
Y. Ye and G. Fischer 1 Submission to ASE Journal (revision)

Reuse-Conducive Development Environments

Yunwen Ye1,2
1SRA Key Technology Laboratory, Inc.

3-12 Yotsuya, Shinjuku
Tokyo 160-004, Japan

+81-03-3357-9361
yunwen@cs.colorado.edu

Gerhard Fischer2

2Department of Computer Science
University of Colorado

Boulder, CO 80303-0430, USA
+1-303-492-1592

gerhard@cs.colorado.edu

ABSTRACT

Despite its well-recognized benefits, software reuse has not met its expected success due to technical, cognitive, and

social difficulties. We have systematically analyzed the reuse problem (especially the cognitive and social difficulties

faced by software developers who reuse) from a multidimensional perspective, drawing on our long-term research on

information retrieval, human-computer interaction, and knowledge-based systems. Based on this analysis, we

propose the concept of reuse-conducive development environments, which encourage and enable software

developers to reuse through the smooth integration of reuse repository systems and development environments. We

have designed, implemented, and evaluated CodeBroker—a reuse-conducive development environment—that

autonomously locates and delivers task-relevant and personalized components into the current software development

environment. Empirical evaluations of CodeBroker have shown that the system is effective in promoting reuse by

enabling software developers to reuse components unknown to them, reducing the difficulties in locating

components, and augmenting the programming capability of software developers.

KEYWORDS

Software reuse; reuse-conducive environments; high-functionality applications; information delivery; relevance to

the task-at-hand; personalization; location, comprehension, and modification model; latent semantic analysis;

centralized and decentralized development of reuse repositories; seeding, evolutionary growth, and reseeding model;

CodeBroker

Y. Ye and G. Fischer 2 Submission to ASE Journal (revision)

Table of Contents

1. INTRODUCTION ___ 4

2. THE CONCEPTUAL FRAMEWORK _______________________________________ 5
2.1 Cognitive Issues in Reuse __ 6
2.2 Information Retrieval and Reuse ___ 7
2.3 Knowledge-Based Systems and Reuse ___ 8

3. CODEBROKER: DELIVERING TASK-RELEVANT AND PERSONALIZED
COMPONENTS ___ 10

3.1 Overview of the CodeBroker System ___ 11
3.2 Locating Task-Relevant Components ___ 13
3.3 Supporting Retrieval-by-Reformulation __ 15
3.4 Creating and Using Discourse Models __ 16
3.5 Delivering Personalized Components ___ 19

4. EVALUATION ___ 20
4.1 Recall and Precision ___ 21
4.2 The Structure of the Experiments__ 22
4.3 Findings of Experiments__ 23

5. DISCUSSION__ 28

6. EVOLUTIONARY CONSTRUCTION OF REUSE REPOSITORIES_____________ 29
6.1 The Centralized Paradigm __ 30
6.2 The Decentralized, Evolutionary Paradigm______________________________________ 30
6.3 A Comparison of the Two Paradigms___ 32

7. RELATED WORK __ 33
7.1 Information Delivery Systems ___ 33
7.2 Reuse Repository Systems __ 35

8. SUMMARY__ 37

9. REFERENCES __ 38

List of Figures:

Figure 1: Different levels of knowledge about a high-functionality application (HFA) _______________________ 5
Figure 2: Similarity analysis __ 9
Figure 3: An example of the use of CodeBroker __ 10
Figure 4: The system architecture of CodeBroker___ 11
Figure 5: The retrieval-by-reformulation interface__ 15
Figure 6: An example discourse model ___ 17
Figure 7: Updating the discourse model __ 17
Figure 8: Deliveries with and without the discourse model ___ 18
Figure 10: The recall-precision curve__ 21

Y. Ye and G. Fischer 3 Submission to ASE Journal (revision)

Figure 11: The Seeding, Evolutionary Growth, and Reseeding (SER) model ______________________________ 31
Figure 12: Two general paradigms of creating and using an information repository: (a) centralized, and (b)
decentralized.___ 33

List of Tables:

Table 1: Programming knowledge and expertise of subjects __ 23
Table 2: Overall results of empirical evaluations ___ 24

Y. Ye and G. Fischer 4 Submission to ASE Journal (revision)

1. INTRODUCTION

Although many believe that software reuse improves both the quality and productivity of software

development (Basili, Briand et al., 1996), systematic reuse has not yet met its expected success. Instituting a reuse

program involves two essential issues:

• Creating and maintaining a reuse repository, which requires managerial commitments and substantial

investments, both financially and intellectually;

• Enabling software developers to build new software systems with components from the reuse repository.

These two issues are in a deadlock: if software developers are unable to reuse, the investments in reuse cannot be

justified; conversely, if companies are unwilling to invest in reuse, software developers have little to reuse. One

approach to breaking this deadlock is to focus first on the creation of a good reuse repository and then to institute a

reuse program top-down by enforcing reuse through education and other organizational changes (Fafchamps, 1994).

A second approach is to foster a reuse culture bottom-up by encouraging software developers to reuse components

from a repository that may not be of high quality in its initial state, but can be evolved through the participation and

contribution of software developers (Henninger, 1997). Such an approach requires reuse-conducive development

environments that not only enable but also encourage software developers to reuse existing components and

contribute to the creation and evolution of reuse repositories.

Creating reuse-conducive development environments poses technical challenges—such as developing effective

retrieval tools to help software developers locate, comprehend, and modify components (Fischer, Henninger et al.,

1991)—as well as cognitive and social challenges—such as determining what triggers software developers to initiate

the reuse process and what motivates them to contribute to the reuse repository. In this paper, we analyze and

address the major cognitive challenge in software reuse: Software developers are unable, or unwilling, to initiate

reuse if they do not have sufficient knowledge about the existence of reusable components or do not know how to

locate them. Furthermore, we describe our ongoing research on creating a theoretical framework for evolving reuse

repositories as well as our system-building efforts in supporting the evolution of reuse repositories through the active

participation of software developers.

Most previous reuse research (A. Mili, R. Mili et al., 1998) has focused on designing various searching or browsing

mechanisms to assist software developers in locating components. Both browsing and searching are passive

mechanisms because they become useful only when software developers decide to make a reuse attempt by knowing

or anticipating the existence of certain components. They are of little use for less experienced software developers

who do not even anticipate the existence of components or do not know how to search the reuse repository properly.

Modern reuse repositories contain not just 30 to 250 components, as Poulin (1999) claims, but thousands of

Y. Ye and G. Fischer 5 Submission to ASE Journal (revision)

components; for example, the Java 1.4 API library has 2,723 classes. It is becoming increasingly difficult, therefore,

for software developers to know or anticipate the existence of all available components. To enable the reuse of

components whose existence software developers do not even anticipate and therefore cannot locate with traditional

searching and browsing mechanisms, we propose a new style of interaction with reuse repository systems:

information delivery that autonomously locates and presents to software developers task-relevant and personalized

components without explicit reuse queries (Ye and Fischer, 2002). Our goal in this research is not to propose yet

another component storage and retrieval mechanism, but to find a new way to interact with software reuse repository

systems by means of enabling software developers to reuse without having to directly search the repository. We

describe a system called CodeBroker, which illustrates different techniques to autonomously deliver components

relevant to the task-at-hand and personalized to the background knowledge of an individual developer. Empirical

evaluations of CodeBroker have shown that information delivery is effective in promoting reuse. Ongoing extension

of the CodeBroker system to support and motivate software developers to participate actively in the creation and

evolution of reuse repositories is also discussed.

2. THE CONCEPTUAL FRAMEWORK

Reuse repository systems are a subset of high-functionality applications (HFAs) (Fischer, 2001) that contain a large

amount of information for computer users to access and use. The common problem faced by all HFAs is how to help

users (or software developers in the case of reuse repository systems) locate, learn, and apply the task-relevant

information that can help them accomplish a task-at-hand (Figure 1).

Task-relevant
information

L3:
Belief

L2: Vaguely
Known

L1: Well
Known

(L4 – L3):
Unanticipated
Information

L4: Entire Information Space

Task-relevant
information

L3:
Belief

L2: Vaguely
Known

L1: Well
Known

L3:
Belief

L2: Vaguely
Known

L1: Well
Known

(L4 – L3):
Unanticipated
Information

L4: Entire Information Space

Figure 1: Different levels of knowledge about a high-functionality application (HFA)

The challenge in HFAs is how to differentiate task-relevant and personalized information from irrelevant
information. The cloud represents the information needed for the inferred task-at-hand (with fuzzy
boundaries because the system may have only a rudimentary understanding of it). The black dots are not
relevant for the task-at-hand and should therefore not be delivered. The white dots inside the cloud should
not be delivered because they are already known by a specific user (inferred from the user model, as
discussed in Section 3.5).

Y. Ye and G. Fischer 6 Submission to ASE Journal (revision)

Our empirical studies (Fischer, 2001) have shown that users typically have different levels of knowledge about

HFAs. In Figure 1, the rectangle (L4) represents the actual information space, and the ovals (L1, L2, and L3)

represent a particular user’s level of knowledge of the information space: L1 represents the elements that are well

known and can be easily used by the user, even without consulting help and documentation systems. L2 contains the

elements that the user knows vaguely. L3 contains elements that the user anticipates to exist in the HFA. A portion of

L3 lies outside the actual information space, so it contains elements that the user believes to exist, but they actually

do not. The existence of many elements that fall in the area (L4 – L3) is not even anticipated by the user. Browsing

and searching mechanisms that require users to initiate the information-locating process cannot help users obtain

information in (L4 – L3) because users cannot ask for help if they are not even aware of the existence of available

information.

We have long been concerned with designing both useful and usable HFAs in different application domains, and our

research efforts enable us to examine the reuse problem from a multidimensional perspective. In this section, we

discuss lessons we have learned from our research on human-computer interaction, information retrieval, and

knowledge-based systems that have helped us create a conceptual framework for the software reuse problem.

2.1 Cognitive Issues in Reuse

The implication of Figure 1 for reuse is as follows: Because software developers know the components in L1 very

well, they can reuse those components easily. Such a reuse approach is often referred to as “opportunistic reuse”

(Sen, 1997) because its success relies solely on how much software developers know about components.

To achieve systematic reuse, software developers must be able to reuse not only the components they know, but also

the components they do not yet know. Systematic reuse fails in the first place if software developers do not make an

attempt to locate components. Such a phenomenon of “no attempt to reuse” (Frakes and Fox, 1996) is often regarded

as an attitude problem, and is commonly labeled as the “Not-Invented-Here” syndrome. Many empirical studies

(Lange and Moher, 1989; Frakes and Fox, 1995; Isoda, 1995) have shown, however, that software developers would

put a lot of effort into locating and reusing components if they were aware of the components that could be reused. In

other words, software developers are often very determined to reuse components in L2.

Reuse often fails not because software developers are unwilling to reuse, but because they are unable to do so due to

the lack of appropriate knowledge about the operation of a reuse repository and its components. Much of the “Not-

Invented-Here” phenomenon is caused by the cognitive difficulties that are inherent in the reuse process (Fischer,

1987a; Ye, Fischer et al., 2000; Ye and Fischer, 2002). That is,

• software developers may not have sufficient knowledge about the reuse repository and cannot even anticipate

the existence of those components in the area (L4 – L3) that can be reused in their current task;

Y. Ye and G. Fischer 7 Submission to ASE Journal (revision)

• software developers may perceive that reuse costs more than developing from scratch; and

• software developers may not be able to use the repository system by formulating a proper query or browsing

the repository to locate components in L3.

