2002 International Conference on Intelligent User Interface (IUI'02), San Francisco, CA, (to appear), Jan. 13-16, 2002

Information Delivery in Support of Learning Reusable
Software Components on Demand

Yunwen Ye'?
'SRA Key Technology Laboratory, Inc.
3-12 Y otsuya, Shinjuku
Tokyo 160-0004, Japan
yunwen@cs.col orado.edu

Abstract

An inherent dilemma exists in the design of high-
functionality applications (such as repositories of reusable
software components). In order to be useful, high-
functionality applications have to provide alarge number of
features, creating huge learning problems for users. We
address this dilemma by developing intelligent interfaces
that support learning on demand by enabling users to learn
new features when they are needed during work. We
support learning on demand with information delivery by
identifying learning opportunities of which users might not
be aware. The chalenging issues in implementing
information delivery are discussed and techniques to
address them are illustrated with the CodeBroker system.
CodeBroker supports Java programmers in learning
reusabl e software components in the context of their normal
development environments and practice by proactively
delivering task-relevant and personalized information.
Evauations of the system have shown its effectiveness in
supporting learning on demand.

Keywords
Information delivery, learning on demand, software reuse,
user models, Java programming.

INTRODUCTION

Today's computing world is full of high-functionality
applications (HFAs) that contain thousands of features and
large volumes of useful information [8]. Mastering such
HFAs presents huge learning challenges for users. Users
cannot learn all the features of an application before they
start using it. Also, users, who use an application as a tool,
do not have to know all the features because few of them
want to become an expert of the application per se. A
practical approach is for users to learn on demand [7].
Users learn to use a new feature or acquire new information
when it is needed during work. Learning on demand is a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

IUI’ 02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001...$5.00.

Gerhard Fischer?

2Department of Computer Science
University of Colorado
Boulder, CO 80309-0430, USA
gerhard@cs.colorado.edu

promising approach because (1) it contextualizes learning
by integrating it into work rather than relegates it to a
separate phase, and (2) it lets users see for themselves the
usefulness of new information for authentic problem
situations, thereby increasing the motivation for learning.

Computer systems with interfaces that support learning on
demand have to address several challenging issues [8]:
e Users may not be aware of the existence of new features
or information.
e Users may not be motivated to learn if they think
learning requires too much time and effort.
e Users may not be able to find the new feature or
information.
e User may not be able to understand and apply the new
feature or information.
Information delivery mechanisms that proactively provide
users with task-relevant and personalized information
during the work situation present promising solutions to the
above issues. We discuss the necessities and challenges in
supporting learning on demand with information delivery,
and use Java programming as an example domain to
illustrate how to design interfaces that assist programmers
in learning reusable software components (classes or
methods) in the context of their normal programming
environments and practice.

A component repository system that supports software
reuse by helping programmers locate, comprehend, and
modify components[10] has three connotations. a
repository that contains components, an indexing and
retrieval mechanism, and an interface for user interaction.
In viewing component repository systems as examples of
HFAs, we are primarily concerned with designing
intelligent interfaces for component repository systems that
can seamlessly integrate the learning and reuse of
components with the normal programming environments
and practice. We have been developing a system called
CodeBroker [26], which motivates and helps programmers
to learn and reuse components. By observing programmers
activities in a programming environment, CodeBroker
infers the needs for components[11, 19] and proactively
delivers components that match the inferred needs along
with examples that show how the components can be reused
to support the programmer in learning about the delivered
components.

yunwen
2002 International Conference on Intelligent User Interface (IUI'02), San Francisco, CA, (to appear), Jan. 13-16, 2002

yunwen

INFORMATION USE IN HFAS

This section discusses the necessities and benefits of
information delivery in supporting learning on demand in
HFAs.

Four Levels of Knowledge

Our empirical studies have shown that users typically have
different levels of knowledge about HFAS[8]. In Figure 1,
rectangle L4 represents the actual information repository,
and the ovals (L1, L2, and L3) represent a particular user's
different levels of knowledge of the information repository
of an HFA. L1 represents the elements that are well known
and can be easily used without consulting help or
documentation systems. L2 contains the elements that users
know vaguely. L3 contains the elements that users
anticipate to exist.

