

Wisdom is not the product of schooling but the lifelong attempt to acquire it.

- Albert Einstein

From "Anywhere, Anytime, Anyone" to

"The Right Information at the Right Time, in the Right Place, in the Right Way to the Right Person"

#### **Gerhard Fischer**

Center for LifeLong Learning & Design (L<sup>3</sup>D) (<a href="http://www.cs.colorado.edu/~l3d/">http://www.cs.colorado.edu/~l3d/</a>)

Department of Computer Science and Institute of Cognitive Science

University of Colorado, Boulder

Presentation, "International Workshop Series on RFID — Information Sharing and Privacy, Tokyo, November 2004

### **Overview**

- ♣ The Center for Lifelong Learning and Design (L3D)
- Basic Message
- ♣ Examples:
  - **Privacy** (Movie Clip from ABC)
  - L3D's **CLever Project** (multimedia presentation)
- Conceptual Frameworks
  - Information Access and Information Delivery
  - Gift-Wrapping and Techno-Determinism
  - Meta-Design
- ♣ Example: Envisionment and Discovery Collaboratory
- Conclusions

# L<sup>3</sup>D's Research Focus and Intellectual Identity

|                                                                               | <ul> <li>Artificial Intelligence (AI) ◊ Intelligence Augmentation (IA)</li> <li>replacement ◊ empowerment</li> <li>emulate ◊ complement (exploit unique properties of new media)</li> </ul> |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                               | <ul> <li>instructionist learning</li></ul>                                                                                                                                                  |  |  |  |
|                                                                               | <ul> <li>♣ individual ◊ social (distributed cognition, social creativity)</li> <li>- knowledge in the head ◊ knowledge in the world</li> <li>- access ◊ informed participation</li> </ul>   |  |  |  |
| <ul> <li>♣ generic ◊ specific ("universe of one")</li> <li>- design</li></ul> |                                                                                                                                                                                             |  |  |  |
| *                                                                             | desktop ♦ ubiquitous computing (going small, large, everywhere)                                                                                                                             |  |  |  |

collaborating

♣"gift-wrapping" and "techno-determinism" with new media ♦ co-evolution of new media, new theories about working, learning, and

### **Thanks**

- Shin'ichi Konomi
- ♣ all members of L3D

### our sponsors:

- National Science Foundation
- Coleman Institute for Cognitive Disabilities
- Software Research Associates (SRA), Tokyo, Japan

## The Basic Message

RFID technologies offer opportunities and risks

#### ♣ risks:

- privacy
- **information overload:** anywhere, anytime, anyone, push technologies, information delivery, ...

#### opportunities:

- new levels of distributed intelligence
- "the right information at the right time, in the right place, in the right way to the right person"

# The Challenge — RFID Research: Beyond Technology

- social context
- ethical issues (privacy)
- ♣ high impact
- new divisions of labor
- \* redefinition of the unique human role in socio-technical environments
- questions: magnitude of a change
  - oral ◊ literal society
  - printing press
  - digital media
  - World Wide Web (WWW)
  - RFID????

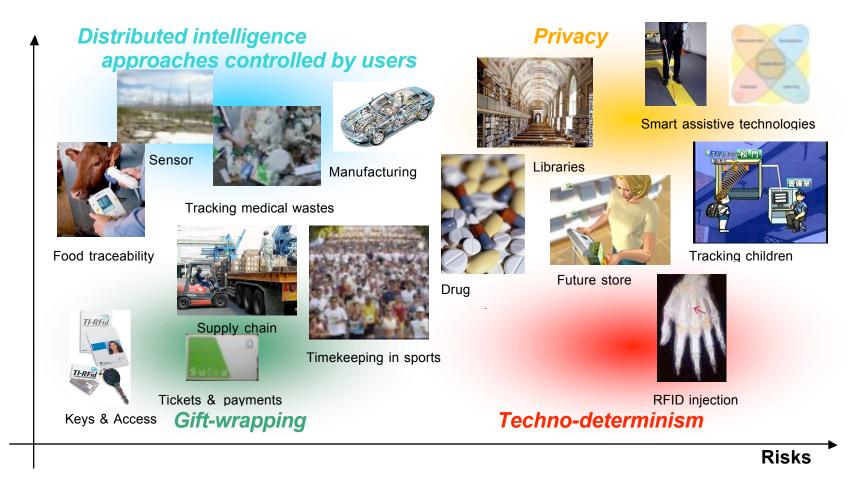
# The Right Information at the Right Time, in the Right Place, in the Right Way to the Right Person

