Meta-Design: A Manifesto for
End-User Development

Fischer G.", Giaccardi E.", Ye, Y. " Sutcliffe A.G.?, and Mehandjiev N.2

! Dept of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA
? School of Informatics, University of Manchester, Manchester M80 10D, UK

Introduction

End-user development (EUD) activities range from customization to component configuration
and programming. Office software, such as the ubiquitous spreadsheet, provide customisation
facilities, while the growth of the Web has added impetus to end-user scripting for interactive
functions in websites. In scientific and engineering domains end users frequently develop
complex systems with standard programming languages such as C++ and JAVA. However only a
minority of users adapt COTS (Customer Off The Shelf software) products; furthermore,
composing systems from reusable components, such as ERP (Enterprise Resource Plans) systems
defeats most end users, who resort to expensive and scarce expert developers for implementation.
So EUD is only a partial success story. We argue that the spread of end-user development
depends on a fine balance between user motivation, effective tools and management support. In
this article we explore that balance and investigate a future approach to EUD — meta-design — that
proposes a vision in which design, learning and development become part of everyday working
practice.

EUD tools and technology

Design of language for user-computer communication pose a conflict between complexity and
power. More complex languages can address a wider range of problems but impose an increasing
learning burden on the user. Text-based languages tend to be more complex because the syntax
and lexicon (terminology) have to be learned from scratch, as with any human language.
Consequently, languages which have been designed specifically for end users represent the
programmable world as graphical metaphors containing agents which can be instructed to behave
by condition-action rules. The aim is reduce the cognitive burden of learning by shrinking the
conceptual distance between actions in the real world and programming.

A key trade-off in EUD languages is between their scope of application and learning costs. Figure
1 illustrates this problem. In the high cost, high scope cell are traditional programming languages,
JAVA, C++, employed by highly motivated end users particularly in scientific domains. At the
convergence of this cell and the high scope, lower cost cell are the majority of current EUD
languages which have evolved as simplified versions of full programming languages, e.g. web
scripting languages. The low scope, high cost cell is occupied only by a small number of domain
specific programming languages which have been developed to address the requirements in
complex engineering domains such as device controllers. These languages impose a considerable
learning burden but one that is worth it for improved efficiency over a general purpose language.
The low cost, low scope cell contains domain-specific EUD languages which lower the learning
burden but at the price of addressing only a specific application area. In this cell EUD languages
merge with customization of COTS software packages so the act of programming is reduced to

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 1 CACM-EUD



entering parameters in a form-filling dialogue. Closer to the higher scope boundary are Macro
languages that extend the office style applications, e.g. formulae for Excel spreadsheets, and
database query languages. Finally the high scope, low cost cell is the EUD ideal; although as yet
it is largely unattained. The current state-of-the-art EUD environments provide graphical worlds
to create programmable agents. These still impose a learning burden of instructing agents with
condition-action rules, and designing agent models.

Cost of learning

High Low
EUD
JAVA ideal
C++
i Current EUD envs
High Agentsheets
Alice
JAVA Script
VB Script
Excel macros
Scope
Office Applications
Report writers
Query screen
Domain engineering builders
languages
Low SDL
Hardware design Domain-specifig
languages
Customisation
Adaptation

Figure 1. Cost-scope trade-offs in EUD tools

Active EUD environments attempt to infer programs as instructions from user manipulations of
agent worlds. The graphical agent worlds still have to be designed but, once present,
programming by example [Lieberman, 2001] can infer instructions from the users’ actions, e.g. in
a robot game the user demonstrates an agent bumping into a wall followed by reversing two steps
and changing direction. The system infers the condition-action rule of detect-a-collision followed
by the appropriate reverse-and-change-direction response. This approach reduces learning by
semi-automatic rule acquisition but the downside is that the learning system can make mistakes.
Learning styles range from more complete inference to direct instruction, where the system learns
only when given a command. Directed instruction requires the user to anticipate all the possible
rules and learning situations, while the complete inference approach is limited by the system’s
domain knowledge. Developing the model is the hard part and therein lies the real challenge for
end-user design: abstract conceptual thinking. Complex domains require sophisticated analysis
and modelling skills, so programming is only part of an end-user developer’s needs.