2.2 Information Retrieval and Reuse

Most research on information retrieval is focused on designing an effective indexing and retrieval algorithm that

achieves high recall and precision after users have formulated and submitted queries (Salton and McGill, 1983).

Various schemas for indexing and retrieving software components have been proposed in previous reuse research

(see Section 7.2). Although such schemas are very important, of equal (if not more) importance is investigating what

motivates users to formulate queries as well as what kind of knowledge is needed for users to formulate queries.

Conceptual Gap between Situation Model and System Model. The needs for components are derived from

development activities and are conceptualized in a situation model, which is the mental model software developers

have of their development task (Kintsch, 1998). To locate components from a reuse repository, developers have to

convert the situation model into the “actual” system model, which includes the ways of describing and structuring

components in the repository. For example, a software developer who wants to draw a circle must know that the

method is called drawOval in the Java class library in order to search for it, or must know that this method is in the

java.awt package and in the Graphics class if he or she prefers browsing. This conceptual gap between situation

and system models is a significant cognitive barrier to locating components (Fischer, Henninger et al., 1991). Two

types of conceptual gap exist: vocabulary mismatch and abstraction mismatch. The vocabulary mismatch refers to

the inherent ambiguity in most natural languages: People use a variety of words to refer to the same concept. The

probability that two persons choose the same word to describe a concept is less than 20% (Furnas, Landauer et al.,

1987; Harman, 1995). The abstraction mismatch refers to the difference of abstraction level in requirements and

component descriptions. Programmers deal with concrete problems and thus tend to describe their requirements

concretely; in contrast, reusable components are often described in abstract concepts because they are designed to be

generic so they can be reused in many different situations (Ye, 2001).

Information Delivery. Information delivery (“push” technology) is a complementary approach to information

access (“pull” technology), such as browsing and searching. Unlike information access, which requires users to

initiate the process of information locating, information delivery infers the need for information by monitoring the

low-level activities of users, and then autonomously locates and delivers information based on the inferred needs

(Nardi, Miller et al., 1998). Information delivery is needed to take advantage of the large number of potentially

useful components contained in the (L4 – L3) area of Figure 1 (Belkin, 2000). The fundamental challenge in making

information delivery systems useful is to exploit the working context and the distinct information needs of each user

to present only the information that is related to the task-at-hand and is not yet known to the individual user (Fischer

Y. Ye and G. Fischer 8 Submission to ASE Journal (revision)

and Ye, 2001), rather than bombarding users with decontextualized and irrelevant information. A well-known

example of a decontextualized information delivery system that is almost universally unused is Microsoft Office’s

Tips of the Day.

Information delivery explores the power of implicit communication channels (Fischer, 2001) that are established

when reuse repository systems are integrated with development environments (Fischer, Nakakoji et al., 1998). Such

integration creates a shared workspace between software developers and reuse repository systems. Through this

shared workspace, reuse repository systems can infer the task of software developers by analyzing their partially

written programs and can then deliver task-relevant components without explicit queries from software developers.

Furthermore, reuse repository systems can create and maintain user models to represent particular software

developers’ existing knowledge of the reuse repository to ensure the delivery is personalized to varying individual

needs.

Retrieval-by-Reformulation. Due to the aforementioned conceptual gap and users’ unfamiliarity with the

information space of HFAs, many users are unable to create a well-defined query on their first attempt to locate

relevant information (Mili, Yacoub et al., 1999). Information systems can, at best, retrieve information that matches

the queries submitted by a user, and the retrieved information may not necessarily match the user’s real intentions,

many of which are not articulated. Retrieval-by-reformulation (Williams, 1984) is the process that allows users to

incrementally improve their queries after they have familiarized themselves with the information space by evaluating

previous retrieval results. Retrieval-by-reformulation is especially important in information delivery systems in

which information needs are inferred. By combining information delivery and retrieval-by-reformulation, the

information location process becomes a collaborative one in which computers and users complement each other’s

strengths (Terveen, 1995).

2.3 Knowledge-Based Systems and Reuse

The influence of knowledge-based systems on reuse is twofold. First, reuse repository systems can act as software

developers’ assistants to supplement their insufficient knowledge about components. Second, knowledge-based

approaches can be used to infer the needs for components from low-level user activities through the implicit

communication channel.

Knowledge Augmentation. Theories about distributed cognition (Salomon, 1993) have revealed that a cognitive

activity is primarily determined by its surrounding environment, which includes information present in both the

workspace and the memory of human beings. Subsequent problem-solving actions are chosen by incorporating new

information from the developer’s memory triggered by cues present in the workspace (Simon, 1996). This explains

why software developers with differing knowledge often choose very different approaches to develop the same task

(Visser, 1990). For example, for the same task, a software developer who recalls a certain component that can be

Y. Ye and G. Fischer 9 Submission to ASE Journal (revision)

reused in the task may take a bottom-up approach to design a program that is centered on the component, whereas

another developer who does not know or recall that component may take a top-down approach to further decompose

the task (Sen, 1997).

Through information delivery, unknown components can be reused in a manner similar to that of known components.

Because timely delivered components based on cues in the workspace become a part of the immediately accessible

information in the workspace, they can be regarded as the results of recall automated by computers, and motivate

software developers to take a design approach that favors reuse. With the information delivery mechanism, all

components in the reuse repository, whether known or not, may possibly actively contribute to the software

development process.

Finding Task-Relevant Components with Similarity Analysis. The two basic approaches to inferring the high-

level goals of users from their low-level activities and then finding task-relevant information to help them accomplish

the task are plan recognition and similarity analysis. Due to the difficulty of recognizing plans from an unfinished

program, we use the similarity analysis approach (Figure 2). Similarity analysis is based on the following

assumption: If the current working situation, defined by the self-revealing information in the workspace, is similar

enough to a previous situation in which information X was used, then it is highly possible that information X is also

needed in the current situation.

Software developers often use meaningful comments and identifier names to communicate the concept or the

functional purpose of a program (Soloway and Ehrlich, 1984; Anquetil and Lethbridge, 1998; Michail and Notkin,

1999); doc comments of Java are specifically introduced for that purpose. Other self-revealing information includes

the signatures of modules that define the types of input and output data (Zaremski and Wing, 1995). Therefore, the

relevance of a component to the task-at-hand can be determined by the conceptual similarity between the comments

and identifiers in the program being developed and the textual documents of components in the repository, and the

signature compatibility between the signatures of programs under development and those of components.

Latent Semantic Analysis. Latent semantic analysis (LSA) (Landauer and Dumais, 1997) is a free-text indexing and

retrieval technique that takes semantics into consideration. It can be used to determine the conceptual similarity

between the task-at-hand and components in the repository. From a large volume of training documents in a specific

Current situation
Current situation

needs

probably needs

similar

Information X
Situation A

Situation A

Current situation
Current situation

needs

probably needs

similar

Information X
Situation A

Situation A

Figure 2: Similarity analysis

Y. Ye and G. Fischer 10 Submission to ASE Journal (revision)

domain, LSA first creates a domain-specific semantic space of words to capture the overall pattern of their

associative relationship. Text documents and queries are represented as vectors in the semantic space, based on the

words contained; and the similarity between a query and a document is determined by the distance of their respective

vectors. The semantic space created by LSA is similar to the knowledge net that a human acquires about words

through reading (Kintsch, 1998), and therefore has the potential to reduce the conceptual gap between situation

model and system model in locating components.

3. CODEBROKER: DELIVERING TASK-RELEVANT AND PERSONALIZED

COMPONENTS

Guided by our conceptual framework, we have designed, implemented, and evaluated a reuse-conducive

development environment called CodeBroker (Figure 3), which encourages and enables software developers to reuse

unknown components through the autonomous delivery of task-relevant and personalized components. It supports

Java developers in reusing components within their development environment, Emacs, which is augmented by the

RCI-display (Reusable Component Information display, the lower buffer in Figure 3), where task-relevant and

personalized components are autonomously shown in response to the change of programming context in the editor.

Figure 3: An example of the use of CodeBroker

This screen image shows what a developer using CodeBroker sees. The developer wants to write a
method that creates a random number between two integers. Based on how the developer describes the
task in the doc comment and the signature before the cursor, several components are delivered in the
RCI-display (the lower buffer). The first of these delivered components, getInt, is a perfect match and
can be reused immediately.

Y. Ye and G. Fischer 11 Submission to ASE Journal (revision)

3.1 Overview of the CodeBroker System

CodeBroker consists of an interface agent and a back-end search engine (Figure 4). The interface agent runs

continuously as a background process in Emacs and mediates the software developer’s interaction with the back-end

search engine. The back-end search engine acts like many other existing software reuse repository systems: It accepts

queries and returns components that match the queries from the component repository. The component repository

contains indexes created by CodeBroker from the standard Java documentation that Javadoc generates from Java

source programs, and links to the Java documentation system.

In CodeBroker, however, a software developer does not need to directly interact with the search engine; the

interaction with the reuse repository system is automated by the interface agent, which autonomously extracts reuse

queries from the program editor and delivers personalized retrieval results. When a software developer enters a doc

comment in the editor, the interface agent extracts the contents of the doc comment and creates a query. The query is

left-click right-click

user updating

L4: Component
Repository

L3L2 L1

S
earch

 en
g

in
e

Comment: Create a random number between two limits
Signature: int <- int x int

Interface
agent

D
isco

u
rse m

o
d

el

U
ser m

o
d

el

Queries

left-click right-click

user updating

L4: Component
Repository

L3L2 L1

S
earch

 en
g

in
e

Comment: Create a random number between two limits
Signature: int <- int x int

Interface
agent

Interface
agent

D
isco

u
rse m

o
d

el

U
ser m

o
d

el

Queries

Figure 4: The system architecture of CodeBroker
Components that match the queries, which are extracted from doc comments and signatures, are
automatically retrieved from the component repository. The retrieved components that are not included in
the discourse model and the user model are delivered into the workspace. Discourse models (see Section
 3.4) remove task-irrelevant components (black dots), and user models (see Section 3.5) remove known
components (unshaded dots). Discourse models and user models can both be updated by users through the
Skip Components Menu. Users who want to know more about a component can go to the Java
documentation by clicking on the delivered component.

Y. Ye and G. Fischer 12 Submission to ASE Journal (revision)

passed to the back-end search engine, which retrieves a list of components that matches the query by using LSA (see

Section 3.2). The retrieval results are passed back to the interface agent. However, the interface agent does not

deliver all the retrieval results to the developer; it personalizes the retrieval results by removing those components

that are included in either the discourse model, which includes components that the developer, in previous

interactions with the system, has indicated are of no interest (see Section 3.4), or the user model, which contains

components already known to the software developer (see Section 3.5). The delivered components are shown in the

RCI-display immediately after the doc comment is entered.

If the developer cannot instantly find what he or she wants from the delivery based on the doc comment, the

developer can continue programming by defining the signature of the method. As soon as the signature definition is

finished (the left bracket ‘{’ before the cursor), the interface agent extracts the signature and combines it with the

preceding doc comment to create a new reuse query. Upon receiving the reuse query, the back-end search engine

retrieves a new list of matching components by combining LSA and signature matching (see Section 3.2). The

retrieval results are again delivered by the interface agent into the RCI-display after filtering via the discourse model

and the user model. For example, the first component in the RCI-display in Figure 3, which matches both the doc

comment and the signature, does exactly what the developer wants and can be reused right away.