Four Modes of Information Use

Depending on their knowledge, users can use a piece of
information in an HFA in four different modes. use-by-
memory, use-by-recall, use-by-anticipation, and use-by-
delivery. Different information acquisition approach is
needed in each mode.

Use-by-Memory. In the use-by-memory mode, users
directly apply the information they have learned before in
their work (i.e, information in L1 of Figure 1). No
particular tool support is needed in this mode because users
already have all the needed knowledge.

Use-by-Recall. In the use-by-recall mode, users vaguely
recall that some useful information exists in the system (i.e.,
information in L2), but they do not remember exactly what
itisand how to useit. They need to search the system or the
documentation of the system to find what they need. In this
mode, users are determined to find the needed information
because they know they can benefit from it.

Use-by-Anticipation. In the use-by-anticipation mode,
users anticipate that some useful information might be
available in the system (i.e., information contained in L3).

In this mode, if users cannot find what they want quickly
enough, they may give up the learning opportunity and try
to solve their problems without taking advantage of the
information repository.

Use-by-Délivery. In the previous three modes, usersinitiate
the information-seeking process. However, users will not
seek for the information that falls in area (L4 — L3), whose
existence is not anticipated. Information delivery is needed
to help users acquire information contained in (L4 — L3).

Information Delivery

Information delivery supports not only the use-by-delivery
mode but also the use-by-anticipation and use-by-recall
modes. In the use-by-recall and use-by-anticipation modes,
users are aware of the learning opportunity, and therefore
they might initiate the learning process themselves.
However, users might miss this learning opportunity if they
perceive that locating the relevant information costs too
much effort and time to justify its potential value, or are
unable to find the relevant information with browsing and
querying.

A productivity paradox [3] exists in the use of HFAs. Even
though more effective strategies of solving a problem exist,
most users are not motivated to learn the new strategies.
They will “play it safe” by creating a suboptimal solution
with their more “primitive” skills because they do not want
to spend the extra time and effort required to locate the
relevant information.

Even if users are willing to locate the relevant information,
they might not be able to do so with browsing and querying
mechanisms. Browsing requires that users have a fairly
good understanding about the structure of the information
repository, and it is not scalable. Querying requires that
users be able to formulate a well-defined query that clearly
states their information needs, which is a cognitively
challenging task [10].

Information delivery, which requires neither user-initiated
information-seeking processes nor user-provided queries,

[La: Entire Information Space

{L4-L3):
Unanticipated
Information

Task-relevant
information

Figure 1: Different levels of knowledge about a high-functionality application (HFA)
The essential challenge in supporting learning on demand with information delivery is how to identify the task-
relevant information a user does not know (shaded dots). The cloud represents the information needed for the
inferred task-at-hand (with fuzzy boundaries because the system has only a partial understanding of it). The black
dots are not relevant and should therefore not be delivered. The white dots inside the cloud should not be delivered

because they are already known by the user.

enables users to skim or perceive task-relevant information
at a glance instead of going through a lengthy browsing or
guerying process. The mitigation of effort and time required
for information seeking makes learning on demand a less
motivationally demanding task [3].

CODEBROKER: SUPPORTING LEARNING
COMPONENTS ON DEMAND

We are investigating the issues about designing intelligent
interfaces that support learning on demand in the domain of
object-oriented programming. Given the large number and
the ever-changing nature of reusable components in object-
oriented programming languages, learning on demand is the
only viable way for programmers to learn components. The
problem is when programmers realize they need to learn a
new component and how they can locate and comprehend
it. We are developing a system called CodeBroker (Figure
2) that can help programmers identify such component
learning opportunities with the support of an information
delivery mechanism.

Overview of CodeBroker

The CodeBroker system assists programmers to learn
components on demand in two ways. First, it proactively
delivers components that programmers do not yet know but

that are potentialy reusable in the current programming
task by analyzing the partial programs under devel opment
in a programming environment (Emacs). Second, it locates
example programs that use the component programmers
want to learn.

CodeBroker consists of four software agents: Listener,
Fetcher, Presenter, and Illustrator. Listener infers the
needs for new components from the partialy written
program in Emacs and creates a reuse query based on the
inferred needs. The reuse query is passed to Fetcher, which
searches the repository to return a set of components that
match the query. Presenter delivers the matching
components to the programmer after it has removed
components that are already known to the programmer.
Programmers who want to see an example program that
uses the component of interest can invoke Illustrator.

