
Context-Aware Browsing of Large Component Repositories

Yunwen Ye1,2

1SRA Key Technology Laboratory, Inc.
3-12 Yotsuya, Shinjuku
Tokyo, 160-004, Japan

yunwen@cs.colorado.edu

Gerhard Fischer2

2Department of Computer Science
CB430, University of Colorado
Boulder, CO80309-0430, USA

gerhard@cs.colorado.edu

Abstract
This paper proposes a new approach to locating

software components from a large component repository:
context-aware browsing. Without any explicit input from
software developers, this approach automatically locates
and presents a list of software components that could
possibly be used in the current development situation. This
automation of the component location process not only
greatly reduces the search space of components so that
software developers can easily browse and choose the
desired components, but also enables software developers
to use components whose existence they do not even
anticipate. A software agent that supports context-aware
browsing has been developed and evaluated.

1 Introduction

Component-based software development improves
both the quality and productivity of software development.
However, before software developers can use or reuse a
software component (e.g., a class or a method), they must
have learned it beforehand or be able to locate it from a
component repository. Component repositories are often
so large that software developers cannot learn about all of
the components. Moreover, component repositories are
not static; they are constantly evolving as new components
are added and old components updated. As an example,
Table 1 shows the rapid growth of the Java Core API
(Application Programmer Interface) library. Few Java
developers, if any, can claim that they know all the
components in this library. To use components they do not
yet know, software developers need to locate them from

component repositories.
Most of the research on component repository systems

that support component location has focused on improving
either browsing or searching mechanism. This paper
describes a software agent, CodeBroker, that explores a
new approach to locating software components: context-
aware browsing. Running continuously in the background
of a development environment, CodeBroker infers
software developers’ needs for components by monitoring
their interactions with the development environment.
Potentially reusable components that match the
development context—the development task on which
developers are working and the background knowledge of
developers—are autonomously located and actively
presented. Although the autonomously located
components may not be precise enough, the number of
components that developers have to browse is greatly
reduced.

Empirical evaluations have found that CodeBroker can
expedite component location. More important, it helps
software developers discover those components whose
existence is not anticipated, and thus increases the
opportunity of component reuse.

2 Searching and Browsing

Searching and browsing have long served as the
principal techniques for software developers to locate
components from component repositories.

Searching is direct and fast. Software developers
formulate a query, and the repository system returns
components that match the query. Formulating queries is
a cognitively challenging task because software
developers have to overcome the gap from the situational
model (i.e., the software developers’ understanding of
their task) to the system model (i.e., the description of the
components in the repository) [25].

In browsing, software developers determine the
usefulness or relevance of the components currently being
displayed in terms of their development task, and traverse
the associated links in the component repository. In
general, people who look for information prefer browsing

Version No. of
packages

No. of
classes

Year of
release

Java 1.0 8 211 1996
Java 1.1 23 503 1997
Java 1.2 59 1525 1998
Java 2 70+ 2100+ 1999

Table 1: Growth of the Java API library

to searching because they do not need to commit resources
at first and can incrementally develop their requirements
after evaluating the information along the way [22]. Mili
et al. [17] claim that browsing is the predominant pattern
of component repository usage because many software
developers often cannot formulate clearly defined queries.
Instead, they rely on browsing to get acquainted with
available components in the repository.

Browsing, however, is not scalable for the following
reasons. First, there is an inherent dilemma in the design
of the browsing structure: If links are too many, software
developers will be puzzled by the complexity; if links are
too few, components are not well connected. Second, it is
impossible to design a structure suitable for all developers
and all tasks. Most component repositories are structured
according to the inheritance relationship. This structure is
suitable for locating components whose super nodes
(classes or super-classes) are known, but it is not suitable
for locating components based on functionality. Some
components with similar functionality are scattered in
different deep nodes of the inheritance tree [12]. It is very
difficult for software developers to find and compare all of
them in order to choose the most appropriate one. Third,
in a large component repository, following the right link
requires that software developers have a very good
understanding of the structure of the whole repository.
Most software developers, especially the less experienced
ones, may easily get lost in a complex network of nodes
while tracing dozens of links.