CodeBroker presents information on reusable components with three different layers of abstraction. The first layer is

the RCI-display, in which 20 components (the number can be customized) are shown according to their task

relevance, and each component is accompanied by its rank of relevance, relevance value, name, and synopsis. To

reduce intrusiveness (Fischer, Nakakoji et al., 1998), users are not required to interact with the system if they are not

interested in the delivered components. If users are interested in certain components in the RCI-display, they can

trigger the presentation of the second layer of information with mouse movements. When the mouse cursor is moved

over the component name, the signature of the component is shown in the mini-buffer (the last line of Emacs in

Figure 3); and when the mouse cursor is over the synopsis, words contributing to the relevance between the

component and the task-at-hand are shown in the mini-buffer to reveal why this component is retrieved and to help

software developers refine their queries if necessary. The third layer of information, which is the most complete

description of a component, is shown in an external HTML browser. A left-click on the component name brings up

the full Javadoc documentation for the component (Figure 4).

If the software developer feels too many irrelevant components are delivered in the RCI-display, he or she can

activate the Skip Components Menu by right-clicking on delivered components to filter them out (Figure 4). Filtering

can be applied at three levels of granularity: (1) filtering out the component itself by choosing the first item in the

menu, (2) filtering out all components from its class by choosing the second item, or (3) filtering out all components

from its package by choosing the third item. Three commands exist for each chosen item. The first command, This

Buffer Only, removes the chosen item from the RCI-display buffer; the second command, This Session Only, not

only removes the chosen item from the buffer, but also adds it to the discourse model (see Section 3.4); and the third

Y. Ye and G. Fischer 13 Submission to ASE Journal (revision)

command, All Sessions, both removes the chosen item from the buffer and adds it to the user model (see Section

 3.5).

3.2 Locating Task-Relevant Components

CodeBroker explores both implicit and explicit communication channels to deliver task-relevant components. An

implicit communication channel refers to the passage of information from a user to a computer system that is not

explicitly initiated by the user but is implicitly inferred by the computer system, and an explicit communication

channel refers to the passage of information that is explicitly initiated by the user (Fischer, 2001).

By embedding its interface agent into Emacs, the development environment, CodeBroker creates an implicit

communication channel between software developers and reuse repository systems. Through the implicit

communication channel, CodeBroker autonomously extracts reuse queries from partially written programs and

delivers components that match the extracted queries; it then uses explicit communication channels—retrieval-by-

reformulation (see Section 3.3) and discourse models (see Section 3.4)—to allow software developers to improve the

task-relevance of delivered components explicitly and incrementally. This section describes the mechanisms of

extracting queries and retrieving components; the following sections describe retrieval-by-reformulation (Section

 3.3) and discourse models (Section 3.4).

Extracting Queries. Reuse queries are extracted from doc comments and signatures of the program on which a

software developer is working. A software program has three aspects: concept, code, and constraint. The concept of

a program is its functional purpose, the code is the embodiment of the concept, and the constraint is the environment

in which it runs. This characterization is similar to the 3C model of Tracz (Tracz, 1990), who uses concept, content,

and context to describe a component. Important concepts of a program are often contained in its informal

information structure. Informal information includes structural indentation, comments, and identifier names

(Soloway and Ehrlich, 1984), which are important beacons to understanding programs (Anquetil and Lethbridge,

1998; Michail and Notkin, 1999; Maletic and Marcus, 2001). One important constraint of a program is its type

compatibility, which is manifested in its signature. For a reusable component to be easily integrated, its signature

should be compatible with the environment into which it will be incorporated. Based on the assumption of similarity

analysis (Figure 2), the code of a component is highly likely to be reused if it shows either conceptual similarity—

the similarity between the textual document of a component and the doc comment extracted from Emacs—or

constraint compatibility—the signature compatibility that exists between the signature of a component and the

extracted signature, or both, to the programming task at hand.

Retrieving Similar Components. When a doc comment is entered by the user, CodeBroker retrieves from the

repository the components that show conceptual similarity. When a signature is entered, CodeBroker retrieves those

Y. Ye and G. Fischer 14 Submission to ASE Journal (revision)

components that show both conceptual similarity to the doc comment immediately before the signature and

constraint compatibility.

CodeBroker uses LSA (Landauer and Dumais, 1997) to compute the conceptual similarity. LSA starts by creating a

semantic space with a large corpus of training documents in a specific domain. We have used the Java Language

Specification, Java API documents, and Linux manuals as training documents to acquire a level of knowledge similar

to that of a Java programmer. The corpus contains 78,475 documents and 10,988 terms. A large term-by-document

matrix is created in which entries are normalized scores of the term frequency in a given document. This term-by-

document matrix is then decomposed, by means of singular value decomposition, into the product of three matrices:

a left singular vector, a diagonal matrix of singular values, and a right singular vector. These matrices are then

reduced to k dimensions by eliminating small singular values. The value of k often ranges from 40 to 400, but the

optimum value of k remains an open question and needs to be empirically determined. CodeBroker sets k to 300. A

new matrix, viewed as the semantic space of the domain, is constructed through the production of the three reduced

matrices. In this new matrix, each row represents the position of each term in the semantic space. Terms are re-

represented in the newly created semantic space. The reduction of singular values is important because it captures

only the major, overall pattern of associative relationships among terms by ignoring the noises accompanying most

automatic thesaurus construction based simply on co-occurrence statistics of terms.

After the semantic space is created, each reusable component is represented as a vector in the semantic space based

on terms contained. The extracted query is represented in the same way. The conceptual similarity of a query and a

reusable component is thus determined by the Euclidean distance of the two representative vectors. CodeBroker

retrieves 20 components (the number can be easily customized by users) that have the highest similarity values, and

the similarity value is shown in the second column in the RCI-display (Figure 3).

The constraint compatibility is determined by signature matching. Signature matching is the process of determining

the compatibility of two components in terms of their signatures (Zaremski and Wing, 1995). It is an indexing and

retrieval mechanism based on type constraints. The basic form of the signature of a method is:

Method:InTypeExp->OutTypeExp

where InTypeExp and OutTypeExp are type expressions resulting from the application of a Cartesian product

constructor to all their parameter types. For example, for the method,

int getRandomNumber (int from, int to)

the signature is

 getRandomNumber: int x int -> int

Two signatures

Sig1:InTypeExp1->OutTypeExp1

Y. Ye and G. Fischer 15 Submission to ASE Journal (revision)

Sig2:InTypeExp2->OutTypeExp2

match if and only if InTypeExp1 is in structural conformance with InTypeExp2, and OutTypeExp1 is in structural

conformance with OutTypeExp2. Two type expressions are structurally conformant if they are formed by applying the

same type constructor to structurally conformant types.

This definition of signature matching is very restrictive because it misses some components whose signatures do not

exactly match, but which are, in practice, similar enough to be reusable after slight modification or with wrappers

added. Partial signature matching relaxes the definition of structural conformance of types: A type is considered as

conforming to its more generalized form or more specialized form. For procedural types, if there is a path from T1 to

T2 in the type lattice, T1 is a generalized form of T2, and T2 is a specialized form of T1. For example, in most

programming languages, integer is a specialized form of float; and float is a generalized form of integer. For object-

oriented types, if T1 is a subclass of T2, T1 is a specialized form of T2, and T2 is a generalized form of T1.

The constraint compatibility value between two signatures is the product of the conformance value between their

types. The type conformance value is 1.0 if two types are in structural conformance according to the definition of the

programming language. It drops a certain percentage if one type conversion is needed, or there is an immediate

inheritance relationship between them, and so forth. The signature compatibility value is 1.0 if two signatures exactly

match.

3.3 Supporting Retrieval-by-Reformulation

Doc comments and signatures may not describe the task-at-hand completely and precisely. Furthermore, current

information retrieval algorithms, including LSA, are unable to retrieve all of the task-relevant information and only

the task-relevant information (Salton and McGill, 1983). CodeBroker unavoidably delivers some irrelevant

components and misses some relevant components. The retrieval-by-reformulation (Williams, 1984) interface

(Figure 5) in CodeBroker enables software developers to incrementally reformulate reuse queries, after they have

Figure 5: The retrieval-by-reformulation interface

Y. Ye and G. Fischer 16 Submission to ASE Journal (revision)

studied the delivered components, until they are able to locate what they want.

The retrieval-by-reformulation interface is an explicit communication channel, which must be activated by software

developers to refine queries and limit the range of retrieval. Most reuse repositories are organized hierarchically. For

example, components in Java are placed in different packages and classes according to their application domains.

Most development tasks involve only a part of the repository, and software developers are not interested in

components from irrelevant packages and classes. Through the retrieval-by-reformulation interface, software

developers can exclude components from certain packages and classes by adding the names of these components to

the Filtered Components field, or limit the search to packages and classes of interest by adding package or class

names to the Interested Components field (Figure 5).

Although the interface can also be used as a traditional search interface, software developers who do not know the

structure of the repository well enough may not be able to specify the interested or uninterested parts at their first

searching attempt. Autonomously delivered components can familiarize software developers with the repository and

enable them over time to formulate reuse queries that are closer to the system model of the reuse repository (Kintsch,

1998).

3.4 Creating and Using Discourse Models

Doc comments and signatures describe the immediate programming task, namely, the module that the software

developer is going to develop. A module is only a part of the whole development task, and the functionality of the

module is deeply connected with other modules that have been developed so far. Therefore, software developers’

interactions with the system in the development of previous modules provide a discourse to interpret the current

development activity and to limit the applicability of information in the current situation. This is similar to the

conversation structure in natural language, in which a new utterance is interpreted by the listener in light of the

conversational discourse defined by previous interactions.

The interaction history between a software developer and CodeBroker in a development session is captured in a

discourse model, which is used as a filter to improve the task-relevance of delivered components. A development

session is defined by the software developer, who starts and ends the session by activating and deactivating the

CodeBroker system, respectively.

Each development session starts with an empty discourse model that is incrementally updated by the software

developer as he or she interacts with the system. Discourse models in CodeBroker contain components that do not

interest software developers in the current development session because it is often much easier for a user to identify

misfits than fits (Alexander, 1964). As a software developer starts a development session, he or she can gradually

add components that are not of interest to the discourse model by using the Skip Components Menu (Figure 4),

which tells the CodeBroker system not to deliver those components again in the same session. Figure 6 shows an

Y. Ye and G. Fischer 17 Submission to ASE Journal (revision)

example of a discourse model in which the subject was asked to write a program that creates, in a specified directory,

the backups of a set of files. This programming assignment, from one of our evaluation experiments, involved

several tasks (i.e., writing several methods). The first task the subject conducted was to write a method to parse

command lines. He wrote the following doc comment (Figure 7):

/** Parse the command line args and copy files */

When this doc comment was entered, CodeBroker delivered a list of task-relevant components (see the RCI-display

in Figure 7). The subject noticed that the first component setActionCommand in the RCI-display was from the

java.awt package. Because the subject was sure that he would not need any components from that package for his

program, he added java.awt to the discourse model with the Skip Components Menu by choosing the This

Session Only command.

After finishing the first task, the subject started to work on the second task: copying a file into a specified directory.

After using as a filter the discourse model the subject had updated in his first task, CodeBroker delivered several

components in response to the subject’s following doc comment (Figure 8(a)):

/** Given a file and a directory copy the file into the directory */

Figure 6: An example discourse model

Figure 7: Updating the discourse model

Y. Ye and G. Fischer 18 Submission to ASE Journal (revision)

He used the isDirectory (the first component in the RCI-display) component to test if the input directory name

already existed as a directory, and mkdirs (the third one) to create a new directory if the directory did not yet exist.