Listener

Running continuously in the background of Emacs, Listener
predicts the needs for components by analyzing the
information contained in partialy written programs. The
prediction is made by the similarity analysis approach [26],
which assumes. “If the current working situation, defined
by the information in the workspace, is similar enough to a
previous situation in which information X was used, then it

Buffers Files Tools Edit Search Mule JOE Jawa Help

S% Thiz clazs simulates the process of card dealing, Each card is
represented with & number from O to 51, The program should produce
a lizt of B2 cards, as results from a human card dealer */

public class Cardlealer o
static int [] cards=new int[52]:
static |
. for (int i=0: i<G2: i++) cards[i]=i:

/4% Create a random number between two limits %/
int to) {

public static int getRandomMumber (int from,

()
Listener \

Inferred queries

Editing space

LJIE)--L10--A11

—:#% CardDealer, jawa 10-05 02:083 PH 0,97

/% An example for getInt written by yurwen "Fri Oct 5 14:00:58 2001"%/

import com,objectspace, jol ukil &

/4% Boll a die and print the probability of each number's occurrence %/

public class DiceRoller o
final static int times=100001
public static woid main(String args[]1) {
int[] distribution=new int[E]:
. int p:
for (int i=03 i<times: i++) {
. p = Randomizer,getInt(l, B):

”lustrator distr‘ibution[p-l]“t

|:|c:nm DbJECtSPaC J]. util, Randnmzer‘ 1nt getIntiint lo,

Example

Component
Repository

Fetcher

Retrieved components

CB-
1 0, 89 getlnt Gener‘ate a random number usmg the deFault generat
2 0,78 getlong Cererate a rand-- ettty |
3 0,78 nextlnt Generates an in
4 0,77 o Generates a lo Del |Very bUffer _ Presenter
1t % *F!:EI—Ell 1au# 10-08 02:08 PH 0,97 (ReusableComponentInfol—L1--Top

int hi)

Figure 2: A screen image of CodeBroker and its archltecture
The top buffer is the editing space, the middle buffer is an example program and is shown only when the programmer activates it, and the
bottom buffer displays delivered components. In this example, the developer wants to write a method that creates a random number
between two integers, and describes the task in the doc comment and signature before the cursor, based on which several components are
delivered in the delivery buffer. The first of those delivered components, get Int, is a perfect match and can be reused immediately. An

example program that uses get Int is shown in the middle buffer.

is highly possible that information X is also needed in the
current situation.”

To define two programming situations as similar,
CodeBroker examines the three aspects of a program:
concept, code, and constraint. The concept of a program is
its functional purpose, the code is the embodiment of the
concept, and the constraint is the environment in which it
runs. Important concepts of a program are often contained
initsinformal information structure, such as comments and
identifier names, which are important beacons to
understanding programs. The concept of doc comments in
Java is gpecificaly introduced to improve the
comprehensibility of programs. Doc comments describe the
functionality of the following methods or classes and are
used as their documents. One important constraint of a
program is its type compatibility, which is manifested in its
signature [27]. For a component to be easily integrated, its
signature should be compatible with the environment into
which it is going to be incorporated.

Based on the assumption of similarity analysis, a
component is highly likely to be reused if it shows either
conceptual similarity (similarity exists between the doc
comment of the program under development and a
repository component’s textual document, which is also
created from its doc comment by Javadoc, a utility of the
Java Development Kit), or constraint compatibility
(compatibility exists between the signature of a component
and that of the program under development), or both.

Whenever a doc comment is entered in the editor, Listener
extracts its contents to create a concept query based on
which a set of matching components are delivered. If
programmers want to give CodeBroker more information
about their task so they can get a set of more task-relevant
components, they can continue to declare the signature of
the method. Upon the completion of the signature
declaration in the editor, Listener extracts its contents to
create a constraint query. CodeBroker then delivers a set of
components that match both the previously extracted
concept query and the newly extracted constraint query.

Fetcher

Fetcher performs the retrieval process. It uses a
combination of Latent Semantic Analysis (LSA) [14] and
signature matching [27] asitsretrieval mechanism.

