
0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0  ©  2 0 0 9  I E E E  September/October 2009   I E E E  S o f t w a r E  37

focus 1

Our collaborative research activities in software 
development (at the University of Colorado’s Cen-
ter for Lifelong Learning and Design, the University 
of Tokyo, and Software Research Associates) have 
focused on understanding the implications of the 
quickly disappearing distinction between users and 
developers. We’ve also concentrated on establishing 
new software development methodologies by view-
ing software systems as continuously evolving so-
ciotechnical systems1 driven by design activities of 
both professional software engineers and users.

We believe that domain experts, as the own-
ers of problems, need to be in charge of developing 
the software they require. Toward that end, we’ve 
created the metadesign framework, which refor-
mulates software development activities as a con-
tinuum of different degrees of design and use. In ad-
dition, on the basis of our research and our findings 
in the research literature, we’ve developed a set of 
guidelines for supporting domain experts in soft-
ware development.

Putting the Problem  
Owners in Charge
As early as 1988, Bill Curtis and his colleagues2 had 
identified fundamental challenges for software en-
gineering and a rationale for why an understanding 
of and support for end-user software engineering3 
are a necessity rather than a luxury. They identified 
the following three challenges, which motivated our 
development of the metadesign framework.

The first challenge was the growing importance 
of application domain knowledge for most software 
systems and that this knowledge is held by domain 
experts rather than by software developers, who 
suffer from a “thin spread of application domain 
knowledge.”2 This finding provided the foundation 
for our research in domain-oriented design envi-
ronments (DODEs),4 which we discuss later.

The second challenge was the need for open, 
evolvable systems that can adjust to fluctuating, 
conflicting requirements. Such requirements will 
lead over time to mismatches between an evolving 

I n the past few decades, the primary goal of most software systems has been to im-
prove productivity in various domains by supporting established processes and ac-
tions. Now, software systems also have become important instruments for creating 
new practices in an infinite number of application domains by letting domain ex-

perts creatively explore, frame, and solve problems. So, more and more people are not only 
using software but also getting involved in developing it to meet their ever-changing needs.

The metadesign 
framework 
encompasses 
objectives, 
techniques, and 
processes for creating 
computational 
tools that let 
domain experts 
act as designers.

Gerhard Fischer, University of Colorado, Boulder

Kumiyo Nakakoji, SRA Key Technology Laboratory

Yunwen Ye, Software Research Associates

Metadesign:  
Guidelines for Supporting Domain 
Experts in Software Development

end - us er  s o f t war e  eng ine er ing



38 I E E E  S o f t w a r E    w w w . c o m p u t e r . o r g / s o f t w a r e

world and the software system modeling this world. 
This finding provided the foundation for Gerhard 
Fischer and his colleagues’ seeding, evolutionary 
growth, reseeding (SER) model,5 which we also dis-
cuss later.

The final challenge was the need to support 
communication and coordination in a richer ecol-
ogy of participants with different interests, skills, 
and background knowledge. Curtis and his col-
leagues realized that system development is difficult 
not because of the technical problems’ complexity 
but because of the need for mutual understand-
ing and common ground between all participating 
stakeholders. This finding motivated our emphasis 
on the coevolution of systems, communities, and 
individuals.6

Our recent interview with a geoscientist high-
lights these challenges’ importance. He uses several 
domain-specific software systems to analyze his re-
search data. However, those systems cannot provide 
complete solutions to his problems as his research 
unfolds and his understanding of the problem, data, 
and results progresses. He said,

I spend on average an hour every day develop-
ing software for myself to analyze the data I 
collected because there is not any available 
software. Even if there is a software developer 
sitting next to me, it would not be of much 
help because my needs vary as my research 
progresses and I cannot clearly explain what 
I want to do at any moment. Even if the 
software developer can manage to write a 
program for me, I will not know if he or she 
has done it right without looking at the code.

He continued,

So I spent three months to gain enough pro-
gramming knowledge to get by. Software de-
velopment has now become an essential task 
of my research, but I do not consider myself 
a software developer, and I don’t know many 
other things about software development.

