existing modules
which can be used in the design

3· programming an implementation 'J: the
design; the implementor will try to
srcf)W that his implementation is
consistent with the speci fica ti 'In.

In practice, these concerns are never totally
separated nor entirely seq~ential.

2.1 Ill-structured problems

In software engineering we have to deal mostly
wi th ill-structured problems (HAYES 1979). The
problem solver or designer has to face the
following tasks:

- ~e ~as t~ cryntrib~te to the rro~lem

,:e"1n: tion h:: taking an active role in
2;,eci ":ring t'le prClblem
';.e ~as tn ~8~e :!ecisi~ns t') fi 11 f"AtS

in t~e problem riefiniti~n

solation
it.

retrJi red
i.e.

bef0re

to
~e

loe

';dMP intry t~e

TUSt att8mnt 3

t\llly und e rs t,mris

Situations in ~hi~h the client cannot provide
~etailed and cC:'1plete specifications Bre typical
"or lll-stractured problems. ':'heref":lre many ')f
t~e met~odologies and tools developed in software
engineering Bre of little ',lSI'. Requirement
specificatiCln languages are suupesed to enable
the developers t~ state their 'Jnderstanding of
the user's ideas in a f')rm comprehensible to the
user -- but the user himself has only very vague
ideas of what he wants.

2.2 Example domains: Human-computer communication
and knowledge-based systems

Hec and knowledge-based systems are two
research domains with mostly ill-structured
problems. The main difficulty in these domains
is not b have a "carrect" implementation with
respect t'J given specifications, but to develop
speci "'ications which lead to effective solutions
which cor~espond tr') real needs. Correctness of
the speci "'ications is in general no meaningful
question because it would require a precise
specification of intent. and such a specification
is seldom available.

Modern user interfaces (based on multiple
windows. menus, pointing devices and using the
screen as a truly two-dimensional medium) offer a
huge design space. Within this design space
Ii ttle is known about how to present and
structure information so that a human can make
full use of it (see Figure 2-1 and 2-2).

Kn:)wledge-based systems are an effort to put
mare knowledge (about the problem domain. abr')ut
communicatian processes. about design and problem
solving and about the user) into the machine.
This knowledge should be used to make systems
more cO')pera ti ve. absorb some of tloe complexi ty
and pr')vide better support in problem selving.

2.3 What can we do without complete
specifications?

We have to accept the empirical truth that far
many tasks system req,Jirements cann')t be stated
fully in advance in many cases not even in
principle because the user (nor anyone else) does
not know them in advance.

The
user's

devel')pment process itself
and designer's perceptions

changes
of what

tte
is

l (J~ II

~! Gf:ld ;~t va t)
••• txt. (btlf}{prog (an;;typ) (utq bur {sl(1pbl (s.ktp~not-btn buf}n (,~tq .rvtyp (c.

r:~t~.1
forI (od gt't\".1

(!aa.bd .. (bur) u-tq
I P'Q(j 'aq.typ) ,JUj,ltl

" ... bur (•• Ipbl ("'P-M'-b'" , .. 0), [1 lUO:,:1.2L:J> In
(se-tq .r-vlyp (c.t but» SHq
«(and «or (eq .. ,-t.ltyp plos}(t-Q .rqtyp alt'IUs}} car

{U"lq bqf (cdr bi.1f}}) ,

(r-ttlJ-rn (cons. .. rqtyp (etOt buf));))) {;re.t~ TI"k; Kef" 4 " Jl Il lJal

(.llre by: (~) (dt"f fa. (buf) cal)i· (~lc:JUD UQJ
(prog (.rgtYl:p ~t •• etet's. (lot()

~!:~: ~;;t~~ ~rm bof»}
(re~ Io'&rs (Uru> ltID)

(con(J {~~~l~~~(~~~~ ~~~~ ,rgtyp ~ PtI,-POSI" ; lJertel optlon.ale ,..fe

(rr-turn (COf'lS a.rgtyp (:!mJ' ~ .. lf»))})
"q~ulI~nle .us

Flgure 2-1: Screen lay~ut or a prsgra~
analysi S 8;:8 te:i

7~e screen displays multiple wi~jows, i~ whi~h
different perspectives are shown: a jialogue
winlOW f')r typein: two windows showir.g "pretty­
print" structures; a window sh~wing the s~br')lic
calling structure and a window sh')wing the
descriptive strtlct'Jres comp'uted by our system
(e.g. called by, calls, free variables, 8tC). The
inf~rrnation describing the calling strJcture is
used to drive the editor if a change is made to
the external structure of a procedure (FISCHER et
a1. 1981).

a.t ra

a..t)(-y~

'~-~~i::

fntgeltt

Figure 2-2:

38S000

oooy<
r

copy
refresh

bury

Anzahl

5$000

aetrav $5000

Screen layout f')r a finan­
cial planning system

The screen shows menus (the commands contained
in them can be activated with a pOinting device)
and windows (which are viewers into the same
knowledge base); the program can be considered as
a knowledge-based version of Visicalc (i.e. each
field has its own parser and is part of a
dependency netw')rk) (RATHKE 1983)

possible, increases their insig!ots into the
application environment, and indeed often changes
the environment itself.