- ♣ right information: relevant to the task at hand ♦ task modeling
- ♣ right time: intrusiveness (pull versus push)
- right place: location-aware cell phone (noisy environment versus movie theatre), smart tour guides
- \* right way: multimodal presentation (textual, visual, auditory, tactile)
- \* right person: taking background knowledge and interests of specific users into account  $\Diamond$  user modeling, "who do I ask and who do I tell"

# Finding the Limiting Resource in Design

#### Herbert Simon (Nobel Prize Winner) in "Sciences of the Artificial"

#### ♣ claims


- a design representation suitable to a world in which the scarce factor is information may be exactly the wrong one for a world in which the scarce factor is attention
- the critical component in information sharing is not information per se, but **human attention**
- "What information consumes is rather obvious: it consumes the *attention* of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate efficiently among the overabundance of information sources that might consume it."

#### example:

- some crisis in the world  $\Diamond$  many messages to the State Department
- printing capacity was identified at the limiting factor  $\Diamond$  buy high speed printers
- the real bottleneck: time and attention of the human decision makers who had to use the incoming information  $\Diamond$  the real challenge: filters, intelligent summarizing, ...

# Trade-Offs between Risks and Opportunities (provided by new technologies such as RFID, GPS, ..)

### **Opportunities**



# Opportunities (provided by new technologies such as RFID, GPS, ..)

Consumer benefits

Security and piece of mind

Convenience and efficiency

Reduced costs

**Business benefits** 

Increased profits

Social benefits

Environmental conservation

Universal usability

# **Risks** (provided by new technologies such as RFID, GPS, ..)

Consumer risks

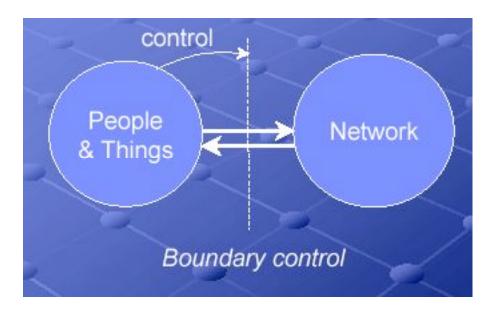
**Privacy violation** 

Health risks (stress; RF signals can affect pacemakers etc.)

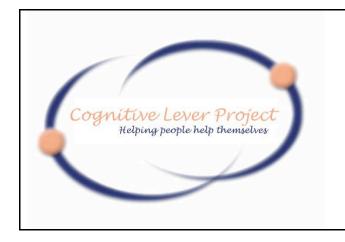
**Business risks** 

Failure of RFID systems

More lawsuits and product return


Social risks

"Big Brother"

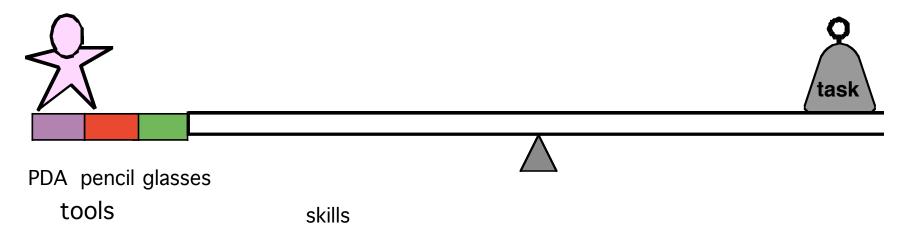

Job loss

## **Example-1: Privacy Issues (ABC Movie Clip)**

- \* example: newspaper story "Man accused of using GPS to track ex-lover"
  - cellular phone with GPS and motion sensor
  - man faces up to six years in prison if convicted
- ♣ Personal Privacy Assistants (see contribution by Shin'ichi Konomi)
  - boundary control rather than isolation
  - Personal Privacy Assistants provide users with feedback and control