However, if the subject had not added java.awt to the discourse model in his first task, the first two components

delivered by CodeBroker (Figure 8(b)) would have been getDirectory and setDirectory, both of which were from

the java.awt package and were not reusable in the subject’s programming task; thus, the subject would not have

been able to see the mkdirs component immediately.

Both a discourse model and the Filtered Components field in the retrieval-by-reformulation interface (Figure 5) are

used to remove irrelevant components specified by software developers. However, the former is used not only in the

current delivery but also in all following deliveries in the same development session, whereas the latter is used only

for the current delivery. Such a design is meant to give software developers different levels of control of the scope of

component location according to their needs.

(a) With the discourse model

(b) Without the discourse model

(a) With the discourse model

(b) Without the discourse model

Figure 8: Deliveries with and without the discourse model

Y. Ye and G. Fischer 19 Submission to ASE Journal (revision)

3.5 Delivering Personalized Components

Delivering a component that is well known to a software developer is not desirable. Because each software developer

has unique knowledge about the reuse repository, CodeBroker needs to personalize its delivery to each developer’s

individual needs.

CodeBroker uses user models (Figure 9) to represent software developers’ knowledge about the reuse repository.

User models contain both well-known and vaguely known components (L1 and L2, respectively, in Figure 1). The

interface agent of the CodeBroker system removes only well-known components contained in the user model from

the retrieval results returned by the search engine because, although software developers can retrieve L2 components

by themselves, automatic delivery can save the locating time.

The contents of user models are collaboratively maintained by the system and users. CodeBroker creates the initial

user model by analyzing the Java programs the software developer has created so far. A software developer can

explicitly adapt his or her user models. When a known component is delivered and the user does not want the same

component to be delivered again, he or she can use the Skip Components Menu (Figure 4) to add the component, its

class, or its package to his or her model. Such user-added components do not have a use-time field in the user model;

they belong to L1 in Figure 1.

CodeBroker implicitly updates user models when it observes that software developers invoke a method component

during their programming. It uses the following heuristics to determine when a method component is invoked. A

Figure 9: An example user model

A user model is a Lisp list with the following format:
(package
 (class
 (method use-time use-time use-time …)))
where the use-time field indicates when the developer reused the
component. No use-time field means the component was added by the user.
An empty class field or method field means the whole package or class is
known to the developer.

Y. Ye and G. Fischer 20 Submission to ASE Journal (revision)

method invocation in Java is followed by a left parenthesis. Whenever a left parenthesis is entered in the editor, after

CodeBroker has excluded the non-method invocation cases, such as the Java for statement, it scans back to extract

the name of the method. Because a method name may not be unique in Java, CodeBroker needs to determine its class

and package to add it to the user model. If the method is an instance method, CodeBroker determines its class by

looking up the declaration of the variable that precedes the method. If the method is a class method and its class is

not included in the method invocation statement, CodeBroker looks up all imported classes of the program to find

the class that has that method. If the class is not unique in the repository, CodeBroker picks the package that is

imported in the beginning of the program with the Java import statement. Only method components are implicitly

added to user models in CodeBroker because the software developer may not know the entire class, even if a method

of the class is reused. The component added to user models by the system has a use time, which is the time the

component is detected to be invoked in the editor. Components with more than three use times (the number is

customizable) are considered well known (i.e., included in L1 in Figure 1); components with fewer than four use

times are considered vaguely known (L2).

Both the user model and the discourse model are used as filters by CodeBroker to tailor the delivery to a particular

context and a particular developer by removing unwanted components from retrieval results, and are maintained

through the same interface (Skip Components Menu). However, they are conceptually different. The discourse model

includes components that are not of interest in the current session no matter whether the software developer knows

them or not; those components need to be delivered again when a different development session starts. Thus, the use

of the discourse model results in the context-awareness of the CodeBroker system because, even for the same reuse

query and the same developer, different components are delivered when the context (defined by the interaction

history between the developer and the system in one development session) under which the query is extracted is

different. User models include components known to individual software developers no matter whether these

components are related to the current session or not, and they persist through different development sessions. Thus,

the use of the user model results in the user-awareness of the CodeBroker system because, even for the same reuse

query, different components are delivered for different users.

The discourse model and the user model also are implemented differently. The discourse model is stored in the

internal memory and is re-initialized to empty when the system is re-started, whereas the user model is stored in

permanent storage and is loaded into the system each time it is started. A user model is the shared long-term memory

between CodeBroker and a developer; in contrast, a discourse model is the shared short-term memory.

4. EVALUATION

To assess the usability and usefulness of CodeBroker, we conducted empirical evaluation experiments with software

developers. The reuse repository used in our evaluation experiments included 673 classes and 7,338 methods from

Y. Ye and G. Fischer 21 Submission to ASE Journal (revision)

the Java 1.1.8 core library and the JGL 1.3 library (created by Objectspace, Inc.). Through the experiments, we

attempt to answer the following questions:

 Does CodeBroker enable software developers to reuse unknown components?

 Does CodeBroker encourage software developers to explore the possibility of reuse?

 Is the technical approach taken by CodeBroker—inferring reuse queries from doc comments and

signatures—good enough to find components relevant to the task-at-hand?

 Do discourse models improve the relevance of delivered components?

 Do user models contribute to the personalization of component deliveries?

4.1 Recall and Precision

Information retrieval systems are conventionally evaluated by recall and precision (Salton and McGill, 1983). Recall

is the proportion of relevant material actually retrieved in answers to a search query; and precision is the proportion

of retrieved material that is actually relevant. Figure 10 shows the recall-precision curve for the results of executing

19 queries in CodeBroker (see Table 1) for examples of queries and relevant components). One half of the queries

were created by us, and the other half were collected from empirical experiments and frequently asked questions

(FAQs) in Java-related newsgroups. The recall-precision data shown in Figure 10 are lower than those reported in

the evaluations of other reuse repository systems (Frakes and Pole, 1994). However, retrieval systems are

comparable only when all the queries and the criteria for relevance are the same. Our criteria for relevance were very

strict because we considered as relevant only those components that could actually be reused in implementing the

tasks described by the queries (see Table 1). Furthermore, Frakes and Pole’s experiments were conducted to find

single Unix commands for a given task from a set of 120 Unix commands, whereas our experiments were to find

components that could be combined to implement a programming task from a repository that contained 7,338 items.

Figure 10: The recall-precision curve

Y. Ye and G. Fischer 22 Submission to ASE Journal (revision)

Further experiments are needed to compare the effectiveness of the retrieval mechanism used in the CodeBroker

system with that of other systems by subjecting all systems to the same test conditions. Because the major goal of our

research is not the invention of a new retrieval mechanism, but the new interaction style with a reuse repository

system that is conducive to reuse, our future research includes identifying through experiments and incorporating

into the CodeBroker system a better retrieval mechanism that is also based on the free-text information retrieval

technique.

4.2 The Structure of the Experiments

Five subjects who had extensive software development experience voluntarily participated in the evaluation

experiments. Their expertise in Java varied from medium to expert (Table 2). Our experiments adopted both the

multi-project variation approach, in which one subject conducted two or three different projects, and the replicated

project approach, in which one project is conducted by two or more subjects (Basili, Selby et al., 1986).

Twelve experiments were conducted. In each experiment, the subject was asked to implement a predetermined small

task. Each task could be implemented with different combinations of components from the repository. The following

is a sample task:

Traditionally, Chinese write numbers with a comma inserted at each fourth number from the right. For

example, 1,000,000 is written as 100,0000. Implement a program that transforms the Chinese writing format

(100,0000) to the Western format (1,000,000).

Before the experiment, CodeBroker first created initial user models for the subjects by analyzing the Java programs

they had developed recently. Not surprisingly, the user model for the subject who had programmed with Java for 7

years and was a well-recognized expert Java programmer had the largest number: It included 605 methods from 164

classes and 32 packages (Table 2). Still, this was less than 10% of the methods included in the repository of the

experiment. Because all subjects were quite experienced software developers who knew Java syntax very well, their

Table 1: Examples of queries and relevant components

Queries Relevant Components

Determine if it is a leap year GregorianCalendar.isLeapYear

Change the file name
File.renameTo
File.canRead
File.canWrite

Append two strings StringBuffer.append
String.concat

Given a file and a directory, copy the file into the directory File.getAbsolutePath
File.getName

Check if a directory exists; if not then create it File.mkdir
File.isDirectory

Y. Ye and G. Fischer 23 Submission to ASE Journal (revision)

difference in Java programming expertise came mainly from differences in their knowledge level of the library

components.

Subjects were instructed to follow their normal practice during the experiments. They were encouraged to take

advantage of the components delivered by CodeBroker, but they were not forced to do so. They could also use their

normal ways of locating components with books or the Java documentation system. Subjects were asked to describe

their implementation plans for the given task before they started programming. We asked them to think aloud during

the experiments, and we videotaped all experiments. Analyses were based on automatically logged data, transcribed

videotapes, and post-experiment interviews in which we asked questions regarding their experience with

CodeBroker.

4.3 Findings of Experiments

Table 3 shows the overall results of the experiments. Subjects reused delivered components during 10 of the 12

experiments. Column 3 shows the total numbers of distinct components reused in each experiment, which included

the components delivered by CodeBroker as well as those the subjects either directly reused through their own

knowledge or located through browsing or searching without CodeBroker. Column 4 shows the numbers of the

components that the subjects reused from the deliveries made by CodeBroker. The 12 programs created by the

subjects used 57 distinct components, 20 of which were delivered by CodeBroker.

Reusing Unanticipated Components. Of the 20 reused components that were delivered, the subjects did not

anticipate the existence of 9 (see 5th column in Table 3). In other words, those 9 components could not have been

reused without the support of CodeBroker, and the subjects instead would have created their own solutions. As two

subjects commented in the interviews:

“I would have never looked up the roll function by myself; I would have done a lot of stuff by hand. Just

because it showed up in the list, I saw the Calendar provided the roll feature that allowed me to do the task.”

“I did not know the isDigit thing. I would have wasted time to design that thing.”

Table 2: Programming knowledge and expertise of subjects

Subject S1 S2 S3 S4 S5

Years of programming in general 3 or 4 5 or 6 8 10+ 10+

Years of programming with Java 10 months 4 4 7 5

Self-evaluation of Java expertise
(1: novice 10: expert)

4 7 7 or 8 10 7

Initial user models
(package#, class#, method#)

5, 23, 55 9, 53, 140 10, 51, 160 32, 164, 605 8, 41, 124

Y. Ye and G. Fischer 24 Submission to ASE Journal (revision)

Reducing Locating Time. Although the subjects anticipated the existence of the other 11 components (see 6th

column in Table 1), they had known neither the names nor the functionality, and had never reused them before. They

might have reused the 11 components if they could manage to locate them by themselves. In interviews, subjects

acknowledged that CodeBroker made locating them much easier and faster.

“It beats browsing. Because the way that I normally would have done the task, I would do a lot of browsing and

then write the code alongside. So this reduced the browsing and searching.”

 “I did not have to start browsing and go through the packages, and I did not have to go through the index of

methods. I could just go to the short list [RCI-display], find it and click it.”

“The key benefit of this [CodeBroker] is that it gives you methods for every class, not like this one [the Java

documentation system] that you have to first find which class it is in and then go to the class. Although it has an

index of methods, it is hard to find here [the Java documentation system].”