Clearly, this geoscientist isn’t a professional soft-

ware engineer, and he doesn’t intend to become 
one. He isn’t a mere end user, either, because he en-
gages regularly in intensive software development 
that goes beyond what most end-user programming 
environments support. He has acquired excellent 
programming skills for solving his own problems 
with the tools that professional software engineers 
use (for example, Unix, shell, and vi).

Software development is no longer the exclu-
sive activity of professional software engineers. 
Many domain experts such as this geoscientist 
are engaging in software development as intensive 
and technically challenging as that performed by 
many professional software engineers. However, 
they’re creating software for their own rather 
than others’ problems, and as an instrument for 
a larger context rather than as just an end artifact 
to be delivered.

Figure 1 describes a richer ecology of people’s 
roles in developing and using software. Professional 
software engineers and pure end users define the 
endpoints of a continuum of computer users. The 
former like computers because they can program, 
and the latter because they get their work done 
with computers. Most users generally won’t build 
tools of the quality a professional software engineer 
would. However, if a tool doesn’t satisfy the needs 
or tastes of users, who know best what their re-
quirements are, they should be able to develop their 
own solutions.

The World Wide Web’s short history provides 
convincing evidence of the quick dissolution of the 
sharp distinction of design and use. In the Web’s 
first decade, a clear separation between developers 
and users was predominant, in which users used 
whatever professional Web developers gave them. 
As we enter the Web 2.0 era, we’re witnessing a 
much richer ecology of user participation. Users 
now also participate in various development ac-
tivities that continuously evolve Web applications 
through adoption, adaptation, appropriation, and 
mashing-up of existing Web systems.

On the basis of this reframing of software de-
velopment, it follows that the dichotomy of design 
and use doesn’t hold for many software systems. 
Software systems should support a continuum of  
design-in-use activities by allowing, enabling, 
and leveraging users’ development activities while 
they’re experiencing the world through software 
systems.

The Metadesign Framework
Drawing from our research experience, we’ve de-
veloped metadesign as a framework to explore 
objectives, techniques, and processes for creating 

Pure
end users

End users
who write
macros

Developers using
domain-specific

languages

End users who
customize

Web content
developers

Data-intensive
researchers

Software
professionals

Developing softwareUsing software

Figure 1. The spectrum 
of software-related 
activities. The once 
sharp distinction 
between users and 
developers of software 
is fading away, and 
many users are starting 
to take control of 
shaping software to 
their own needs through 
their own development 
activities.



 September/October 2009   I E E E  S o f t w a r E  39

computational tools that let domain experts who 
are the “owners of problems” act as designers.7 A 
fundamental objective of metadesign is to create  
sociotechnical environments that empower do-
main experts to engage actively in the continuous 
development of systems, rather than restrict them 
to using existing systems. Metadesign defines and 
creates not only technical infrastructures for the 
software system but also social infrastructures in 
which users can participate actively as codesign-
ers to shape and reshape the sociotechnical systems 
through collaboration.8

All human-made artifacts (including software 
systems) undergo two basic stages: design time and 
use time. At design time, designers or producers 
create artifacts for the world as they imagine it, to 
anticipate users’ needs and objectives. At use time, 
users employ the artifacts to accomplish their tasks 
in the world as they experience it.

Many design and engineering theories assume 
that you can imagine, capture, and specify the 
world as experienced at design time and that all 
major design activities therefore end when you de-
liver the artifacts for use. The breakdown between 
the world as experienced and the world as imag-
ined is more pronounced in software, especially for 
software that supports domain experts engaged in 
creative knowledge work. The real-world problems 
that domain experts face are often ill defined and 
wicked.9 A wicked problem has complex interde-
pendencies of many contradictory and changing 
aspects. Attempts to solve one aspect of the prob-
lem often create new problems; therefore, a wicked 
problem can’t be easily understood before solutions 
are attempted. Software systems modeling these 
problems are never static, for two reasons. First, 
the world changes and new requirements emerge. 
Second, domain experts change their work prac-
tices over time, and their understanding and use of 
a system will be very different after a month and 
certainly after several years.

the SEr Process Model
Our research interest is in designing the social and 
technical infrastructures in which new forms of col-
laborative design can take place. For most design 
domains we’ve studied over many years, the knowl-
edge to understand, frame, and solve problems isn’t 
given but is constructed and evolves during problem 
framing and problem solving.5

Seeding. In the past, large, complex information 
systems were built as “complete” artifacts through 
the large efforts of a few people. Instead of attempt-
ing to build complete systems, the SER model advo-

cates building seeds that evolve over time through 
the small contributions of many people.