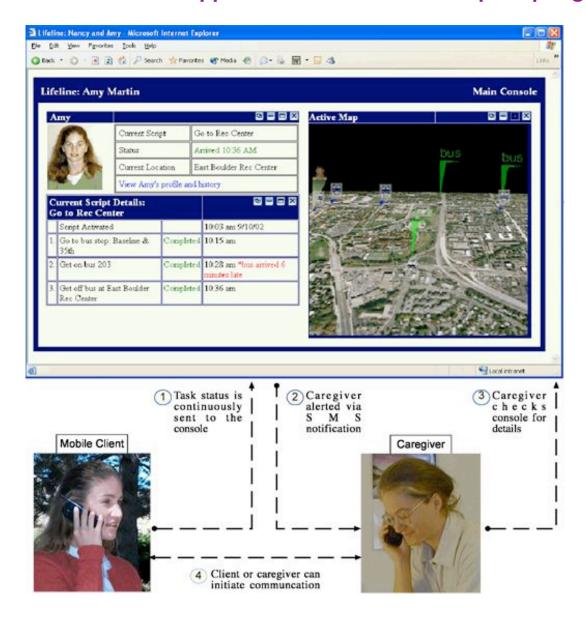
# Example-2: The CLever Project — Enriching the Life of People with Disabilities



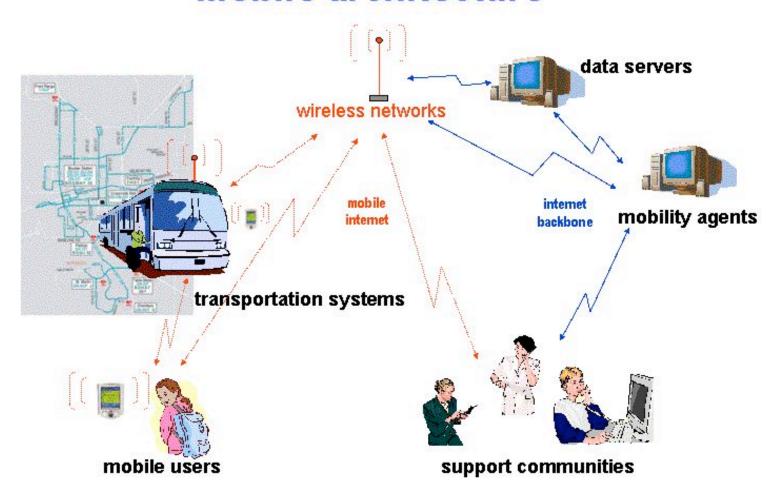

"CLever: Cognitive Levers — Helping People Help Themselves"

- ♣ supported by the Coleman Institute, August 2000 July 2005
- http://www.cs.colorado.edu/~l3d/clever/index.html

### Cognitive Levers (CLever) — Helping People Help Themselves


- ♣ theoretical framework: distributed intelligence ◊ empowering humans with cognitive disabilities with media and technology
- ♣ "Give me a lever long enough and I can move the world"




# **MAPS: Memory Aiding Prompting System**



# Lifeline: monitor and support clients with wireless prompting systems



# Mobile architecture



17

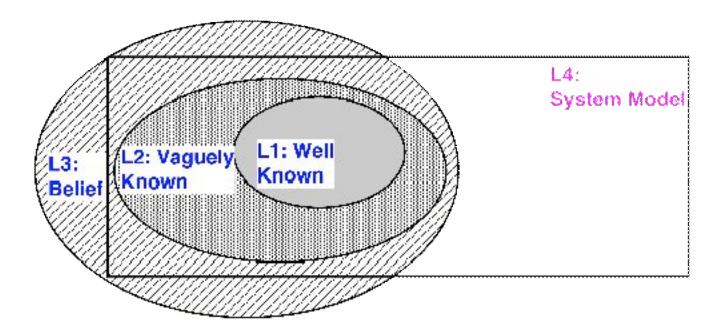
# The Story Shown on the Videotape

- \* specific: a woman with cognitive disabilities (memory problems, no capacity for planning and remembering) and her mother
- general: the scenario shows socio-technical environments to help people with
  - cognitive disabilities
  - elderly people (e.g., with Alzheimer)
  - out-of-town visitors
  - foreigners
  - everyone
- many people can not use current public transportation systems
- ♣ innovative technologies to "simplify" their use
  - personal device such as personal digital assistants (PDAs),
  - mobile phones,
  - global positioning systems (GPS),
  - web-based collaboration tools