Snowball Effects of Deliveries. CodeBroker not only supported subjects in reusing components right off the

deliveries, but also triggered them to reuse other unknown components (column 7) that were not directly delivered

but were needed to reuse the delivered components. The reuse of one component often requires the reuse of other

Table 3: Overall results of empirical evaluations

1 2 3 4 5 6 7 8 9 10 11
Breakdown of
reused components
from deliveries

S
ub

je
ct

E
xp

er
im

en
t n

o.

T
ot

al
 n

o.
 o

f
di

st
in

ct

co
m

po
ne

nt
s

re
us

ed

N
o.

 o
f

di
st

in
ct

 c
om

po
ne

nt
s

re
us

ed
 f

ro
m

 d
el

iv
er

ie
s

N
o.

 o
f

co
m

po
ne

nt
s

w
ho

se
 e

xi
st

en
ce

 w
as

un

an
ti

ci
pa

te
d

(L
4—

L
3)

N
o.

 o
f

 u
nk

no
w

n
co

m
po

ne
nt

s
w

ho
se

ex

is
te

nc
e

w
as

an

ti
ci

pa
te

d
(L

2
&

L

3)

N
o.

 o
f

re
us

ed
 c

om
po

ne
nt

s
tr

ig
ge

re
d

by
 d

el
iv

er
ie

s

T
ot

al
 n

o.
 o

f
re

tr
ie

ve
d

co
m

po
ne

nt
s

N
o.

 o
f

co
m

po
ne

nt
s

re
m

ov
ed

by

 d
is

co
ur

se
 m

od
el

s

N
o.

 o
f

co
m

po
ne

nt
s

re
m

ov
ed

by

 u
se

r
m

od
el

s

R
at

in
g

on
 u

se
fu

ln
es

s
of

 th
e

sy
st

em
 (

1:
 w

or
st

 1
0:

 b
es

t)

1 10 4 2 2 0 168 45 15
S1

2 3 1 1 0 1 28 10 0
7

3 7 1 1 0 0 140 0 5

4 4 1 1 0 0 52 0 0 S2

5 5 3 0 3 1 160 0 14

4

6 5 2 1 1 1 60 0 0

7 4 3 1 2 1 20 0 1 S3

8 3 0 0 0 0 60 0 0

8.5

9 4 3 0 3 0 80 7 0
S4

10 3 1 1 0 2 140 68 0
7

11 4 1 1 0 2 100 0 1
S5

12 5 0 0 0 0 420 0 0
8

Sum 57 20 9 11 8 1428 130 36

Y. Ye and G. Fischer 25 Submission to ASE Journal (revision)

supplementary components that are coupled through parameter passing or accessing common class variables. In the

experiments, when those supplementary components were not known, subjects used the CodeBroker deliveries as

starting points and followed the hyperlinks of the documentation system to learn and reuse them. Subjects had not

known those triggered components before; the deliveries motivated software developers to reuse them.

Knowledge Augmentation. Information delivery not only encourages software developers to reuse components but

also augments their abilities in constructing implementations centered on the delivered components that they have

not known before. This observation was best illustrated with the different approaches taken by subjects S2, S3, and

S5 when they implemented the sample task described in Section 4.2.

In describing his implementation plan, subject S3 anticipated that some methods from the java.text.NumberFormat

class might help him read numbers in Chinese format and write it out in Western format, although he did not know

exactly what those methods were nor what their functionality was. As a result, he successfully constructed his

program concisely by using methods that were located by CodeBroker after he had limited the search to the

java.text package with the retrieval-by-reformulation interface (Figure 5). Subject S5, who did not even know the

existence of the java.text package, described his implementation plan as “to parse the number, take out the

commas and insert the commas.” As subject S5 started programming, he noticed a delivered component from the

java.text.NumberFormat class, changed his original plan, and came up with a program similar to that of subject S3.

Subject S2, who also did not know the java.text.NumberFormat class, described a plan similar to subject S5’s

original one. Because no component from the java.text.NumberFormat class was delivered based on his comments,

he stuck to his original plan and constructed a different program from scratch.

In the experiments, we observed several other situations similar to the above example in which delivered components

stimulated subjects to change their original plans to a new implementation approach that reused the delivered

components.

Effectiveness of Delivering Components Based on Inferred Reuse Queries. CodeBroker infers reuse queries

from doc comments and signatures contained in the program being worked on in the editor. The effectiveness of

delivering task-relevant components depends on the quality of doc comments written by software developers and the

retrieval mechanisms used.

The more knowledge subjects had about the repository, the more suited their doc comments were for retrieving

relevant components. One subject described why he wrote one particular comment:

“I knew there should be a class called NumberFormat or DecimalFormat having the method

format...That's why I wrote the word ‘format,’ because I knew it would catch those.”

As a result, he found what he expected from the deliveries of CodeBroker.

Y. Ye and G. Fischer 26 Submission to ASE Journal (revision)

Different subjects had different styles of writing comments. Some wrote very long and elaborate comments to

describe everything they wanted to do. Others wrote concise comments focusing on the major task of the program.

Because descriptions of components in the repository were short and concise, the short and focused comments made

the delivered components more task-relevant.

The ratio of the number of reused components to the total number of retrieved components is rather low (column 8 in

Table 3 shows the total number of components retrieved in each experiment). This low ratio is due to the following

reasons:

(1) Many components were retrieved while some subjects were to trying to locate some components that

actually did not exist in the repository but somehow they believed should exist—to (note in Figure 1 that a

part of L3 is outside of L4). For example, in experiment 12, the subject (S5) tried to find some components

that could process events based on their priorities. His repeated search efforts by changing doc comments in

the editor made the system retrieve 420 components, but none of these components were reusable because

the components he was looking for simply did not exist in the repository. Similar things happened in

experiments 5 and 10 to subjects S3 and S4, respectively. On the one hand, repeated failures in component

searching are not desirable because they waste software developers’ time; on the other hand, they indicate

that CodeBroker is meeting one of its major design goals—to motivate software developers to attempt to

reuse. In explaining why he repeatedly searched for the nonexistent components, subject S5 commented:

“Having this system [CodeBroker], I would try to explore more. I would spend more time to see whether

this thing exists or not.”

(2) Of the retrieved components, some that were not reused by subjects were relevant. Many programming

tasks can be implemented with different sets of components, and software developers only need a small

subset of the retrieved relevant components to accomplish their tasks. A relatively objective, although not

accurate, way of evaluating the effectiveness of retrieval mechanisms is to compute their recall and

precision (Figure 10).

(3) The CodeBroker system retrieves and delivers components both when software developers enter a doc

comment and when software developers enter the signature of a method. As will be discussed in the

following paragraph, components retrieved and delivered at the entry of signature declaration were not

reused at all. That means that about 50% of the retrieved components were of no use, but they did not

substantially affect the effective use of the system or the retrieval performance of the system because those

deliveries were hardly noticed by the subjects.

The signature-matching mechanism did not play too much of a role in the experiments. Only one subject tried once

to look at the change of delivery when he finished the signature declaration of a method, but the system failed to

improve the task-relevance of the delivery because no component in the repository was both similar in comments and

Y. Ye and G. Fischer 27 Submission to ASE Journal (revision)

compatible in signatures to the task of the subject. In all other experiments, subjects shifted their attention to the

delivery buffer immediately after they had written the comments. When they found the desired components, they

moved back to programming and did not pay any attention to the delivery buffer until they wrote the next doc

comment. The original design goal of adopting the signature matching mechanism in CodeBroker was to help

developers find components that could be reused to replace the module under development. However, in the

experiments, all subjects used the system to look for components that could be reused as parts of the module

implementation instead of components to replace their intended implementation. The system is apparently more

effective in delivering implementation parts than delivering replacement components.

Roles of Discourse Models. Discourse models, when created, improved the task-relevance of delivered components

by filtering out components of packages and classes in which the subject was not currently interested. In four

experiments, subjects added uninterested packages and classes to their discourse models, which removed about 10%

of retrieved components from the deliveries (column 9). A careful examination of those removed components found

that they could not be reused in implementing the tasks in the corresponding experiments. Because the discourse

model depends on the interaction history between a software developer and the system in a particular development

session that consists of several related tasks, it is expected to become more useful in natural settings than in the

experiments in which subjects implemented only two or three unrelated tasks in a short time span. Further

investigations are needed to confirm this hypothesis.

Roles of User Models. The experiments did not yield strong and conclusive data regarding the role of user models.

Only 2% of the retrieved components were filtered by user models (column 10). That might be due to two reasons:

(1) initial user models were not complete because subjects did not give us all the Java programs written by them; and

(2) to observe the effectiveness of delivering unknown components, subjects were assigned tasks that involved the

part of the repository they did not know very well, and, consequently, most delivered components were unknown. In

the interviews, all subjects said they found that not too many known components were delivered. Nevertheless, user

models helped and were needed to reduce the number of irrelevant components to be delivered because a careful

examination of components removed by user models showed they could not be reused in the tasks. Similar to

discourse models, the real value of user models is expected to be more evident when the system is used by software

developers for a relatively long time.

The experiments reveal two design problems with the current user modeling approach in CodeBroker. The first

problem is that because user models are kept permanently by CodeBroker, some subjects were concerned that if they

added known components, the system would never deliver those components again. An interface for software

developers to edit their user models might be able to alleviate this concern. The second problem was pointed out by a

subject who said: “When you have programmed for a very long time, you may forget what you have used in your

first program.” Counting the number of uses in the current user modeling approach is too simplistic; there should be

Y. Ye and G. Fischer 28 Submission to ASE Journal (revision)

a forgetting mechanism incorporated to decide when to remove from user models those components that have not

been reused by the software developers for a designated period of time. Another possible solution is to design a

better presentation interface in the RCI-display window to allow software developers to turn on and off the user

model-based filtering, or to arrange the order of delivered components so that known components may still be

presented by the system as a reminder but will not hinder software developers from discovering unknown

components.

Summary. Overall, the experiments have shown that information delivery can promote reuse by supporting the reuse

of unanticipated components, reducing the cost of locating components, and augmenting software developers’

capabilities in constructing new programs with components. Most subjects appreciated the support provided by

CodeBroker and gave high ratings in terms of its usefulness, as shown in column 11 in Table 3, on a scale from 1

(totally useless) to 10 (extremely useful), and claimed that they would like to use CodeBroker as their daily

programming environment. Even subject S2, who gave the lowest score (4), said, “It is right on the threshold that

maybe I would use it.”

5. DISCUSSION

The success of an information delivery system hinges on how many cues it can obtain from users’ working

environments to infer their needs for new information and retrieve that information (Nardi, Miller et al., 1998).

Currently, the performance of CodeBroker is affected by the quality of doc comments and documents of components.

Although LSA can reduce the conceptual gap between situation model and system model with fine-tuned domain-

specific semantic spaces, the results are still far from satisfying, as we can see from the recall-precision curve (Figure

10). We are investigating more sophisticated mechanisms to retrieve and deliver components based on other cues in

software development environments. For example, a software developer may write a program based on a known

design pattern or framework (Gamma, Johnson et al., 1994), which places extra constraints on the type of

components that can be reused. Such constraints can be utilized to improve the task-relevance of delivered

components.

Reuse takes place in different phases of software development. The granularity of reusable components varies in

different phases, but in all phases, software developers must be able to locate the needed components. CodeBroker is

a “proof-of-concept” system that investigates the effectiveness of component delivery at the implementation level.