The following (nat mutually exclusive)
possibilities exist to cope with this situation:

1. Deve loprnen t
programming
1982; SHEIL

of
systems

1983)

experimental
(DEUTSCH and TAF~

which support the

c~evoluti~n ~r specirications and
implement~tisns. Prototy~ical

i~tle~entati~ns ~ll~~ ~s t~ replace
'mticiI'?ti~n (i.o. ~-::w ''''ill tr.e
syste:n' he::3-ve) with ar:a::rsis (i .. e. :-:-::w
:-:es it q,:t'J-31ly te~<a',-'? \, ",'lie}; i~ in
"'":')st (:~ses i1'J,::l-) easie,:,~ ~':')st -:: the

(orerating
5:/5 terns t

software
edit0rs, ex;ert syste~s,

develorr:1er.t syste!'1s) r.ave
been develated with extensive ~eedback
(~ased 0TI' t~eir act~2: use) which
continually contrih~ted to
ir:1provements as ,es):lonse to
discrepancies between a system's
~ctual and desired state.

2. l1eavy user in\'o l'lemen t and
participation in all phases of the
devel ~pmen t process. ":''Je user should
be able 0 pla:r with tl-:e preliminary
s:,'stem and to discuss the design
ra tional behind them. An existing
prot~type makes this cooperation
between designer andclser much more
productive, because tr.e user is not
restricted to reviewing written
specificati~ns t<') see whether or not
the systeM will satis:y his needs f')r
the right functionality and ease of
Des.

3· Let the end-user Jevel~p the systems;
this would eliminate tl-:e communicati')n
gap al t')gether. He is the pers~m wh0
knows most about the specific problem
to be solved and by giving him the
possibility to change t~e system there
is no necessity any more to anticipate
all possible future interacti')ns
between user and system. "User
tailorability" (e.g. to define
keyb')ard macros in text processing
systems 'Jr to create forms forms '/iith
a general ~orm kit; HEPC3EG 1983) is a
fi;st step towards "convivial systems"
(FISCHER, HERCZEG, r-:AFR 1983), which
gi ve the user the possi bili ty to carry
~ut a ::'lnstrained design pr~cess

within the boundaries of the knowledge
area modelled.

4. Accept changing require~ents as a fact
of life ar.d do not condemn them as a
pr~duct 0" sloppy thinking: we need
methodologies and tools to make change
a coordinated, comp~ter-supported
pr')cess.

Knowledge-based systems combined with modern
techniques for humsn-computer cO!llmunication (see
Figure 4-1 belml "or the general architecture of
such a system an} 1i'ig'Jre 2-1 and 2-2 hI' two
implement;d pr'H')typic;1 systems), are the most
pro~isine approaches to cope with this situati')n.

3 Ot 11

3· The changing needs in software
engineering

:esifil wi tlr-::ut fir..~~, r:recisel:: Ji?:i:H~r:8

g~a~3 is r'""'.ssicle (:=:;~Y,2~; ;0C:\) a!"'!.~ ir: ;.ar.:,r :82es
ine';i tsble. Ccnstr-clctirl" c'lmplex iesigns :r.
s~P:w9re en~ineAring w~ic~ sre i~ple~pnted O~~~ a
l~n~ ti~e qnd c~ntinJally ~odi~ied in the C0JrSe

0: irr.:;lementati':ln ("\88 r;,'Jcr-: it'! c,)llTn')n with ")ther

cre'lti'Je activities (lije writin£, painti'lg,
com~~slng <')r b~iliin2 morlels wi:h technic'll
CO'lS trJc tion ki ts (FISC}.:;oR/Er' eKER 19°2).

We need
adec,~a te to

methodologies and t~~ls

cope wi th si t'cla ti 'lns :n
which
which

are
the

sreci~ications are unavailable, incomplete,
change ~ver time or r.a',e such an icnmense size
tr.at it is impossible to ~nderstand them fully.

:t is natural to look "')r such met'1od')logies
anrl tools in subject areas which have dealt with
this situation for a long time. Artificial
Intelligence ('n) research has always tried t')
solve ill-structured problems. In AI, ')ne of the
mair: ')bjectives to write programs was t') get a
deeoer understanding of the prC)blern. In
addition, intelligent activities are complex,
therefore AI programs are complex and large.
To-:ls were needed to abs')rb S'lne of tr.e
complexity. The eff')rts to create go')d
programming environments (SANDEWAL::.o 1973,
TEIT;oL~AN and MASINTFR 1981, SHEIL 1983) have
been a ma~')r focus of AI research during the last
twenty years. The creation of go<')c programming
environmen ts was easier for the AI c')mmuni ty,
because in LISP pr~grams and data have the same
repr-esentations and lend themselves easily to
pr')gram manipulation.

Similarly the development of new user
inter~aces has encountered some of the same
pr')blems. Until the appearance of the STAR and
the LISA machines only few people have done
research in this area (the SMALL'1'ALK development
at Xer')x PARe has been the most notable
exception).

The AI view of programming has been for a long
time that a program sh8ulc not only be regarded
as a piece of text underst')od by a c~mpiler (Ha
pr~gram is more than its listing"' but as a
comFlex knowledge-strclcture .ith incl~des (see
Fig'Jre 3-1)

- the program-text
- documentation information
- design information
- knowledge ab')ut 1'1 complex artifact put

together from pieces.