The goal for EUD tools is to reduce the learning burden while providing powerful facilities to

address a wide range of problems. Given that some learning burden will always be present, tools
need to motivate their users. We propose a meta-design approach [Fischer & Giaccardi, 2004],

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 2 CACM-EUD



where users are motivated to learn by examples and demonstrations of working systems to show
them what is achievable.

Managerial and social perspective

End-user development is a long-standing concern within organizations. Managerial issues are
illustrated in figure 2, based on previous surveys of end-user computing [Brancheau & Brown,
1993; Powell & Moore, 2002] and our more recent investigation into the task-organisational fit of
EUD technology [Mehandjiev, Sutcliffe & Lee, 2004]. Do-it-yourself development is a balance
of benefits and cost. User motivators are empowerment from being able to complete a job more
effectively, speed of development, flexibility and local control so programming can be “on
demand”. Another benefit is eliminating potential miscommunications of requirements to
specialist software engineers, thus avoiding the frustration with perceived poor IS Dept service.
Success stories can create motivational capital to help users over the hump of learning until actual
benefits arrive in the form of working applications. User motivation should be encouraged during
the early stages of adoption by management support, training, and task forces to spread best
practice and expertise. This counteracts user costs such as selecting appropriate technology,
installing and learning it, programming and debugging.

Culture

power, control reliability Training
responsibility Mapagement accuracy Support
standards issues security Local experts

cost effectiveness risk

conflict

User ¢
motivations

learning
programming Critical success

_ debugging factors

empowerment
flexibility

speed of delivery
local control

Poor IS Dept service

trade-off

Technology:
ease of use
integration

task support

complexity
criticality
changeability

Context
issues

Figure 2. Relationships between social and managerial issues in EUD.

A number of context and management issues influence the balance between costs and benefits.
For example, EUD can be dangerous in safety-critical domains where software has to be reliable
and accurate. User costs can be significantly impacted by the scale and complexity of the domain,
so safer, less complex domains should be selected for EUD. Changeability of the domain can be a
motivator for EUD adoption, since end users can respond to rapidly evolving requirements more
quickly than traditional development; however, rapid change can lead to throw-away software
and lost development effort. Management issues include risks associated with EUD, perceived by
IT management to create unreliable and unmaintainable software. Other risks are inaccurate
information, security with increased exposure to hacking attacks. The conflict between IT
management and end users over power, authority and control of IT systems may be a productive
force for change or it may lead to disruption, mistrust and failure. It can be argued that enforcing
standards and controlling end users leads to more cost-efficient development and less waste from
unreliable software. However, rigid top-down control may only cause resentment among end

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 3 CACM-EUD



users. The control-power conflict between users and IT management will not evaporate; but
constructive engagement in support and training fosters success, encourages responsibility and
inter alia enables management to control by leadership.

Critical success factors for EUD depend on the domain. In a culture of high end-user motivation
and low managerial influence, a common situation in scientific and engineering domains,
educational applications and interactive art, success is simply a matter of users taking
development into their own hands, often using standard programming languages. However, in
most business domains, fraining, technical and management support are vital for helping EUD
flourish. A culture of cooperation shares the responsibility for developing accurate and effective
solutions. Local experts among the end-user community spread expertise and advice, although
power users can be prone to migrating to the wrong side of the “us” and “them” (IT department)
fence [Mumford & Henshall, 1979; National-Research-Council, 2003]. Technology should
provide easy integration with other information systems and optimized support for EUD tasks.
Progress in the technology area is still necessary to unlock the true potential for EUD.

The set of EUD critical success factors suggests the need for a socio-technical approach to
increase user motivation and decrease cognitive and organizational costs. Such an approach
suggests a future technological framework with tools for discovery-led design to balance learning
costs with results-driven motivation. We propose meta-design, which is an evolution of Domain
Oriented Design Environments (DODESs) [Fischer, 1994] as a vision in which design, learning
and development become everyday working practice.

Meta-design

Meta-design characterizes objectives, techniques, and processes for creating new media and
environments that allow “owners of problems” (or end-users) to act as designers. A fundamental
objective of meta-design is to create socio-technical environments that empower users to engage
actively in the continuous development of systems rather than being restricted to the use of
existing systems.