A seed is based on an initial understanding and 
framing of the problem. Environment developers 
create it to be as complete as possible for future us-
ers. However, the understanding of the problem 
can’t be truly complete because domain experts’ 
knowledge work is situated and tacit. Furthermore, 
the constant changes in the environment in which 
the system is embedded will breed new needs, and 
the introduction of a computational system itself 
generates changes in professional practices and so-
ciotechnical environments. So, the initial seed must 
be continuously adapted to the new understanding 
and environments.

Evolutionary growth. This phase is one of decentral-
ized evolution as domain experts use and extend 
the seed to do their work or explore new problems. 
This phase doesn’t directly involve professional en-
vironment builders because the focus has shifted 
to domain experts’ problem-framing and problem-
solving activities. Instead, those domain experts 
who have a direct stake in the problem at hand per-
form the development.

During this phase, the seed plays two roles si-
multaneously. First, it provides work resources 
(solutions accumulated from prior use). Second, it 
accumulates work products as each project contrib-
utes a new solution and extension to the seed. In 
this phase, users focus on creating problem-specific 
solutions rather than general solutions. So, these so-
lutions might not be well integrated with the rest of 
the solution in the seed.

Reseeding. This phase involves a deliberate, central-
ized effort to organize, formalize, and generalize 
solutions and artifacts created during evolutionary 
growth. It aims to create an information space in 
which useful solutions can be easily found, reused, 
and extended. As in the seeding phase, professional 
software developers are needed to perform substan-
tial system and solution-space modifications. How-
ever, users must also participate because only they 
can judge what solutions are useful and what struc-
tures will serve their work practices.

Coevolution of System, 
Community, and Individuals
During evolutionary growth, the software system 
doesn’t evolve independently of the surrounding so-
cial infrastructure’s change and growth. It’s better 
to view the software system’s developers and users 
as a knowledge community formed by their various 
attachments with the system.

Domain  
experts like  
to interact 

with problems, 
not computer 

systems.



40 I E E E  S o f t w a r E    w w w . c o m p u t e r . o r g / s o f t w a r e

Transparent 
policies and 
procedures 

are needed for 
incorporating 

user 
contributions 

into the 
software 
systems. 

A typical example is the open source software 
(OSS) resulting from the removal of the sharp dis-
tinction between design and use of software sys-
tems. Our systematic analysis of several OSS sys-
tems and communities revealed that people take on 
a variety of roles: passive users, readers, bug report-
ers, bug fixers, peripheral developers, active devel-
opers, and project leaders.10

We further observed that an OSS system’s evo-
lution is driven by interaction between commu-
nity members and the system and among members 
with different roles. As community members inter-
act with the system, their knowledge of the system 
increases and their work practices change. Some 
members start taking different roles in system devel-
opment by reporting use experience, contents, bugs, 
extensions, adaptations, or code patches. Such con-
tributions further evolve the system.

System use also involves individuals interact-
ing with the community by sharing experience and 
knowledge regarding the system. Such interaction 
changes the individual’s relations with other mem-
bers in terms of personal relationships and social 
recognition. It also changes the community’s social 
fabric as some members migrate gradually toward 
the community’s center when their contributions 
and knowledge are recognized. The community’s 
existence provides users and developers with the 
sense and experience of common purpose and 
mutual support in evolving the system. In many 
situations, it replaces common background or geo-
graphic proximity with a sense of well-defined pur-
pose, shared concerns, and the successful common 
pursuit of these.6

Metadesign Guidelines 
for Sociotechnical Systems
Here we present our guidelines for using the meta-
design framework to design sociotechnical systems.

Support Human-Problem Interaction
Because domain experts aren’t interested in com-
puters per se, they aren’t inclined to spend consid-
erable effort to learn general software development 
skills but instead prefer to focus on their domain 
problems. In other words, they like to interact with 
problems, not computer systems.