.ple Oat., Stnlcture

":I;~e"" ... ", ." ,"" (ANALYZED)
(. .

r
LLLmbQa (keyl key2)

(let ({j (Dha 5 hit key 1 !(eyZ» (a n i 1))
(seta a (pasSQCiation i keyl keyZ)2
{(ond (Il

(store (put-get-hash-tabJe j)
(cond « eg

(car (pUt-aet-hash-tabJe i»
i!.l
(cdr

.u
ilklg

(put-get-hash-tabJe 0» I
a (put-aet-hash-table

NUMBER»
NUMBER) »

(MODIFIED 12/12/1983
(uWU®t il ·t4i HOB)
(~

i»)

"prem didn't work if the property
to be deleted was the CAR of the
appropr iate bucket"»»

(PVTACCESS QUt-get-hash-table})
5 propert ies frOll the hashtable")

ion re8Dves the appropriate association-list
entry from the hashtable. If the rlght entry is the
first entry of the aSSOCiation-list, delq won't work,
so catch this event first.")

(F.HljlJiI rpJIjIlI .. "»

COnventions
L tW"flP!!rn;:j: slot names of ~r knowledge units
2. __ J 1n._: ata that can be 1nterpreted, used and

updated by the systeM
3. Normal font: knowledge generated by the user,

coaaentaries etc.
4. CAPITALS: systea-generated inforaation

Figure 3-1: A sample function-description

AI has de'/eloped a set of toals for coping
with kn~wlpjge-based systems:

- general purpose knawledge-base
dependency analysers, e.g. tools far
mani t'lrinp all changes made to objects
in the knawledge base. The calling
structure 0: ?igure 2-1, for example,
can be used ta drive the editar ta
update our pr8frams after we have
chan.,ed the number of parameters of a
procedure.

- indexine t~11s (e.g. Br::)\.sers) for
c13ssifying anj retrieving ob,jects on
the basis of selected properties

't o~ rt

- lnference and
:nechanisms (see ::g"Jre 7-2 whe!""e the
cAlleAs-slot
!lut'l~aticall?)

has ~een

;nlll tiple 'lle-"..s l gel'"Jer2ted ':"J ds.e:r­
::iefing,r:le fi': :ers I see ?igure ~-2 a;:~

5-4)

- c:")nstra~ntS

cor..sis tencJ~
repre3erltati~r.~ e.g~ bet·,.een t~.e

program text and its ~escripti1n).

~ith n A: ~esearch ne~ ~eth1dGlsgies ~ere

deve 1ped like structured gravth (e.g. a
part 311y irrplenented system can be run and
tested) and pr':lgra:nming by specialization (w!lien
is supported by the inheritance mechanism in
object-oriented languages'.

The experimental, err1r-correcting approa:h
which is characteristic for a rapid prato typing
methodology is n'lt an excuse for being unable to
think clearly enough but it is a respectable
scientific activity (see Popper's re['larks abaut
the "critical method to eliminate errors" (P)PP~E
1959), Sirnan's the':lry of bounded rationality
(SIMON 1981) and J..lex3nder's claim that we see
good fit only from a negative point of view
(ALEXANDER 1964».

4. Knowledge-based models for
communication

As an alternative to tJ-.e life cycle model we
prapose a cammunciatian model. The knowledge­
based systems which we develop for saftware
engineering wit". respect to this model S;]pp8rt
the following two activities:

1. the communication between a human and
the knawledge base which represents
the emerging prad;]ct

2. the communication bet· ... een the
di fferen t classes
designers, users)
computers serves as
for comm;]nication.

of humans (e.g.
in t!lis case the

a structured media

Human ccml'lunica tion and coopera tion can be used
as a m~del to define the general characteristics
of a knClwledge-based system of this sort. What
can humans do that most current computer systems
cannot do? Human communication partners

- do not have the literalism of mind
all which implies that not

communica ti"ln has t"l be explicit; they
deduce additional can supply and

informa ti on which
explicitly mentioned
correct simple mistakes

has not been
and they can

- .:an aDpl~t

t'l fill
tr.eir ~rjt-"lem solving' pOwer

give
tToad

in 1. f we
st,qteMents
f"Jncti'fna~

0: 'iC,iF?<'tives in
':2r::s

- ~R~ srticulate !~eir ~isJnderstAndiGg

:'3Dl tl:e 1 i-r.i tBti--:r:s "')f their ~n')wlec1~e -

- can pr'~i~e ex~:anatinns

for the infor~ati'n

e~changed ~ver t~e

~0m~unicqti0n channel,
4-1 below).

(E'specially
which gets

implicit
see Figure

Knnwled&e-based systems are ons promising
approach to equip machines with some of these
hu~an communication capabilities. ~he work in our
researcf: project I!\FOR~~ (BAUER et al., 1 c)82) is
guided by the model shown in Figure 4-1.

knowledge about:

• problem do!!:ain
• progra=ing
• design and problem solving
• co~unication processes
• comIllunication partner

knowledge

= o
o
o
•

-
imFlicit

communication charillel

explicit communication channel

Figure 4-1: Arc'li tect·elre 0f a knowledge­
based system to support HCC

":'he system architecture fr0m Figure 4-1
tW0 major components:

1. ",he explicit communica tion channel is
widened. ')ur inter~aces use windows
with associated menus, pointing
:evices, c'Jlor and iconic
rej:resentations; the screen is used as
a design space which can be
Manipulated ~irectly (see Figure
2-1 and 2-2).

2. Infomati'Jn can be exchanged over the
impl ici t c()mmunication channel. B()th
'::0TnIllUnication partners have knowledge

has

5 of (I

which eliminates t~e necessity t~Bt

all in:~rfTja ti')n has to t'e t?xc:--.3nfed
expli,:: tly.

