
Gerhard Fischer 1 Evolutionary Design Lecture, OZCHI’2000

Wisdom is not the product of schooling
but the lifelong attempt to acquire it.

- Albert Einstein

Evolutionary Design of Complex Systems

Gerhard Fischer
Center for LifeLong Learning & Design (L 3D)

http://www.cs.colorado.edu/~l3d/
Department of Computer Science and Institute of Cognitive Science

University of Colorado, Boulder

Tutorial (December 5, 2000) at OZCHI 2000

Gerhard Fischer 2 Evolutionary Design Lecture, OZCHI’2000

Overview

• System Design Problems and Challenges

• Domain-Oriented Design Environments (DODEs)

• Evolution: The SER Model

• Assessment

Gerhard Fischer 3 Evolutionary Design Lecture, OZCHI’2000

 Problems of System Design

• problems in semantically rich domains à thin spread of application
knowledge

• modeling a changing world à changing and conflicting requirements

• turning a vague idea about an ill-defined problem into a specification
à “design disasters”, “up-stream activities”

• “symmetry of ignorance” (between different communities of practice)
à communication and coordination problems

• reality is not user-friendly à useful and usable

Gerhard Fischer 4 Evolutionary Design Lecture, OZCHI’2000

Answers to Problems of System Design

• problems in semantically rich domains à thin spread of application
knowledge — domain-orientation

• modeling a (changing) world à changing and conflicting requirements —
evolution

• turning a vague idea about an ill-defined problem into a specification
à “design disasters”, “up-stream activities” — integration of problem
framing and problem solving

• symmetry of ignorance à communication and coordination problems —
representation for mutual understanding and mutual learning

• reality is not user-friendly à useful and usable — collaborative work
practices, power users

Gerhard Fischer 5 Evolutionary Design Lecture, OZCHI’2000

Computational Environments Need to Be Open and Evolvable

• the basic message: computational environments of the future
- will be complex, embedded systems
- need to be open and not closed
- will evolve through their use by collaborating communities of

practice acting as “active contributors/designers” and not just
“consumers”

• examples:
- SimCity
- operating systems and high-functionality applications
- domain-oriented design environments
- courses as seeds
- electronic journals (JIME) à Journal of Interactive Media in

Education at http://www-jime.open.ac.uk/
- open source environments

Gerhard Fischer 6 Evolutionary Design Lecture, OZCHI’2000

Three Generations of Design Methods from the History of
Architectural Design

• 1st Generation (before 1970):
- directionality and causality
- separation of analysis from synthesis
- major drawbacks:

- perceived by the designers as being unnatural, and
- does not correspond to actual design practice

• 2nd Generation (in the early 70's):
- participation — expertise in design is distributed among all participants
- argumentation — various positions on each issue
- major drawback: insisting on total participation neglects expertise possessed by

well-informed and skilled designers

• 3rd Generation (in the late 70's):
- inspired by Popper: the role of the designer is to make expert design conjectures
- these conjectures must be open to refutation and rejection by the people for whom

they are made (à end-user modifiability)

Gerhard Fischer 7 Evolutionary Design Lecture, OZCHI’2000

Seeding, Evolutionary Growth, and Reseeding

• seeding
- seed a specific domain-oriented design environment using the domain-

independent, multi-faceted architecture
- provide representations for mutual learning and understanding

between the involved stakeholders
- make the seed useful and usable enough that it is used by domain

workers

• evolutionary growth
- co-evolution between individual artifacts and the DODE
- learning on demand and end-user modifiability complement each other
- emerging human resources: local developers, power users, gardeners

• reseeding
- formalize, generalize, structure
- a social and technical challenge

• success example of the SER model:
- development of operating systems
- open source developments
- courses as seeds

Gerhard Fischer 8 Evolutionary Design Lecture, OZCHI’2000

The Seeding, Evolutionary Growth, and Reseeding (SER) Model

Domain
Designer

Environment
Developer

Client

Legend

build on
lower level

modify
lower level

Evolutionary Growth

ReSeeding

Artifact A

Artifact B

Multifaceted
Architecture

DODE

Artifact

A rgum entation

C atalog

Specification

Argument a tion
Il lustrator

Catalog
Explorer

Catalog

Explorer

Argumentation

Catalog

ConstructionSpecifi cation

Argumentation
Illustrator

Catalog
Explorer

Catalog
Explor er

Construction
Analyzer

Specificat ion

Matcher

Specific at ion
Matcher

Seeding

le
ve

ls

time

Gerhard Fischer 9 Evolutionary Design Lecture, OZCHI’2000

Evolution at All Three Levels

• evolution at the conceptual framework level
- end-user modifiable DODEs
- example: multifaceted, domain-independent architecture

• evolution of the domain
- evolution was driven by new needs and expectations of users as well as new

technology
- example: computer network design

• evolution of individual artifacts
- long-term, indirect collaboration
- design rationale
- example: the computer network at CU-Boulder

• co-evolution
- problem framing and problem solving (specification and implementation)
- individual artifact and generic, domain-oriented design environment

Gerhard Fischer 10 Evolutionary Design Lecture, OZCHI’2000

Evolution in Biology versus Evolution in the Human-Made
World — a Word of Caution

• the evolutionary metaphor must be approached with caution because
- there are vast differences between the world of the made and the

world of the born

- one is the result of purposeful human activity, the other the outcome
of a random natural process

• does software develop according to the “punctuated equilibrium”
theory?