Increasing domain specificity is an effective 
way to create computer systems that support  
human-problem interaction. We’ve designed and 
evaluated a series of DODEs in various domains.4 
These environments help domain experts under-
stand their design problems better while exploring 
design solutions, instead of translating existing 
design solutions into computational representa-

tions. DODEs provide a rich combination of sys-
tem components:

a specification component that lets domain ex- ■

perts specify their problems using their own 
concepts,
a construction kit consisting of basic solution  ■

elements,
an argumentation and critiquing mechanism  ■

that stimulates users to reflect on their design 
decisions,
a simulation component that helps visualize the  ■

effects of design decisions, and
a catalog of design solutions to the problems  ■

that designers know when doing the design.

KID (Knowing-in-Design) is a DODE for kitchen 
design. Through its specification component, KID 
first asks a kitchen designer several questions about 
his or her cooking habits and lifestyle. On the ba-
sis of this information, KID presents relevant design 
examples from its catalog for the designer to use as 
a starting point. The designer can then use the con-
struction kit to modify the design. If certain design 
decisions violate built-in design rules or regulations, 
the critiquing mechanism points out and explains 
the potential problem. However, the designer can 
overwrite such critiques with his or her design ratio-
nale, which is added to the KID knowledge base.4

Underdesign for Emergent Behavior
Metadesign focuses not on creating final solutions 
but on creating solution spaces in which users can 
create their own solutions to fit their needs. Sys-
tems should be underdesigned so that users don’t 
treat them as a finished product but view them as 
continuous beta versions that are open to facili-
tate and incorporate emergent design behaviors 
during use.

Underdesign doesn’t mean that the seed’s cre-
ator transfers his or her design responsibilities to 
the users and forces them into a do-it-yourself situ-
ation. Instead, it requires creating tools that users 
can employ to solve those well-defined problems 
and supporting “hackability” and “remixability” 
by providing metatools that users can employ for 
occasions not envisioned at design time. So, un-
derdesign isn’t less design but more design.

Our experiments with underdesign in several 
projects have tried to manage the tension between 
constraint and freedom and between rigor and rel-
evance. For example, KID also embraces this prin-
ciple. Each solution in the design catalog solves a 
typical design problem and can be used as is. How-
ever, users can also decompose it into smaller design  



 September/October 2009   I E E E  S o f t w a r E  41

elements that they can combine with other design 
elements, using the construction kit.

Web browsers’ view-source functionality is an-
other excellent example of supporting emergent 
behaviors. It enables an interested user to exam-
ine, learn, and extract a partial design of a well- 
designed Web page for his or her own use. This 
principle is further extended in Mozilla’s Firebug 
system, which lets users inspect dynamic Web 
pages’ inner source (Cascading Style Sheet styles, 
Document Object Model structures, and JavaScript 
code). The view-source functionality and Firebug 
system make a Web page not only a solution to a 
problem but also a design space to be further ex-
plored, extended, and mixed.

Enable Legitimate Peripheral Participation
Transparent policies and procedures are needed for 
incorporating user contributions into the software 
systems. Users who make contributions need to see 
that their contributions have a recognizable influ-
ence on the system.

In particular, newcomers to a community must 
be able to engage in legitimate peripheral participa-
tion.11 To attract more users to become developers, 
the system architecture must be modularized to cre-
ate many relatively independent tasks with progres-
sive difficulty so that newcomers can start partici-
pating peripherally and move on gradually to take 
charge of more difficult tasks. How a system is par-
titioned has consequences for both the efficiency of 
parallel development (a prerequisite for open source 
software) and the possibility of peripheral partici-
pation. Linux’s success is due largely to its well-
designed modularity. Studies have shown that most 
current developers of the Linux kernel started by 
working on its relatively independent device-driver 
modules.12

Another way to afford peripheral participation is 
to intentionally release unfinished systems to users 
by leaving some noncritical parts unimplemented to 
facilitate easy participation. For example, the to-do 
lists of most OSSs create guidance for participation. 
A third way is to foster satellite communities for in-
cubation subprojects, which will be incorporated 
into the main project when they mature.10

Share Control
A software system’s original metadesigners must 
share control with the participating users. Users can 
play different roles, depending on their levels of in-
volvement. Each level has its own responsibility and 
authority. Responsibility without authority won’t 
sustain users’ interest in further involvement. When 
users change their roles in the community by mak-

ing constant contributions, they should be granted 
the matching authority in the decision-making pro-
cess that shapes the system.