3 Beyond Searching and Browsing

3.1 Information Access and Information Delivery

Searching and browsing are information access
mechanisms that require information users (software
developers in our case) to initiate the information-seeking
process. Consequently, information access mechanisms
offer no support for those users who do not ask for new
information. To assist users in making full use of large
information repositories, information access mechanisms
need to be complemented with information delivery
mechanisms that actively present information to users
without being given explicit queries [8]. The “Tips of the
Day” of the Microsoft Windows system, which voluntarily
presents a tip on the use of an application, is an example
of the information delivery mechanism.

Incorporating the information delivery mechanism
with a component repository can encourage software
developers who make no attempt to take advantage of
components. Many software developers create their own
programs instead of attempting to use components from
the repository simply because they do not know the
existence of components or they do not know how to find
the components [10, 20]. This phenomenon is well

illustrated in the following comment from a software
developer.

“I could be creating a method that does exactly the
same thing somebody else’s does…even though we
have access to each other’s code. We might call them
different names and we might have a bit different way
of doing it, but we’re still doing the same thing.” [5]

3.2 Context-Aware Browsing

Information delivery systems that just throw a piece of
decontextualized information at users are of little use
because they ignore the working context. The working
context consists of the task being performed and the user
performing it. The challenge for information delivery is to
present context-aware information related to both the task
at hand and the background knowledge of the user [7].

The context-aware browsing mechanism strives to
deliver contextualized components. Instead of asking
software developers to pose queries, it infers their tasks at
hand by continuously monitoring their interactions with
the development environment, and it autonomously
locates and delivers a list of components that could be
used in the implementation of the tasks and that are not
yet known to the developers. Because the tasks are
inferred, the list of delivered components may not be
accurate enough and may include some irrelevant
components. Software developers will still need to browse
the delivery to find the components they want, but
compared to the entire repository, the browsing space is
significantly smaller and the time to find the desired
components is thus reduced. The delivered components
are the result of a first-cut search [18] automated by
component repository systems.

Table 2 compares context-aware browsing with
browsing and searching by summarizing their advantages
and disadvantages.

Advantages Disadvantages

Browsing Low cognitive
overheads Does not scale up

Searching Fast, direct

Formulating the “right”
query is difficult
No search for unanticipated
components

Context-
aware
browsing

Supports
information
delivery

Difficulty in
“understanding” the context

Table 2: Comparison of locating mechanisms

4 A Software Agent that Supports Context-
Aware Browsing

We have developed and evaluated an autonomous
software agent—CodeBroker—that supports context-
aware browsing. CodeBroker, whose architecture is shown

in Fig. 1, supports Java developers. Its component
repository currently includes 673 classes and 7,338
methods from JDK (Java Development Kit) 1.1.8 Core
API library and JGL 1.3 (Java General Library, created
and distributed by ObjectSpace, Inc.). Other components
can easily be added with the indexing program we have
developed [25].

CodeBroker consists of three subsystems: Listener,
Fetcher, and Presenter. Listener, running continuously
behind the program editor—Emacs, extracts and
formulates queries by monitoring the software developers’
activities. Those queries are passed to Fetcher, which
retrieves matching components. Retrieved components are
delivered in the Reusable Components Information
Display (RCI-display) by Presenter, after it has removed
unwanted components based on the background
knowledge of the targeted developer.

CodeBroker is integrated with the editor. A portion of
the editor is used for the display of delivered components
(RCI-display). The integration reduces the unnecessary
switch between development activities and component
search activities, which causes the loss of working
memory. Because delivered components are immediately
accessible from the current development environment,
software developers are able to skim or perceive
components at a glance instead of going through a lengthy
browsing or searching process.

4.1 Inferring the Needs for Components

CodeBroker utilizes information contained in
unfinished programs in the editor to infer software

developers’ needs for components. A program has three
aspects: concept, code, and constraint. The concept of a
program is its functional purpose, the code is the
embodiment of the concept, and the constraint is the
environment in which it runs [26].

Important concepts of a program are often revealed by
its informal information. Programs include both formal
information for executability and informal information for
readability. Informal information includes structural
indentation, comments, and identifier names. Because
comments and identifier names often reveal the semantics
of programs, they not only increase the comprehensibility
of programs, but also serve as cues signaling the needs for
components that can be used in their implementation. The
Java programming language further stresses the
importance of comments by introducing the concept of
doc comments. A doc comment begins with “/**” and
continues until the next “*/”. It precedes the declaration of
a module (either a class or a method), and its contents
describe the functionality of the following module. Doc
comments are extracted by the javadoc utility to create
documentation for Java programs.

