

Wisdom is not the product of schooling but the lifelong attempt to acquire it.

- Albert Einstein

Meta-Design

Gerhard Fischer

Center for LifeLong Learning & Design (L³D), Department of Computer Science and Institute of Cognitive Science, University of Colorado, Boulder

http://l3d.cs.colorado.edu/

University of Milan, February 2012

Basic Message

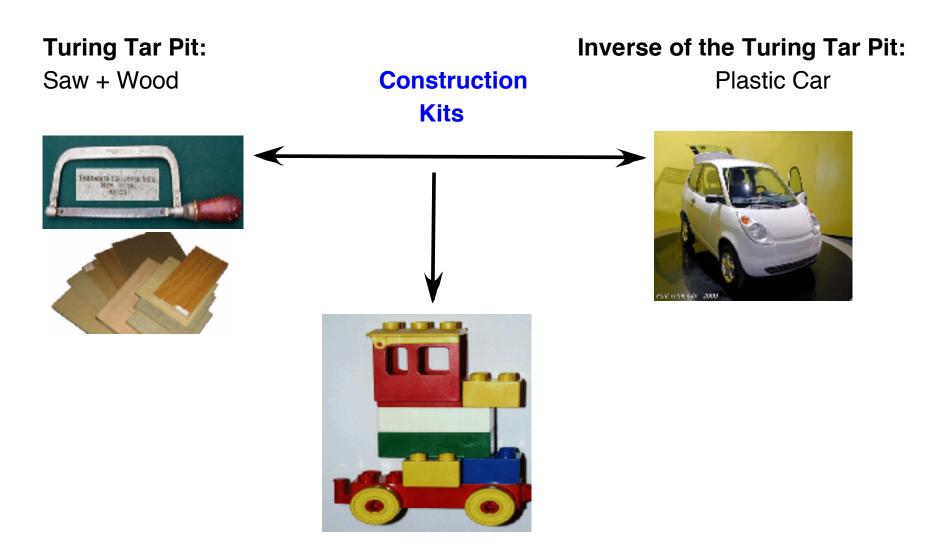
 meta-design = design for designers: participants can express themselves and engage in personally meaningful activities

basic assumption:

- future uses and problems cannot be completely anticipated at design time, when a system is developed
- Users, at use time, will discover mismatches between their needs and the support that an existing system can provide for them

meta-design

- expands boundaries by supporting users as active contributors,
- distributes control among all stakeholders in the design process
- creates foundations for cultures of participation


Background on Meta-Design

- Research Grant: "A Meta-Design Framework for Participative Software Systems (2006-2009)"
 - "Science of Design" Program, NSF-CISE
 - objective: define the scientific foundation for designing participative software systems as socio-technical environments that empower users, as owners of problems, to engage actively and collaboratively in the continual development of software systems
 - more information: http://l3d.cs.colorado.edu/~SoD/
- CHI Workshop 2007: "Converging on a "Science of Design" through the Synthesis of Design Methodologies
 - http://swiki.cs.colorado.edu:3232/CHI07Design/
 - methodologies: professionally-dominated, user-centered, learner-centered, participatory

Design: Beyond Binary Choices

- Turing Tar Pit: "Beware of the Turing Tar Pit, in which everything is possible, but nothing of interest is easy."
 - Turing Machines emphasize objective computability → the challenge: subjective computability
- The Inverse of the Turing Tar Pit: "Beware of the over-specialized systems, where operations are easy, but little of interest is possible."
 - domain-specific artifacts and tools provide extensive support for certain problem contexts → but the ability to extend these environments is limited

Meta-Design: Exploring Middle Ground

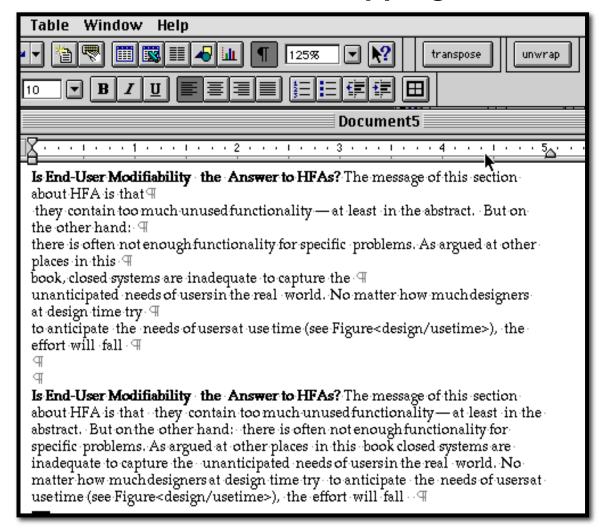
Meta-Design: Design for Designers

- new media that allow users to act as designers and be creative
- the creation of context rather than content → underdesign
- does not define a product, but the conditions for a process of interaction
- supports problem solving processes that remain liquid and open ("continuous beta")

Why Meta-Design

- design for diversity (for "a universe of one" → CLever Project)
- complements planning with situated action
- design as a process is tightly coupled to use and continues during the use of the system
- prerequisite for cultures of participation, (social) creativity, innovation
- transcends a "consumer mindset"

What Do Meta-Designers Do?