Metadesigners need to find a strategic way to 
transfer some control to users. Granting users con-
trolling authority helps sustain user participation 
and system evolution in two ways:

Those users become stakeholders, acquire own- ■

ership in the system, and will likely make fur-
ther contributions.
Granting authority attracts users who want to  ■

influence system development and encourages 
them to contribute.

Successful OSS projects invariably select skillful  
“users-turned-developers” and grant them access 
privileges to contribute directly to the source base.

Our analysis of OSS systems and communities 
revealed that different policies of sharing control 
with other users have resulted in different evolu-
tion patterns for those systems and communities.10 
For example, tighter control of granting write ac-
cessibility to community users resulted in systems’ 
slower evolution.

Promote Mutual Learning and Support
Users have different levels of skill and knowledge 
about the system. To get involved in contributing 
to the system or using it, they need to learn many 
things. Peer users are important learning resources. 
A metadesigned sociotechnical system should have 
associated knowledge-sharing mechanisms that 
encourage users to learn from each other. In OSS 
projects, mailing lists, discussion forums, and chat 
rooms provide an important platform for knowl-
edge transfer and exchange among peer users.

We’ve tried to extend the traditional online 
support system with a built-in peer learning plat-
form in the STeP_IN (Sociotechnical Platform for 
In Situ Networking) project.13 STeP_IN enhances 
the traditional Java documentation system with 
an “ask expert” button through which a user can 
post a question to other users who have demon-
strated their expertise on the Java API library 
component.

reward and recognize Contributions
Motivation is essential for the success of user par-
ticipation in the evolution of metadesigned sys-
tems. Human beings are diversely motivated. We 
act not only for material gain but also for psycho-
logical well-being, social integration and connect-
edness, social capital, recognition, and improving 
our standing in a reputation economy. Horst Rittel  



42 I E E E  S o f t w a r E    w w w . c o m p u t e r . o r g / s o f t w a r e

Domain experts 
are more likely 

to acquire 
software 

knowledge  
in a piecemeal, 
demand-driven 

manner.

articulated the motivation for going the extra step 
to engage in evolving software systems:

The experience of having participated in a 
problem makes a difference to those who are 
affected by the solution. People are more likely 
to like a solution if they have been involved in 
its generation, even though it might not make 
sense otherwise.9

Both intrinsic and extrinsic factors affect mo-
tivation. The precondition for motivating users to 
contribute is that they must derive an intrinsic satis-
faction in their involvement by shaping the software 
system to solve their problems. Intrinsic motivation 
is positively reinforced and amplified when the com-
munity’s social structure and conventions recognize 
and reward its members’ contributions.

In STeP_IN, we’ve developed a set of methods 
for computing social obligations and expectations. 
These methods are based on social capital as a 
mechanism for motivating users’ participation in 
the continual evolution of the online collaborative 
learning platform.

foster reflective Communities
Complex design problems require more knowledge 
than any one person possesses because the knowl-
edge relevant to a problem is usually distributed 
among many domain experts. Creating a shared 
understanding among domain experts requires 
bringing together different, often controversial 
viewpoints and can lead to new insights, new ideas, 
and new artifacts. Domain experts need to rely on 
other people’s knowledge and on external informa-
tion. The relevant knowledge for complex design ac-
tivities is distributed among multiple human beings 
and artifacts, bringing together different knowledge 
sources, none of which has the final authority. By 
exploiting the “symmetry of ignorance”9 and mu-
tual competency, stakeholders can learn from each 
other.

Early studies already identified that end-user de-
velopment is more successful when it’s supported 
by collaborative work practices rather than when it 
focuses on individuals.14 The studies observed the 
emergence of “gardeners” and “local developers.” 
Such people are technically interested and sophisti-
cated enough to perform system modifications that 
a user community needs but that other end users 
can’t or don’t want to perform.