LSA determines the conceptual similarity between a
concept query (extracted from doc comments) and the
documents of repository components. LSA is a free-text
indexing and retrieval technique that takes semantics into
consideration. Sgnature matching determines the constraint
compatibility between a constraint query (extracted from
signatures) and the signatures of repository components.
Details about these mechanisms can be found in [26].

Presenter
Presenter decides when and how to present to programmers
the components retrieved by Fetcher. Components are

presented, according to their similarity value computed by
Fetcher, in the delivery buffer (Figure 2) immediately after
the programmer has entered a doc comment or a signature.
Programmers can customize the system to determine how
many components are delivered. Each delivered component
is accompanied by its rank, its similarity value, its name and
its synopsis. To avoid interrupting programmers who are
not interested in the delivered components, no response to
the delivery isrequired, so programmers can just ignoreit.

Presenter does not deliver al components retrieved by
Fetcher; it uses discourse models to remove task-irrelevant
components and user models to remove user-known
components from retrieved components [12].

Java components are organized in packages and classes
according to their application domains, and most
programming tasks do not involve all the classes and
packages. If the system knows the classes and packages that
are not involved, it can limit its search to those of interest
and improve the task-relevance of delivered components.
Discourse models provide a way for programmers to
specify which classes and packages they are not interested
in learning in the current programming session. During their
interactions with CodeBroker, if programmers find a
delivered component is from a package or a class of no
interest, they can add that class or package to the discourse
model, and all components from that class or package will
not be delivered again by CodeBroker.

User models contain components that individual
programmers know (i.e, L1 in Figure 1) and therefore
should not be delivered for learning. CodeBroker creates
initial user models for programmers by analyzing the Java
programs they have written and extracting all the repository
components used repeatedly (e.g., more than three times) in
the programs. During their interactions with CodeBroker,
programmers can explicitly update their user models by
adding new components to them when they find known
components are delivered. User models are also implicitly
updated by CodeBroker, which adds a component to the
user models when it detects that programmers reuse the
component in the editor.

Illustrator

The information about a component delivered by Presenter
in the delivery buffer is concise and is intended for
programmers to decide whether a component is relevant to
their tasks and therefore needs to be learned. Programmers
who want to learn a component can use lllustrator to find
more detailed information, such as its complete document,
an example use of it, and its source code.

Left-clicking a delivered component launches an external
HTML browser that shows the whole document for the
component. The whole document is extracted from doc
comments in Java source programs by Javadoc.

Programmers who want an example use of the component
can place the cursor on the delivered component, and

activate an added Emacs command that autonomously
searches a specified list of directories to find a Java
program that uses the component. The directories to be
searched include the directories in which colleagues of the
programmer store the programs that they agree to share.

The example program is presented in the editor (Figure 2),
with an added first line that shows who wrote the program,
so programmers who need further assistance know to whom
they should turn for help. Programmers who are willing to
contribute a little bit can activate another added Emacs
command to rate the example based on its usefulness in
illustrating the use of the component. The rating, which is
interpreted as peer recommendation [1], goes to a database
and is used by Illustrator to determine which example
should be presented when several examples that use the
same component exist. If ratings are available, Illustrator
chooses the example with the highest average rating;
otherwise, it chooses the most simple example program. In
its current implementation, Illustrator equates the simplicity
to the byte-length of Java programs, but it can be extended
to use complexity metrics for object-oriented programs [4].

Evolving Component Repository by Programmers

Many component repositories, especially those created in-
house, come with source code. Programmers may need to
modify the source codes of components if they cannot find
one that completely fits their current needs, or if they find
some bugs in the components. We are extending the
CodeBroker system to enable programmers to access the
source code of a component with one command, as well as
to explore new mechanisms and supporting interfaces that
encourage and enable programmers to contribute the
modified components back into the repository so that other
programmers can reuse them[21]. The two essentia
challenges we face in supporting this continuous
evolution [9] of component repositories by programmers
are: (1) how to minimize the extra effort required of
contributing programmers by automating the contribution
process as much as possible, and (2) how to assure the
quality of modified components.