One important constraint of a program is its type
compatibility, which is manifested in its signature. A
signature is the type expression of a program, and defines
its syntactical interface. For a component to be easily
integrated, its signature should be compatible with the
environment into which it is going to be incorporated.

Combining the concept revealed by comments and
identifier names, and constraints revealed by signatures,
task-relevant components can be found. If the component
shows high similarity in concept and high compatibility in

Figure 1: Overview of the CodeBroker agent

Listener

Fetcher

Queries

Programming Environment

Presenter

RCI-display shows components
delivered by CodeBroker

Retrieved
Components

Component
Repository

constraint, the likelihood of a component matching the
developer’s task is also high. CodeBroker infers software
developers’ needs for components by analyzing the
contents of doc comments and signatures. As soon as a
doc comment is entered in the editor, CodeBroker begins
to search for and deliver components whose documents
are similar to the comment. A doc comment for a method
is followed by the declaration of the signature for the same
method. After the method signature is declared in the
editor, CodeBroker makes a second attempt to deliver
components that takes both the signature and doc
comment into consideration in judging the task-relevance
of components. For example, in Fig. 1, components shown
in RCI-display are delivered based on their relevance to
the doc comment and the signature (the two lines before
the cursor); and the first component does exactly what the
developer wants to do.

4.2 Retrieving and Delivering Relevant
Components

CodeBroker uses both free-text information retrieval
techniques and signature matching to retrieve task-
relevant components.

It uses the probability-based information retrieval
technique, proposed by Robertson and Walker [19], to
compute the concept similarity—the similarity between
conceptual queries extracted from doc comments of
programs under development and documents of
components in the repository. Based on the assumption
that terms are distributed differently in relevant and
irrelevant documents, the probability-based information
retrieval technique estimates the similarity between a
query and a document by assigning appropriate weights to
terms in the document collection, and returns a rank-
ordered list of pre-indexed documents that best match the
query. The concept similarity between a query (Q) and the
document of a component (Dj, 0<j<N, where N is the
number of components in the repository) is computed as
follows:

∑
= +

+
+
+

+
+−=

T

i i

i

ji

ji

i

i
j qtfk

qtfk

tfK

tfk

n

nN
DQsim

1 3

3

,

,1)1()1(
)

5.0

5.0
(log),(

where
N is the number of components
ni is the number of components whose documents contain the term ti

T is the number of terms in the component collection
tfi,j is the frequency of term ti in the document of the component Dj

qtfi is the frequency of term ti in the query Q
avdldlbbkK j⋅+−=)1((1

k1,k3,b are empirically determined parameters depending on the
nature of the document collection. In CodeBroker, k1 is set to 1.2, k3

to 1.0, and b to 0.75, according to the data in [23].
dlj is the length of document Dj

avdl is the average length of all documents in the collection

Signature matching is used to determine the constraint
compatibility—the compatibility between constraint
queries extracted from signatures of programs being

developed and signatures of components in the repository
[27]. The basic form of a signature of a method is

Signature:InTypeExp->OutTypeExp

where InTypeExp and OutTypeExp are type expressions
that result from applying a Cartesian product constructor
onto the input parameter types and output parameter types,
respectively. The two signatures

Sig1:InTypeExp1->OutTypeExp1
Sig2:InTypeExp2->OutTypeExp2

match if and only if InTypeExp1 is in structural
conformance with InTypeExp2 and OutTypeExp1 is in
structural conformance with OutTypeExp2. Two type
expressions are structurally conformable if they are
formed by applying the same type constructor to
structurally conformant types. The constraint
compatibility value between two signatures is the product
of the conformance value existing among their types. The
type conformance value is 1.0 if two types are in structural
conformance according to the definition of the
programming language, and drops a certain percentage if
one type conversion is needed, or an immediate
inheritance relationship exists between them [26].

4.3 The Delivery-Browsing-Searching Cycle

The top 20 components (the number of delivered
components can be easily customized by users) with the
highest similarity values are presented in RCI-display in
decreasing order of similarity value. Each delivered
component is accompanied with its rank of similarity,
similarity value, name, and a short description (Fig. 1).