'T!":e fi'/e domains (}f knowledge sh')wn i!1 Fip.'Jre-
4-- I ~aV'e tr.e fr:ll')wing- relevB.nce :r,r s,,:;l"t',;are
e~~i;~eeri::g~

~n()wledEe of t~e pr'Jblem domain: a
Fr~Erq~ming system nast ha'le k~~wle~ge
ah'Jut the task domain, otr.er~ise a
dOf'1ain expert cann0t c'JTn1"·unicate with
it in a nat·elral f'Jrrr. (BARSTO'N 1?e3)

-'.. kn'Jwlel!!e ab0ut Drcgramr.ing (RICH,
SP.RO~2 and WA'1'ERS 1 '079): such
kn'Jwledge consists ()~ program
~ragments (abstracted to various
degrees), each ass!}ciated with a
variety of propositions ab'Jut the
behavior of the schema and indexed so
that they can be applied to large
classes of problems

3. knowledge about design and problem
sol ving: it is important no t only to
retain the finished product but the
important parts of the process; we
should be able to explore al terna ti ve
designs in different contexts and
~erBe them if necessary (GOLr2T~I~ and
BOBROW, 1981: FISCHER and BOCKER 1982)

4. knowledge about communication
pr()cesses: the infcrmation structure
which controls the communication
should be made explicit, so the user
can manipUlate it; scripts (actions
which are in general carried out in a
sequence) should be available

5. knowledge about the co~munication

partner: the designer ')f a program
wants to see quite different parts
core pared to a programmer who wants to
use the module only as a package. For
the user infor:nation will be relevant
which helps him to create a consistent
model of the system, to know how to
invoke certain subsystems and to link
the behavior of the svstem to the
underlying design r8tio~ale.

A knowledge-based archi tec ture and new. twO­
dimensional interfaces are imp')rtant components
f')r convivial systems (see section 2.3). The
additi(mal freedom for the user of a convivial
system (giving him the p')ssibility to carrv out a
constrained design process wi thin the b')u~daries
of the knowledge area modelled) increases the
functionality and the complexity of the
comm~nication process; novel interfaces are
required that the user can take full advantage of
the possibilities given to him. 7he
representation of arbitrary information
structures in knowledge-based systems allows that

t~e c~mmunicati~n prscess can sha;:ed
dyns~icqlly, wtich implips

- t~e ilser cqn ~0di~y ~ pr~€r~~ qcc0rl~inR

to his specific neeis and the desi~ner
,~')f:'S r':'J t 1~a \,'e t':"; 8n ti.: i f'A te e':er-',r

inter3ctl~n in Rrtvance

- static 102u~enta:~~n struct~res

(tradi tianally s torec: as canr.ed text)
can be generated dynamically and can
serve as 3 Jser- and pr'lblem-specific
explanati')n.

'"e believe that the de'/el::>prnent 'lf convi'lial
t'lols ' .. ill break dOwn an 'lId distinction: there
will be no sharp borderline any more between
pr')grarTJming and 'using pr')grams -- a distincti')n
which has been a ma;i:Jr obstacle for the
usef'Jlness of C'lmputer~. In the open systems 'If
the fut'ure (as they are needed in domains like
office automation) a c::>nvivial system is a
"mus t" , because the sys tern designer canno t
f:Jresee in detail all tr.e specific needs which
the users will have in the f'uture.

5. Program documentation systems

We consider a program documentation system to
be the heart of a software engineering
envir:mmen t. because it serves as the
communication medium between different users and
the knowledge base of the system.

T~e importance ~f a documentation system stems
from the large range of different tasks a
d'lc~mentation is useful for:

- to enhance the designers understanding
'If the pr~blem to be solved and to
assist him in improving the problem
specifications

- to supp~rt the designer during the
implementati'ln of his solution

- to enable a programmer to reuse a
program and to extend existing systems
to tool kits

- to maintain a programming system
- t'l make a program portable and sharable

in a larger community

A pr~gram documentation system is a knowledge

base containing all of the available knowledge
about a system combinec with a set of tools
useful for acquiring, storing. maintaining and

using this knowledge (SCHNEIDER 1981).

T~e knowledge base is

- in part interpreted by the comp'Jter to
maintain the consistency of the
a.::q.jired knowledge about structural

properties; i't s'Jpport3 tr,e USf'r in
:'.ebugl"inl" and mai:1taining r,is pr:Jgr'lm
s:;stem

in part ~nl:r .lsef,]: "'')r the user. i."!.
not directl:r interpreta'~le by t!1f?
mac1:ine. In tr.is :B.se tr:e ~3e~.i fI.e
serves as a med~-1rr: f')r strJct'Jre-i
C0mrr.uni~ati1n bet',{e~n the ::ifferent
users. The computer can support the
user to maintp.in the n'ln-interDretable
inf')~Bti')n in tl-Je lrn'Jwlecge base, 'h
user-guided c1-,ange ')f infor'1lation (tv
dri'Jing the e,li t-:>r (see secti ')n 3))'.
suggest t~e updating 0"' possibly
inconsistent data in the knowledge
base, etc. (see Figure 3-1).

A documentation system should support t~e
entire design and programming process. A valid
and consistent dOC'Jrnentation is of crucial
importance during the pr'lgramming process itself.
The inf0rmation struct'lres that are accumulated
around a program (see Figure 3-1) can be 'Jsed to
dri\'e an evolutionary and incremental design
process. Dooumentation s!J.ould not only be done
at the end of the implementati::m but thro'Jgh0ut
the who Ie d?sign process (see FiirJre 5-1) .

