
The Ecology of Participants in Co-Evolving Socio-

Technical Environments

Gerhard Fischer1, Antonio Piccinno2, Yunwen Ye1,3

1 Center for LifeLong Learning & Design (L3D), Department of Computer Science, Univer-

sity of Colorado, Boulder, USA,
2 Dipartimento di Informatica, Università di Bari, Bari, Italy,

3 SRA Key Technology Lab, Tokyo, Japan,

gerhard@colorado.edu, piccinno@di.uniba.it, yunwen@colorado.edu

Abstract: The traditional notions of developer and user are unable to

reflect the fact that many software systems nowadays are developed

with the participation of many people of different interests and capabili-

ties. The sharp distinction between users and developers gets blurred.

Many researchers have used different concepts such as end-user devel-

oper, prosumer, pro-am to describe those new in-between roles. This

paper provides a conceptual framework for characterizing varied activi-

ties that all people involved in using and developing software systems

from a socio-technical perspective. The conceptual framework clarifies

the spectrum of different use and development activities by a contin-

uum of participants with different roles. Based on the framework, we

analyze how participants change their roles to migrate from users to de-

velopers through interactions, and how such interactions co-evolve both

the community and software artifacts.

Keywords: Open-source software, ecology of participants, Software Shaping Work-

shop, end-user development, meta-design

1 Introduction

Users and developers are considered two distinct groups of people: users are those

people who own a problem, and developers are those who implement software sys-

tems for supporting users to solve problems. Nowadays, with the widespread use of

web-based software systems, the sharp distinction between users and developers is

quickly disappearing: they are no more considered as two mutually exclusive groups

of people. A lot of users are not only using software but also getting involved in de-

signing software. In this way users increasingly take an active role in the development

of software tools suited to their needs. This results in a continuum ranging from pas-

sive consumer, to meta-designer [1], to developer. It is also the case that the same

person is and wants to be a consumer in some situations and in others a designer;

therefore “consumer/designer” is not an attribute of a person, but a role assumed in a

specific context. Our aim is to study and characterize virtual organization in which

richer ecologies of participants, i.e., professional amateurs [2], prosumers [3], power

users, local developers, and gardeners [4], and communities of practice [5], can de-

velop according to their own needs. A deeper understanding of this ecology, needs to

be exploited to create multi-faceted computational environments [6] tailored to the in-

terests, needs and expertise of different stakeholders to support the migration path [7]

between the different roles.

To face with end-user needs, the challenge is to develop software environments

that support end users in performing their activities of interest, but also allow to tailor

their software environments to better adapt them to their needs, and even to create or

modify software artifacts. The latter are defined as activities of End-User Develop-

ment (EUD), to which a lot of attentions are currently devoted by various researchers

in Europe and all over the world. EUD requires the active participation of end users in

the software development process and tasks that are traditionally performed by pro-

fessional software developers need to be transferred to the users, who need to be spe-

cifically supported in performing these tasks.

To allow EUD activities, we have to consider a two-phase process, the first de-

voted to design the design environment, the second one to design applications using

the design environment. These two phases are not clearly distinct, and are executed

several times in an interleaved way; because the design environments evolve both as a

consequence of the progressive insights the different stakeholders gain into the design

process and as a consequence of the comments of end users at work. This two-phase

process requires a shift in the design paradigm, which must move from user-centered

and participatory design to meta-design [8]. Through meta-design, design environ-

ments can be created that permit applications to be designed and evolved at the hands

of end users in accordance with their own culture, skills and languages.

This paper is organized as follows. Section 2 presents a spectrum of participants in

socio-technical environments. Section 3 presents Open Source Systems as an example

of socio-technical environments, the ecology of involved participants. Section 4 dis-

cusses the role migration in the considered ecology of participants, and Section 5 pro-

vides conclusions.

2 A Spectrum of Participants in Socio-Technical Environments

To support EUD with meta-design, it is imperative to break down the sharp bounda-

ries between users and developers. Being a user or a developer is a continuum ranging

from passive consumer, to well-informed consumer [9], to end user, to power users

[4], to domain designer [10] all the way to meta-designer (a similar role distribution

for domain-oriented design environments is defined in [1]). Moreover, the same user

is often a consumer in some situations and in others a designer.