Delivered components can be treated as the results of
information reconnaissance [14] conducted by
CodeBroker. During this process, the system explores
unknown territory of the component repository before the
software developers are committed to entering it. Software
developers can take advantage of the reconnaissance
results in several ways.

• They can quickly browse the list and continue
programming if they do not find anything interesting.
This could reduce the lost time caused by
unsuccessful efforts at locating components from the
whole repository.

• They can use a component immediately if they find it
useful and the information present in RCI-display is
adequate.

• They can launch, by left-clicking the component
name, an external HTML browser to go to the
corresponding place for the full component
documents generated by javadoc, if they find some
interesting components but need more information.

• If too many irrelevant components are delivered, they
can invoke the Skip Components Menu (Fig. 2)
associated with each delivered component by right-
clicking it. A method component (the first item in the

menu), or all methods from a class (the second item)
or a package (the third item) can be removed from
RCI-display to make it easier to find the desired
components.

Figure 2: The Skip Components Menu

• They can start another round of searching by
activating the retrieval-by-reformulation [24]
interface (Fig. 3) to reformulate the query. In such a
scenario, the delivered components serve the role of
acquainting software developers with the vocabulary
used in the repository system so that they can write a
more appropriate query. By analyzing the delivered
components, software developers become familiar
with the structure of the repository, and can decide to
limit the search on a particular portion of the
repository by specifying the Interested Components

field (which takes packages or classes as input and
ensures that only components from specified
packages and classes are retrieved), or exclude a
particular portion of no interest by specifying the
Filtered Components field (which ensures that
components from the specified packages and classes
are not retrieved) (Fig. 3)

.
Figure 3: The retrieval-by-reformulation interface

4.4 Capturing the Larger Context

The delivery mechanism described in the preceding
sections infers the need for components from the module
on which a software developer is currently working. A
module is only a part of the whole development task, and
the functionality of the module is embedded in a larger
context shaped by other modules that have been developed
so far. Therefore, the interactions between the developer
and CodeBroker that have taken place for the development
of previous modules can be used to improve the context-
relevance of later deliveries. In CodeBroker, such an
interaction history is represented as a discourse model that
is used to adapt the delivery of components to each
development session.

Component repositories are often organized
hierarchically according to packages and classes that are
designed for particular application domains. For most
applications, only a part of the repository is involved. If
the repository system knows which part of the repository
is relevant, the context-relevance of located components
can be improved. A specification mechanism [9] may be
used to allow software developers to specify all of their
interested packages and classes before the development
session starts, but it is difficult for most software
developers to do so because they may not have enough
knowledge about the whole repository. It is much easier
for them to identify a definitely irrelevant package or class
when they see one. Based on the above observation,
discourse models in CodeBroker include those packages,
classes, and methods that are not relevant to the current
development session, and components contained in
discourse models are not delivered, even if they are
relevant to the queries. Discourse models also reduce the
delivery of irrelevant components caused by polysemy—a
difficult problem for any information retrieval systems—
by limiting search domains because polysemous words
often have different meanings in different domains.

Each development session starts with an empty
discourse model, and the contents of discourse models are
incrementally added during the interaction between
developers and the system. When developers invoke the
Skip Components Menu (Fig. 2), they can choose to
remove a method, a class, or a package from the RCI-
display for the current development session by choosing
the This Session Only command. At the same time,
CodeBroker learns that those components are not of
interest to the developers at this development session and
adds them to the discourse model.

4.5 Adapting to Each Developer

As mentioned in Section 3.2, another element of the
context is the software developer’s knowledge of
components. Presenting a component that a software
developer already knows very well is of little use because
if it can be used in the current development, the developer
would be able to do so without help. CodeBroker creates a
user model for each developer by analyzing the programs
that the developer has written. The user model contains
components that have been used by the developer more
than three times (this number is adjustable by the
developer). We assume that if a developer has used a
component more than three times, he or she knows it
already; therefore, it should not be presented by
CodeBroker, even if it is determined to be relevant to the
queries by the retrieval mechanisms.