Design time and use time

In all design processes, two basic stages can be differentiated: design time and use time. At
design time, system developers (with or without user involvement) create environments and tools.
In conventional design they create complete systems. Because the needs, objectives, and
situational contexts of users can only be anticipated at design time, users often find the system
unfit for their tasks at use time, thus leading to the needs of modifying existing systems. To
accommodate unexpected issues at use time, systems need to be “underdesigned” at design time.
Underdesign represents a fundamental shift in the approach to the creation of systems, but it does
not mean less work or demands on the design team. Instead of aiming at designing complete
solutions for users by designers at design time, underdesign aims at providing social and technical
instruments for the owners of problems to create the solutions themselves at use time. Within the
overall approach of meta-design, underdesign is a defining activity aimed at creating design
spaces for others.

From users to co-designers

Meta-design extends the traditional notion of system development to include users in an ongoing
process as co-designers, not only at design time but throughout the whole existence of the system.
A necessary, although not sufficient, condition for meta-design is that software systems include
advanced features permitting users to create complex customizations and extensions. Rather than
presenting users with closed systems, meta-design provides them with opportunities, tools, and
social structures to extend the system to fit their needs. Meta-design shares some important

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 4 CACM-EUD



objectives with user-centered and participatory design, but it transcends these objectives by
changing the processes by which systems and content are designed. Meta-design shifts control
from designers to users and empowers users to create and contribute their own visions and
objectives. Meta-design promotes “designing the design process” to a first-class activity, so that
creating the technical and social conditions for broad participation in design activities becomes as
important as creating the artefact itself. It creates the enabling conditions for collaborative design
in which all participants, not just skilled computer professionals, incrementally acquire ownership
of problems and contribute actively to their solutions.

The seeding, evolutionary growth, and reseeding (SER) process model

To support meta-design, we have developed the seeding, evolutionary growth, and reseeding
(SER) process model. The SER model, illustrated in figure 3, is a descriptive and prescriptive
model for large evolving systems and information repositories, postulating that systems that
evolve over a sustained time span must continually alternate between periods of activity,
unplanned evolution and periods of deliberate (re)structuring and enhancement. The SER model
encourages designers to conceptualize their activity as meta-design, thereby supporting users as
designers in their own right, rather than restricting them to being passive consumers.

To demonstrate the broad applicability and power of meta-design, we have applied the framework
in a number of different application areas, including the three areas briefly mentioned below.

Seeded Evolved Reseeded
Information — ) Information Information
Space i—7L/"7 c_Ju‘l? Space Space
LN N
¢ h -’/ { ;.-/ Ty —
mmre) [
: g h——
LN C)—:- Users _ .~ e R P A
7’4\ =% A A ‘T/Fl
N T A .
Seeding N 4 ReSeeding
7 A Evolutionary Growth -
o y yeu
/ /(& ! .;f»\"‘:-&
Developers Users Developers Users

Figure 3. The seeding, evolutionary growth, and reseeding process model.

Social Creativity. Complex design problems require more knowledge than any single person can
possess, and the knowledge relevant to a problem is often distributed among stakeholders from
different perspectives and backgrounds. The solution of complex design problems requires social
creativity in which all stakeholders reach a shared understanding by contributing their different
points of view and knowledge. We have applied the meta-design approach in the creation of
augmented reality environments in urban planning [Arias, Eden et al., 2000]. The tools
themselves are not solutions to any particular problem, but provide the socio-technical
environment for stakeholders to become informed participants. The immediate and visual
feedback facilitates the creation of a shared understanding leading to new insights, new ideas, and
new artefacts as a result of collaboration.

Open Source. Open source development is an activity in which a community of software
developers collaboratively construct systems to help solve problems of shared interest and for
mutual benefit. The original designers of an open source system do not provide a complete
solution that addresses all problems of potential users; they provide a seed that can be evolved by

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 5 CACM-EUD



users at use time. The ability to change source code, the technological means of sharing changes
over the internet, and the spontaneous social support among community members are the
enabling conditions for collaborative construction of software. Software is changed from a fixed
entity produced and controlled by a closed group of designers to an open effort that allows a
community to design collaboratively following the framework provided by the SER process
model. The success of open source systems exemplifies meta-design by: openly embracing users
as co-designers by releasing incomplete code, actively soliciting and incorporating user
contributions, strategically sharing the control over original designers and users by granting users
direct access to source code, aggressively promoting mutual learning among community members
through mailing lists, and deliberately fostering a reward and recognition structure that motivates
active participation by explicitly acknowledging and promoting contributors [Ye & Kishida,
2003]. Open source projects based on meta-design have a lower cost for each user because the
development cost is distributed among a large number of participants and individual contributions
are shared.