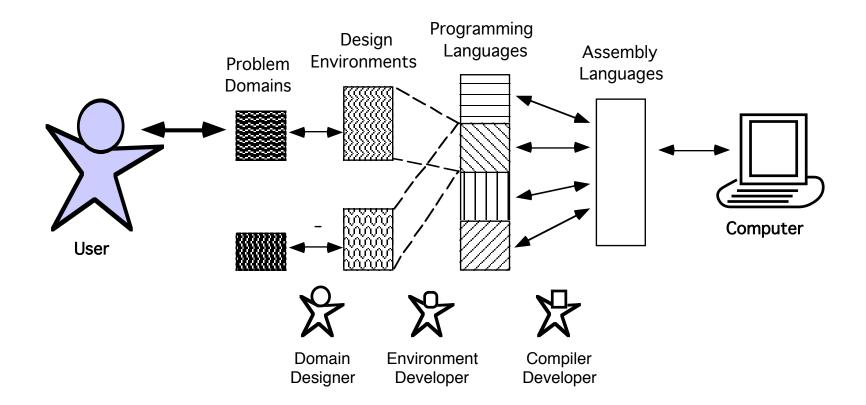

 use their own creativity to create socio-technical environments in which other people can be creative

 create technical and social conditions for broad participation in design activities which are as important as creating the artifact itself

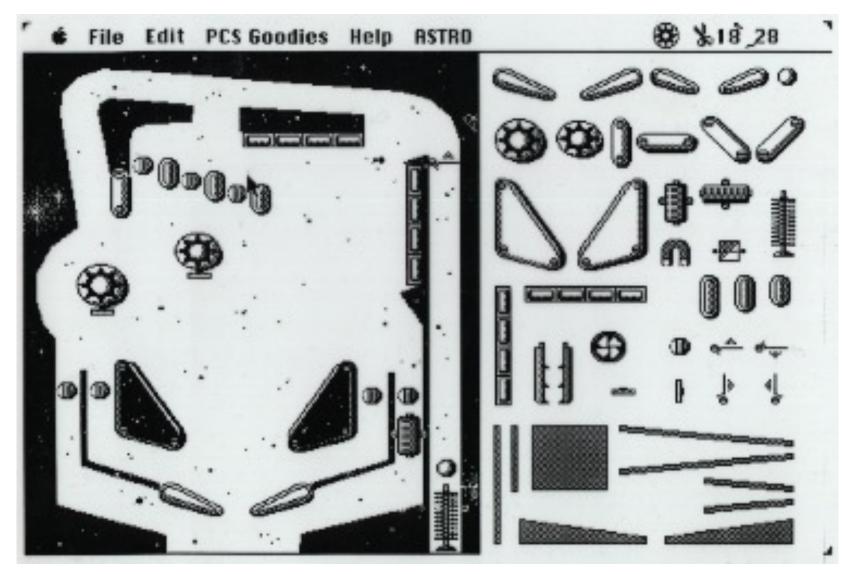
Meta-Design Concepts (in Microsoft Word): Users as Co-Developers

- tailor and customize the system by setting different parameters as their personal preferences
- extend and evolve existing information structures (e.g., menus, spelling dictionaries, auto-correct tables, ...)
- write *macros* to create new operations (an example of "programming by example" or "programming by demonstration")
- create programs in VisualBasic to extend the functionality of the system
- share the user-defined extensions