In writing larRe manuscripts, document
preparation systems (;.g. SCRIBE; REID and WALKER
19·'30) offe" lllany services (e.g. aut'lmatic
generation and mainte~ance of a table of contents
and an in:'!ex) which are of crucial importance
d'uring the process of writing. The amount of
work that has to be done t'J keep the
d ocumen ta tion of a large program or manuscript
'Jp-to-date with each incremental change is far
too large to be done manually by the designer.
Support is necessary for

- creating
structural

- keeping
consistent.

information about the
properties of a system
the whOle documentati:JD

This task should be done by a documentation
system.

By improving the specificati'lns 0: a problem
the designer gets new ideas about how to solve
his problem. A documentation of a program that is
usable during the design process can therefore be
a driving :orce for the synthesis of new ideas
and implementations (see Figure 5-2).

We gain the full benefit of a program
d'Jcumentati')n system only. if it is an integral
part of an integrated programming environment. A
program documentation produced as a separate
document by a wcrd processing system has at least
the following disadvantages:

- it is imn'Jssible to provide pieces of
information aut')matically

~esign Imple- Documen- Use ~odifi-

Specifi- menta- tation cation

cation tion

4 j

Design D Imple- D Use D ~odif-

Specifi- 0 menta- 0 0 fica-

cation c tion c c tion

~ t • •
Figure 5-1: Alternative views on the

rosition 0' docunentation
in the programming-process

D

0

c

I

In the traditi')nal view documentati')n is
created at the end of the programming process; in
our model (SCHNEIDER 1931) documentation serves
as the com!1"unicati:m medium f')r all pe'jple
invol ved wi th a softw3.re produc t. DocQ"Jen ta tion
is useful throu~hout the entire process and
serves as a starting p')int for new solutions of
the problem. ';'he purpose 'jf a doc-umentation in
this view is comparable to that of a proof in
mathematics: a crystallization point for new
ideas (LAKATOS 1977).

it is impossible to maintain
consistency between the program and its
documentation automatically (or at
least semi-automatically)

- it is impossible to generate different
external views dynamically from one
complex internal structure (e.g. to
read a documentation either as a primer
or as a reference manual)

it is impossible to create links
between the static description and the
dynamic behavior.

Modern systems for human-computer communicati'Jn
(see Fig-ure 2-1 and 2-2) which are dynamic (i.e.
the screen is constantly changing) can only be
insufficiently described with a static medi-um
like pencil and paper. Therefore it is difficult
(if not impossible) to give a detailed and
precise specification and documentation of such
systems using less powerf-ul media.

5.1 Program documentation for whom?

Program doccllllentati'Jn has to serve different
gro-urs who try to perform different tasks.
Therefore the amount and quality of information
offered to these groups of people has to be
different. ile distinguish the following gro-ups
and their tasks:

- the designer of a syste:n during t'1e
prot!rallTnin(Z 'orocess (2e~ :ifrJ.re 5-~ and
5-2). :-!e ha~s t'1 h8ve acct?ss to hi s
de2ifn r1e.:::isi'lns and the di""erent
versions of' t~e syste;"). ~e 31so needs
inf~~3tion about t~e state of his work
In the w~~le desi?n pr0cess. At any
p()ir~t 'we sh-;alj ~De able t") AS~

questi,ns of the following ~in1:

.. '!'hat h'ls "till t'J \:'e done')
* 'Which parts 0: t~e pr~ble~ a~e

still Clns01ved'"
.. How far <lid the designer get in

his plans and with respect tel his
task"

the pr'Jgrammer wh'J is trying to reClse
or modify a program that l:e does not
know yet. He first wants to understand
the purpose and algori thros 0" the
progra:n to decide which parts of it
have to be .:::hanged to fi t his needs.
He needs informa tion abou t design­
decisions (in order to avoid kno",;n
pitfalls) as well as a thorough
documentation of the existing code.

- the client who is trying to find out
whether the i:nplemented system solves
his problem. He wan ts to impr'Jve his
own understanding by working with a
prototypical version of t:'le system and
is therefore not interested in any
programming details bOut in design
decisions.

- the user wants to see a description in
term;-;["wnat does it do'" How can I
achieve my g'Jals""; for end-"users the
documentation has to offer different
views of the system: a primer-like
description for the beginner and
manual-type explanations for the expert
(see Section 5.4, Figare 5-2 and 5-4).

5.2 Knowledge Acouis~t~on and Updating

The information structures which are used in
our system corne from two sources:

- the analyzing system PAMIN (FISCHER et
al., 1981) provides information about
the structural properties (cross
references. side effects) of a program.
This system' s functirmali ty is similar
to the one of MASTERSCOPE (TEITELIt'AN
and MASINT2R 1981). The user doesn' t
have to provide information that can be
created autDmatically, so he is free to
coneen tra te on the crea ti 'Ie aspec ts of
his work.

- the pr~grammer has to provide semantic
inforna tion about the different parts
of the program, information about t!le
internal (semantic) struct-ure of his
system, descriptions of the used
algorithms etc.