Possible Pitfalls
Metadesign’s goal isn’t to let untrained people de-
velop and evolve sophisticated software systems but 

to put the problems’ owners in charge and make 
them independent of “high-tech scribes.”8 One 
critical challenge in creating software systems is to 
achieve the best fit between the system and its ever-
changing context of use, problems, domains, us-
ers, and user communities. The metadesign frame-
work sees problem owners as the ultimate source to 
achieve the fittest software solutions to their prob-
lems. It also seeks a systematic way to support them 
as active contributors and designers while they use 
the system.

This approach creates inherent tensions be-
tween standardization and improvisation. For ex-
ample, SAP Info warns of the perils of customer 
modifications:

Every customer modification implies costs be-
cause it has to be maintained by the customer. 
Each time a support package is imported 
there is a risk that the customer modification 
may have to be adjusted or re-implemented. 
To reduce the costs of such on-going main-
tenance of customer-specific changes, one of 
the key targets during an upgrade should be 
to return to the SAP standard wherever this is 
possible.15

Finding the right balance between standardization 
(which can suppress innovation and creativity) and 
improvisation (which can lead to a Babel of differ-
ent, incompatible versions) is a particular challenge 
in open source environments, in which forking has 
often led developers in different directions.

Insights for  
End-User Software Engineering
The basic assumptions behind end-user software 
engineering research are that end users are edu-
cated differently from professional software de-
velopers and face different motivations and work 
constraints.16 They aren’t likely interested in con-
cepts such as quality control, formal development, 
and rigorous testing strategies, and aren’t willing 
or interested to invest extensive time learning about 
these things.17 Metadesign provides a framework 
to think about how end-user software engineering 
is fundamentally different from professional soft-
ware engineering, on the basis of the following four 
observations.

requirements Generation
End-user programming generates requirements dif-
ferently than professional software development 
does. Because the developers are also the users, 
there’s no need for elaborate requirements analysis 



 September/October 2009   I E E E  S o f t w a r E  43

before they construct a software system. Rapid re-
quirements changes needn’t be avoided; on the con-
trary, they’re desired because end-user programmers 
use the computer to explore the new possibilities 
and find the “undreamed-of requirements.” Tra-
ditional software engineering has worked hard to 
control and manage requirement changes. How-
ever, for domain experts, the issue is the opposite: 
how to encourage this exploration and discovery of 
new requirements and possibilities.

Software testing
End-user programmers also conduct software test-
ing differently. Because the domain experts them-
selves are the primary users, complete testing isn’t 
as important as when the developers aren’t the us-
ers. In such settings, instead of developers creating 
test plans beforehand, test plans could be automati-
cally generated through the capture of testing activi-
ties or in a managed testing environment.

Collaboration
In end-user programming, collaboration takes place 
along different dimensions. In metadesign environ-
ments, predefined project teams don’t exist. Col-
laboration takes place only when people interested 
in similar software become aware of each other 
and have the means to collaborate, or when a sys-
tem that one domain expert developed is picked up 
by others with a similar problem. Collaboration is 
much more spontaneous and opportunistic than 
planned. Collaboration is often more limited in 
time because domain experts might lose interest in 
the software once they solve their own problem.

Knowledge and Skill acquisition
Finally, the path to the acquisition of software de-
velopment knowledge and skill is different. Owing 
to the lack of interest in software per se and the lack 
of professional training, domain experts are more 
likely to acquire software knowledge in a piecemeal, 
demand-driven manner. Their knowledge is more 
fragmentary than systematic. New approaches to 
learning software development must be investigated 
and supported.

W ith computers and software becoming 
pervasive, many domain experts have 
started to develop or adapt sophisti-

cated software systems as an integral part of their 
work to fully utilize the power of the computer. 
They aren’t professionally educated as software 
engineers but spend a great deal of their time cre-
ating software systems for their own work. Given 

how domain experts’ needs, goals, and education 
differ from those of professional software engi-
neers, end-user software engineering research 
shouldn’t be based on a scaled-down version of, or 
a simple transfer from, current software engineer-
ing principles. Metadesign is a new conceptual 
framework for understanding such fundamental 
differences. It aims to provide guidelines for de-
signing sociotechnical environments that support 
the efficient development of useful software sys-
tems by those domain experts, the population of 
which will likely be much larger than that of pro-
fessional software engineers.