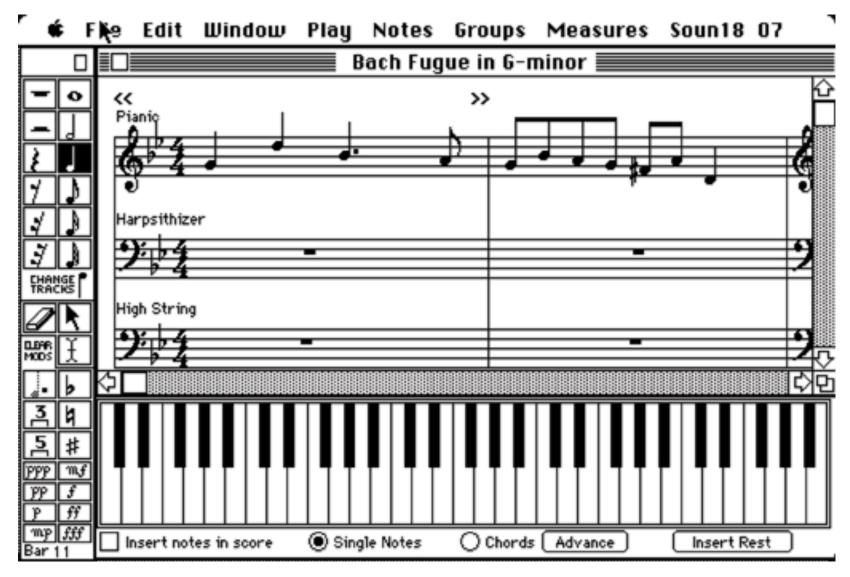
A Macro for Unwrapping Text

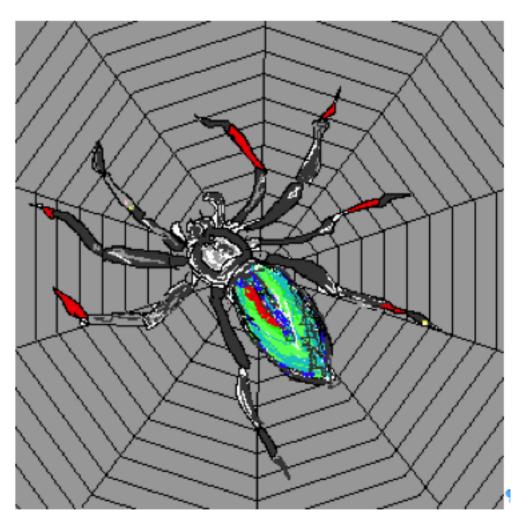

Putting Owners of Problems in Charge

III-defined problems cannot be delegated to professional software developers


- interview with a geoscientist (University of Colorado):
 - "I spend in average an hour every day developing software for myself to analyze the data I collected because there is not any available software.
 - Even if there is a software developer sitting next to me, it would not be of much help because my needs vary as my research progresses and I cannot clearly explain what I want to do at any moment.
 - So I spent three months to gain enough programming knowledge to get by.
 - Software development has now become an essential task of my research, but I do not consider myself a software developer and I don't know many other things about software development."

A Layered Architecture Supporting


Human Problem Domain Interaction


Human Problem Domain Interaction — Pinball Construction Kit

Human Problem Domain Interaction — Music Construction Kit

SchemePaint (M. Eisenberg): a programmable application combining direct manipulation with interactive programming

Computational Media

Extending Design Opportunities at Use Time

- print media: a fixed context for use time is decided at design time
- computational media:
 - presentations at use time can take advantage of contextual factors only known at use time (about tasks, users, social systems,....)
 - examples: specification sheets and usage data, supporting dynamic forms, dynamic websites, user and task specific maps and traffic schedules....
- evolving existing systems: users (acting as designers) can transcend at use time the boundaries of the systems as developed at design time

Concepts of Meta-Design

Concept	Implications
convivial tools	allow users to invest the world with their meaning and to use tools for the accomplishment of a purpose they have chosen
domain-orientation	bring task to the forefront; provide time on task
open, evolvable systems	put owners of problems in charge; in open systems, extension is an essential part of use
underdesigned systems	create seeds and constructs for design elaboration at use time
collaborative work practices	support design communities and the emergence of power users