Because software developers’ knowledge of
components evolves as time goes by, user models should
evolve accordingly. CodeBroker provides a mechanism
for software developers to explicitly update their own user

models, as well as a mechanism that updates user models
implicitly by analyzing the interactions between software
developers and the system.

Similar to updating of discourse models, software
developers can update their user models explicitly by
choosing the All Sessions command in the Skip

Components Menu (Fig. 2). The difference between user
models and discourse models are that user models are
stored in permanent storages and are loaded into the
system each time it is started, whereas discourse models
are stored in the memory and are re-initialized to empty
when the system is started. A user model is the shared
long-term memory between CodeBroker and a developer;
in contrast, a discourse model is the shared short-term
memory.

CodeBroker continuously learns what software
developers know about the repository components and
updates their user models accordingly by monitoring their
development activities. When the system observes that a
particular component has been used by a software
developer more than three times, it adds the component to
his or her user model. For more details on the algorithm of
automatically updating user models, see reference [25].

5 Evaluations of CodeBroker

We have conducted two types of experiments to
evaluate CodeBroker. The first experiment evaluates the
retrieval mechanism, and the second set of experiments
empirically studies how well CodeBroker assists software
developers in discovering components during their
development activities.

5.1 Retrieval Effectiveness

Information retrieval systems are conventionally
measured by recall and precision [21]. Recall—the
percentage of the total relevant documents in the
collection that are also retrieved—indicates the ability of

the system to retrieve all relevant documents. Precision—
the percentage of documents retrieved that are relevant—
indicates the ability of the system to present only relevant
documents.

We tried 19 queries in the experiment [25]. Among
them, 10 queries were created by us, 4 were chosen from
questions frequently asked in newsgroups for Java
programming, and 5 were extracted from the empirical
evaluation experiments. Table 3 shows the average
precision and recall values. In average, about one-third to
one-half of the retrieved components are relevant to the
development task, which means that one out of two or
three delivered components can be used to implement the
module described by the queries.

5.2 Empirical Evaluations

Recall and precision are not absolute, objective
measurements of an information retrieval systems because
(1) the definition of relevance between documents and
queries is subjective, and (2) even if the relevance of a
document is unanimously agreed, it may not be of interest
to one particular user if that user already knows the
document. To better understand how CodeBroker supports
software developers during their development practice, we
have conducted 12 experiments with five subjects. All
subjects had extensive programming experience, and their
expertise in Java programming varied from medium to
expert. In each experiment, the subject was asked to
implement a small programming task that could be
developed with different components from the repository
if the subject knew or found them.

During the experiments, we logged all the components
that were retrieved and delivered by CodeBroker and
those that were used in the final programs. The analysis
was based on the logs and transcribed protocols of the
experiments and follow-up interviews. Table 4
summarizes the overall results of these experiments.

In 10 of the 12 experiments, the subjects used
components delivered by CodeBroker. The 12 programs
created by the subjects used 57 distinct components, 20 of
which were delivered by CodeBroker. Of these 20 used
components, the subjects did not anticipate the existence
of 9. In other words, those 9 components could not have
been used without the support of CodeBroker, and the
subjects would have created their own solutions instead.
Although the subjects somehow anticipated the existence
of the other 11 components, they had known neither the
names nor the functionality, and had never used them
before. They might have used those 11 components if they
could manage to locate them by themselves. In follow-up
interviews, all subjects acknowledged that CodeBroker
made locating those anticipated components much easier
and faster. The last column shows the rates given by the
subjects when they were asked to rate the usefulness of the
system on a scale from 1 (totally useless) to 10 (extremely

Recall Average Precision
0% 45.82%

10% 45.82%
20% 45.82%
30% 41.20%
40% 41.01%
50% 40.74%
60% 37.46%
70% 37.46%
80% 32.71%
90% 32.19%

100% 29.43%
Table 3: Recall and precision of CodeBroker

useful). Although the rates are subjective, they indicate the
subjects’ desire to use the system continuously.

6 Related Work

Component repository systems that support searching
have adopted different retrieval mechanisms. Based on the
representation schema of components, they can be divided
into text-based, structured representation-based, and
formal method-based approaches.