Interactive Art. Interactive art [Fischer & Giaccardi, 2004], conceptualized as meta-design,
focuses on participation and collaboration as forms of co-creation, in which users become “co-
developers” of artwork. The original ‘seed’ design establishes a context in which users can
creatively produce new content and meaning through a process of mutual interaction and
evolutionary growth. By putting the tools rather than the object of design in the hands of users,
interactive art seeds collaboration between the participants (both technical and human) and sees
this interaction as the real object of creative production. Hence meta design creates interactive
systems which define the conditions for interaction. Meta design environments not only allows
users to create content, but also modify the behaviour of the system at use time through
interaction (see A-Volve, http://www.iamas.ac.jp/~christa/). The initial seed is often developed by a
community of artists, and can be adjusted and improved according to the “talk-back” deriving
from the continuing experience of using the creative environment as in SITO, (http:/www.sito.org),
a virtual community of “artists-participants”. Interaction and evolution occur both at the level of
the development of materials and at the level of the creation, elaboration and completion of
collective artworks. Interactive art emphasizes different objectives compared to traditional design
approaches, including cultural shifts from (i) following guidelines and rules to learning from
exceptions and negotiations, (ii) content to context of design, (iii) change focus from design
objects to process, and (iv) from working with representation to the act of construction.

Conclusions

To evolve, end-user development needs technologies that foster collaboration between
communities of end-user designers and between users and managers, while increasing motivation
and reducing cognitive and organizational costs. Meta-design provides a pathway to transform
development as coding — a discrete computing activity — into design of artefacts as part of the
users’ work (or leisure) practice.

Meta-design puts owners of problems in charge of creating open, evolvable systems that address
the limitations associated with closed systems. Open systems allow significant modifications
when the need arises and the evolution takes place through modifications by the owners of
problems as a major design activity. Meta-design is more than a technical problem; it must
address the challenges of creating new mindsets, new sources of creativity, cultural changes, and
innovative societies. It has the potential to create a culture in which all participants in
collaborative design processes can express themselves and engage in personally meaningful
activities.

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 6 CACM-EUD



References

Arias, E. G., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (2000). Transcending the
individual human mind: Creating shared understanding through collaborative design. ACM
Transactions on Computer-Human Interaction, 7(1), 84-113.

Brancheau, J. C., & Brown, C. V. (1993). The management of end user computing: Status and
directions. ACM Computing Surveys, 25(4), 437-482.

Fischer, G. (1994). Domain-Oriented Design Environments. Automated Software Engineering,
1(2), 177-203.

Fischer, G., & Giaccardi, E. (2004 [in press]). Meta-design: A framework for the future of end
user development. In H. Lieberman, F. Paterno, & V. Wulf (Eds.), End user development:
Empowering people to flexibly employ advanced information and communication technology.
Dordrecht: Kluwer Academic Publishers.

Lieberman, H. (Ed.) (2001). Your wish is my command: Programming by example. San
Francisco: Morgan Kaufmann.

Mehandjiev, N., Sutcliffe, A. G., & Lee, D. (2004 [in press]). Organisational views of end user
development. In H. Lieberman, F. Paterno, & V. Wulf (Eds.), End user development:
Empowering people to flexibly employ advanced information and communication technology.
Dordrecht: Kluwer Academic Publishers.

Mumford, E., & Henshall, D. (1979). 4 participative approach to computer system design.
London: Associated Business Press.

National Research Council. (2003). Beyond productivity: Information technology, innovation and
creativity. Washington DC: National Academy Press.

Powell, A., & Moore, J. E. (2002). The focus of research in end user computing: Where have we
come since the 1980ties? Journal of End User Computing, 14(1), 3-22.

Ye, Y., & Kishida, K. (2003). Toward an understanding of the motivation of open source
software developers. Proceedings: 25th International Conference on Software Engineering
(ICSE 2003), Portland OR, (pp. 419-429). New York: ACM Press.

Fischer/Giaccardi/ Ye/Sutcliffe /Mehandjiev 7 CACM-EUD