# **Selected CLever Projects**

- Web2gether: Online Community Environment supporting the members of a community (not only information management)
- ♣ TEA: The Evaluation Assistant matching the needs of individuals to specific technologies
- ♣ MAPS: Memory Aiding Prompting Systems creating new "knowledge" (scripts) by end-users who have no interest or technical knowledge
- ♣ Mobility-for-All: Human Centered Public Transportation Systems from "anywhere, anytime, anyone" ⇒ right information, right person, right time, right way (exploiting the power of ubiquitous, wireless technologies)
- ♣ Lifeline: Remote Monitoring reuse of the technological infrastructure for a different purpose

## **Conceptual Frameworks**

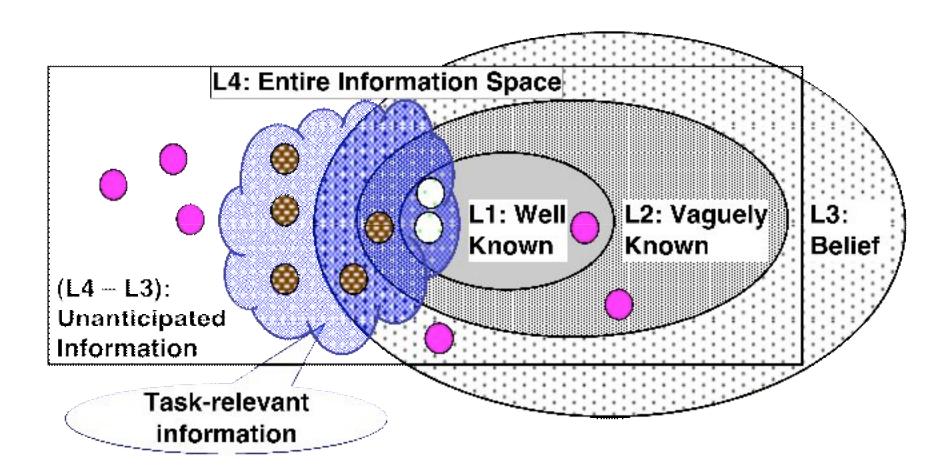

- ♣ shift from purely computational worlds inside the computer (such as domain-oriented design environments) ◊ augmented reality, pervasive computing (a partial mapping / representation of the external world needs to be created inside a computational environment)
- Information Access and Information Delivery
- ♣ Gift-Wrapping and Techno-Determinism
- ♣ Meta-Design

# Information Sharing: Access ("Pull") and / or Delivery ("Push")

|                                | access ("pull")                                                                                | delivery ("push")                                                                                              |
|--------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| examples                       | browsing, search engines,<br>bookmarks, passive help<br>systems                                | Microsoft's "Tip of the Day",<br>broadcast systems, critiquing,<br>active help systems, agent-based<br>systems |
| strengths                      | non-intrusive, user controlled                                                                 | serendipity, creating awareness for relevant information, rule-enforcement                                     |
| weaknesses                     | task relevant knowledge<br>may remain hidden because<br>users can not specify it in a<br>query | intrusiveness, too much decontextualized information                                                           |
| major system design challenges | supporting users in expressing queries, better indexing and searching algorithms               | context awareness (intent recognition, task models, user models, relevance to the task-athand)                 |

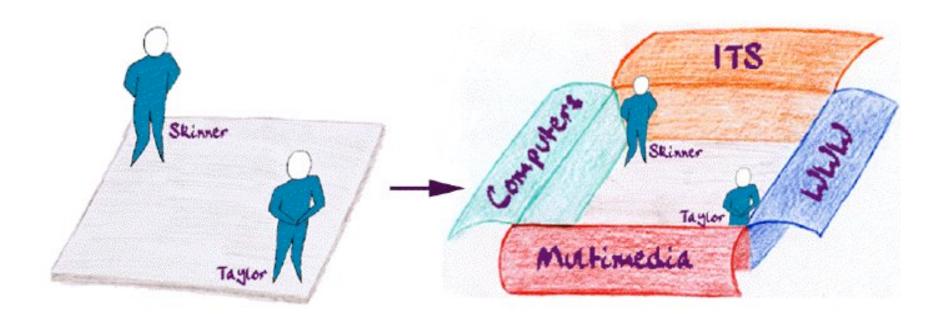
# Decontextualized Information Delivery: Example: Tip of the Day ("Did You Know")