This is important because it enhances the productivity of programmers. The opportunity of reuse depends on what

software developers know of the repository when they are designing or implementing software. Delivering task-

relevant and personalized reuse information can increase the reuse opportunity limited by the knowledge of software

developers. The underlying design principles of CodeBroker can be extended to other phases of software

development, and similar support can be provided. Software development is a knowledge-intensive activity, and

Y. Ye and G. Fischer 29 Submission to ASE Journal (revision)

reusable components are only a portion of the knowledge needed. The information delivery mechanism is applicable

not only to software components but also to other types of software development knowledge and in other phases of

the software engineering process.

We are careful in extrapolating our findings from the experiments with CodeBroker, in which the repository

consisted of components that were of very high quality, carefully documented, and highly trusted by software

developers. Subjects were highly motivated to learn how to reuse those relevant components delivered by the system.

We need to do more experiments to investigate whether the same conclusion holds with repositories that come from

less respected sources. To answer this question, we will investigate the social aspects of software reuse, such as what

makes software developers trust a component. The invisibility of software systems makes it impossible for software

developers to judge the quality of components by their external appearances, and the complexity of software systems

makes it difficult to judge the quality of components by their internal structure (Brooks, 1995). Our approach to

addressing the trust issue is to look at the social context of components (Brown and Duguid, 2000): who produces

them, who has reused them, and what the people who have reused them say about them. We are currently developing

a trust model that can provide circumstantial evidence of the quality of a component based on the trust relationship

among members of the developer community (Fischer, Scharff et al., 2003).

6. EVOLUTIONARY CONSTRUCTION OF REUSE REPOSITORIES

As mentioned in the introduction, the success of systematic reuse involves two intertwined issues: the creation and

evolution of a reuse repository and the reuse of components from the repository. Accordingly, reuse-conducive

development environments need to address the two issues simultaneously. The CodeBroker system is not yet a

complete reuse-conducive development environment because it currently addresses only the latter issue: to motivate

software developers to reuse by providing a better interaction interface to reuse repository systems. Our ongoing

research efforts in extending CodeBroker are focusing on the former issue: to provide mechanisms that enable and

encourage software developers to participate in the creation and evolution of the reuse repository.

Most of the past reuse research is conducted under the assumption that the creation and evolution of components and

the reuse of components are two distinct phases because it is believed that a high-quality component repository can

be produced and maintained by only a few select component developers (Poulin, 1999). However, the unexpected

huge success of open-source software systems (Raymond and Young, 2001) prompts us to revisit this assumption. In

our research toward the creation of reuse-conducive development environments, we consider the creation and

evolution of components and the reuse of components as mutually enabling processes, both performed by the users

of the reuse repository. This section outlines the theoretical differences between our approach, which we call the

decentralized, evolutionary paradigm, and the traditional approach, which we call the centralized paradigm.

Y. Ye and G. Fischer 30 Submission to ASE Journal (revision)

6.1 The Centralized Paradigm

The dominant paradigm of instituting a systematic reuse program in a software development organization is the

centralized top-down approach (Prieto-Diaz, 1996). This paradigm makes a clear distinction between producers and

consumers of reusable components (Fafchamps, 1994): A selected few component producers are dedicated to the

development and maintenance of reusable components, which are then reused by application developers who are

component consumers only. Such a clear distinction between component producers and consumers creates a high

threshold for introducing reuse into the practices of software development organizations for the following reasons

(Fischer, 2002):

(1) Application domains are not static; they change as quickly as business environments and practices, user

requirements, and technology change. It is almost impossible to conduct a complete domain analysis and

create a reuse repository that would be applicable in unforeseeable future applications.

(2) A dedicated component development team demands huge initial investments whose payoffs cannot be

easily estimated; therefore, persuading top-level managers to commit to supporting reuse is an extra

challenge.

(3) The clear separation between component producers and consumers creates an interest conflict between the

two groups, with the former aiming at getting their produced components reused and the latter aiming at

getting their work done with or without reuse. Application developers (component consumers) may view the

reuse repository created by a separate component development team as an alien artifact that is forced upon

them, and may thus develop the “Not Invented Here” syndrome to refuse reuse (Joos, 1994).

6.2 The Decentralized, Evolutionary Paradigm

For a long time, it was thought that such complex systems as operating systems and reuse repositories could be

developed only in a centralized approach, or a cathedral style (Raymond and Young, 2001), as described in Section

6.1, to guarantee the high quality of the systems. The great success of such open-source software systems as Linux

proves that complex systems can also be created incrementally in a bazaar style (Raymond and Young, 2001)

through small contributions of large, and often distributed, user communities. The Seeding, Evolutionary Growth,

and Reseeding (SER) model (Figure 11) that we have developed over the years for understanding the process of

evolving complex systems provides a conceptual framework to understand this bazaar style (Fischer, 1998). We are

instantiating the SER model in software reuse to find an approach for the evolutionary construction of reuse

repositories by a large number of application developers rather than a few selected component developers.

In the seeding phase, component developers create an initial reuse repository that is intended to evolve by using one

of the following two approaches: (1) developing components for a particular domain as the result of domain analysis

Y. Ye and G. Fischer 31 Submission to ASE Journal (revision)

or product-line analysis (Griss, 2000); or (2) extracting reusable components directly from existing software systems

(Etzkorn and Davis, 1997). The concept of a seed is based on the observation that an initial repository does not need

to be perfect because an 80% solution that can be deployed and evolved incrementally is preferable to waiting for a

100% solution that never happens (Schmidt, 1999).

The evolutionary growth phase is one of unplanned evolution as the seed is reused by application developers in their

work. During this phase, the seed plays two roles: It provides resources for work and it accumulates the products of

work. Evolutionary growth happens as application developers modify components in the reuse repository for their

own purposes and then contribute the modified components back to the reuse repository. During this evolutionary

growth phase, bug-fixes, better documentation, the generalization or specialization of original components, and new

components can all be captured and added to the reuse repository.

A reseeding process is needed when the growth makes the repository too chaotic to grow further. During reseeding,

the repository is reorganized, and its components are refactored and generalized, based on their use and the

information added by software developers during the evolutionary growth. In this phase, components that have not

been reused over a long period of time would be removed.

Without application developers who are motivated to contribute, reuse repositories cannot evolve. Factors that affect

motivation are both cognitive (intrinsic) and social (extrinsic). The precondition for motivating software developers

to contribute is that they must derive an intrinsic satisfaction in accomplishing their tasks and goals by benefiting

from the reuse repository at first; then they will reciprocate with their own work for the benefit of others (Grudin,

Figure 11: The Seeding, Evolutionary Growth, and Reseeding (SER) model

Y. Ye and G. Fischer 32 Submission to ASE Journal (revision)

1994; Karat, Karat et al., 2000). The CodeBroker system increases the opportunity for application developers to

obtain immediate benefits from the existing reuse repository through its delivery mechanism. To abide by the social

norm of generalized reciprocity, software developers are more likely to feel obliged to return the favor by

reciprocating with their own work for the benefit of others (Nahapiet and Ghoshal, 1998). Intrinsic motivation is

positively reinforced when social conventions of the community recognize and reward such behaviors (Ye and

Kishida, 2003). In addition to reducing the technical and cognitive difficulties in reusing components and

contributing to the reuse repository, reuse-conducive development environments need to enable developer

communities to form, develop, and maintain a sense of shared identity around reuse repositories. Studies of

successful virtual collaborative communities, such as open-source communities and the expert-exchange website

(http://www.expert-exchange.com/), have revealed that explicit recognition of contributing members, reputation

enhancement, and positive peer pressure are effective in motivating users to become active contributors in

communities (Fischer, Scharff et al., 2003). These insights will be incorporated in a future version of CodeBroker to

address the social issues of software reuse.

As many studies and experiments have shown, individual differences in motivation exist: Some people are more

motivated than others to contribute (Revelle, 1993). The technological difficulties in contributing might thwart those

less motivated. We are currently extending CodeBroker to support the easy contribution of modified components to

the reuse repository. Our goal is not to require that all application developers become active contributors to the reuse

repository, but to provide technical means and social rewards to those application developers who are technically

capable and willing to contribute to the reuse repository (Fischer, 2002).

Enabling application developers to participate easily in the evolution of reuse repositories gives them the sense of

ownership of the repositories and can effectively overcome the “Not-Invented-Here” syndrome because the reuse

repositories are owned not by the component developers, but by the application developers themselves. Having

participated in the evolution of a reuse repository, application developers would likely consider the reuse repository

as personally meaningful and its utilization as important because, as observed by Rittel, “people are more likely to

like a solution if they have been involved in its generation; even though it might not make sense otherwise” (Rittel,

1984).

6.3 A Comparison of the Two Paradigms

Reuse repositories are a subset of information repositories that include knowledge management systems, digital

libraries, design rationale systems, organization memory systems, and many others. The common problem faced by

all of these repositories involves how to put information into the repository and how to extract useful information out

of it. Our conceptualization of reuse-conducive environments is grounded in the general framework illustrated in

Figure 12:

Y. Ye and G. Fischer 33 Submission to ASE Journal (revision)

 The centralized paradigm (illustrated by Figure 12(a)) requires a thick, good input filter, which can be applied to

select important and reliable information or to select a few dedicated information producers of high caliber,

resulting in a relatively small information repository that contains only information of good quality but often

misses other potentially useful information. It is relatively easy for information consumers, who are mostly

passive, to locate and choose what they need from such an information repository. In addition to the problems

described in Section 6.1, the major shortcomings of this paradigm are that potentially useful information might

be left out and the growth of the information repository is limited.

 The decentralized and evolutionary paradigm (illustrated by Figure 12(b)) describes the collaborative

construction of information repositories. It has a thin input filter that allows not only dedicated producers but

also active consumers (or local developers (Nardi, 1993)) who are able and willing to contribute to put

information into the information repository, resulting in a large information repository. This model requires a

good, thick output filter, such as CodeBroker, that can provide information contextualized to the task-at-hand

and the background knowledge of individual users.

7. RELATED WORK

This research has been heavily influenced by research efforts on both information delivery systems and reuse

repository systems.

7.1 Information Delivery Systems

The simplest implementation of the information delivery mechanism is to deliver a piece of information without

considering the working context, such as Microsoft Office's Tips of the Day and a similar research prototype, the

Figure 12: Two general paradigms of creating and using an information repository: (a) centralized,
and (b) decentralized.

Y. Ye and G. Fischer 34 Submission to ASE Journal (revision)

DYK (Did You Know) system (Owen, 1986). Most users find these systems at best of little help and at worst

annoying, and they will turn them off if they know how.

Several of our own research systems have tried to increase the relevance of delivered information. ACTIVIST

(Fischer, Lemke et al., 1985), an active help system for a text editor, uses a plan library to infer user goals from

observed actions by matching them against the condition part of plans and suggests more efficient solutions to

accomplish the same goals. CodeBroker and ACTIVIST are both totally embedded in the working environment, and

in both, task-relevant information is delivered into the workspace. However, ACTIVIST delivers feedback

information after users have finished their tasks, and the delivery is meant to improve their future work. Information

delivered by CodeBroker is meant to influence the current task under execution. LispCritic (Fischer, 1987b) is

another information delivery system that helps programmers to improve their programs and their programming skills.

It uses program transformation rules to suggest a syntactical equivalent that is either a more cognitively efficient or

computationally efficient solution after it has recognized a questionable code segment. Unlike CodeBroker, which

makes use of both the semantic and syntactical information of programs, LispCritic has no knowledge about

semantics.

Remembrance Agent (RA) (Rhodes and Maes, 2000) tries to augment human memory by displaying relevant

documents. Like CodeBroker, RA also listens to a text editor and autonomously formulates a query based on the

user's current focus. A back-end search engine is invoked to find relevant old emails and notes in the user's

individual information space. RA deals with unstructured texts only, whereas CodeBroker relies on the semiformal

structure of the program to extract needed information. In addition, CodeBroker also makes use of syntactical

information. One shortcoming of RA is that it treats all documents the same, although its goal is to remind users of

forgotten documents.