"!0St '1f the flnfllysis (10ne by the system is
done ~ t read- time (;ee figure 5'--2). ,:,~is means
that we have to d'1 the analy~is a~ter each
3.1ternati')n 0: t'1e rr')?!'3'n c')de. The system
~~~ws gtout possitle jependen~ies hetween 
':n')wledge ',mi ts 'lnd i:- necessary. re'lnal:lZes 
t~e Jni tR in r::G.esti':',!1. :t ir::-;r'TJ~ tre ~r(";f!rar1:'ner 

about possible inc(';nsistencies in t~.e knowle:3.ge 
rase. ~hese techniques help us t") ~aintRin the 
.:;')nsistency between dif:erent repr'?sentati')ns of 
the information. 

pputget 

phashlt passociat ion 

removes properties from the hashtable 

thIS functIon removes the appropriate aSSOCiation-list 
entry frOG the hashtable. If the right entry is the 
first entry of the association list, delq won·t work, 
so catch this event first. 

~ prell 
(lambda (keyl key2) 

(let «i (~ keyl keyZ» (a nil» 
(setq a (passQciation i keyl keyZ» 
(cond C 

Figure 5-2: Documentati')n during 
programming 

When the user starts to define a new function 
(or package) the system creates a new knowledge 
·,.mi t (as shown in Figure 3-1) and inserts 
inferred inf')rnation as soon as possible. If the 
user deletes already typed code the system 
extracts the information derived from this piece 
of code (LEMKE and SCHWAB 1983) 

The way the system decides if a knowledge unit 
has to be updated is the following: 

- the system knows that it has to change 
certain structural information (e.g. 
calls is-called-by relations) 
aut')matically. The system is ahle to 
al tel' information by using its cross­
reference knowledge. This knowledge can 
also be used to guide the user to 
places where he possibly wants to 
change informatioD. 

- f'1r each ;;.ni t the user can provide a 
list of other knowledge units he wants 
to inspect and possibly alter if a unit 
has been updated (see the "see-als'1"­
sl'1t in Fig:.Jre 5-4: this information 
cannot be created by a;;.tomatic 
inspection of the code.) 

5.3 Object-oriented knowledge representation 

Object-oriented knowledge representati'1ns have 
the following advantages: 

- for many problems an obje~t-'1riented 

style ~f descripti0n (e.g. like in 
S~ALL~A::"(: or CBJ?ALK (P,l."~!-!K? 3P.,,1 
LAJP2CH 10 9 7

)) nro7ijes a good ro~el 
f0r t~e desirnerfs understan~in~ ~r :~8 
d'1::Jain 

- inference 
pr~perties ~f the pr').Yran 3re h,")',ln'J t") 

::t:'e<:ts (in cur -:as;::: ~,,:n')wle-}g'? ",lr:its 
· ... hich rerres-:>n t the ;rnowlecl?e aoou t a 
small pa~t of t!1e docJ.:cented pro!!ra:::) 
by means of :r.eth0Cs; therefore t'1e 
ef:ects ~f these i~ferences can te tent 
local and red;;.~e ti:e complexi ty 0: the 
deducti')n process 

- effects 0f c'canges are kept l')cal 'oy 
using the same technique of defining 
meth')ds to pr::paga te necessary changes 
to ')ther objects 

- objects own meth0ds that define 
di:ferent vie~s on their knowledge; new 
views on a knowledge uni t to fit the 
needs of a user are created by defining 
other methods by the user ~i~self. 

Our system uses OBJTALi< (RATHKE and ':..AUBSCH 
1983) as the implementation lang;]age hI' the 
knowledge base. It is a good descripti~e 
mechanism to model 0'.11' problem domain 
(documentati0n of LISP-progra~s). T!18 basic 
units are frame-like structures (y:n;SKY, 1(0 5) 
that incorp0rate different kinds of knowledge 
about the analyzed iter::s. Inhrnati'Jn is 
organized around the concepts ')f packages (the 
largest package being the entire system) and 
func tions. Add i ti onally there is a concept 
called a filter (see secti')n 5.4) which pr'Jvides 
the user with the possi bili ty to c rea te his own 
filtered views on the information units. Figare 
3-1 shows a sample knowledge unit for an analyzed 
and documen ted func ti on. 

5.4 Using the available knowledge 

A knowledge-based program dOCUMentation system 
is only useful if the relevant infornation can be 
easily obtained. The following two requirements 
must be supported: 

1. availability: the knowledB'e about the 
system (incorporating the consequences 
of all changes) must be available at 
any time (see Figure 5-1). 

2. views of reduced complexi ty: the 
strJctures in our knowledge base are 
too complex (see "'ie;Jre 3-1) to be 
used directly. A filter mechanism 
where the filters can be derined by 
the user (see Figures 5-3 and 5-4) 
allows to generate views of reduced 
c0mplexity showing only the 
information _hioh is relevant for a 

specific user at a specific time. 



1 n-packages 
callers 