- the Assistant of Microsoft Office provides tips on how to use features or keyboard shortcuts more effectively
  - When a yellow light bulb appears next to the Assistant, click the light bulb to see a tip
  - user can turn on or off showing the Tip of the Day
- \* idea behind it: to incrementally learn High-Functionality Applications




# Contextualized Information Delivery — Example: Codebroker

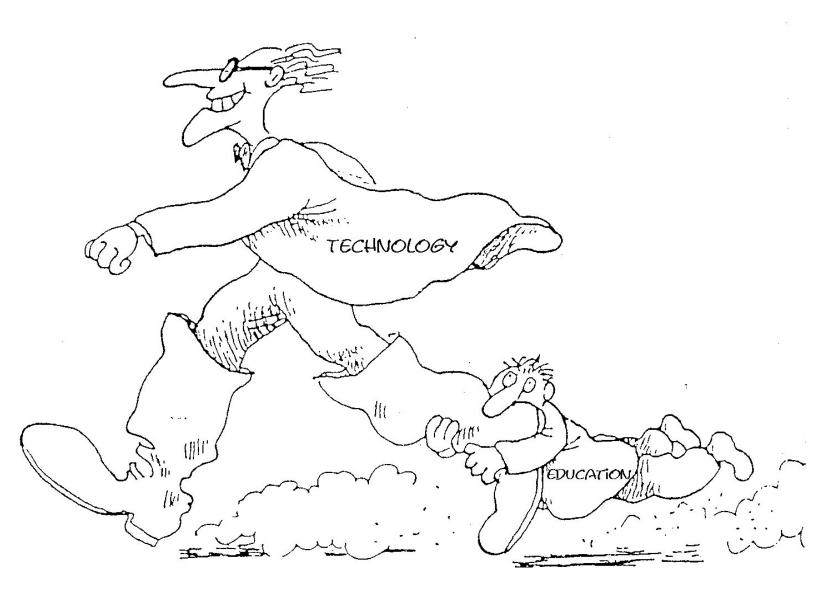
Yunwen Ye (more info at: <a href="http://www.cs.colorado.edu/~yunwen">http://www.cs.colorado.edu/~yunwen</a>)


- thousands of components, no programmer knows all of them, constantly evolving
- information access does not support programmers who do not actively search for reusable components
- delivers personalized components based on task and user modeling techniques
- programmers are consumers and contributors

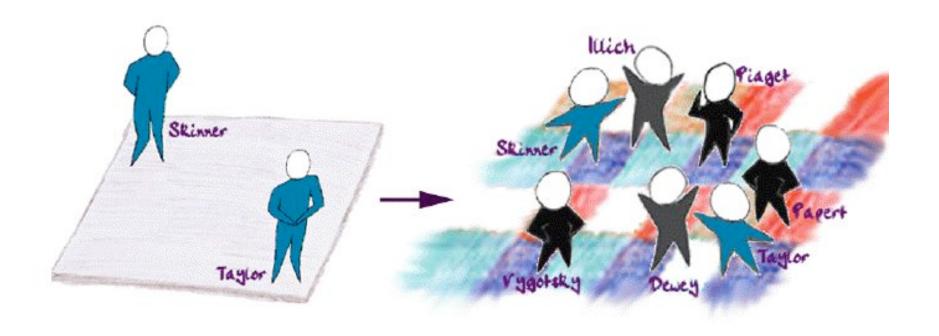
# **Information Delivery in Large Software Reuse Repositories**



# **Gift-Wrapping:** Adding Technology to Existing Practice


"There is nothing so useless as doing efficiently that which should not be done at all." — Peter Drucker




current practice (e.g., education)