SUPPORTING LEARNING ON DEMAND WITH
INFORMATION DELIVERY

This section describes a conceptual framework, derived
from our experience with the CodeBroker system, for
designing information delivery systems in support of
learning on demand. The major challenges in implementing
such systems are. how to identify the task-relevant
information that is not yet known to the user (the shaded
dots in Figure 1) [12], and when and how to deliver the
information to strike a balance between its value versus its
interruption of the user’s workflow [13].

Task Relevance

Information delivery systems that just present a piece of de-
contextualized information, such as Microsoft's “Tip of the
Day,” are of little use. Despite the possibility for

serendipitous learning opportunities, most users find the
decontextualized information more annoying than
helpful [8]. To deliver contextualized information that is
relevant to the task-at-hand, systems must infer the needs
for information from low-level user activities[19]. Plan
recognization[2] and similarity analysis[26] are two
approaches to doing so. The plan recognition approach
uses plans to specify the link from a series of primitive user
actions to the goal of atask. When actions of a user match
the action part of a plan, the system assumes the user is
performing the corresponding task, and information about
the task is delivered. The similarity analysis approach,
which is adopted in CodeBroker, exploits the information
contained in the context surrounding the current focus of
users and uses that information to predict their needs for
new information. The system then delivers information that
has high similarity to the contextual circumstance.

Personalization

Because different users have differing knowledge about a
system, and they do not need to learn what they have known
aready, information delivery should not return the same set
of information to all users. To personaize the located
information to the specific background of each user
CodeBroker employs user models[12] to represent the
existing knowledge that individual users have of the system.

Delivery Timing

Depending on the temporal order between delivered
information and its use, information delivery systems can
provide feedforward or feedback to users.

Each user action has a period of time caled action-
present [25], in which users have decided what to do but
have not yet executed the needed operations to change the
situation. Information delivered in this period of time is
feedforward information because it can make users change
the course of action after they have learned it. Users who
learn from feedforward can avoid constructing a suboptimal
solution. CodeBroker delivers components as feedforward
so programmers can immediately take advantage of a
delivered component after they have learned it.

Feedback information is delivered when the action has been
finished. Feedback can create a situational backtalk of the
action by pointing out a potential breakdown the user did
not know, or augment the situational backtalk to help users
reflect better on the action just completed [18]. Users who
learn from feedback can improve their later performance or
modify the problematic action if it can be undone.

Intrusiveness

Because delivered information is unsolicited, it risks
interrupting the workflow of users whose primary goal is
the task-at-hand rather than learning. Indiscreetly delivered
information becomes intrusive and disrupts users
workflow. Information delivery systems need to achieve the
right balance between the cost of intrusive interruptions and
the loss of context-sensitivity of deferred alerts[13] by

carefully considering when and how to deliver information
so that it can be best utilized by users. CodeBroker delivers
components in a low intrusive way because it requires no
user response and its delivery window is placed outside of
the focal window of programmers[26].

Explanations

Most documents for computer systems describe abstractly
what the functionality is, but not how to use it; therefore,
users often have difficulty in applying the delivered
information. Examples of its use contextualize the abstract
concepts of documents and explain to users the expected
effect in an intuitive way. They provide useful aids for users
to learn how to use, adapt, and combine the new
information in their current task by drawing an analogy
between the current task and the examples[11]. To fully
support the learning of new components, CodeBroker
locates examples from the programs created and
recommended by peer programmers.

Evolving Information Repository

The information needed to support learning on demand
cannot be fully covered at the design time of systems.
Because system designers are unable to anticipate and
provide explanations for all the possible use scenarios of
systems, systems must be designed as open systems that
evolve at the hands of users[9]. When users experience
breakdowns in using the systems and insufficient support
from the information repository of the systems, they should
be able to report, react, and resolve those problems.
Systems, at the same time, should be able to capture and
accumulate the emergent expertise from users and share it
with other users. In CodeBroker, the collection of example
programs is evolved by programmers with little extra effort
(rating examples), and we are extending CodeBroker to
support the evolution of component repositories at the
hands of programmers.

SYSTEM ASSESSMENT

We have conducted 12 experiments with five programmers
to investigate whether programmers are able to learn and
reuse components on demand with the support of
information delivery. The component repository used in the
experiments contained 673 classes and 7,338 methods from
several standard Java AP libraries.