Letizia (Lieberman, 1997) assists users in browsing the web by suggesting web pages within a few links from the

current page. Like CodeBroker, it aims at eliminating the context switch from a browsing interface to a search

interface to streamline the exploration of web information. Web pages in a user’s bookmark list are analyzed by

using information retrieval techniques to create an interest profile. Suggestions are based on the similarity between

web pages and the interest profile. Like CodeBroker, the suggestions made by the system are not meant to be the

exact information needed by the user. They are the results of information reconnaissance (Lieberman, Fry et al.,

2001) that surveys unknown information territory before the users are committed to entering it.

Information delivery has been explored in several other research prototypes of software development environments.

Drummond and colleagues (Drummond, Ionescu et al., 2000) added to browsing systems an agent that infers the

search goal of software developers by observing their browsing actions and delivers components that closely match

the inferred goal. In addition, the Argo design environment (Robbins and Redmiles, 1998) is equipped with

Y. Ye and G. Fischer 35 Submission to ASE Journal (revision)

computer critics that deliver general software design knowledge for software developers to reflect upon their current

design.

7.2 Reuse Repository Systems

Research on reusable component repository systems is abundant. These systems differ from each other mainly in the

component storage and retrieval mechanisms they adopt. A. Mili, R. Mili, and Mittermeir (1998) have conducted a

comprehensive analysis of existing component storage and retrieval mechanisms along nine dimensions: nature of

asset, scope of repository, query representation, asset representation, storage structure, navigation scheme, retrieval

goal, relevance criterion, and matching criterion. Based on this analysis, the authors proposed to classify existing

component repository systems into six broad families: information retrieval methods, descriptive methods,

operational semantics methods, denotational semantics methods, topological methods, and structure methods.

According to this classification, the similarity-analysis mechanism that CodeBroker uses to identify relevant

components falls into the category of topological methods because it measures the similarity between the

requirements for reusable components and the components in the repository by computing and combining both the

conceptual similarity and the constraint similarity. CodeBroker also falls into the category of information retrieval

methods because it attempts to retrieve relevant components by means of LSA when only conceptual queries

extracted from doc comments are available.

CodeBroker differs from existing software reuse repository systems, however, in its attempt to extract reuse queries

autonomously from the development environment. Most current reuse repository systems require that reusing

software developers explicitly create reuse queries to represent what they actually want in order to find the

components that are potentially reusable (Mili, Mili et al., 1998), and the systems then automate the process of

finding the components that match the reuse queries formulated by the software developers. The ease of formulating

such reuse queries is an important factor in determining the usability of reuse repository systems and hence their

potential adoption by software developers (Mili, Mili et al., 1997). One of the major contributions of CodeBroker is

to demonstrate the possibility of finding potentially reusable components without being given explicit reuse queries.

CodeBroker autonomously infers and creates reuse queries by analyzing and extracting the three aspects (concept,

constraint, and code) of the program under current development. The retrieval mechanism (LSA and signature

matching) that CodeBroker uses can be replaced by many other existing mechanisms whose query representations

can be similarly inferred from the program under development. According to the aspect of the program on which the

abstract representations of components and queries are based, we divide reuse repository systems into three

categories: concept-based, constraint-based, and code-based.

Concept-Based Reuse Repository Systems. Most reuse repository systems that index and retrieve components

based on concepts use free-text indexing. GURU (Maarek, Berry et al., 1991) indexes components based on their

Y. Ye and G. Fischer 36 Submission to ASE Journal (revision)

textual documentation. Etzkorn and Davis have tried to use header comments (similar to the doc comments in

CodeBroker) to index legacy object-oriented programs (Etzkorn and Davis, 1997). Comments and identifier names

are also used for indexing in the system developed by DiFelice and Fonzi (DiFelice and Fonzi, 1998). Michail and

Notkin have demonstrated the possibility of using identifier names only to find similar reusable components for

comparison (Michail and Notkin, 1999).

Free-text indexing is easy both for those setting up a component repository and for programmers formulating reuse

queries. Empirical studies have found that free-text indexing-based reuse systems, despite their simplicity, perform

no worse, in terms of retrieval effectiveness, than other more delicate, effort-consuming repository systems (Frakes

and Pole, 1994). Nevertheless, free-text indexing-based reuse systems do not directly support shortening the

conceptual gap in query formulation.

One attempt to bridge this conceptual gap is to use structured representations and knowledge bases. Both

CodeFinder (Fischer, Henninger et al., 1991) and LaSSIE (Devanbu, Brachman et al., 1991) use frames to represent

reusable components. Frames in CodeFinder are connected by an associative network with weighted links to reflect

the semantic relationships among components. Searching relevant components is supported by spreading activation.

Frames in LaSSIE are structured into hierarchical, taxonomic categories by human experts. The multiple faceted

classification scheme (Prieto-Diaz, 1991) is another format of structured representations in which reusable

components are represented with multiple facets, each of which is described with a term. A conceptual distance

graph has to be constructed to reflect the semantic relationships among these terms. AIRS is a system that combines

multiple facets and the frame-based approach (Ostertag, Hendler et al., 1992). Structured representation-based

systems are labor intensive in creating representations of components and knowledge bases.

Constraint-Based Reuse Repository Systems. Constraints of programs can also be used to index and retrieve

reusable components. Rittri first proposed using signatures in reusable component retrieval (Rittri, 1989). His work

was further extended by Zaremski and Wing, who presented a general framework for signature matching in

functional programming languages (Zaremski and Wing, 1995). Research on signature matching has largely focused

on functional programming languages that are often designed with a sound type theory. CodeBroker applies this

technique to the strong-typed object-oriented programming language. Signature matching in CodeBroker is not used

as the sole method of retrieving components; rather, it is used as a filter to exclude those components that are

significantly different from the current task in terms of constraint compatibility.

The formal specification-based approach is another form of using constraints to index and retrieval components.

Zaremski and Wing have adopted pre- and post-predicates to find components that exactly match or approximately

match a reuse query (Zaremski and Wing, 1997). A. Mili and colleagues have tried to classify reusable components

based on refinement order existing among their formal specifications (Mili, Mili et al., 1997). The formal

specification-based approach could be integrated into CodeBroker to improve the precision of retrieval if the

Y. Ye and G. Fischer 37 Submission to ASE Journal (revision)

programming environment supports formal methods. For the majority of programmers, however, the formal

approach is too difficult to use.

Code-Based Reuse Repository Systems. Behavior sampling exploits the code aspect of programs to retrieve

reusable components (Podgurski and Pierce, 1993). In behavior sampling-based systems, a programmer randomly

chooses a small set of sample inputs and computes the corresponding outputs after having specified the signature of

the module. Reusable components with compatible signatures are found and executed on the sample inputs.

Components with outputs that match the outputs computed by the programmer are returned. Behavior sampling is

difficult to apply to components with complex data structures, and it is unable to find close but not identical

components.

8. SUMMARY

Locating components from a large reuse repository is the first step to the success of software reuse. However,

passive reuse repository systems that rely on user-initiated browsing and searching mechanisms to locate components

are only hygienic factors (Gellerman, 1963) for successful systematic reuse: They are prerequisites for effective

motivation to reuse but by themselves are powerless to motivate software developers to reuse. To motivate software

developers to reuse, we have tried to deal systematically with the cognitive and social challenges of software reuse

by creating software development environments that are conducive to reuse. In this paper, we argued and

demonstrated through the design, development, and evaluation of the CodeBroker system that reuse-conducive

development environments based on the information delivery mechanism hold the potential of (1) making

unanticipated components accessible to software developers, (2) reducing the overall cost of software reuse, and (3)

motivating software developers to take a design approach that favors reuse by augmenting their knowledge of

components. The challenge in implementing information delivery is to capture from the workspace as much

information as possible to locate task-relevant and personalized information. In our research, we have tried to

address the challenge by exploring (1) doc comments and signatures of the programs on which software developers

are working, (2) discourse models that describe partially the overall goal of the development task, and (3) user

models that represent the background knowledge of developers. We have demonstrated the feasibility of this

approach with an implemented system. The evaluation of the system has shown its success in promoting software

reuse in controlled experiments. We are currently conducting more experiments in natural settings to increase our

understanding of the benefits and problems associated with our approach.

The major contribution of our research on reuse-conducive development environments is to explore and demonstrate

the possibility of incorporating the information delivery mechanism into reuse repository systems. The information

delivery mechanism is not meant to replace existing browsing and searching methods, but to complement them; and

it has proven useful for cases in which software developers do not anticipate the existence of components or do not

Y. Ye and G. Fischer 38 Submission to ASE Journal (revision)

know how to access them with browsing and searching. We believe other software reuse repository systems,

especially those systems that are based on information retrieval methods, could benefit from our research results by

including the support of delivery mechanisms in addition to their current support of searching.

CodeBroker represents a major step forward in our ongoing research framework of creating and evolving reuse

repositories by enabling the active participation of application developers with the support of reuse-conducive

development environments that address simultaneously the technical, cognitive, and social issues in software reuse.

Software reuse cannot be truly successful until all three dimensions are properly supported.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Center for LifeLong Learning & Design at the University of

Colorado, who have made major contributions to the conceptual framework and systems described in this paper. The

research was supported by (1) the National Science Foundation, Grants (a) REC-0106976 “Social Creativity and

Meta-Design in Lifelong Learning Communities”, and (b) CCR-0204277 “A Social-Technical Approach to the

Evolutionary Construction of Reusable Software Component Repositories”; (2) the Ministry of Education, Culture,

Sports, Science and Technology of Japan, Grant 15103 of the Open Competition for the Development of Innovative

Technology program; (3) SRA Key Technology Laboratory, Inc., Tokyo, Japan; and (4) the Coleman Initiative, San

Jose, CA.

9. REFERENCES

Alexander, C. (1964). The Synthesis of Form. Cambridge, MA: Harvard University Press.
Anquetil, N. and T. Lethbridge (1998). Extracting Concepts from File Names: A New File Clustering Criterion. Proceedings of

20th International Conference on Software Engineering (ICSE'98), Kyoto, Japan, pp. 84-93.
Basili, V., L. Briand, et al. (1996). How Reuse Influences Productivity in Object-Oriented Systems. Communications of the

ACM, 39(10): 104-116.
Basili, V. R., R. W. Selby, et al. (1986). Experimentation in Software Engineering. IEEE Transactions on Software Engineering,

SE-12(7): 733-743.
Belkin, N. J. (2000). Helping People Find What They Don't Know. Communications of the ACM, 43(8): 58-61.
Brooks, F. P. J. (1995). The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary edition. Reading, MA:

Addison-Wesley.
Brown, J. S. and P. Duguid (2000). The Social Life of Information. Boston, MA: Harvard Business School Press.
Devanbu, P., R. J. Brachman, et al. (1991). LaSSIE: A Knowledge-Based Software Information System. Communications of the

ACM, 34(5): 34-49.
DiFelice, P. and G. Fonzi (1998). How to Write Comments Suitable for Automatic Software Indexing. Journal of Systems and

Software, 42: 17-28.
Drummond, C., D. Ionescu, et al. (2000). A Learning Agent that Assists the Browsing of Software Libraries. IEEE Transactions

on Software Engineering, 26(12): 1179-1196.
Etzkorn, L. H. and C. G. Davis (1997). Automatically Identifying Reusable OO Legacy Code. IEEE Computer, 30(10): 66-71.
Fafchamps, D. (1994). Organizational Factors and Reuse. IEEE Software, 11(5): 31-41.
Fischer, G. (1987a). Cognitive View of Reuse and Redesign. IEEE Software, Special Issue on Reusability, 4(4): 60-72.
Fischer, G. (1987b). A Critic for LISP. Proceedings of the 10th International Joint Conference on Artificial Intelligence, Los

Altos, CA, pp. 177-184.
Fischer, G. (1998). Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and Evolving Knowledge in Domain-

Oriented Design Environments. Automated Software Engineering, 5(4): 447-464.