A critical challenge is to support a migration path [7] between the different men-

tioned roles: consumers, power-users, and designers are nurtured and educated, not

born, and people must be supported to assume these roles. Supporting migration re-

quires to view software systems not only as a technical system but also a socio-

technical environment [11] in which the functionality of the software system is

shaped by the interaction of all stakeholders that constitute an ecology of participants

for the software system. Figure 1 depicts the ecology of participants in a software sys-

tem from the socio-technical perspective. The x axis represents the user expertise in

software design and y axis represents the technical complexity of participating activi-

ties. A zone delineates a participation space. The top-right space is called “Software

design space” in which development activities are mainly carried out by professional

software developers and meta-designers. The bottom-left space is the “Software con-

suming space” whose participants are mainly passive consumers or users of software

systems and they are not actively involved in the development process of the soft-

ware. In between, an EUD space exists, in which users, thanks to available techniques

made available in their software system are able to modify their software. Rather than

being distinct, these three areas usually overlap and their boundaries are blurred.

3 OSSs as Co-Evolving Socio-Technical Environments

EUD and meta-design shares many common features with Open-Source Software

(OSS) development practices that actively seeking the participation and contributions

of users at different levels. There are abundant lessons in OSS to be discovered and

learned for the success of EUD systems, especially in the aspects of understanding

what motivates so many people to dedicate their time, skills, and knowledge to OSS

systems, and how users of OSS system become developers.

OSS grants not only developers but also all users, who are potential developers, the

right to read and change its source code. Developers, users, and user-turned-

developers form a community of practice [5]. A community of practice is a group of

people who are informally bounded by their common interest and practice in a spe-

cific domain. Community members interact with each other for knowledge sharing

and collaboration in pursuit of solutions to a common class of problems. An OSS pro-

ject is unlikely to be successful unless there is an accompanied community that pro-

consumer designer

Passive consumer

C
o
m

p
le

x
it
y

end-user

Domain designer

Meta-designer

Power user

Well -informed consumer

Software engineer

Software design space

Software

consuming

space

EUD space

consumer designer

Passive consumer

C
o
m

p
le

x
it
y

end-user

Domain designer

Meta-designer

Power user

Well -informed consumer

Software engineer

Software design space

Software

consuming

space

EUD space

Figure 1 The ecology of participants in a socio-technical environment

vides the platform for developers and users to collaborate with each other. Members

of such communities are volunteers whose motivation to participate and contribute is

of essential importance to the success of OSS projects. In OSS users are usually de-

velopers, professionals or beginners. OSS refers to software systems that are free to

use and whose source code is fully accessible to anyone who is interested. Most OSS

systems start out with developers who want to solve their own particular problem and

make the system available to others for free. It often attracts many users who have a

similar problem, and because of the free access of source code, some interested users

become co-developers by extending or improving the initial system. Together with

the original developer, users and co-developers create a collaborative and evolving

OSS community around the system [12]. OSS exploits meta-design techniques to em-

power their users to be able to develop the system, even if they are not professionals.

3.1 Mapping the Ecology of Participants in OSS

We will use OSS as an example to illustrate the ecology of participants in socio-

technical environments. In OSS, the right to access and modify source code itself does

not make OSS projects different from most “Closed Source Software” ones. All de-

velopers in a project in any software company would have the same access privilege.

The fundamental difference is the role migration of the people involved in a project.

In Closed Source Software projects, developers and users are clearly defined and

strictly separated. In OSS projects, there is no clear distinction between developers

and users: all users are potential developers. Borrowing terms from programming lan-

guages, developers and users are types, and persons involved in a project are data ob-

jects, Closed Source Software projects are static, binding languages in which a person

is bound to the type of developers or users statically, and OSS projects are dynamic-

binding languages in which a person is bound to the type of developer or user dy-

namically, depending on his or her involvement with the project at a given time.

Most OSS systems are not completely designed in advance. They evolve in re-

sponse to the needs of users in the OSS community, and the evolution is carried out

by contributing (co-)developers of the same community. Although the evolution of an

OSS system is not well planned, “giving users of a product access to its source code

and the right to create derivative works allows them to help themselves, and encour-

ages natural product evolution as well as preplanned product design [13].”

To understand how the “natural product evolution” happens in OSS systems, we

have conducted case studies [12] and presented a broader perspective by examining

not only the evolution of OSS systems, but also the evolution of the associated OSS

communities, as well as the relationship between the two types of evolution. Although

an OSS project might have a leader (often the one who initiates the project), the

leader neither has a grand plan for the system at the beginning, nor dictates the evolu-

tion of the system. It is the whole OSS community that collaboratively drives, as both

users and developers, the evolution of the system. Therefore, a full understanding of

the evolution of an OSS system cannot be complete without understanding the evolu-

tion of the OSS community and its role in driving the evolution of the system.

Participants of an OSS community assume a role by themselves according to their

personal interest in the project, rather than being assigned by someone else; the dif-

ferent roles are the following [12]:

• Passive User just uses the system in the same way as most of us use commercially

available Closed Source Software. They are attracted to OSS mainly due to its high

quality and the potential to be changed when needed.