 
Acknowledgments
We thank the members of the University of Colo-
rado’s Center for Lifelong Learning and Design and 
Yasuhiro Yamamoto at the University of Tokyo, who 
made major contributions to the ideas described in 
this article. We’re grateful for Software Research As-
sociates’ long-term support of our collaborative re-
search. In addition, the research was supported partly 
by grants from the US National Science Foundation, 
including IIS-0613638, “A MetaDesign Framework 
for Participative Software Systems”; IIS-0709304, 
“A New Generation Wiki for Supporting a Research 
Community in ‘Creativity and IT’”; and IIS-0843720, 
“Increasing Participation and Sustaining a Research 
Community in ‘Creativity and IT.’” We also received 
support from a Google research award, “Motivating 
and Empowering Users to Become Active Contribu-
tors: Supporting the Learning of High-Functionality 
Environments,” and an SAP research project, “Giv-
ing All Stakeholders a Voice: Understanding and Sup-
porting the Creativity and Innovation of Communi-
ties Using and Evolving Software Products.”

References
 1. E. Mumford, “A Socio-technical Approach to Systems 

Design,” Requirements Eng., vol. 5, 2000, pp. 59–77.
 2. B. Curtis, H. Krasner, and N. Iscoe, “A Field Study 

of the Software Design Process for Large Systems,” 
Comm. ACM, vol. 31, no. 11, 1988, pp. 1268–1287.

 3. M. Burnett et al., “End-User Software Engineering with 
Assertions in the Spreadsheet Paradigm,” Proc. 25th 
Int’l Conf. Software Eng. (ICSE 03), IEEE CS Press, 
2003, pp. 93–103.

 4. G. Fischer, “Domain-Oriented Design Environments,” 
Automated Software Eng., vol. 1, no. 2, 1994, pp. 
177–203.

 5. G. Fischer et al., “Seeding, Evolutionary Growth and 
Reseeding: The Incremental Development of Collabora-
tive Design Environments,” Coordination Theory and 
Collaboration Technology, G.M. Olson, T.W. Malone, 
and J.B. Smith, eds., Lawrence Erlbaum Associates, 
2001, pp. 447–472.

 6. K. Nakakoji, Y. Yamamoto, and Y. Ye, “Supporting 
Software Development as Knowledge Community 
Evolution,” Proc. ACM CSCW Workshop Supporting 
the Social Side of Large-Scale Software Development, 
ACM Press, 2006, pp. 31–34.

 7. G. Fischer et al., “Meta-design: A Manifesto for End-
User Development,” Comm. ACM, vol. 47, no. 9, 2004, 
pp. 33–37.

 8. G. Fischer and E. Giaccardi, “Meta-design: A Frame-



44 I E E E  S o f t w a r E    w w w . c o m p u t e r . o r g / s o f t w a r e

work for the Future of End User Development,” End 
User Development, H. Lieberman, F. Paternò, and V. 
Wulf, eds., Kluwer Academic, 2006, pp. 427–457.

 9. H. Rittel, “Second-Generation Design Methods,” 
Developments in Design Methodology, N. Cross, ed., 
John Wiley & Sons, 1984, pp. 317–327.

 10. Y. Ye and K. Kishida, “Toward an Understanding of 
the Motivation of Open Source Software Developers,” 
Proc. 25th Int’l Conf. Software Eng. (ICSE 03), IEEE 
CS Press, 2003, pp. 419–429.

 11. E. Wenger, Communities of Practice: Learning, Mean-
ing, and Identity, Cambridge Univ. Press, 1998.

 12. G. von Krogh, S. Spaeth, and K.R. Lakhani, “Com-
munity, Joining, and Specialization in Open Source 
Software Innovation: A Case Study,” Research Policy, 
vol. 32, 2003, pp. 1217–1241.

 13. Y. Ye, Y. Yamamoto, and K. Nakakoji, “A Socio-tech-
nical Framework for Supporting Programmers,” Proc. 
2007 ACM Symp. Foundations of Software Eng. (FSE 
07), ACM Press, 2007, pp. 351–360.

 14. B.A. Nardi, A Small Matter of Programming, MIT 
Press, 1993.

 15. “Reduce the Number of Customer Modifications,” SAP 
Info, July 2003, p. 33.