ca 11 ees 
purpose 
description 
~ 
see-also 

ca 11 ees 
Ul!Ii';';'· . 
oeser 1 pt lOn 

tS!lUS 
see-also 

1r"...r.r.T.~ 

Convent ions 

Reverse Vl eo: slots present in the 
current fi lter 

rma1 font: omitted slots 

Figure 5-3: Definition of a filter 

~he user can cre~te his own views of a 
kn owledge unit. !n the eX &I:?le given the user 
wants t-:> see inforl'lation a'::out called functi ons 
(LEMKE and SCHWAB 1983). 

5·5 Human-Computer Communication (HCC) techniques 
to enhance program documentation 

The broad functionality of future computer 
systems can only be achieved with complex 
programs. The descriptive s tr·.lctures arour.d the~ 

will be even more complex. :ornrnunication between 
us ers of these large systems a nd their kn nwledge 
bases will be impQssible wi thcut an ea sy-to-use 
human-computer interface. 

Our research on HCC shows several 
enhance the c'"l~rnunica ti on he tween us ers 
doc ·.ll'lenta ti on. 

ways to 
and t he 

1. The user '!;ay decide which information 
he wants t o insert or ins!,ect. 
::n'"lwledf,e acqui si tion can be ·.lser 
driven (by selecting and filling 
appropriate ~ncwledge units) or guided 
by the cncumentation system (by asking 
for necessarj informati on). 

2 . refaul t vRlues for certain knawle1ge 
units e nable the aser to concentrate 
on areas that are of interest to him. 

'1 o} II 

pputget 

ID'GD . ppul: 

~ pput 

pget : 

(lambda (keVI kev 2 va ltJe) 
(Iel «i (~kevl kev2» (a ni1) 

( s etq a (Q~SSQciat i Qn I key\ kevZ» 
( colld ( a (rplaca ( cddr a) value» 

(t (store (pul-get-hash-table i) 
(cons (list keVI 

»» )) 

keVZ 
va lue) 

(put-get-hash-table 

~ pget 

pret!! : 

(Ialllbda (keVI kev2) 
(let «a (passQciation (~ kevl kevZ) 

kev l 
keVZ» ) 

(cood (a (caddr a»»» 

~ pre .. 
(lalllbda (kevl kevZ) 

(let « i (9.h<li.!lil keVI kevZ» (a nl I» 
(setq a (passo,i.1tjoo 1 keyl keV2» 
(cond (a (store 

(put-get-hash-table i) 
( cood 

i» 

«eq (car (put-get-hash-table 1) 
a) 

(cdr (put-get-hash-table 1») 
(t (delq a 

(put-get-hash-table 1») 
»»») 

passoclation returns the propertv kevZ of kevl in bucket 1 
or nil if no such property exists 

~,
' ''e' 

pas.oc l"t ion 
(lambda (i keyl keyZ) 

(do «ass (cdr (put-get-hash-table i» 
(cdr ass» 

(a (car (put-get-hash-table i» 
(car ass») 

« or (nu 11 a) 
(and (eq (car a) keyl) 

(eq (cadr a) keyZ») 
a») ) 

Figure 5-4: A filtered view on a 
f;;.nction 

After having jefined a filter for a kn~wledge 

uni t (see ?igure 5-3) t he sys tern genera tes a 
representation of the informati on struct'ure 
showing the cade ~f the functi on and its callers. 
This view allows the user to easily alter the 
name or parameters of t~e described functi on 
( L~KE and SCHWAB 1983) . 

However, the ;;.ser is always able to 
chan&e these default values. 

3. ~ultiple windows ere used to focus the 
attention on specific issues: they 
pravide different contexts to avoid 
confusion. 

4. ~ilters generate user- and context­
specific inf')r~ation struct·.lres of 
reduced complexity (see 5.1). The user 
can define his own filter to see just 
the in forma ti on he vants to see ( see 



:igClre 5-'); t'1ese techniques 'leI p t".e 
.lser to build "'1o'lels of the s::stem o' 

different levels of abstrg:tiJ~. 

6. r:onclusions 

Experimental pr~gr~~~ing envi~-~·lents. ~~ilt 

as kn'1wle:1ge-tased systef11s ano decessit:,., bv a 
g(jc;d hl.l~an-c,"):rlrJter cCiJ!'Junicati0D 'tt/ill ::::: be 8. 

luxury but a necessity to make t~e s~~tware 

engineer more pr:Jduc t i 'Ie and to ie'/'21 op ~~'S terns 
which serve real human needs. 

We ha ve deve 1 ')ped a framework t') purs ~i' some 
of the stated problems. The "ngrarn 
documentation system that we have imp:'e:1ented 
serves curr'2ntly mostly as a nemory support 
syst'2m. Many parts 0: our knowledge strlCtures 
are not interpreted by the machine but are 
presented to the human at the right time. under 
the desired perspective and with the appr')priate 
level of detail. 'lie have moduls which s'ut')mate 
some of the knowledge acquisition (mos:ly by 
analyzing the program code) and we have simple 
mechanisms to maintain the consistency among 
different representations. All components are 
embedded in a LISP environment and can be 
accessed by a uniform, high-bandwith ir.terface 
using windows, menus and a pointing device. 

To investigate the real potential ~! our 
appr')ach many more pr~blems remain to be s~lved. 

To mention some of the imp~rtant ones: 