- if yes, what causes the periods of increased change (subroutines,
object-oriented programming, the Web)?

Gerhard Fischer 11 Evolutionary Design Lecture, OZCHI’2000

Punctuated Equilibrium

Gerhard Fischer 12 Evolutionary Design Lecture, OZCHI’2000

A Conceptual Framework for Evolution and Reuse

Location

Modification Comprehension

explanation

reformulation

extraction

reformulation

review / explanation

Gerhard Fischer 13 Evolutionary Design Lecture, OZCHI’2000

 End-User Computing

• competent practitioners usually know more than they can say — tacit
knowledge is triggered by situations, by breakdowns

• end-users:
- are the owners of problems, have the domain knowledge, are the users of

computational artifacts
- regard computers as useful machines capable of helping them work more

productively, creatively, and with greater pleasure
- like computers because they get their work done

• computer scientists / programmers
- find computer themselves intrinsically interesting
- like computers because they get to program

• ultimate goal/belief:
- end-users will use, tailor, extend and create their own computational artifacts

when they have domain-oriented design environments
- community of users will develop: power users, local developers, gardeners

Gerhard Fischer 14 Evolutionary Design Lecture, OZCHI’2000

Prototypes of Systems Supporting Evolution

• Modifier (end-user modifiability component of Janus)
- mechanisms to add new objects and new behavior by the domain

designer

• Expectation Agents (with NYNEX, UC Irvine)
- support communication between developers and end-users
- observe actions of end-users and compare them to descriptions of the

intended use

• Visual Agent Talk (VAT) and Behavior Exchange
- representations of conditions, actions and rules as graphical objects
- interface support (drag and drop) for end-user programming

• Dynasites
- Dynagloss
- Living Books
- Virtual Libraries
- Courses as Seeds

Gerhard Fischer 15 Evolutionary Design Lecture, OZCHI’2000

Comparing Conventional Books and Living Books

http://Seed.cs.colorado.edu/LivingBook.Home.fcgi

Conventional Book Living Book

closed – the content is finalized at write-
time

open – content evolves through small
contributions at read-time

static – the book is always viewed in the
same way

dynamic – views are computed at read-
time; many different ways of viewing the
book are possible

a reference artifact a medium of communication

authors known at write-time new authors can join at anytime.

in danger of becoming obsolete long lifecycle driven by continual authoring

content controlled by authors content contributed ad hoc (but just how
this is realized is a design decision)

linkages between parts of the book and
between book and other artifacts are
implicit; reader does work to follow linkages

linkages are supported by hypermedia (as
much as possible)

Gerhard Fischer 16 Evolutionary Design Lecture, OZCHI’2000

 “Courses as Finished Products” versus “Courses as Seeds”
http://www.cs.colorado.edu/~l3d/courses/atlas-2000/

Courses as finished products Courses as seeds

learners answer problems given to them by
the instructor

learners construct knowledge about topics
that are personally meaningful

learners interact mainly with the teacher
and compete with other learners for grades

learners are a community of practice and
collaborate to build shared understanding

learners are complete novices in the
subject matter and make no contribution to
other students

course participants are knowledgeable
people in their own working environments
who have much to offer

a course is given over a period of years,
more or less in the same form

a course is considered as a seed that will
evolve continuously

learners are recipients of knowledge (the
assumption is that the teacher/instructional
designer has all the relevant knowledge)

learners are not just passive recipients of
knowledge, but active contributors, i.e.,
they actively co-design the class curriculum

from time to time the teacher/instructional
designer will incorporate new ideas into the
course so the course doesn't become
outdated

the content of the course is enriched
through the interaction of knowledgeable
people, and important and relevant
additions are incorporated into the course
before it is taught the next time

Gerhard Fischer 17 Evolutionary Design Lecture, OZCHI’2000

Lessons Learned from the “Design for Evolution” of our
Socio-Technical Systems

• seeds need to be functional enough that they are used by skilled domain
designers in their work

• evolutionary growth requires support for end-user modification and
programming, sociological structure of communities of practice with power
users and local developers

• reseeding
- of the application (technological reseeding) — evolving the tool
- of the information space (structural reseeding) — evolving the content
- experience with Dynasites à specific tools are needed: “Dynasites was

designed to accumulate information, but not to edit or restructure the
accumulated information”

Gerhard Fischer 18 Evolutionary Design Lecture, OZCHI’2000

Assessment of DODEs

• current limitation of DODEs:
– limited success models — specifically lack of experience with

evolutionary growth in naturalistic settings
– tool mastery burden

• research issue for DODEs
– design rationale
– case-based reasoning
– integrated artifact memories
– multi-user DODEs
– evolutionary growth through use
– new contracts between stakeholders
– sustainability

• challenges
– the question is how — not why?
– how large or small, general or specific should a domain be?
– cost-effectiveness: powerful substrates are needed

Gerhard Fischer 19 Evolutionary Design Lecture, OZCHI’2000

Conclusions

• software systems should be regarded as “living entities”

• DODEs and the SER model are feasible architectures and models
- for the evolutionary design of complex software systems
- for constructing, capturing and evolving knowledge

• domain-specificity is critical

• individual artifacts within a DODE, domains as specific DODEs and domain-
independent architectures for DODEs co-evolve