• Reader refers to those active users of the system; they not only use the system, but

also try to understand how the system works by reading the source code. Given the

high quality of OSS systems, some Readers read the systems to learn program-

ming. Another group of Readers exists who read an OSS system not for the pur-

pose of improving the system per se but for understanding its underlying model

and then using the model as a reference model to implement similar systems [14].

• Bug Reporter discovers and reports bugs. They assume the same role as testers of

the traditional software development model. The existence of many Bug Reporters

assures the high quality of OSS, because “given enough eyeballs, all bugs are shal-

low” [15].

• Bug Fixer, that are called to fix bugs that either they discover by themselves or are

reported by other members.

• Peripheral Developer, that occasionally contributes new functionality or features

to the existing system. Their contribution is irregular, and the period of involve-

ment is short and sporadic.

• Active Developer, that is the person that regularly contributes new features and

fixes bugs; they are one of the major development forces of OSS systems. Core

Member, that is responsible for guiding and coordinating the development of an

OSS project. Core Members are those people who have been involved with the

project for a relative long time and have made significant contributions to the de-

velopment and evolution of the system.

• Project Leader, that is the person who has initiated the project and is responsible

for the vision and overall direction of the project.

Not all of the eight types of roles exist in all OSS communities, and the percentage of

each type varies. Different OSS communities may use different names for the above

Figure 2 Role migration in the co-evolution of participants and systems.

roles. For example, some communities refer to Core Members as Maintainers. The

difference between Bug Fixers and Peripheral Developers is rather small because Pe-

ripheral Developers might be mainly engaged in fixing bugs. Mapping those roles into

the ecology of participants of Figure 2, we can see that Readers and Passive Users

participate in the Software Consuming Space; Bug Fixers and Bug Reporters partici-

pate in the EUD Space; and Project Leaders, Core Members, Active Developers and

Peripheral Developers participate in the Software Design Space.

3.2 Supporting the Ecology of Participants with SSW Methodology

To support co-evolution of users and systems in socio-technical environments and to

allow EUD activities, we have proposed the Software Shaping Workshop (SSW) de-

sign methodology [16]. This approach views the development of an interactive system

as the results of the interaction among several virtual software environments, each of

them is called virtual workshop. Furthermore, when a complex activity has to be per-

formed by a team of people of different cultures, each member of the team performing

different tasks, the SSW methodology prescribes the development of a network of en-

vironments, each being devoted to the performance of specific tasks by well identified

members of the team, while the overall environment has to be customized to the cul-

ture and skills of the people who will use it.

Overall, according to the SSW methodology an interactive system to support the

work practice in a given application domain is developed as a set of interconnected

virtual workshop. There are two types of virtual workshop: application workshop is a

software environment used by a community of end users to perform their daily tasks

in a certain domain, it is properly designed for the specific needs of that community

of end users; system workshop is a software environment used by a community of ex-

perts in the design team to generate and update other workshops. An interactive sys-

tem is always organized as a network of system and application workshops, always

presenting three main levels. Meta-design level, in which software engineers use a

system workshop to provide the software tools necessary to the development of the

overall interactive system, and to participate in the design, maintenance, and valida-

tion of application and system workshops. Software engineers produce the initial pro-

grams, which generate the virtual workshop to be used and refined at the same or at

lower levels, and participate in the maintenance of virtual workshops by modifying

them to satisfy specific requests coming from lower levels. Design level, in which

HCI experts, and domain experts cooperate in design, maintenance, and validation of

application workshops through their own system workshops. Use level, in which end

users (not participating to the development process) belonging to a certain community

participate in task achievement using the application workshop devoted to their com-

munity. The network is thus organized, as in OSSs, so that it reflects the working or-

ganization of users and developers. Both meta-design and design levels include all the

system workshops that support the design team in performing the activity of participa-

tory design.

According to the ecology of participants (Figure 2) and to the SSW methodology,

we identified a mapping between the network levels involved in the virtual workshops

network devoted to participants in OSS with the three main areas in the framework

characterizing the ecology of participants in the development process in OSS. At

meta-design level there are software environments supporting user in the Software

Design Space (see Figure 2); Project Leaders, Core Members, Active Developers and

Peripheral Developers will find here the virtual workshop devoted to them. At design

level two system workshops are identified to support Bug Fixers and Bug Reporters

activities. At use level Readers and Passive Users participating in the Software Con-

suming Space will have application workshops to accomplish to their tasks. In each of

the three levels, communication paths among virtual workshop belonging to are pro-

vided to support the co-operation in the development process.