In each experiment, the subject was asked to implement a
task with CodeBroker. Based on the subject’'s current
knowledge about the component repository, which we
obtained by analyzing the subject’s recently written Java
programs, we assigned a task that could be implemented
either easily with some components in the repository that
the subject had not yet known, or less straightforwardly
with the subject’ s current knowledge.

Findings of Experiments
Table 1 summarizes the overall results of the experiments.
Subjects learned and reused components delivered by

CodeBroker in 10 of the 12 experiments. The 12 programs
created by subjects used 57 distinct components, 20 of
which were delivered by CodeBroker.

Of the 20 reused components that were delivered, the
subjects did not anticipate the existence of 9 (see column 5
in Table 1). In other words, those 9 components could not
have been learned and reused without the support of
CodeBroker, and the subjects would have created their own
solutions instead. Although the subjects anticipated the
existence of the other 11 components (see columns 6 and 7
in Table 1), they had known neither the names nor the
functionality, and had never reused them before. They
might have learned to reuse the 11 components if they
could manage to locate them by themselves. In interviews,
subjects acknowledged that CodeBroker made locating the
components much easier and faster, and the reduced
difficulty motivated them, as one subject put it, “to take
more time to see whether [a component] existed or not.”

CodeBroker not only assisted subjects in learning and
reusing components right off the deliveries, but also created
a snowball effect that triggered them to learn other
unknown components that were not directly delivered but
were needed to reuse those delivered components (see the
last column in Table 1). To reuse one component often
requires the reuse of other supplementary components that
are coupled through parameter passing or accessing the
common class variables. In the experiments, when those
supplementary components were not known, subjects used
the deliveries of CodeBroker as the starting point and
followed the hyperlinks of the Java documentation system
to learn and reuse them.

Regarding the intrusiveness of the deliveries, subjects said,
when interviewed, that they were not distracted by the

Table 1: Overall results of experiments

Breakdown of reused

- components from B

28 B deliveries g
s|Z3/x38 =
Sleg|tew| B s LR
5|°5|25=2| 8 [Bs REER--
E|2c|BcT| ©x |BRE =2 € >
Blg|g2l52S| 8255 [|Tsmas
o| 2|BE|CEE| 83 [E2@ PB|gED
d|d|°P8282| 52 <Bd>51283
1] 10 4 2 2 0 0

st 2 3 1 1 0 0 1
3 7 1 1 0 0 0

S2 | 4 4 1 1 0 0 0
5 5 3 0 2 1 1

6 5 2 1 1 0 1

S3| 7 4 3 1 2 0 1
8 3 0 0 0 0 0

9 4 3 0 3 0 0

>t 10| 3 1 1 0 0 2
11| 4 1 1 0 0 2
5 12| 5 0 0 0 0 0
Sum 57 20 9 10 1 8

deliveries. They turned their attention to the delivery buffer
only when they wanted to find something useful there.
Although CodeBroker delivers components both at the
entering of a doc comment and the declaration of a
signature, we noticed that most subjects paid attention only
to the deliveries based on doc comments and were not
aware of the changes of the delivered components activated
by the declaration of signatures. This observation raised
two interesting points: (1) a carefully designed interface can
reduce the intrusiveness of information delivery to a
minimum; and (2) the completion of entering a doc
comment is probably the boundary of the action-
present [25] period for programming, during which time
programmers are still planning their programming actions
and are willing to explore alternative solutions by learning
new components, and after which time they are lessinclined
to learn because they have already shifted into the stage of
action and committed to one chosen solution.

System Extension Based on Evaluations

At the time of the experiments, the functionality of locating
example programs (the Illustrator agent) was not yet
supported. Some components in the repository included
simple examples to explain their usage. During the
experiments, we noticed that whenever subjects found such
examples, they immediately jumped to read them instead of
the descriptive texts. However, only very few components
are accompanied by examples, and creating examples for
each component is a time-consuming task that increases the
difficulty and cost of setting up a component repository. As
a response to this issue, we added the Illustrator agent to
explore the decentralized approach [9, 21] to enrich the
component repository by supporting the location of
examples developed by peer programmers.