Y. Ye and G. Fischer 39 Submission to ASE Journal (revision)

Fischer, G. (2001). User Modeling in Human-Computer Interaction. User Modeling and User-Adapted Interaction, 11(1&2): 65-
86.

Fischer, G. (2002). Beyond "Couch Potatoes": From Consumers to Designers and Active Contributors. First Monday (Peer-
Reviewed Journal on the Internet), 7(12): http://firstmonday.org/issues/issue7_12/fischer/.

Fischer, G., S. Henninger, et al. (1991). Cognitive Tools for Locating and Comprehending Software Objects for Reuse.
Proceedings of 13th International Conference on Software Engineering (ICSE'91), Austin, TX, pp. 318-328.

Fischer, G., A. C. Lemke, et al. (1985). Knowledge-Based Help Systems. In Human Factors in Computing Systems (CHI'85) San
Francisco, CA, pp. 161-167.

Fischer, G., K. Nakakoji, et al. (1998). Embedding Critics in Design Environments. In Readings in Intelligent User Interfaces.
M. T. Maybury and W. Wahlster, (Eds.) San Francisco, CA: Morgan Kaufman, pp. 537-561.

Fischer, G., E. Scharff, et al. (2003). Fostering Social Creativity by Increasing Social Capital. In Social Capital. M. Huysman
and V. Wulf, (Eds.), (in press).

Fischer, G. and Y. Ye (2001). Personalizing Delivered Information in a Software Reuse Environment. Proceedings of 8th
International Conference on User Modeling, Sonthofen, Germany, pp. 178-187.

Frakes, W. B. and C. J. Fox (1995). Sixteen Questions about Software Reuse. Communications of the ACM, 38(6): 75-87.
Frakes, W. B. and C. J. Fox (1996). Quality Improvement Using a Software Reuse Failure Modes Model. IEEE Transactions on

Software Engineering, 22(4): 274-279.
Frakes, W. B. and T. P. Pole (1994). An Empirical Study of Representation Methods for Reusable Software Components. IEEE

Transactions on Software Engineering, 20(8): 617-630.
Furnas, G. W., T. K. Landauer, et al. (1987). The Vocabulary Problem in Human-System Communication. Communications of

the ACM, 30(11): 964-971.
Gamma, E., R. Johnson, et al. (1994). Design Patterns—Elements of Reusable Object-Oriented Systems. Reading, MA: Addison-

Wesley.
Gellerman, S. W. (1963). Motivation and Productivity. New York: Amacom.
Griss, M. L. (2000). Implementing Product-Line Features with Component Reuse. Proceedings of the 6th International

Conference on Software Reuse (ICSR6), Vienna, Austria, pp. 137-152.
Grudin, J. (1994). Groupware and Social Dynamics: Eight Challenges for Developers. Communications of the ACM, 37(1): 92-

105.
Harman, D. (1995). Overview of the Third REtrieval Conference (TREC-3). In The Third REtrieval Conference. D. Harman,

(Ed.) Gaithersburg, MD: National Institute of Standards and Technology Special Publication, pp. 1-19.
Henninger, S. (1997). An Evolutionary Approach to Constructing Effective Software Reuse Repositories. ACM Transactions on

Software Engineering and Methodology, 6(2): 111-140.
Isoda, S. (1995). Experiences of a Software Reuse Project. Journal of Systems and Software, 30: 171-186.
Joos, R. (1994). Software Reuse at Motolora. IEEE Software, 11(5): 42-47.
Karat, J., C.-M. Karat, et al. (2000). Affordances, Motivation, and the Design of User Interfaces. Communications of the ACM,

43(8): 49-51.
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. Cambridge, UK: Cambridge University Press.
Landauer, T. K. and S. T. Dumais (1997). A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition,

Induction and Representation of Knowledge. Psychological Review, 104(2): 211-240.
Lange, B. M. and T. G. Moher (1989). Some Strategies of Reuse in an Object-oriented Programming Environment. Proceedings

of Human Factors in Computing Systems, Austin, TX, pp. 69-73.
Lieberman, H. (1997). Autonomous Interface Agents. Proceedings of Human Factors in Computing Systems (CHI'97), Altanta,

GA, pp. 67-74.
Lieberman, H., C. Fry, et al. (2001). Exploring the Web with Reconnaisssance Agents. Communications of the ACM, 44(8): 69-

75.
Maarek, Y. S., D. M. Berry, et al. (1991). An Information Retrieval Approach for Automatically Constructing Software Libraries.

IEEE Transactions on Software Engineering, 17(8): 800-813.
Maletic, J. I. and A. Marcus (2001). Supporting Program Comprehension Using Semantic and Structural Information.

Proceedings of 23rd International Conference on Software Engineering (ICSE'01), Toronto, Canada, pp. 103-112.
Michail, A. and D. Notkin (1999). Assessing Software Libraries by Browsing Similar Classes, Functions and Relationships.

Proceedings of 21st International Conference on Software Engineering (ICSE'99), Los Angeles, CA, pp. 463-472.
Mili, A., R. Mili, et al. (1997). Storing and Retrieving Software Components: A Refinement-Based System. IEEE Transactions

on Software Engineering, 23(7): 445-460.
Mili, A., R. Mili, et al. (1998). A Survey of Software Reuse Libraries. In Systematic Software Reuse. W. Frakes, (Ed.) Bussum,

The Netherlands: Baltzer Science, pp. 317-347.
Mili, A., S. Yacoub, et al. (1999). Toward an Engineering Discipline of Software Reuse. IEEE Software, 16(5): 22-31.

Y. Ye and G. Fischer 40 Submission to ASE Journal (revision)

Nahapiet, J. and S. Ghoshal (1998). Social Capital, Intellectual Capital, and the Organizational Advantage. Academy of
Management Review, 23: 242-266.

Nardi, B. A. (1993). A Small Matter of Programming. Cambridge, MA: The MIT Press.
Nardi, B. A., J. R. Miller, et al. (1998). Collaborative, Programmable Intelligent Agents. Communications of the ACM, 41(3): 96-

104.
Ostertag, E., J. Hendler, et al. (1992). Computing Similarity in a Reuse Library System: An AI-Based Approach. ACM

Transactions on Software Engineering and Methodology, 1(3): 205-228.
Owen, D. (1986). Answers First, Then Questions. In User Centered System Design, New Perspectives on Human-Computer

Interaction. D. A. Norman and S. W. Draper, (Eds.) Hillsdale, NJ: Erlbaum, pp. 361-375.
Podgurski, A. and L. Pierce (1993). Retrieving Reusable Software by Sampling Behavior. ACM Transactions on Software

Engineering and Methodology, 2(3): 286-303.
Poulin, J. S. (1999). Reuse: Been There, Done That. Communications of the ACM, 42(5): 98-100.
Prieto-Diaz, R. (1991). Implementing Faceted Classification for Software Reuse. Communications of the ACM, 34(5): 88-97.
Prieto-Diaz, R. (1996). Reuse as a New Paradigm for Software Development. In Systematic Reuse: Issues in Initiating and

Improving a Reuse Program. M. Sarshar, (Ed.): Springer, pp. 1-13.
Raymond, E. S. and B. Young (2001). The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental

Revolutionary. Sebastopol, CA: O'Reilly.
Revelle, W. (1993). Individual Differences in Personality and Motivation: 'Non-Cognitive' Determinants of Cognitive

Performance. In Attention: Selection, Awareness and Control: A Tribute to Donald Broadbrent. A. Baddely and L.
Weiskrantz, (Eds.) Oxford: Oxford University Press, pp. 346-373.

Rhodes, B. J. and P. Maes (2000). Just-in-time Information Retrieval Agents. IBM Systems Journal, 39(3&4): 685-704.
Rittel, H. (1984). Second-Generation Design Methods. In Developments in Design Methodology. N. Cross, (Ed.) New York:

Wiley, pp. 317-327.
Rittri, M. (1989). Using Types as Search Keys in Function Libraries. Journal of Functional Programming, 1(1): 71-89.
Robbins, J. E. and D. F. Redmiles (1998). Software Architecture Critics in the Argo Design Environment. Knowledge-Based

Systems, 11: 47-60.
Salomon, G., Ed. (1993). Distributed Cognitions: Psychological and Educational Considerations. Cambridge, United Kingdom:

Cambridge University Press.
Salton, G. and M. J. McGill (1983). Introduction to Modern Information Retrieval. New York: McGraw-Hill.
Schmidt, D. C. (1999). Why Software Reuse Has Failed and How to Make It Work for You. C++ Report. 11(1).
Sen, A. (1997). The Role of Opportunism in the Software Design Reuse Process. IEEE Transactions on Software Engineering,

23(7): 418-436.
Simon, H. A. (1996). The Sciences of the Artificial, Third edition. Cambridge, MA: The MIT Press.
Soloway, E. and K. Ehrlich (1984). Empirical Studies of Programming Knowledge. IEEE Transactions on Software

Engineering, SE-10(5): 595-609.
Terveen, L. G. (1995). An Overview of Human-Computer Collaboration. Knowledge-Based Systems, 8(2-3): 67-81.
Tracz, W. (1990). The 3 Cons of Software Reuse. Proceedings of 3rd Annual Workshop on Institutionalizing Software Reuse,

Syracuse, NY.
Visser, W. (1990). More or Less Following a Plan during Design: Opportunistic Deviations in Specification. International

Journal of Man-Machine Studies, 33(3): 247-278.
Williams, M. D. (1984). What Makes RABBIT Run? In International Journal of Man-Machine Studies. 21, pp. 333-352.
Ye, Y. (2001). Supporting Component-Based Software Development with Active Component Repository Systems. Ph.D.

Dissertation, Department of Computer Science, University of Colorado, Boulder, CO, available at
http://www.cs.colorado.edu/~yunwen/thesis/.

Ye, Y. and G. Fischer (2002). Information Delivery in Support of Learning Reusable Software Components on Demand.
Proceedings of 2002 International Conference on Intelligent User Interfaces (IUI'02), San Francisco, CA, pp. 159-
166.

Ye, Y., G. Fischer, et al. (2000). Integrating Active Information Delivery and Reuse Repository Systems. Proceedings of ACM
SIGSOFT 8th International Symposium on Foundations of Software Engineering (FSE8), San Diego, CA, pp. 60-68.

Ye, Y. and K. Kishida (2003). Toward an Understanding of the Motivation of Open Source Software Developers. Proceedings of
2003 International Conference on Software Engineering (ICSE'03), Portland, OR, pp. 419-429.

Zaremski, A. M. and J. M. Wing (1995). Signature Matching: A Tool for Using Software Libraries. ACM Transactions on
Software Engineering and Methodology, 4(2): 146-170.

Zaremski, A. M. and J. M. Wing (1997). Specification Matching of Software Components. ACM Transactions on Software
Engineering and Methodology, 6(4): 333-369.