 16. M. Burnett, “What Is End-User Software Engineering 
and Why Does It Matter?” End-User Development, V. 
Pipek et al., eds., Springer, 2009, pp. 15–28.

 17. B.A. Myers, A.J. Ko, and M.M. Burnett, “Invited Re-
search Overview: End-User Programming,” Proc. Conf. 
Human Factors in Computing Systems (CHI 06), ACM 
Press, 2006, pp. 75–80.

For more information on this or any other computing topic, please visit our 
Digital Library at www.computer.org/csdl.

About the Authors
Gerhard Fischer is a professor of computer science, a fellow of the Institute of 
Cognitive Science, and the director of the Center for LifeLong Learning and Design at 
the University of Colorado at Boulder. His research focuses on learning, working, and 
collaborating with new media; human-computer interaction; the science of design (open 
systems, metadesign, and 2.0 environments); creativity and IT; and transdisciplinary col-
laboration and education. Fischer has a Habilitation in computer science from the University 
of Stuttgart. He’s a member of the CHI (Computer-Human Interaction) Academy, ACM, and 
American Educational Research Association. Contact him at gerhard@colorado.edu; http://
l3d.cs.colorado.edu/~gerhard.

Kumiyo Nakakoji is a full professor at the University of Tokyo’s Research Center for 
Advanced Science and Technology and the director of the SRA Key Technology Laboratory. 
Her research interest is knowledge-interaction design, which is a framework for the design 
and development of computational tools nurturing creative knowledge work, such as 
scholarly work, software development, interaction design, online-community design, and 
experience design for consumer electronics. Nakakoji has a PhD in computer science from 
the University of Colorado at Boulder and is certified by the Institute of Cognitive Science. 
She’s a member of the ACM, IEEE Computer Society, Information Processing Society of 
Japan, Japanese Society for Artificial Intelligence, Human Interface Society, Japanese Cogni-
tive Science Society, and Japanese Society for the Science of Design. Contact her at kumiyo@kid.rcast.u-tokyo.ac.jp.

Yunwen Ye is a manager at Software Research Associates. His research interests 
include cognitive and social aspects of software development, developer-centered software 
development environments, and sociotechnical support for knowledge creation and col-
laboration. Ye has a PhD in computer science from the University of Colorado at Boulder. 
He’s a member of the Japanese Society for Artificial Intelligence and the Software Engineers 
Association. Contact him at ye@sra.co.jp.

C a l l  f o r  a r t i C l e s

A
n increasing number of organizations are taking their  
software-intensive product production to the next level by 
adopting software product line practices. These practices coor-

dinate the software engineering, technical management, and organi-
zational management activities necessary for the efficient production 
of a set of similar products. The growing body of experience needs 
to be communicated to those considering adopting the approach.

This special issue of IEEE Software will focus on successful software 
product line practices. We solicit articles on topics within this scope, 
including these topics:

• How to systematically manage safety (or any other quality attribute) 
in a product line context

• How to engineer product lines in a complex organizational network 
of OEMs and suppliers including COTS or open source components

• How to center a product line approach around a given reference archi-
tecture in a certain domain or market segment (for example, Autosar 
for the automotive industry)

• How to combine agile approaches with product line practices
• How to combine SOA with product line practices

Publication: May/June 2010
SubmiSSion deadline: 17 November 2009
GueSt editorS:

• John D. McGregor, Clemson University, johnmc@cs.clemson.edu
• Dirk Muthig, Fraunhofer Institute for Experimental  

Software Engineering, dirk.muthig@iese.fraunhofer.de
• Paul Jensen, Textron, pjensen@overwatch.textron.com
• Kentaro Yoshimura, Hitachi Research Laboratory,  

kentaro.yoshimura.jr@hitachi.com

For a full call for papers, see www.computer.org/software/cfp3.htm. 
For IEEE Software author guidelines and submission details, visit www.
computer.org/software/author.htm or contact the publications coordinator 
(software@computer.org). Submit your article via the Computer Society’s 
Electronic Submission System (http://mc.manuscriptcentral.com/cs-ieee).

Successful Practices in Software Product Lines