RELATED WORK

Most reusable component repository systems[10, 17] have
been developed as standalone systems. CodeBroker
distinguishes itself by using the information delivery
mechanism to create a seamless integration between
learning components and programming.

A number of intelligent information systems support
information delivery. Remembrance Agent [22] delivers old
emails and notes relevant to the email being written by the
user. Letizia[16] assists users in browsing the WWW by
suggesting and displaying relevant web pages. XLibris[5]
automatically retrieves, aggregates, and presents
information from the Internet about books borrowed by
users from alibrary. Samping Advisor [15] shares our view
in stressing the importance of creating seamless interaction
between acquiring new information and applying the
information in the norma work process by automatically
providing previous design examples for reuse.

CodeBroker is similar to the example-based programming
environment proposed by Neal [20], which provides
examples that can be directly reused or illustrate the

syntactical constructs of programming languages and the
implementations of algorithms, and the cliché-based
programming environment KBEmacs[23], which has a
repository of program clichés that programmers can reuse.
However, in both systems, programmers have to locate
examples or clichés by themselves.

Several recent research efforts on intelligent programming
environments incorporate information delivery mechanisms.
Drummond et. a [6] add to a component browsing system
an agent that infers the search goa of programmers by
observing their browsing actions and delivers components
that match the inferred goa. The Argo design
environment [24] is equipped with computer critics[11]
that deliver general software design knowledge for
programmers to reflect upon their current design.

CONCLUSIONS

Complete coverage of the needed knowledge in using HFAS
is impossible. Designers of HFAS should not only focus on
developing numerous features but also provide assistance
for users to learn needed features on demand during their
work. Supporting learning on demand with information
delivery helps users identify learning opportunities and
supports their learning process. The major contribution of
this paper is that it identifies the challenging issues in
creating intelligent interfaces that support learning on
demand with information delivery, and illustrates how to
address such issues in the CodeBroker system (Table 2).
Although many of the concrete solutions adopted in
CodeBroker, such as signature matching and the contents of
user models, depend on the particular domain, the genera
conceptual framework we have developed are applicable to
other domains as well.

Table 2: Issuesin supporting learning on demand with
information delivery and their solutionsin CodeBroker

Challenging | ssues Solutionsin CodeBroker

Similarity analysiswith LSA and

Task-relevance signature matching

Personalization User models

Délivery timing Feedforward at action-present
Intrusiveness Noninterruptive, low-profile delivery
Explanations Automatically located examples
Evolving information | Leveraging peer programmers
repository programs
ACKNOWLEDGMENTS

We thank Bradley Rhodes, who released the Remembrance
Agent system under GPL, which was partidly reused in
CodeBroker. We thank the members of the Center for
LifeLong Learning & Design at University of Colorado,
who have made major contributions to the conceptual
frameworks described in this paper. The research was
supported by National Science Foundation, Grant REC-
0106976; SRA Key Technology Laboratory, Tokyo, Japan;
and Coleman Family Foundation, San Jose, CA.

REFERENCES

1. Baabanovic, M., and Shoham, Y. Fab: Content-Based,
Collaborative Recommendation. Commun. ACM, 1997.
40(3):66-72.

2. Carberry, S. Techniques for Plan Recognition. User
Modeling and User-Adapted Interaction, 2001. 11:31-
48.

3. Carroll, JM., and Rosson, M.B. Paradox of the Active
User, in Interfacing Thought: Cognitive Aspects of
Human-Computer Interaction, J.M. Carroll, ed. The
MIT Press. Cambridge, MA, 1987, 80-111.

4. Chidamber, S.R., and Kemerer, C.F. A Metrics Suite for
Object Oriented Design. |EEE Trans. on Software
Engineering, 1994. 20(6):476-493.

5. Crossen, A., Budzik, J., Warner, M., Birnbaum, L., and
Hammond, K.J. XLibris: An Automated Library
Research Assistant, in Proc. of 1UI'01 (Santa Fe, NM,
2001), 49-52.

6. Drummond, C., lonescu, D., and Holte, R. A Learning
Agent that Assiststhe Browsing of Software Libraries.
|EEE Trans. on Software Engineering, 2000.
26(12):1179-1196.