- more par ts of our knowledge s truc tures 
must be formalized that they can te 
manip'J,lated by the computer 

- evolutionary, incremental development 
and mod i fica tion mClS t be supp~rted ty 
the computer (e.g. a dependency networ~ 
must propagate the implications of a 
small change our knowledge str'clctclres) 

- the computer needs more knowledge 
about: specific subject domains. 
design, pr~gramming, 

communication processes; 
is necessary to acquire, 
utilize this knowledge. 

users a::d 
more sup:prt 
represent ani 

We hope to contribute with this work to ~ne of 
the key problems of our time: to understand the 
p')tential of comp'uters in domains that call f'lr 
hClrnan understanding and intelligence; an area 
where Artificial Intelligence and Software 
Engineering can benefit from each other. 

References 

Alennder, C. (1 0 64): "The Synthesis of 
Harvard University Press 

- " ~ ')rm , 

Pauer, .J.. ~.-D. ?0cr:er, 4' ?3~is~, 

~. ?ischer. ~. Gunzenhiuser ~nd c. ~athke (~932): 
"~i3sensbasierte 2yste~e z~r ~erheSSerClng der 
Xer.sc}:-r~aschine K')mm<Jni¥:"8ti0[l1t, ~~Y.Y.-?e::J'), 
Instit1Jt ::jr Inf,,)!'7"19ti~, ?t',---1ttPe.rt 

Barstow, D .. (11?':3): "A Perspective ~n 
A'J,tomatic Programmir.g", Proceedings of the Eighth 
:nternational 
Intellieence, 

J'lint ;:..,r.ference ~n Arti :icia1 
KarlsrJ~e, pp 11~C-11~9 

Deutsch, 
ttReq'lireMents 
£nvir')nment", 
Calif"lrnia 

P.L. and 
for an £xreri~ental 
Xer')x ::::~r])')rati»n, 

( ed s . ) ( 1 cec ) : 
Pr"'eramrning 
Pal~ Alto, 

Fischer, G. and H. -D. Boci-::er (1983): "The 
nature ~f design processes and how cornDuter 
systems can support them", in P. ~egano und Erik 
Sandewall: "Integrated Interactive Computer 
Systems", North Holland, Amsterdam, pp 73-86 

Fischer, G., J. Failenschmid, W. Maier and 
H. Straub (1981): "Symbiotic Systems hr Program 
Development and Analysis", !oIY.K-Memo, Insti t'Jt fiir 
Inforrnatik, Stuttgart 

Fischer, G., r~. Eerczeg ar.d 
"Knowledge-based systems 
complting", MI1K-Merr:'1, Insti bt 
Stuttgart 

D. Maier (1983): 
for convivial 

fUr Inf,)!'!'Jatik, 

Gsldstein, I. and D. BobrClw (1981): "An 
Experimental Description-Based 
Environment: Four Eeports", Xerox 
Palo Alto, California 

Hayes, 
Thinking 
Illinois 

J.R. 
and 

(1978): "Cognitive 
creating", Dorsey, 

Pr')gra~ming 

C~rporation, 

Psychology. 
Homeweod, 

Herczeg, M. (1983): "DYNAFORM: ein 
in terakti ves Forrnu:arsys tem Z'lm Aufbau 'und zur 
BearbeitClng von Datenbasen", in Balzert, H. (ed): 
"Software Ergrmomie", Teubner Verlag, Stuttgart, 
pp 135-146 

Howden, W.E. (1982): "Contemporary Software 
Development Environments", Communications of the 
ACM, Vol.25. Ur. 5, May 1982, pp 318-329 

Minsky, M. (1975): "A Framework for 
Representing Knowledge", in: P.H. liinst'Jn (Ed) 
"The PsycholOgy of CClrnputer '/isien, McGraw Hill. 
New York, pp 211-277 

Lakatos, 1. (1977): "Pro':lfs and Refutations", 
Cambridge University Press, Cambridge 

Lemke, A. and 
computergestutzte 
Studien-Arbeit ~r. 

Stuttgart 

T. Schwab, (1983): "DOXY: 
Do~u- ~entationssysteme" 

338, Insti tut fUr Informatik, 



Porper. K.R.(1:o~oi: n:'he bfic ")~ 3cientif':.: 
risccvery", New Y1rk 

:::2thke. f'. (iQ~~)~ "'.""i2-senshasier~e 2~{stem-?: 
~er:r als elne attrai-:ti':e Eil'i2c[;irryogestal t·uDg". 
in: CJMpUter-~erR~in, ~~~t 3, ~oe3, ~? ~)-41 

~. and J. :~Ub3Ch 

eine Sr'Nei terun€, ',ron ::":::P zUr:'! ~bjeKt':'Jrie:1 ti~rt'?r: 

Pr~gra;'1mieren", In :-:. Stoyan e.nd :.:. '!\'edek~n: 
(eds.): "Ob,~p~t~rientierte 2c~tware- U~~ 
'!ardware'ir.:I-Ji te%t-Jren". ':'eubne, '/erla(". 
StuttGart, pp 60-75 

Reid. B.K. and J.~. Walker (1 0",C): "SCR2:E:: 
User ~anual", Unil~gic. Pittsb~rg~ 

Rich. C.H •• H. Shn'::e and R. '(late,s (1 0 7 0 ): 

"Computer Aided :':v'Jluti'Jnary Design -:'Jr Software 
Engineering". HI':' AI Memo 506. Cambridge. 
~lassachuset ts 

Sandewall. E. (1973): "Programming in an 
In terae ti ve Envi r'J!Lllen t: the LISP Experience", in 
ACM Computing Surveys. V'll 10, No 1, ~arch 1978. 
pp 35-71 

Schneider, M. (1981): "RechnerunterstUtzte 
D'Jkurr,e!1tationssysterne fUr Software". Diplom-
Arbeit Nr. 165. Inst1tut fUr Informatik, 
Stutt"art 

Sheil, B. (1983): 
exploratory programming", 
1983 

Sim'Jn, H.A. (1981): 
Arti ficial" , MIT Press, 
Edition 

"Envir'Jnments for 
in Datamatio!1, February 

"The Sciences of 
Cambridge. MA, 

t!:e 
2nd 

Teitelman, Iv. and L. Masinter (1931): "The 
Interlisp Program1"ing Environment". Computer, pj: 
25-33 