4 Role Migration in the Ecology of Participants

The ecology of participants (Figure 1) depicts the varied roles that participants as-

sume in using and developing software systems. The software systems are developed

and evolved through the intensive interactions among all the participants, and the in-

teraction between users and software systems. At the same time, participants also

evolve through the same process and assume bigger roles in shaping the functionality

of the software systems. At this aim, they are supported by the Software Shaping

Workshop methodology that foresees a virtual workshop for each role in the ecology

of participants in the OSS development process. The network of virtual workshops al-

lows them to communicate and collaborate to the system design, implementation, use

and evolution by working with a workshop customized to them and using their own

languages and notations, so that they are not disoriented and may overcome the gaps

existing among them. Figure 2 describes the co-evolution that we have observed in

OSS systems. Many participants started as users, and during their interactive use of

the software system, some of the participants become interested in reading and mak-

ing bug reports of the system, migrating into the roles of readers and bug reporters.

Some got more involved and continued their migration path into bug fixers and pe-

ripheral developers as they gain more knowledge of the system. Some even became

active developers and core members by contributing more development the system.

As the members migrated into bigger roles, their contributions made the system

evolve, and the evolution of the system in turn relied on the active participation and

contributions of different levels of participants.

5 Conclusions

In this paper we discussed a conceptual framework to characterize the rich and varied

ecology of participants, at various levels, in open, evolvable and living socio-

technical environments. Nowadays, the sweeping kinds of end users are increasingly

involved in the design and development of the tools they use, thus they need to be

supported through techniques that are suitable for them. In particular we explored the

ecology of participants in Open-Source Software, by analyzing the various roles of

involved end users in the development process belonging to three different spaces

(software consuming, EUD and Software design space) and matching them with the

three different levels (use, design and meta-design level) required by the Software

Shaping Workshop design methodology. Finally we provided some insights about the

evolution and the consequent migration of user roles along the migration path.

References

1. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Development. In:

Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development, vol. 9, pp. 427-457. Springer,

Dordrecht, The Netherlands (2006)

2. Leadbeater, C., Miller, P.: Pro-Am Revolution. How enthusiasts are changing our economy and society.

Demos, London (2004)

3. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything. Portofolio,

Penguin Group, New York, NY (2006)

4. Nardi, B.A.: A Small Matter of Programming. The MIT Press, Cambridge, MA (1993)

5. Wenger, E.: Communities of Practice — Learning, Meaning, and Identity. Cambridge University Press,

Cambridge, UK (1998)

6. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited Research Overview: End-User Programming. Human

Factors in Computing Systems, CHI'2006 (Montreal), pp. 75-80. (2006)

7. Burton, R.R., Brown, J.S., Fischer, G.: Analysis of Skiing as a Success Model of Instruction: Manipu-

lating the Learning Environment to Enhance Skill Acquisition. In: Rogoff, B., Lave, J. (eds.): Everyday

Cognition: Its Development in Social Context, pp. 139-150. Harvard University Press, Cambridge, MA

- London (1984)

8. Sutcliffe, A., Mehandjiev, N.: Introduction. Communications of the ACM 47, 31-32 (2004)

9. Beyond 'Couch Potatoes': From Consumers to Designers and Active Contributors, in FirstMonday

(Peer-Reviewed Journal on the Internet) http://firstmonday.org/issues/issue7_12/fischer/

10. Fischer, G.: Domain-Oriented Design Environments. Automated Software Engineering 1, 177-203

(1994)

11. Sutcliffe, A.G.: Requirements Engineering for socio-technical systems. In: Proceedings Fifth IEEE In-

ternational Symposium on Requirements Engineering, pp. 27-31. IEEE Computer Society Press, Los

Alamitos CA, Toronto (2001)

12. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution Patterns of Open-Source

Software Systems and Communities. In: International Workshop on Principles of Software Evolution

(IWPSE 2002), pp. 76-85. Orlando, FL (2002)

13. O'Reilly, T.: Lessons from Open-Source Software Development. Communications of the ACM 42, 33-

37 (1999)

14. Aoki, A., Hayashi, K., Kishida, K., Nakakoji, K., Nishinaka, Y., Reeves, B., Takashima, A., Yamamoto,

Y.: A Case Study of the Evolution of Jun: An Object-Oriented Open-Source 3D Multimedia Library. In:

23rd International Conference on Software Engineering (ICSE'01), pp. 524-533. IEEE Press, Toronto,

Canada (2001)

15. Raymond, E.S., Young, B.: The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. O'Reilly, Sebastopol, CA (2001)

16. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: the Software Shaping

Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development, vol. 9, pp.

183-205. Springer, Dordrecht, The Netherlands (2006)