7. Fischer, G. Supporting Learning on Demand with
Design Environments, in International Conference on
the Learning Sciences (Evanston, IL, 1991), 165-172.

8. Fischer, G. User Modeling in Human-Computer
Interaction. User Modeling and User-Adapted
Interaction, 2001. 11(1& 2):65-86.

9. Fischer, G., et al. Seeding, Evolutionary Growth and
Reseeding: The Incremental Development of
Collaborative Design Environments, in Coordination
Theory and Collaboration Technology, G. Olson, T.
Malone, and J. Smith, eds. Lawrence Erlbaum: Mahwah,
NJ, 2001, 447-472.

10.Fischer, G., Henninger, S., and Redmiles, D. Cognitive
Toolsfor Locating and Comprehending Software
Objectsfor Reuse, in Proc. of 13th International
Conference on Software Engineering (Austin, TX,
1991), 318-328.

11.Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and
Sumner, T. Embedding Criticsin Design Environments,
in Readingsin Intelligent User Interfaces, M.T.
Maybury and W. Wahlster, eds. Morgan Kaufmann: San
Francisco, CA, 1998, 537-5509.

12.Fischer, G., and Ye, Y. Personalizing Delivered
Information in a Software Reuse Environment, in Proc.
of 8th International Conference on User Modeling
(Sonthofen, Germany, 2001), 178-187.

13.Horvitz, E., Jacobs, A., and Hovel, D. Attention-
Sensitive Alerting, in Proc. of Conference on
Uncertainty and Artificial Intelligence (San Francisco,
CA, 1999), 305-313.

14.Landauer, T.K., and Dumais, S.T. A Solution to Plato's
Problem: The Latent Semantic Analysis Theory of
Acquisition, Induction and Representation of
Knowledge. Psychological Review, 1997. 104(2):211-
240.

15.Leake, D.B., Birnbaum, L., and Hammond, K.J. An
Integrated Interface for Proactive, Experience-Based
Design Support, in Proc. of |UI'01 (Santa Fe, NM,
2001), 101-108.

16.Lieberman, H. Autonomous I nterface Agents, in Proc.
of CHI'97 (Altanta, GA, 1997), 67-74.

17.Mili, A., Mili, R., and Mittermeir, R.T. A Survey of
Software Reuse Libraries, in Systematic Software Reuse,
W. Frakes, ed. Baltzer Science Publishers: Bussum, The
Netherlands, 1998, 317-347.

18.Nakakoji, K., Yamamoto, Y., Suzuki, T., Takada, S.,
and Gross, M.D. From Critiquing to Representational
Talkback: Computer Support for Revealing Featuresin
Design. Knowledge-Based Systems, 1998. 11(7-8):457-
468.

19.Nardi, B.A., Miller, J.R., and Wright, D.J.
Collaborative, Programmable Intelligent Agents.
Commun. ACM, 1998. 41(3):96-104.

20.Neal, L. Support for Software Design, Development and
Reuse through an Example-Based Environment, in
Structure-Based Editors and Environments, G. Szwillus
and L. Neal, eds. Academic Press. San Diego, CA,
1996, 185-192.

21.Raymond, E.S., and Young, B. The Cathedral and the
Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O'Reilly: Sebastopol, CA,
2001.

22.Rhodes, B.J., and Maes, P. Just-in-time Information
Retrieval Agents. IBM Systems Journal, 2000.
39(3&4):685-704.

23.Rich, C.H., and Waters, R.C. The Programmer's
Apprentice. Addison-Wesley: Reading, MA, 1990.

24.Robbins, J.E., Hilbert, D.M., and Redmiles, D.F.
Software Architecture Criticsin Argo, in Proc. of 1UI'98
(San Francisco, CA, 1998), 141-144.

25.Schon, D.A. The Reflective Practitioner: How
Professionals Think in Action. Basic Books: New Y ork,
1983.

26.Ye, Y. Supporting Component-Based Software
Development with Active Component Repository
Systems, Ph.D. Dissertation, Department of Computer
Science, University of Colorado, Boulder, CO, 2001

27.Zaremski, A.M., and Wing, J.M. Signature Matching: A
Tool for Using Software Libraries. ACM Trans. on
Software Engineering and Methodol ogy, 1995.
4(2):146-170.