The text-based approach uses textual descriptions to
represent components and queries, and adopts information
retrieval techniques to define the task-relevance of
components. Textual descriptions are drawn from
accompanying documents [15], or are extracted from
comments and/or identifier names in components [4].
Structured representation-based approaches employ a
knowledge base or conceptual distance graph to mimic the
method a human being would employ in searching
components. Multi-faceted classification schemas [2] use
multiple facets to represent components and a conceptual
distance graph to reflect the semantic relationship among
terms describing components. Both CodeFinder [13] and
LaSSIE [1] represent components as frames. CodeFinder
organizes those frames into an associated network and
uses spreading activation to find components. Frames in
LaSSIE are organized into hierarchical, taxonomic
categories. Formal method-based approaches use either
signatures [27] or formal specifications [16] to represent
components and queries.

Most component repository systems that support
browsing, such as the Smalltalk programming
environment, organize components according to their

inheritance structure. Such a browsing structure requires
that software developers have extensive knowledge about
the structure of the repository to find a component, and it
lacks meaningful road maps as to what the repository
contains and how to discover the components that are
needed for the current task [11].

Several attempts have been made to improve the
browsing of a large component repository. Fischer [6]
proposes a specification-based browsing mechanism that
combines concepts and formal specifications to structure
the repository. This mechanism enables software
developers to find components by selecting features
required in their task, or deselecting features not needed
for the task. Drummond et. al [3] add an active agent to
the existing browsing system that speeds up the search for
components. The agent infers the search goal of software
developers by observing their browsing actions and
delivers components that closely match the inferred goal.

Compared to other repository systems, our approach is
unique in the following aspects:

(1) The first attempt to locating components is
automated by the system.

(2) The system adapts the search process to each
development session.

(3) The system adapts the search process to the
background knowledge of each developer.

7 Conclusions

This paper has described the idea of context-aware
browsing to assist software developers in discovering
components from a large repository. Context-aware
browsing utilizes information delivery techniques to

Breakdown of used components from
deliveries

Subject
Experiment
no.

Total no. of
distinct
components
used

No. of distinct
components
used from
deliveries

No. of components
whose existence was
unanticipated

No. of components
whose existence was
anticipated but
unknown

Rate of the
system
(0: worst
10: best)

1 10 4 2 2S1
2 3 1 1 0

7

3 7 1 1 0
4 4 1 1 0S2
5 5 3 0 3

4

6 5 2 1 1
7 4 3 1 2S3
8 3 0 0 0

8.5

9 4 3 0 3
S4

10 3 1 1 0
7

11 4 1 1 0
S5

12 5 0 0 0
8

SUM 57 20 9 11

deliver a list of contextualized components without
requiring direct operations from software developers; it
combines the benefits of the low cognitive threshold of
browsing and the directness of searching.

We have designed and implemented CodeBroker to
demonstrate the feasibility of supporting context-aware
browsing. Empirical evaluations of the system have shown
that context-aware browsing not only speeds up the search
for components, but also enables software developers to
learn and use unanticipated components that they might
miss with the conventional information access
mechanisms of browsing and searching, because
information access mechanisms can help only those
software developers who anticipate the existence of
components and initiate the component locating process.

Acknowledgments. The authors thank the members of the
Center for LifeLong Learning & Design at the University
of Colorado, who have made major contributions to the
conceptual frameworks described in this paper. The
research was supported by (1) the National Science
Foundation, Grant REC-0106976; (2) SRA Key
Technology Laboratory, Inc., Tokyo, Japan; and (3) the
Coleman Family Foundation, San Jose, CA.

8 References

[1] Devanbu, P., et al., LaSSIE: A Knowledge-Based Software
Information System. Communications of the ACM.
34(5):34-49, 1991.

[2] Diaz, R.P. and P. Freeman, Classifying Software for
Reusability. IEEE Software. 4(1):6-16, 1987.

[3] Drummond, C., D. Ionescu, and R. Holte, A Learning
Agent that Assists the Browsing of Software Libraries.
IEEE Transactions on Software Engineering. 26(12):1179-
1196, 2000.

[4] Etzkorn, L.H. and C.G. Davis, Automatically Identifying
Reusable OO Legacy Code. IEEE Computer. 30(10):66-71,
1997.

[5] Fichman, R.G. and C.E. Kemerer, Object Technology and
Reuse: Lessons from Early Adopters. IEEE Software.
14(10):47-59, 1997.