current practice wrapped in technology

# **Techno-Determinism**



# Learning and Media: Rethinking, Reinventing, and Redesign Theory and Practice



current practice

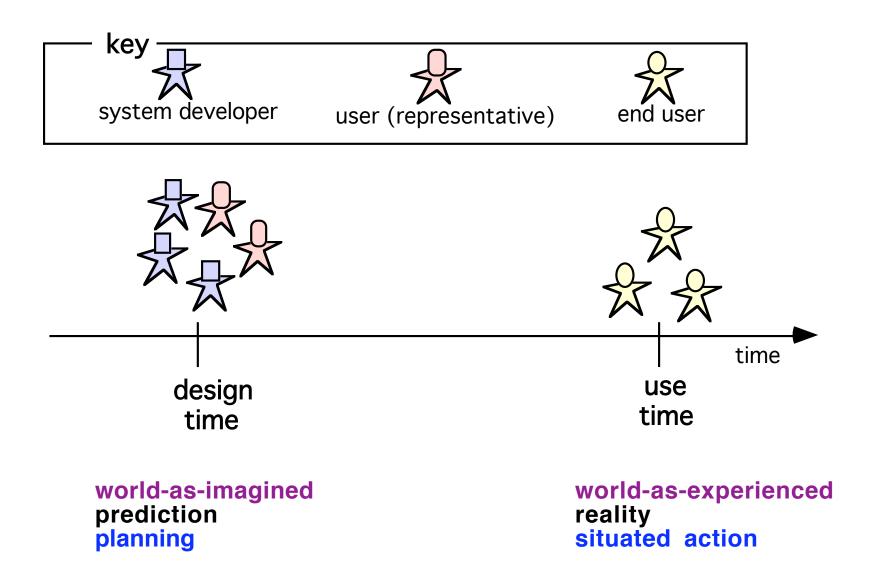
computer-supported and computer-mediated practice of the future

# **Examples of Gift-Wrapping**

- using the World Wide Web for "new" approaches in education: posting slides on a website rather than handing them out as paper copies
  - this is worthwhile and has advantages (e.g., ease of updates)
  - but: it leaves the underlying processes unchanged
- in RFID: using tags in smart stores to eliminate the scanning process at check-out

### **Meta-Design**

meta-design = how to create new media at design time ("world-as-imagined") that allow users to act as designers and be creative at use time ("world-as-experienced")


#### why meta-design?

- deal with a changing world
- address and overcome problems of closed systems
- transcend "consumer mindsets"

#### impact of meta-design

- "if you give a fish to a human, you will feed him for a day if you give someone a fishing rod, you will feed him for life" (Chinese Proverb)
- can be extended to: "if we can provide someone with the knowledge, the know-how, and the tools for making a fishing rod, we can feed the whole community"

# **Design Time and Use Time**



# **Computational Media**

# **Extending Design Opportunities at Use Time**

#### print media:

- a fixed context for use time is decided at design time
- all interpretation needs to be done by humans

#### computational media:

- presentations at use time can take advantage of contextual factors only known at use time (about tasks, users, social systems,....)
- examples: specification sheets and usage data, supporting dynamic forms, dynamic websites, user and task specific maps and traffic schedules....
- evolving the existing systems: users (acting as designers) can transcend at use time the boundaries of the systems as developed at design time

# The Envisionment and Discovery Collaboratory

http://www.cs.colorado.edu/~l3d/systems/EDC (including demo)

- \* creating shared understanding in the context of collaborative design
- ♣ integration of physical and computational environments
- ♣ specific major application: urban planning ◊ build an end-user modifiable version of Simcity (meta-design approach)

# **Non-Computational Collaborative Environments**



# Collaboration with many Stakeholders on the Desktop



# Smartboards: Computation and Collaboration Beyond the Desktop



# PiTaBoard: Parallel Interaction and Computational Objects



# PiTaBoard: Parallel Interaction and Computational Objects



### Realities based on Assessment Studies

♣ RFID: new technology is necessary, but not sufficient ♦ change of work practices, mindsets and reward structures is necessary

#### motivation for a group is different than for an individual

- "who is the beneficiary and who has to do the work?"
- utility = value / effort ◊ can the EDC or RFID technologies change this equation?

#### ♣ EDC: engage skilled professionals in realistic work situations

- requires useful and usable systems (not just demo systems)
- prerequisite for evolutionary growth

## **Utility = Value / Effort**

#### increase in value: motivation and rewards for a "design culture"

- feeling in control (i.e., independent from "high-tech scribes")
- being able to solve or contribute to the solution of a problem
- mastering a tool in greater depth
- making an ego-satisfying contribution to a group
- enjoying the feeling of good citizenship to a community ("social capital")

#### decrease in effort:

- exploit data provided computational mechanisms
- extending meta-design to design for design communities

### **Future Directions**

#### technical:

- more **resources** (e.g., weather information in CLever/Mobility-for-All environment)
- more **integration**: e.g., use personal devices in the context of the EDC
- use objects and interaction histories as **indices** into large information spaces

#### ♣ theoretical:

- integrate individual and social creativity
- integrate planning and situated action ◊ meta-design
- extend distributed intelligence framework
- design with **human attention** as the fundamental limiting resource

#### ♣ social:

privacy and security

## **Innovating Innovation**

WWW becomes Business, Education, Collaboration available have been fundamentally changed

> RFID technologies become widely available

???????