17

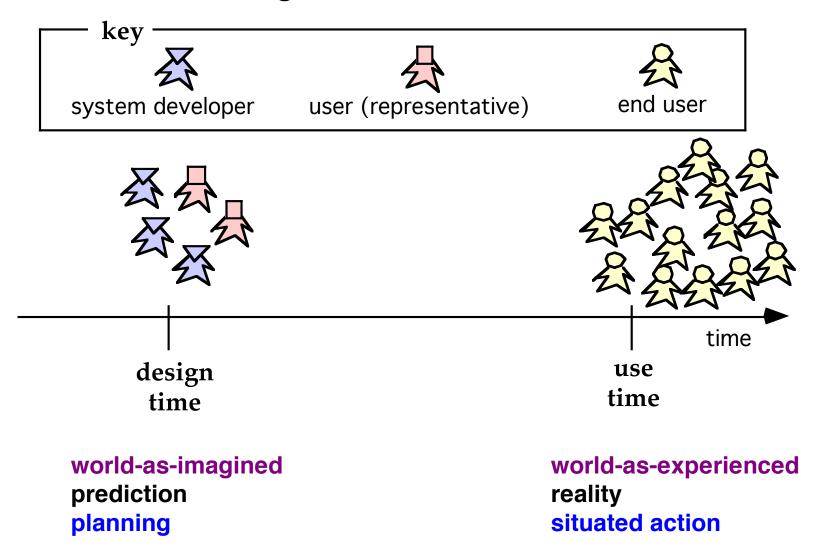
Traditional Design versus Meta-Design

Traditional Design	Meta-design
guidelines and rules	exceptions and negotiations
content	context
object	process
perspective	immersion
certainty	contingency
resolution	emergence
top-down	bottom-up
autonomous mind	distributed mind
creation	co-creation
specific solutions	solutions spaces
art	interactive art

Users, End-Users, Programmers

computer use at work in 1997

- 64 million Americans


estimate for 2012

- 90 million end users in American workplaces
- 55 million will use spreadsheets or databases (and therefore may potentially program)
- 13 million will describe themselves as programmers
- fewer than 3 million professional programmers

source:

Scaffidi, C., Shaw, M., & Myers, B. (2005) "Estimating the Numbers of End Users and End User Programmers." In Proceedings of 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, Dallas, Texas

Design Time and Use Time

Meta-Design: Extending Other Design Methodologies

professionally-dominated design

- works best for people with the same interests and background knowledge

user-centered design:

- analyze the needs of the users
- understand the conceptual worlds of the users

learner-centered design

- draws attention to the changing needs of users
- combine HCI interaction principles with educational interaction support

participatory design

- involve users more deeply in the process as co-designers
- focus on system development at design time by bringing developers and users together to envision the contexts of use

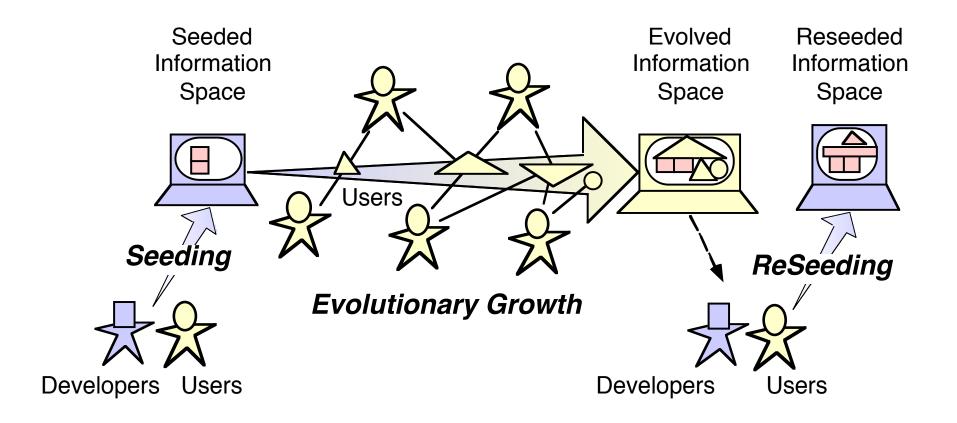
meta-design:

- create design opportunities at use time
- requires co-creation

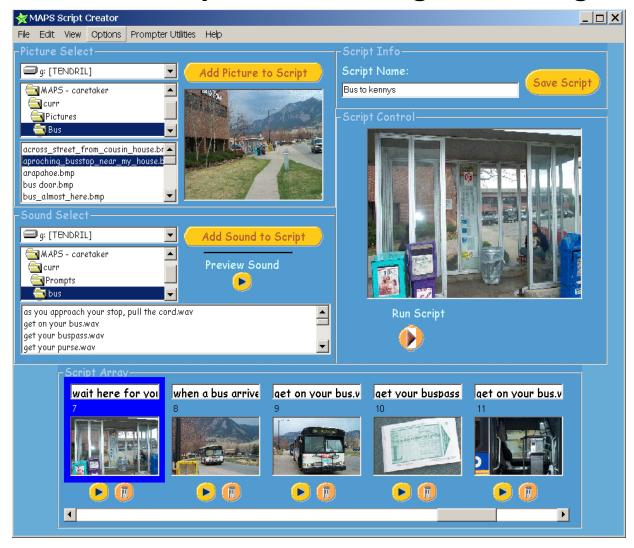
The Seeding, Evolutionary Growth, Reseeding (SER) Model Supporting Meta-Design

at design time:

- development of an initial system that can change over time (seed)
- underdesign: creating design options for users


at use time:

- support for "unself-conscious culture of design": users will experience breakdowns by recognizing "bad fit" at use time
- end-user modifications allow users to address limitations they experience
- evolutionary growth through incremental modifications


reseeding:

- significant reconceptualization of the system
- account for incremental modifications, mitigate conflicts between changes, and establish an enhanced system

The Seeding, Evolutionary Growth, Reseeding (SER) Model

The MAPS Script Editor: Design for Designers

Assessment and Implications: Expanding Boundaries and Redistributing Control

expanding boundaries:

- power of the few → wisdom of the crowds
- socio-technical environments are living entities
- breaks down the sharp distinction between designers and users: users become co-designers

redistributing control:

- developers and user-designers: sharing control
 - benign dictatorship
 - council control
 - complete decentralized
- control is desired only for personally meaningful problems
- the pitfalls associated with a "do-it-yourself" society

Contributions of Meta-Design

- improves the quality of life: Web2gether and MAPS: an attempt to improve the quality of life for people with cognitive disabilities.
- democratizes design and innovation: meta-design eliminates the constraint that users are restricted to what is given to them
- makes all voices heard: participation and contributions of different stakeholders with various backgrounds.
- changes professional practice: creation of convivial tools and deprofessionalization (Illich)
- revolutionizes the creation of systems: creates foundation for social production and mass collaboration
- establishes new paradigms in learning and teaching: focus on communitybased learning theories with innovative collaborative technologies

Meta-Design: Transforming Application Areas

- design: customization, personalization, tailorability, end-user development, design for diversity — Lieberman, H., Paterno, F., & Wulf, V. (Eds.) (2006) End User Development - Empowering people to flexibly employ advanced information and communication technology, Kluwer Publishers, Dordrecht, The Netherlands.
- architectural design: underdesign, support for "unself-conscious culture of design" — Brand, S. (1995) How Buildings Learn: What Happens After They're Built, Penguin Books, New York.
- teaching and learning: teachers as facilitator, learning communities, courses-as-seeds dePaula, R., Fischer, G., & Ostwald, J. (2001) "Courses as Seeds: Expectations and Realities," Proceedings of the Second European Conference on Computer-Supported Collaborative Learning (Euro-CSCL' 2001), Maastricht, Netherlands, pp. 494-501.
- informed participation: beyond access, social creativity Arias, E. G., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (1999) "Beyond Access: Informed Participation and Empowerment," Proceedings of the Computer Supported Collaborative Learning (CSCL '99) Conference, Stanford, pp. 20-32.

Meta-Design: Transforming Application Areas — Continued

- open source: a success model of decentralized, collaborative, evolutionary development Scharff, E. (2002) Open Source Software, a Conceptual Framework for Collaborative Artifact and Knowledge Construction, Ph.D. Dissertation, University of Colorado at Boulder.
- **living organizational memories:** living organizational memories such as Web2Gether dePaula, R. (2004) The Construction of Usefulness: How Users and Context Create Meaning with a Social Networking System, Ph.D. Dissertation, University of Colorado at Boulder.
- digital libraries: community digital library Wright, M., Marlino, M., & Sumner, T.
 (2002) Meta-Design of a Community Digital Library, D-Lib Magazine, Volume 8, Number 5, Available at http://www.dlib.org/dlib/may02/wright/05wright.html.
- interactive art: collaboration, co-creation, puts the tools rather than the object of design in the hands of users — Giaccardi, E. (2004) Principles of Metadesign: Processes and Levels of Co-Creation in the New Design Space, Ph.D. Dissertation, CAiiA-STAR, School of Computing, Plymouth, UK.

Mindsets, Cultures, and Environments for Meta-Design

- how we can educate and support skilled domain workers
 - who are neither novices nor naive users, but
 - who are interested in their work and
 - who see the computer as a means rather than as an end
- how we can create co-evolutionary environments
 - in which users change, because they learn, and
 - in which systems need to be changed, because users become codevelopers and engage in end-user modification and programming

Summary

meta-design offers:

 to invent and design a culture in which all participants in collaborative design processes can express themselves and engage in personally meaningful activities

meta-design requires

- a new mindset of all participants
- designers giving up some control at design time
- active contributors and not just passive consumers at use time

meta-design raises many issues and research problems of fundamental importance including

- new design methodologies
- a new understanding of cognition, collaboration, and motivation
- the design of new media and new technologies