[6] Fischer, B., Specification-Based Browsing of Software
Component Libraries. Automated Software Engineering.
7(2):179-200, 2000.

[7] Fischer, G., Articulating the Task at Hand and Making
Information Relevant to It. Human-Computer Interaction.
(to appear), 2001.

[8] Fischer, G., Domain-Oriented Design Environments.
Automated Software Engineering. 1(2):177-203, 1994.

[9] Fischer, G., K. Nakakoji, and J. Ostwald, Supporting the
Evolution of Design Artifacts with Representations of
Context and Intent. in Proc. of Designing Interactive
Systems '95, (New York), 1995, 7-15.

[10] Frakes, W.B. and C.J. Fox, Quality Improvement Using a
Software Reuse Failure Modes Model. IEEE Transactions
on Software Engineering. 22(4):274-279, 1996.

[11] Green, T.R.G., Programming Languages as Information
Structures, in Psychology of Programming, J.-M. Hoc, et
al., (eds.) Academic Press: New York. 118-137, 1990.

[12] Helm, R. and Y.S. Maarek, Integrating Information
Retrieval and Domain Specific Approaches for Browsing
and Retrieval in Object-Oriented Class Libraries. in Proc. of
OOPSLA'91, 1991, 47-61.

[13] Henninger, S., An Evolutionary Approach to Constructing
Effective Software Reuse Repositories. ACM Transactions
on Software Engineering and Methodology. 6(2):111-140,
1997.

[14] Lieberman, H., Personal Assistants for the Web: An MIT
Perspective, in Intelligent Information Agents: Agent-Based
Information Discovery and Management on the Internet, M.
Klusch, (ed.) Springer-Verlag: Berlin. 279-292, 1999.

[15] Maarek, Y.S., D.M. Berry, and G.E. Kaiser, An Information
Retrieval Approach for Automatically Constructing
Software Libraries. IEEE Transactions on Software
Engineering. 17(8):800-813, 1991.

[16] Mili, A., R. Mili, and R. Mittermeir, Storing and Retrieving
Software Components: A Refinement-Based System. IEEE
Transaction on Software Engineering. 23(7):445-460, 1997.

[17] Mili, A., et al., Toward an Engineering Discipline of
Software Reuse. IEEE Software. 16(5):22-31, 1999.

[18] Mili, H., F. Mili, and A. Mili, Reusing Software: Issues and
Research Directions. IEEE Transactions on Software
Engineering. 21(6):528-562, 1995.

[19] Robertson, S.E. and S. Walker, Some Simple Effective
Approximations to the 2-Poisson Model for Probabilistic
Weighted Retrieval. in Proc. of the 17th International
ACM-SIGIR Conference, (Dublin, Ireland), 1994, 232-241.

[20] Rosenbaum, S. and B. DuCastel, Managing Software
Reuse--An Experience Report. in Proc. of 17th
International Conference on Software Engineering,
(Seattle, WA), 1995, 105-111.

[21] Salton, G. and M.J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill: New York. 1983.

[22] Thompson, R.H. and W.B. Croft, Support for Browsing in
an Intelligent Text Retrieval System. International Journal
of Man-Machine Studies. 30(6):639-668, 1989.

[23] Walker, S., et al., Okapi at TREC-6: Automatic ad hoc,
VLC, Routing, Filtering and QSDR. in Proc. of the 6th Text
REtrieval Conference (TREC-6), (Gaithersburg, MD), 1998,
125-136.

[24] Williams, M., What Makes RABBIT Run? International
Journal of Man-Machine Studies. 21:333-352, 1984.

[25] Ye, Y., Supporting Component-Based Software
Development with Active Component Repository Systems.
Ph.D. Dissertation, Department of Computer Science,
University of Colorado, Boulder, CO, 2001.

[26] Ye, Y. and G. Fischer, Promoting Reuse with Active Reuse
Repository Systems. in Proc. of the 6th International
Conference on Software Reuse, (Vienna, Austria), 2000,
302-317.

[27] Zaremski, A.M. and J.M. Wing, Signature Matching: A
Tool for Using Software Libraries. ACM Transactions on
Software Engineering and Methodology. 4(2):146-170,
1995.