### innovating innovation (John Seely Brown)

- our ideas of innovation have gone stale ◊ be innovative in the area of innovation itself
- will RFID technologies be a "disruptive innovation" (= something that actually changes social practices: the way we live, work and learn  $\Diamond$  beyond "giftwrapping")

#### A challenges associated with disruptive innovation:

- it is not technology per se that matters, but **technology-in-use**
- **shift the discourse**: from a concern about who has **access** to new information technologies \( \rightarrow\) who will have the **knowledge** to design, create, invent, and use the technologies enhancing human lives

# **Summary — The Basic Message Again**

♣ the biggest problem in the field of RFID is an

### imagination crisis

of exciting things to do, of balancing the trade-offs between risks and opportunities, ....

♣ it is not a technology crisis

#### **More Information**

#### http://l3d.cs.colorado.edu/~gerhard/papers.html

#### context awareness in augmented reality environments

- Fischer, G., Arias, E., Carmien, S., Eden, H., Gorman, A., Konomi, S. i., & Sullivan, J. (2004) "Supporting Collaboration and Distributed Cognition in Context-Aware Pervasive Computing Environments" (Paper Presented at the 2004 Meeting of the Human Computer Interaction Consortium "Computing Off The Desktop"), Available at http://www.cs.colorado.edu/~gerhard/papers/hcic2004.pdf.
- Arias, E. G., Eden, H., & Fischer, G. (1997) "Enhancing Communication, Facilitating Shared Understanding, and Creating Better Artifacts by Integrating Physical and Computational Media for Design." In Proceedings of Designing Interactive Systems (DIS '97), ACM, Amsterdam, The Netherlands, pp. 1-12. Available at: <a href="http://www.acm.org/pubs/articles/proceedings/chi/263552/p1-arias/p1-arias.pdf">http://www.acm.org/pubs/articles/proceedings/chi/263552/p1-arias/p1-arias.pdf</a>.

#### ♣ meta-design:

- Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., & Mehandjiev, N. (2004) "Meta-Design: A Manifesto for End-User Development," Communications of the ACM, 47(9), pp. 33-37. http://www.cs.colorado.edu/~gerhard/papers/CACM-meta-design.pdf
- Fischer, G., & Giaccardi, E. (2004) "Meta-Design: A Framework for the Future of End User Development." In H. Lieberman, F. Paternò, & V. Wulf (Eds.), End User Development —. (in press). http://www.cs.colorado.edu/~gerhard/papers/EUD-meta-design-online.pdf

### **More Information**

#### ♣ gift-wrapping

 Fischer, G. (1998) "Making Learning a Part of Life—Beyond the 'Gift-Wrapping' Approach of Technology." In P. Alheit, & E. Kammler (Eds.), Lifelong Learning and Its Impact on Social and Regional Development, Donat Verlag, Bremen, pp. 435-462. http://www.cs.colorado.edu/~gerhard/papers/giftwrapping-98.pdf

#### Clever Project and Mobility-for-All

Carmien, S., Dawe, M., Fischer, G., Gorman, A., Kintsch, A., & Sullivan, J. F. (2004) "Socio-Technical Environments Supporting People with Cognitive Disabilities Using Public Transportation," Transactions on Human-Computer Interaction (ToCHI), p. (in press). http://www.cs.colorado.edu/~gerhard/papers/tochi-social-issues-final.pdf

#### Envisionment and Discovery Collaboratory

Arias, E. G., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (2000) "Transcending the Individual Human Mind—Creating Shared Understanding through Collaborative Design," ACM Transactions on Computer Human-Interaction, 7(1), pp. 84-113.
 [http://www.cs.colorado.edu/~gerhard/papers/tochi2000.pdf]

### information overload (push and pull technologies):

 Fischer, G., & Ostwald, J. (2001) "Knowledge Management — Problems, Promises, Realities, and Challenges," IEEE Intelligent Systems, January/February 2001, pp. 60-72. http://www.cs.colorado.edu/~gerhard/papers/km-ieee-2001.pdf